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I
n days long gone, the sec-
ond law of thermodynam-

ics (which predated the first
law) was regarded as per-
haps the most perfect and
unassailable law in physics.
It was even supposed to have
philosophical import: It has
been hailed for providing a
proof of the existence of God
(who started the universe off in a state of low entropy,
from which it is constantly degenerating); conversely, it
has been rejected as being incompatible with dialectical
materialism and the perfectibility of the human condition.

Alas, physicists themselves eventually demoted the
second law to a lesser position in the pantheon—because
(or so it was declared) it is “merely” statistics applied to
the mechanics of large numbers of atoms. Willard Gibbs
wrote: “The laws of thermodynamics may easily be
obtained from the principles of statistical mechanics, of
which they are the incomplete expression”1—and Ludwig
Boltzmann expressed similar sentiments.

Is that really so? Is it really true that the second law
is merely an “expression” of microscopic models, or could
it exist in a world that was featureless at the 10–8 cm
level? We know that statistical mechanics is a powerful
tool for understanding physical phenomena and calculat-
ing many quantities, especially in systems at or near equi-
librium. We use it to calculate entropy, specific and latent
heats, phase transition properties, transport coefficients,
and so on, often with good accuracy. Important examples
abound, such as Max Planck’s realization that by staring
into a furnace he could find Avogadro’s number, and Linus
Pauling’s highly accurate back-of-the-envelope calculation
of the residual entropy of ice. But is statistical mechanics
essential for the second law?

In any event, it is still beyond anyone’s computation-
al ability (except in idealized situations) to account for a
very precise, essentially infinitely accurate law of physics
from statistical mechanical principles. No exception to the
second law of thermodynamics has ever been found—not
even a tiny one. Like conservation of energy (the “first”
law), the existence of a law so precise and so independent
of details of models must have a logical foundation that is
independent of the fact that matter is composed of inter-

acting particles. Our aim
here is to explore that foun-
dation. The full details can
be found in reference 2.

As Albert Einstein put
it, “A theory is the more
impressive the greater the
simplicity of its premises,
the more different kinds of
things it relates, and the

more extended its area of applicability. Therefore the deep
impression which classical thermodynamics made upon
me. It is the only physical theory of universal content con-
cerning which I am convinced that, within the framework
of the applicability of its basic concepts, it will never be
overthrown.”3

In an attempt to reaffirm the second law as a pillar of
physics in its own right, we have returned to a little-
noticed movement that began in the 1950s with the work
of Peter Landsberg,4 Hans Buchdahl,5 Gottfried Falk,
Herbert Jung,6 and others2 and culminated in the book of
Robin Giles,7 which must be counted one of the truly
great, but unsung works in theoretical physics. It is in
these works that the concept of “comparison” (explained
below) emerges as one of the key underpinnings of the
second law. The approach of these authors is quite differ-
ent from lines of thought in the tradition of Sadi Carnot,
which base thermodynamics on the efficiency of heat
engines. (See reference 8, for example, for modern exposi-
tions of the latter approach.)

The basic question
The paradigmatic event that the second law deals with
can be described as follows. Take a macroscopic system in
an equilibrium state X and place it in a room along with a
gorilla equipped with arbitrarily complicated machinery
(a metaphor for the rest of the universe), and a weight—
and close the door. As in the old advertisement for inde-
structible luggage, the gorilla can do anything to the sys-
tem—including tearing it apart. At the end of the day,
however, when the door is opened, the system is found to
be in some other equilibrium state, Y, the gorilla and
machinery are found in their original state, and the only
other thing that has possibly changed is that the weight
has been raised or lowered. Let us emphasize that
although our focus is on equilibrium states, the processes
that take one such state into another can be arbitrarily
violent. The gorilla knows no limits. (See figure 1.)

The question that the second law answers is this:
What distinguishes those states Y that can be reached
from X in this manner from those that cannot? The
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answer: There is a function of the equilibrium states,
called entropy and denoted by S, that characterizes the
possible pairs of equilibrium states X and Y by the
inequality S(X) ≙ S(Y). The function can be chosen so as
to be additive (in a sense explained below), and with this
requirement it is unique, up to a change of scale. Our
main point is that the existence of entropy relies on only
a few basic principles, independent of any statistical
model—or even of atoms.

What is exciting about this seemingly innocuous
statement is the uniqueness of entropy, for it means that
all the different methods for measuring or computing
entropy must give the same answer. The usual textbook
derivation of entropy as a state function, starting with
some version of “the second law,” proceeds by considering
certain slow, almost reversible processes (along adiabats
and isotherms). It is not at all evident that a function
obtained in this way can contain any information about
processes that are far from being slow or reversible. The
clever physicist might think that with the aid of modern

computers, sophisticated feedback mechanisms,
unlimited amounts of mechanical energy (represented
by the weight) and lots of plain common sense and
funding, the system could be made to go from an equi-
librium state X to a state Y that could not be reached
by the primitive quasistatic processes used to define
entropy in the first place. This cannot happen, how-
ever, no matter how clever the experimenter or how
far from equilibrium one travels!

What logic lies behind this law? Why can’t one
gorilla undo what another one has wrought? The
atomistic foundation of the logic is not as simple as
is often suggested. It concerns not only such matters
as the enormous number of atoms involved (1023),
but also other aspects of statistical mechanics that
are beyond our present mathematical abilities. In
particular, the interaction of a system with the
external world (represented by the gorilla and
machinery) cannot be described in any obvious way
by Hamiltonian mechanics. Although irreversibility
is an important open problem in statistical mechan-
ics, it is fortunate that the logic of thermodynamics
itself is independent of atoms and can be understood
without knowing the source of irreversibility.

The founders of thermodynamics—Rudolf Clau-
sius, Lord Kelvin, Planck, Constantin Carathéodory, and
so on—clearly had transitions between equilibrium states
in mind when they stated the law in sentences such as
“No process is possible, the sole result of which is that a
body is cooled and work is done” (Kelvin). Later it became
tacitly understood that the law implies a continuous
increase in some property called entropy, which was sup-
posedly defined for systems out of equilibrium. The ongo-
ing, unsatisfactory debates (see reference 9, for example)
about the definition of this nonequilibrium entropy and
whether it increases shows, in fact, that what is suppos-
edly “easily” understood needs clarification. Once again, it
is a good idea to try to understand first the meaning of
entropy for equilibrium states—the quantity that our
textbooks talk about when they draw Carnot cycles. In
this article we restrict our attention to just those states;
by “state” we always mean “equilibrium state.” Entropy,
as the founders of thermodynamics understood the quan-
tity, is subtle enough, and it is worthwhile to understand
the “second law” in this restricted context. To do so it is
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FIGURE 1. THE SECOND LAW OF THERMODYNAMICS

says that increased entropy characterizes those final states
of a macroscopic system that can be reached from a given
initial state without leaving an imprint on the rest of the
universe, apart from the displacement of a weight. The
scenario shown here illustrates that the process can be
quite violent. (a) A system in an equilibrium state X
(blue) is placed in a room with a gorilla, some intricate
machinery (green), and a weight. (b) The gorilla, machin-
ery, and system interact and the system undergoes a vio-
lent transition. (c) The system is found in a new equilibri-
um state Y (red), the gorilla and machinery are found in
their original state, while the weight may have been dis-
placed. The role of the weight is to supply energy (via the
machinery) both for the actions of the gorilla and for
bringing the machinery and gorilla back to their initial
states. The recovery process may involve additional inter-
actions between machinery, system, and gorilla—interac-
tions besides those indicated in (b).
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not necessary to decide whether Boltzmann or Gibbs had
the right view of irreversibility. (Their views are described
in Joel L. Lebowitz’s article, “Boltzmann’s Entropy and
Time’s Arrow,” PHYSICS TODAY, September 1993, page 32.)

The basic concepts
To begin at the beginning, we suppose we know what is
meant by a thermodynamic system and equilibrium
states of such a system. Admittedly, these are not always
easy to define, and there are certainly systems, such as a
mixture of hydrogen and oxygen or an interstellar ionized
gas, capable of behaving as though they were in equilibri-
um even if they are not truly so. The prototypical system
is a so-called “simple system,” consisting of a substance in
a container with a piston. But a simple system can be
much more complicated than that. Besides its volume, it
can have other coordinates, which can be changed by
mechanical or electrical means—shear in a solid or mag-
netization, for example. In any event, a state of a simple
system is described by a special coordinate U, which is its
energy, and one or more other coordinates (such as the
volume V) called work coordinates. An essential point is
that the concept of energy, which we know about from
moving weights and Newtonian mechanics, can be defined
for thermodynamic systems. This fact is the content of the
first law of thermodynamics.

Another type of system is a “compound system,”
which consists of several different or identical independ-
ent, simple systems. By means of mixing or chemical reac-
tions, systems can be created or destroyed.

Let us briefly discuss some concepts that are relevant
for systems and their states, which are denoted by capital
letters such as X, X�, Y, . . . . Operationally, the composi-
tion, denoted (X, X�), of two states X and X� is obtained
simply by putting one system in a state X and one in a
state X� side by side on the experimental table and
regarding them jointly as a state of a new, compound sys-
tem. For instance, X could be a glass containing 100 g of
whiskey at standard pressure and 20 °C, and X� a glass
containing 50 g of ice at standard pressure and 0 °C. To
picture (X, X�), one should think of the two glasses stand-
ing on a table without touching each other. (See figure 2.)

Another operation is the “scaling” of a state X by a
factor l > 0, leading to a state denoted lX. Extensive
properties such as mass, energy, and volume are multi-
plied by l, while intensive properties such as pressure
stay intact. For the states X and X� as in the example

above, 
1/2 X is 50 g of whiskey at standard pressure and 20

°C, and 
1/5 X� is 10 g of ice at standard pressure and 0 °C.

Compound systems scale in the same way: 
1/5 (X, X�) is 20

g of whiskey and 10 g of ice in separate glasses with pres-
sure and temperatures as before.

A central notion is adiabatic accessibility. If our goril-
la can take a system from X to Y as described above—that
is, if the only net effect of the action, besides the state
change of the system, is that a weight has possibly been
raised or lowered, we say that Y is adiabatically accessi-
ble from X and write X ≺ Y (the symbol ≺ is pronounced
“precedes”). It has to be emphasized that for macroscopic
systems the relation is an absolute one: If a transition
from X to Y is possible at one time, then it is always pos-
sible (that is, it is reproducible), and if it is impossible at
one time, then it never happens. This absolutism is guar-
anteed by the large powers of 10 involved—the impossi-
bility of a chair’s spontaneously jumping up from the floor
is an example.

The role of entropy
Now imagine that we are given a list of all possible pairs
of states X,Y such that X ≺ Y. The foundation on which
thermodynamics rests, and the essence of the second law,
is that this list can be simply encoded in an entropy func-
tion S on the set of all states of all systems (including
compound systems), so that when X and Y are related at
all, then

X ≺ Y if and only if S(X) ≙ S(Y).

Moreover, the entropy function can be chosen in such a
way that if X and X� are states of two (different or identi-
cal) systems, then the entropy of the compound system in
this pair of states is given by

S(X,X�) ⊂ S(X) ⊕ S(X�).

This additivity of entropy is a highly nontrivial assertion.
Indeed, it is one of the most far-reaching properties of the
second law. In compound systems such as the whiskey/ice
example above, all states (Y,Y�) such that X ≺ Y and X� ≺

Y� are adiabatically accessible from (X, X�). For instance,
by letting a falling weight run an electric generator one
can stir the whiskey and also melt some ice. But it is
important to note that (Y,Y�) can be adiabatically accessi-
ble from (X, X�) without Y being adiabatically accessible
from X. Bringing the two glasses into contact and sepa-
rating them again is adiabatic for the compound system,
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but the resulting cooling of the whiskey is not adiabatic
for the whiskey alone. The fact that the inequality S(X) ⊕
S(X�) ≙ S(Y) ⊕ S(Y�) exactly characterizes the possible
adiabatic transitions for the compound system, even when
S(X) ≚ S(Y), is quite remarkable. It means that it is suffi-
cient to know the entropy of each part of a compound sys-
tem to decide which transitions due to interactions between
the parts (brought about by the gorilla) are possible.

Closely related to additivity is extensivity, or scaling
of entropy,

S(lX) ⊂ lS(X),

which means that the entropy of an arbitrary mass of a
substance is determined by the entropy of some standard
reference mass, such as 1 kg of the substance. Without
this scaling property, engineers would have to use differ-
ent steam tables each time they designed a new engine.

In traditional presentations of thermodynamics,
based for example on Kelvin’s principle given above,
entropy is arrived at in a rather roundabout way that
tends to obscure its connection with the relation ≺. The
basic message we wish to convey is that the existence and
uniqueness of entropy are equivalent to certain simple
properties of the relation ≺. This equivalence is the con-
cern of reference 2.

An analogy leaps to mind: When can a vector field
E(x) be encoded in an ordinary function (potential) v(x)
whose gradient is E? The well-known answer is that a
necessary and sufficient condition is that curl E ⊂ 0. The
importance of this encoding does not have to be empha-
sized to physicists; entropy’s role is similar to the poten-
tial’s role, and the existence and meaning of entropy are
not based on any formula such as S ⊂ ⊗S

i
p

i
ln p

i
, involv-

ing probabilities p
i

of “microstates.” Entropy is derived
(uniquely, we hope) from the list of pairs X ≺ Y; our aim is
to figure out what properties of this list (analogous to the
curl-free condition) will allow it to be described by an
entropy. That entropy will then be endowed with an
unambiguous physical meaning independent of anyone’s
assumptions about “the arrow of time,” “coarse graining,”
and so on. Only the list, which is given by physics, is
important for us now.

The required properties of ≺ do not involve concepts

like “heat” or “reversible
engines”; not even “hot” and
“cold” are needed. Besides
the “obvious” conditions “X ≺
X for all X” (reflexivity) and
“X ≺ Y and Y ≺ Z implies X
≺ Z” (transitivity), one needs
to know that the relation
behaves reasonably with
respect to the composition
and scaling of states. By this
we mean the following:
� Adiabatic accessibility is
consistent with the composi-
tion of states: X ≺ Y and Z ≺
W implies (X,Z) ≺ (Y,W).
� Scaling of states does not
affect adiabatic accessibility:
If X ≺ Y, then lX ≺ lY.
� Systems can be cut adia-
batically into two parts: If 0 <
l < 1, then X ≺ ([1 ⊗ l]X,lX),
and the recombination of the
parts is also adiabatic: ([1 ⊗
l]X,lX) ≺ X.

� Adiabatic accessibility is stable with respect to small
perturbations: If (X,eZ) ≺ (Y,eW) for arbitrarily small e >
0, then X ≺ Y.

These requirements are all very natural. In fact, in
traditional approaches they are usually taken for granted,
without mention. They are not quite sufficient, however,
to define entropy. A crucial additional ingredient is the
comparison hypothesis for the relation ≺. In essence, this
is the hypothesis that equilibrium states, whether simple
or compound, can be grouped into classes such that if X
and Y are in the same class, then either X ≺ Y or Y ≺ X.
In nature, a class consists of all states with the same mass
and chemical composition—that is, with the same amount
of each of the chemical elements. If chemical reactions
and mixing processes are excluded, the classes are small-
er and may be identified with the “systems” in the usual
parlance. But it should be noted that systems may be com-
pound, or consist of two or more vessels of different sub-
stances. In any case, the role of the comparison hypothe-
sis is to ensure that the list of pairs X ≺ Y is sufficiently
long. Indeed, we shall give an example later of a system
whose pairs satisfy all the other axioms, but that is not
describable by an entropy function.

Construction of entropy
Our main conclusion (which we do not claim is obvious,
but whose proof can be found in reference 2) is that the
existence and uniqueness of entropy is a consequence of
the comparison hypothesis and the assumptions about
adiabatic accessibility stated above. In fact, if X

0
, X, and

X
1

are three states of a system and l is any scaling factor
between 0 and 1, then either X ≺ ([1 ⊗ l]X

0
,lX

1
) or ([1 ⊗ l]

X
0
,lX

1
) ≺ X, by the comparison hypothesis. If both alter-

natives hold, then the properties of entropy demand that

S(X) ⊂ (1 ⊗ l)S(X
0
) ⊕ lS(X

1
).

If S(X
0
) Þ S(X

1
), then this equality can hold for at most

one l. With X
0

and X
1

as reference states, the entropy is
therefore fixed, apart from two free constants, namely the
values S(X

0
) and S(X

1
).

From the properties of the relation ≺ listed above, one
can show that there is, indeed, always a 0 ≙ l ≙ 1 with
the required properties, provided that X

0
≺ X ≺ X

1
. It is
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FIGURE 3. DEFINITION OF ENTROPY. One can define the entropy of 1 kg of water in a given
state (represented by the orange color) by obtaining the state from a fraction l kg of steam in a
fixed, standard state (red) and a fraction 1 ⊗ l kg of ice in a fixed, standard state (blue), with
the aid of a device (green) and a weight (yellow). The device returns to its initial state at the
end of the process, but the weight may end up raised or lowered. The entropy S

water
, measured

in units of S
steam

, is the maximum fraction l ⊂ l
max

for which the transformation to 1 kg of
water in the given (orange) state is possible. The system of steam and ice is used here only for
illustration. The definition of entropy need not involve phase changes.
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equal to the largest l, denoted l
max

, such that ([1 ⊗ l]X
0
,

lX
1
) ≺ X. Defining the entropies of the reference states

arbitrarily as S(X
0
) ⊂ 0 and S(X

1
) ⊂ 1 unit, we obtain the

following simple formula for entropy:

S(X) ⊂ l
max

units.

The scaling factors (1 ⊗ l) and l measure the amount of
substance in the states X

0
and X

1
, respectively. The for-

mula for entropy can therefore be stated in the following
words: S(X) is the maximal fraction of substance in the
state X

1
that can be transformed adiabatically (that is, in

the sense of ≺) into the state X with the aid of a comple-
mentary fraction of substance in the state X

0
. This way of

measuring S in terms of substance is reminiscent of an old
idea, suggested by Pierre Laplace and Antoine Lavoisier,
that heat be measured in terms of the amount of ice melt-
ed in a process. As a concrete example, let us assume that
X is a state of liquid water, X

0
of ice and X

1
of vapor. Then

S(X) for a kilogram of liquid, measured with the entropy
of a kilogram of water vapor as a unit, is the maximal
fraction of a kilogram of vapor that can be transformed
adiabatically into liquid in state X with the aid of a com-
plementary fraction of a kilogram of ice. (See figure 3.)

In this example the maximal fraction l
max

cannot be
achieved by simply exposing the ice to the vapor, causing
the former to melt and the latter to condense. That would
be an irreversible process—that is, it would not be possi-
ble to reproduce the initial amounts of vapor and ice adi-
abatically (in the sense of the definition given earlier)
from the liquid. By contrast, l

max
is uniquely determined

by the requirement that one can pass adiabatically from X
to ([1 ⊗ l

max
]X

0
,l

max
X

1
) and vice versa. For this transfor-

mation it is necessary to extract or add energy in the form
of work—for example by running a little reversible Carnot
machine that transfers energy between the high-temper-
ature and low-temperature parts of the system (see figure
3). We stress, however, that neither the concept of a
“reversible Carnot machine” nor that of “temperature” is
needed for the logic behind the formula for entropy given
above. We mention these concepts only to relate our defi-
nition of entropy to concepts for which the reader may
have an intuitive feeling.

By interchanging the roles of the three states, the def-
inition of entropy is easily extended to situations where X
≺ X

0
or X

1
≺ X. Moreover, the reference points X

0
and X

1
,

where the entropy is defined to be 0 and 1 unit respec-
tively, can be picked consistently for different systems
such that the formula for entropy will satisfy the crucial
additivity and extensivity conditions

S(X,X�) ⊂ S(X) ⊕ S(X�) and S(lX) ⊂ lS(X).

It is important to understand that once the existence
and uniqueness of entropy have been established, one need
not rely on the l

max
formula displayed above to determine it

in practice. There are various experimental means to deter-
mine entropy that are usually much more practical. The
standard method consists of measuring pressures, volumes,
and temperatures (on some empirical scale), as well as spe-
cific and latent heats. The empirical temperatures are con-
verted into absolute temperatures T (by means of formulas
that follow from the mere existence of entropy but do not
involve S directly), and the entropy is computed by means of
formulas like DS ⊂ ∫(dU + PdV) /T, with P the pressure.
The existence and uniqueness of entropy implies that this
formula is independent of the path of integration.

Comparability of states
The possibility of defining entropy entirely in terms of the

relation ≺ was first clearly stated by Giles.7 (Giles’s defi-
nition is different from ours, albeit similar in spirit.) The
importance of the comparison hypothesis had been real-
ized earlier, however.4–6 All the authors take the compari-
son hypothesis as a postulate—that is, they do not
attempt to justify it from other, simpler premises. Howev-
er, it is in fact possible to derive comparability for any pair
of states of the same system from some natural and
directly accessible properties of the relation ≺.2 The deri-
vation uses the customary parameterization of states in
terms of energy and work coordinates. But such parame-
terizations are irrelevant, and therefore not used, for our
definition of entropy—once the comparison hypothesis
has been established.

To appreciate the significance of the comparison
hypothesis, it may be helpful to consider the following
example. Imagine a world whose thermodynamical sys-
tems consist exclusively of incompressible solid bodies.
Moreover, all adiabatic state changes in this world are
supposed to be obtained by means of the following ele-
mentary operations:
� Mechanical rubbing of the individual systems, increas-
ing their energy.
� Thermal equilibration in the conventional sense (by
bringing the systems into contact).
The state space of the compound system consisting of two
identical bodies, 1 and 2, can be parameterized by their
energies, U

1
and U

2
. Figure 4 shows two states, X and Y,

of this compound system, and the states that are adiabat-
ically accessible from each of these states. It is evident
from the picture that neither X ≺ Y nor Y ≺ X holds. The
comparison hypothesis is therefore violated in this hypo-
thetical example, and so it is not possible to characterize
adiabatic accessibility by means of an additive entropy
function. A major part of our work consists of understand-
ing why such situations do not happen—why the compar-
ison hypothesis appears to hold true in the real world.

The derivation of the comparison hypothesis is based
on an analysis of simple systems, which are the building
blocks of thermodynamics. As we already mentioned, the
states of such systems are described by an energy coordi-
nate U and at least one work coordinate, such as the vol-
ume V. The following concepts play a key role in this
analysis:
� The possibility of forming “convex combinations” of
states with respect to the energy U and volume V (or other
work coordinates). This means that given any two states
X and Z of one kilogram of our system, we can pick any
state Y on the line between them in U,V space and, by tak-
ing appropriate fractions l and 1 ⊗ l in states X and Z,
respectively, there will be an adiabatic process taking this
pair of states into state Y. This process is usually quite
elementary. For example, for gases and liquids one need
only remove the barrier that separates the two fractions
of the system. The fundamental property of entropy
increase will then tell us that S(Y) ≚ lS(X) ⊕ (1 ⊗ l)S(Z).
As Gibbs emphasized, this “concavity” is the basis for
thermodynamic stability—namely positivity of specific
heats and compressibilities.
� The existence of at least one irreversible adiabatic
state change, starting from any given state. In conjunc-
tion with the concavity of S, this seemingly weak require-
ment excludes the possibility that the entropy is constant
in a whole neighborhood of some state. The classical for-
mulations of the second law follow from this.
� The concept of thermal equilibrium between simple
systems, which means, operationally, that no state
changes take place when the systems are allowed to
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exchange energy with each other at fixed work coordi-
nates. The zeroth law of thermodynamic says that if two
systems are in thermal equilibrium with a third, then
they are in thermal equilibrium with one another. This
property is essential for the additivity of entropy, because
it allows a consistent adjustment of the entropy unit for
different systems. The zeroth law leads to a definition of
temperature by the usual formula 1/T ⊂ (]S/]U)

V
.

Using these notions (and a few others of a more tech-
nical nature), the comparison hypothesis can be estab-
lished for all simple systems and their compounds.

It is more difficult to justify the comparability of
states if mixing processes or chemical reactions are taken
into account. In fact, although a mixture of whiskey and
water at 0 °C is obviously adiabatically accessible from
separate whiskey and ice by pouring whiskey from one
glass onto the rocks in the other glass, it is not possible to
reverse this process adiabatically. Hence it is not clear
that a block of a frozen whiskey/water mixture at ⊗10 °C,
say, is at all related in the sense of ≺ to a state in which
whiskey and water are in separate glasses. Textbooks
usually appeal here to gedanken experiments with “semi-
permeable membranes” that let only water molecules
through and hold back the whiskey molecules, but such
membranes really exist only in the mind.10 However,
without invoking any such device, it turns out to be possi-
ble to shift the entropy scales of the various substances in
such a way that X ≺ Y always implies S(X) ≙ S(Y). The
converse assertion, namely, S(X) ≙ S(Y) implies X ≺ Y
provided that X and Y have the same chemical composi-
tion, cannot be guaranteed a priori for mixing and chemi-
cal reactions, but it is empirically testable and appears to
be true in the real world. This aspect of the second law,
comparability, is not usually stressed, but it is important; it
is challenging to figure out how to turn the frozen
whiskey/water block into a glass of whiskey and a glass of
water without otherwise changing the universe, except for
moving a weight, but such an adiabatic process is possible.

What has been gained?
The line of thought that started more than 40 years ago
has led to an axiomatic foundation for thermodynamics. It
is appropriate to ask what if anything has been gained in
comparison to the usual approaches involving quasi-stat-
ic processes and Carnot machines on the one hand and
statistical mechanics on the other hand. There are sever-
al points. One is the elimination of intuitive but hard-to-

define concepts such as “hot,” “cold,” and “heat” from the
foundations of thermodynamics. Another is the recogni-
tion of entropy as a codification of possible state changes,
X ≺ Y, that can be accomplished without changing the
rest of the universe in any way except for moving a
weight. Temperature is eliminated as an a priori concept
and appears in its natural place—as a quantity derived
from entropy and whose consistent definition really
depends on the existence of entropy, rather than the other
way around. To define entropy, there is no need for special
machines and processes on the empirical side, and there
is no need for assumptions about models on the statistical
mechanical side. Just as energy conservation was eventu-
ally seen to be a consequence of time translation invari-
ance, in like manner entropy can be seen to be a conse-
quence of some simple properties of the list of state pairs
related by adiabatic accessibility.

If the second law can be demystified, so much the
better. If it can be seen to be a consequence of simple,
plausible notions, then, as Einstein said, it cannot be
overthrown.
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FIGURE 4. HYPOTHETICALLY NONCOMPARABLE STATES. The
graph shows the state space of a pair of identical, incompress-
ible solids with the energies U

1
and U

2
as the only coordinates

of the compound system. The states adiabatically accessible
from X (yellow/orange) and Y (red/orange) are shown under
the assumption that the only adiabatic changes consist in com-
binations of rubbing (increasing U

1
or U

2
) and thermal equili-

bration (moving to the diagonal U
1
⊂ U

2
). In this example, adi-

abatic accessibility cannot be characterized by an entropy func-
tion, because neither a transformation from X to Y nor from Y
to X is possible. The comparison hypothesis does not hold
here. In the real world, however, it always holds.
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