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ABSTRACT 
This paper describes the results of an ITiCSE working group 

convened in 2013 to review and revisit the influential ITiCSE 

2001 McCracken working group that reported [18] on novice 

programmers’ ability to solve a specified programming problem. 

Like that study, the one described here asked students to 

implement a simple program. Unlike the original study, students’ 

in this study were given significant scaffolding for their efforts, 

including a test harness. Their knowledge of programming 

concepts was also assessed via a standard language-neutral 

survey. 

One of the significant findings of the original working group was 

that students were less successful at the programming task than 

their teachers expected, so in this study teachers’ expectations 

were explicitly gathered and matched with students’ performance. 

This study found a significant correlation between students’ 

performance in the practical task and the survey, and a significant 

effect on performance in the practical task attributable to the use 

of the test harness. The study also found a much better correlation 

between teachers’ expectations of their students’ performance 

than in the 2001 working group.  

Categories and Subject Descriptors 

K.3.2 [Computers and Education]: Computers and Information 

Science Education—Computer Science Education 

General Terms 

Measurement, Experimentation. 

Keywords 

Programming, CS1, assessment, replication. 

1. INTRODUCTION 
In 2001, an ITiCSE working group led by Mike McCracken 

(known as the McCracken Working Group and hereafter 

abbreviated as MWG) met in Canterbury to complete and analyze 

a study of novice programmers at institutions around the world. 

The working group produced one of the most highly cited papers 

in SIGCSE’s publication history [18] with two significant 

outcomes: it demonstrated that CS1 students were less capable 

programmers than their teachers expected; and it set the scene for 

a number of subsequent medium- to large-scale multi-national, 

multi-institutional studies. Despite this, and an explicit call for 

replication in the original MWG paper, there has been very little 

effort since directed at replicating or extending the work of the 

original group. 

In 2013, the ITiCSE conference returned to Canterbury and the 

opportunity was taken to “reconvene” the MWG to address the 

broad questions of whether “students in 2013 are any more likely 

to fulfill our expectations than they were in 2001”, specifically 

by: 

 critically revisiting the original McCracken study and 

subsequent work, 

 partially replicating their experiment, and 

 analyzing and reflecting on the results to determine the 

extent to which the conclusions drawn by that group are 
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still valid despite the changes in CS1 teaching and 

students over the intervening years. 

The authors, five of whom were members of the MWG, 

administered both a practical programming task and a concept 

assessment test (quiz) as detailed below, and also recorded their 

expectations of their students’ performance. As in the original 

working group, not everyone managed to collect data, due in part 

to restrictions on gathering data from their own students, and in 

part to the timing constraints imposed by operating as an ITiCSE 

working group (which does not completely form until very close 

to the end of the European/US academic year).  

The task and the test data, along with notes of teachers’ 

expectations, were analyzed during the group’s meeting at 

ITiCSE. 

2. METHOD & COHORT DESCRIPTIONS 

2.1 Method 
To determine the programming ability of a cohort of students 

from several universities (see Section 2.2 below), the working 

group devised a two-part assessment.  It consisted of a CS1 

concept assessment that used The Foundational CS1 Assessment 

Instrument [24] and a programming skill assessment (the clock 

problem as described in Section 3).  Lastly, we asked the faculty 

to reflect on their expectations of the performance of their 

students on the skill and concept assessments and on the actual 

outcomes of the assessments as compared to their expectations. 

The working group decided to use the two-part assessment 

(concept and skill) to hopefully clarify or better understand the 

outcomes of the skill assessment.  In other words, if a student did 

well on the skill assessment, did they comparably do well on the 

concept assessment, and if they did poorly on the skill assessment 

did they similarly do poorly on the concept assessment? The 

linkage of skill and concepts is discussed widely in the cognitive 

science literature (e.g. [19]), in programming cognition literature 

(e.g. [20]), and examined in recent studies (e.g. [16]). 

As became apparent after the fact in the original MWG, teachers 

entering into studies like this one have a set of expectations 

regarding the performance of the students on the tasks making up 

the study. In this study we captured and reviewed these 

expectations, as described in Section 7. 

The concept assessment was a multiple-choice exam and was 

scored in two ways.  A complete score for each student was 

computed from the 27 questions that cover nine concept areas: 

Fundamentals, Logical Operators, Selection, Definite Loops, 

Indefinite Loops, Arrays, Function/Method Parameters, 

Function/Method Return Values and Recursion.  For details on 

the instrument, its validity, etc., please refer to [23].  A subset 

score was also computed from the concept areas that the working 

group determined were used in the skill assessment.  That subset 

of 15 questions was from the concept areas: Fundamentals, 

Logical Operators, Selection, Function/Method Parameters and 

Function/Method Return Values. Section 5 describes the concept 

assessment and it’s scoring. 

The skill assessment (the clock problem) was scored with a test 

harness.  The harness contained a set of black box tests that 

validated the functionality of the student’s programs as described 

in Section 3.  The students wrote their programs in their language 

of instruction.  The languages were Java, Python, and C/C++. 

2.2 Cohort 
The total cohort for our study consisted of 418 first-year students 

who have taken at least one introductory programming course at 

university level.  Some students had taken a few other non-

programming CS courses, and a few had taken a substantial 

number.  The amount of programming education for the cohort 

varied between 4 and 10 ECTS with a weighted average of 7 

ECTS. (An ECTS credit is a broad measure of student effort, 

including formal teaching and self-study time. 1 ECTS credit is 

equivalent to 25-30 hours of student effort [9]). 

Members of the working group recruited the students for the 

cohort.  Most of the students were recruited within the institution 

of the WG member, but some were from other institutions.  

Overall, the cohort represents students from 12 institutions in 10 

countries.  18% of the cohort is from the USA, and 82% is from 

Europe.  Approximately 50% of the total cohort is from a single 

European university. 

For organization of data collection and analysis, we divided the 

cohort into eight groups.  The groups vary in many ways, e.g.: 

 amount and type of programming education prior to 

data collection 

 amount of additional non-programming CS education 

 program of study (CS major, CS minor, Engineering, 

CS/programming as an elective, etc.) 

 type(s) of programming language(s) used 

 language of instruction (native/foreign) 

Table 1 provides an overview of the eight groups in the cohort 

and which parts of the assessment they took part in, although not 

all students who attempted both parts completed both parts. 

Table 1: Overview of Cohort. “Credits” reflect the volume of 

study, measured in ECTS credits 
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R1 1 Eng.   Python(proc.) 5 0 151 x x

R2 1 Eng.+CS Python (OO) 10 0-10 58 x x

P 1 CS Java (OO) 10 25 26 x x

T 8 Mostly 

CS 

Java (OO) and 

C (proc.) 

10 20 57 x x

V 1 CS C# (proc.) ~10 ? 17 x  

Q 2 CS C/C++ (proc.) 4 21 49 x x

S 1 Eng. C++ (proc.) 6 0 40 x x

U 1 CS Java (OO) 8 0 20  x

3. THE CLOCK TASK 
As a test of programming ability, students were asked to 

undertake a simple programming task. A reference 

implementation was written in Java, with the instructions to 

students embedded in comments in the code. 
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3.1 The Problem 
Students were asked to complete the implementation of a class 

(called Time) representing a 24-hour clock. The behavior of the 

clock with respect to wrap-around of the hours, minutes and 

seconds values was described with examples. The clock has four 

operations which students were asked to implement: a tick 

operation which advances the stored time by one second, a 

comparison operation which determines the order of two times, 

and add and subtract methods which calculate the sum or 

difference of two time values. 

The problem is designed to focus on students’ ability with the 

concepts of selection, arithmetic and Boolean expressions, 

although it also touches on their understanding of method 

parameters and return values. Unlike the original MWG, it is also 

designed only to require students to implement a part of a 

complete program, with a strong bias towards ADT 

implementation, rather than the original algorithm-focused input-

parse-output-loop style. 

Students undertook the task in “closed lab” settings of around 90 

minutes duration (group S had 75 minutes, and group U 110). For 

most groups, the task was completed as part of a course and most 

of the students on that course undertook it. In three cases (R1, R2 

and P) the students were volunteers comprising 10-30% of their 

respective cohorts. Analysis of their performance in the courses 

from which they were recruited suggests that the volunteers were 

representative of their cohorts. Most of the participants were 

mildly incentivized to participate, either by entry to a small-prize 

raffle (T,S and U), a coursework grade bonus (Q) or a small prize 

and a grade bonus (R1 and R2). Group P students received no 

incentive. 

3.2 Reference Implementation 
The reference version of the task was written in Java, and 

translated into other (implementation) languages by individual 

investigators. The instructions for undertaking the task were 

included (as comments) in a skeleton implementation (Time.java) 

provided as a starting point for students (see Appendix A). This 

skeleton included the class boiler-plate code down to the level of 

skeletons of the required methods as well as the descriptive 

comments. As well as the skeleton code, the reference 

implementation included an example solution and a test harness. 

The intention was that the test harness and skeleton 

implementation of the Time class should be provided to students 

as a starting point and a check for their work. In some institutions 

however, the test harness was not provided to students, although it 

was subsequently used to assess the accuracy of their 

implementations. 

The skeleton of the Time class included full implementations of 

the entire class, with the exception of the bodies of the methods 

students were required to complete. In the case of the comparator 

method the skeleton body included a return statement to ensure 

that the skeleton compiled. As well as these methods, the skeleton 

also included constructors and a toString() method (to produce a 

printable representation of the time value) to support testing of the 

implementation. 

The reference implementation also included a test harness 

containing 8-10 black-box tests for each of the four methods to be 

completed in the Time class. These tests covered both simple 

cases; all of the rollover cases for the tick() and add() methods, 

and the “borrow” cases for subtract(). In addition, the Java and 

OO Python implementations included tests for common 

implementation problems (e.g. equality/identity confusions).  

The test harness was organized so that all the tests for a particular 

method were performed, independent of any failures, but tests for 

subsequent methods were only executed if all prior tests had 

passed. This was intended to avoid presenting students with a 

long list of failure messages before they had started their work, 

but had the effect of “ordering” students’ approach to the tasks. 

Students using the test harness were discouraged from working on 

methods before all the tests on “previous” methods passed. The 

order of method tests in the reference test harness was: tick(), 

compareTo(), add(), and subtract(). 

3.3 Translations 
The reference implementation was translated into C/C++, C# 

(which was eventually unused) and two variants in Python. In 

addition, the comments in both Python versions were also 

translated into the local (natural) language for use in one of the 

institutions. Other institutions where the students’ first language 

was not English nevertheless used the English versions of the 

instruction/comment. All versions are available on request from 

the first author. 

4. THE TASK: ANALYSIS & RESULTS 

4.1 Analysis 
The participants’ Clock Task submissions were evaluated 

using black-box tests. Using the same four sets of tests – one 

for each method that needed to be implemented – provided to 

most of the participants as part of the programming task. 

However, in evaluating submissions, all tests were run, even if 

an earlier test had failed. A method in one submission was 

judged completely correct if it passed all of the tests for that 

method; passing only some of the tests for a method was a 

failure. Combining the results for each method in a submission 

determined the overall mark for that submission, which is an 

integer between 0 and 4 – a count of how many of the methods 

in a submission passed all the tests. 

4.1.1 Results 
Table 2: Results on the Clock Task 
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R1 Yes 149 3.04 82 81 72 68 

R2 Yes 57 3.86 98 98 96 93 

P Yes 26 3.27 92 92 73 73 

T Yes 38 3.21 84 89 76 71 

Q No 15 0.80 33 13 27 7 

S No 40 0.93 33 29 17 14 

U No 20 0.65 30 15 10 10 

combined Yes 270 3.26 87 87 78 74 

combined No 75 0.83 32 22 17 12 
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combined All 345 2.72 75 73 65 61 

 

Table 2 shows, for each cohort, the average number of methods 

successfully completed by the participants as well as the 

percentages of participants who successfully completed each 

individual method. On average, the participants completed 2.72 

methods out of 4. This overall average leans towards the larger 

cohorts however, and as is obvious from the table, there were 

substantial differences between the cohorts, with a group of 

cohorts scoring very high and another group very low. As Table 2 

also illustrates, a significant factor in this two-way split appears to 

be whether the cohorts had been provided with a test harness or 

not. In all cases, it was reported that students had previously been 

exposed to ideas of testing software, but had not been asked to 

take a systematic approach to it in their work. Below, we will 

discuss the results of the two groups separately. 

4.1.2 Cohorts with a Test harness 
In four cohorts (R1, R2, P, T), the students completed an average 

of 3.26 methods out of four, with the majority of students 

completing all four. In all of these cohorts, the students were 

provided with a test harness as described in Section 3.  

The test harness strongly encouraged the students to attempt each 

method in order and not skip ahead before they had a working 

solution to the previous method. It is unsurprising; therefore, the 

first method (tick()) was correctly implemented more than the 

other methods, with the number of successful submissions 

decreasing at each successive method. 

Table 2 suggests there were two points in the four-method 

sequence that caused some of the students to get stuck and not 

make further progress. Some fell at the first hurdle: about 13 % of 

the with-harness students could not produce a working 

implementation of the tick() method. Nearly all of those who 

succeeded with tick also did well on the next method, 

compareTo(); in one cohort (T), the result was better for the 

second method than the first. The second spot of difficulty arrived 

with the third method, add(); about 9 % of the students failed at 

this point, but those who succeeded went on to produce a fully 

working solution to the last method, subtract(). The correlations 

between methods shown in Table 3 bears out this interpretation: 

success in implementing tick() and compareTo() correlate 

relatively strongly with each other, as do add() and subtract() with 

respect to each other. These results suggest that the students found 

the first two methods to be easier than the other two.  

Table 3: Correlation between Performance on Sub-tasks in 

Clock Task, calculated for each student 

Sub-task 
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tick() 1 .500 .354 .352 

compareTo() 1 .262 .391 

add() 
  

1 .591 

subtract()    1 

4.1.3 Cohorts without a Test harness 
Due to ambiguity in the methodology as explained to working 

group members, participants at some institutions were not 

provided the ‘test harness’.  Some of these participants were only 

given the Time class; others were given the Time code with a 

main method, but no test cases. 

In contrast to the cohorts discussed above, submissions from 

participant cohorts not provided with the test harness (i.e., cohorts 

Q, S, and U) have an average of 0.83 correct methods. 

A few participants left traces of creating their own test harness in 

their submissions, others may have created testing facilities but 

not submitted them. Evidence suggests that less than 5% of the 

students did any systematic testing. However, even in the absence 

of a test harness, many student code submissions pass many of the 

unit tests for one, or more, methods.  

Not having the test harness requires students to identify and 

correctly implement all the corner cases, as well as avoiding 

inserting any unrecognized bugs of their own.  

The possible implications of not having the test harness: 

 It requires participants to understand the use of the 

Clock class from its documentation alone, rather than 

from the examples provided by the harness. 

 It requires participants either to create their own test 

cases, or not test their work at all. 

 It requires participants using OO languages to realize 

the Time class will be used by an object of another 

class, which might be a novel approach for them. 

 The harness imposes an order of work – non-harness 

students may lack scaffolding without the ordering 

imposed by the harness. 

 A failing test in the harness may discourage students 

from moving on to subsequent sub-tasks. 

 

Mistakes (made less likely with the harness) seen in non-harness 

participants (cohort U): 

 including a main() method  (2/20) 

 creating a loop in the tick() method (3/20) 

Observing that several students in the no-harness group have 

partial solutions, an alternative analysis of these submissions was 

devised. The same unit tests were run for the no-harness 

submission. However, instead of recording a binary success / fail 

for each method, the numbers of tests passed for each method 

were tallied. Table 4 summarizes the results. 

45 of 75 (60%) of the submissions were judged partially correct 

code whereas only 3 of 75 (4%) of the submissions were judged 

completely correct. 

 

Table 4: Detailed success rates for non-harness students 

(n=75) 

Sub-task 
Partial success 

(%) 

Complete 

success(%) 

Total 

(%) 

tick() 19 33 52 

compareTo(

) 
37 23 60 

add() 21 19 40 

subtract() 21 12 33 
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Figure 1 shows histograms of the number of test cases passed by 

students not provided with a test harness for a) the tick() method, 

b) the compareTo() method, c) the add() method, d) the subtract() 

method, and e) all methods combined. As can be seen from this 

figure, students in these cohorts had a tendency to either pass 

none of the tests for a particular method, or pass all of them. This 

leads to an apparent bi-modality in the outcomes at the method 

level, which is not apparent at the aggregate level. This probably 

represents a relaxation of the ordering imposed by the test 

harness, with students here successfully completing some, but not 

all, method implementations. The “spike” in successful 

completion of the compareTo() method (with 2 successful unit 

tests passed) is an artifact; the skeleton provided for this method 

coincidentally passes two of the tests. 

It should be noted that: 

 3 of 75 submissions passed all N tests 

 42 of 75 submissions passed between 1 and N-1 tests 

 22 of 75 submissions passed at least one unit test for 

each method 

In these cohorts, too, a trend can be observed in that the students 

were more successful with the first methods than the later ones, 

although there is more variation in this respect in the no-harness 

group than in the with-harness one. This greater variation is likely 

to be a reflection of the no-harness students being less constrained 

in their choice of which methods to tackle and when. It may be 

that the order of appearance of the methods in the provided 

skeleton, which was the same as the order of the method tests in 

the test harness, suggested an implicit order in which students 

attempted implementation. 

  

  

 

Figure 1: Partial success for the non-harness groups 
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5. THE ASSESSMENT INSTRUMENT 

5.1.1 Assessment of Conceptual Understanding 
The Foundational CS1 (FCS1) Assessment Instrument was used 

to measure students’ conceptual understanding of programming 

concepts [24].  The FCS1 is a validated exam of topics commonly 

found in a first computer science course and is written in pseudo-

code so that it can be used in courses that use a variety of 

programming languages and pedagogies.    

The exam uses a multiple-choice question format to investigate 

topics in three different dimensions:  definition, tracing, and code-

completion.  The definition questions explore a student’s 

understanding of a concept, while the tracing questions ask 

students to predict the outcome of the execution of a piece of 

code.  Code-completion is the code-writing task, where students 

are asked to fill in missing portions of code to complete a function 

to produce a certain result.   

The validity of the assessment instrument has previously been 

demonstrated using a three-pronged mixed methods approach integrating both quantitative and qualitative techniques.  Think 

aloud interviews provided evidence that students were reading 

and reasoning with the pseudo-code to answer questions in the 

manner intended.  Statistical analysis techniques demonstrated 

both the quality of the questions themselves as well as a 

correlation with external faculty definitions and measures of CS1 

knowledge [24].   

5.1.2 Data Collection & Analysis 
The FCS1 was administered via a web-based survey tool at six 

different universities.  The exam was given under testing 

conditions – a closed laboratory setting with proctors to supervise 

the testing environment.  Students were given one hour to 

complete the assessment, and the majority (96.1%) finished 

within the time limit, or at least did not appear to have run out of 

time1.  A two-page overview of the pseudo-code syntax was 

provided to each student before the exam began and was available 

for reference throughout the assessment. 

5.1.3 Results 
We received a total of 231 valid responses to the FCS1 

assessment.  Before data analysis could begin, outliers from the 

data set that would bias or skew the results were removed. 

Exclusionary criteria include: empty submission, entered the same 

answer to 10 or more questions in a row, and spending less than 

15 minutes on the entire exam (an average of 33 seconds per 

question.)  A second researcher verified the rules for exclusion 

and independently reviewed all of the exams that were removed 

from the data set to confirm that they met one or more of the 

exclusionary criteria. After scrubbing, the final data set consisted 

of 217 responses.  

The FCS1 was then scored, awarding a 1 for a correct answer and 

a 0 for an incorrect answer. (Any question left blank was not 

scored.)  The maximum score was a 25, and the minimum score 

was a 2 out of a total of 27 questions. Student participants 

answered an average of 11.35 (42.02%, σ = 4.711) questions 

correctly.  Questions about math operators and if statements were 

among the most commonly answered correctly. The programming 

                                                                 
1 A participant was determined to have run out of time if they worked on 

the assessment for the full hour and left a significant percentage (>35%) 

of the questions at the end blank. 

constructs related to function parameters, function return values, 

and definite loops were the most difficult questions.  The 

distribution of performance on the concept assessment by cohort 

is shown in Table 5.  There was a statistically significant 

difference between groups as determined by one-way ANOVA 

(F(6,210)=23.119, p = 0.000).  A Tukey post-hoc test revealed 

that cohorts R2 and P scored significantly higher than all of the 

other cohorts (16.81 and 16.36 respectively).  Further, the Tukey 

post-hoc test identified a subset of cohorts (R1, T, and Q) that 

performed better than the remaining two cohorts.  There was no 

statistically significant difference between the remaining two 

cohorts (p = 1.000). 

 

Table 5: Overall Student Scores on the FCS1 Assessment 

Instrument by Cohort 

Cohort N 
Averag

e 
% σ Median 

R1 15 11.27 41.73 3.97 11 

R2 16 16.81 62.27 4.56 17 

P 25 16.36 60.59 4.23 15 

T 57 12.02 44.51 4.08 12 

V 17 7.53 27.89 3.47 7 

Q 49 10.31 38.17 3.38 10 

S 38 7.69 28.49 2.68 8 

 

A subsequent analysis examined the performance of students on 

the subset of topics on the FCS1 assessment that were identified 

as learning objectives in the clock task skills assessment: 

fundamentals, logical operators, selection statement, function 

parameters and function return values. The maximum score was a 

14, and the minimum score was a 0 out of a total of 15 questions. 

Student participants answered an average of 5.96 (39.76%, σ = 

2.657) questions correctly.     

Table 6: Student Scores on the FCS1 Assessment Instrument 

on Task Topics by Cohort 

 

 Questions about math operators and logical operators were 

among the most commonly answered correctly. The programming 

constructs related to function parameters and function return 

values remained the most difficult questions.  The distribution of 

performance on the concept assessment by cohort is shown in 

Table 5. There was a statistically significant difference between 

groups as determined by one-way ANOVA (F(6,211)=17.168, p = 

0.000). A Tukey post-hoc test revealed that cohorts R2 and P 

scored significantly higher than all of the other cohorts (8.81 and 

8.64 respectively).  Further the post-hoc analysis identified that 

cohort T participants performed significantly better (6.33 ± 2.42 

Cohort N Average % σ Median 

R1 15 5.47 36.44 2.45 5 

R2 16 8.81 58.75 2.81 8.5 

P 25 8.64 57.60 2.66 8 

T 57 6.33 42.22 2.42 6 

V 17 4.76 31.76 1.64 5 

Q 49 5.29 35.24 1.86 6 

S 38 4.10 27.35 1.79 4 
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points, p = 0.000) than the S cohort.  There were no statistically 

significant differences between the remaining cohorts. 

6. CORRELATIONS BETWEEN THE 

ASSESSMENT AND THE CLOCK TASK 

6.1 Overall Task Score and Concept 

Assessment 
A Pearson product-moment correlation coefficient was computed 

to assess the relationship between the scores on the skills and 

conceptual assessment instruments as enacted by the clock task 

and the FCS1 assessment instrument respectively.  There was a 

positive correlation between the two variables, r = 0.653, n =140, 

p = 000.  Overall, there was a strong, positive correlation between 

the overall score on the clock task (i.e. the number of tests a 

student passed) and their score on the FCS1 assessment (see 

Figure 2).   Further, there also exists a strong positive correlation 

between the clock task score and the score on the subset of the 

topics isolated by the task (r = .605, n = 141, p = .000).  See Table 

7 for more details. 

 

Figure 2: Graph of students' overall score on the Clock task vs 

score on the FCS1 Assessment for the overall population 

Subsequently, in order to investigate the extent to which the test 

harness mediated task performance, we conducted another 

correlation study with the total population split into two 

subgroups by whether or not they conducted the clock task 

assessment with the test harness A Pearson product-moment 

correlation coefficient was computed to assess the relationship 

between the scores on the skills and conceptual assessment 

instruments as enacted by the clock task and the FCS1 assessment 

instrument respectively by subgroup.   

Table 7: Pearson’s Correlation between Clock Task Score and 

Concept Assessment Score 

 

There was a positive correlation between the two variables clock 

task score and assessment score for both subgroups.  However, 

the decrease in correlation (r = .473 and r = .403) suggests that 

the test harness is indeed scaffolding students’ performance, 

perhaps beyond their ability to fully understand the conceptual 

material exercised in the skills task.  The weaker correlations in 

the “without test harness” subgroup are likely caused by the very 

strong floor effect in the task performance (see Figure 1). A 

general view of students’ relative performance, separated by the 

availability of the test harness is given in Figure 3 and Figure 4. 

   

Figure 3: Graph of students' overall score on the Clock task vs 

score on the FCS1 Assessment for students with a test harness. 

Cohort N 
Overall  

FCS1 Score 

Task Topics  

FCS1 Score 

  r p r p 

Total 140 .653 .000 .605 .000 

With Test Harness 89 .473 .000 .403 .000 

Without Test 

Harness 
51 .287 .041 .392 .004 
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Figure 4: Graph of students' overall score on the Clock task vs 

score on the FCS1 Assessment for students without a test 

harness 

6.2 Sub-task Test Score and Assessment 
As described in Section 4.1.3, in order to give participants without 

the benefit of the task harness an opportunity to demonstrate their 

level of programming skill, the clock task was rescored awarding 

one point for each unit test passed rather than an overall pass/fail 

score if they had successfully completed all of the unit tests.  The 

results of this more detailed scoring were used to assess the 

relationship between the scores on the skills and conceptual 

assessment instruments for those participants who were not given 

the testing harness.   

A Pearson product-moment correlation coefficient was computed.  

There was a positive correlation between the two variables, r = 

0.292, n = 48, p = .044.  Overall, the results are similar to those 

found with the simplified scoring scheme.  There was a positive 

correlation between the overall score on the clock task and their 

score on the FCS1 assessment.  Further, there also exists a 

somewhat stronger positive correlation between the clock task 

score and the score on the subset of the topics isolated by the task 

(r = .396, n = 49, p = .005) and no significant correlation between 

the clock task score and the score on the subset of the topics that 

were deemed outside of the scope of the task.   

Further investigation is needed to fully understand the extent the 

differences in the ways these two subgroups performed in the 

clock task.  However, the fact that the correlation of the task and 

assessment scores on both task and non-task isolated topics was 

similar (.403 and .454 respectively) suggests that while the test 

harness clearly scaffolded performance on the clock task it did not 

mask students’ latent understanding of the conceptual content 

highlighted in the task.   

7. TEACHERS’ EXPECTATIONS 
As mentioned above the group members who brought data cohorts 

were asked to fill in a short survey and describe their predictions 

regarding the performance of their students in the FCS1 

assessment. They were also asked to posteriori reflect on their 

expectations and the actual performances of their students in the 

Clock programming task as well as the FCS1.  Although all 

teachers were very familiar with the original MWG work, only 

one of them gathered data in both the original study and this one. 

7.1 Expectations regarding the FCS1 
The teachers were asked to predict the overall score of their 

students (0%-100%) in the FCS1, the topics and subtask that were 

easiest and most difficult to their students (they had to choose 

from the following list: Fundamentals, logical operators, 

Selection, Definite Loops, Indefinite Loops, Arrays, Function 

Parameters, Function Return Value, Recursion), and the 

percentage of students who might have run out of time.  Table 8 

presents the teachers’ response regarding the foundational CS1 

assessment instrument (FCS1) 

Table 8: Teachers’ estimations on their students’ success in 

comparison to students’ performance for the FCS1 

 

 All the teachers unanimously thought that Recursion is the most 

difficult topic. Fundamentals (i.e. variables, assignments, and so 

forth) and selections were considered to be the easiest topics.  

Teachers’ estimations were in the range of 40-63% (in literature 

the average was 42% [24]). About half of the teachers’ believed 

that the students’ conceptual knowledge was better than it 

actually was (see Table 5 and Table 6).  

In their reflections, teachers mentioned several concerns 

regarding factors that might have influenced students’ 

performance in the assessment. Two teachers were concerned that 

students did not have sufficient time. Another teacher was 

concerned about the students’ limited knowledge in English, the 

language of the test and the task. Another concern mentioned by 

one teacher about a possible cultural bias was that the concept of 

a 24-hour clock would be difficult to his students, who are 

accustomed to a 12-hour clock.  

Two teachers had concerns about their students’ conceptual 

knowledge. One was concerned that their students had not been 

exposed to some topics, such as recursion.  Another teacher 

stressed that, in his institute, they “prioritize practical 

programming skills and techniques over deep conceptual 

understanding”.   

The teachers mentioned that they were familiar with the literature 

relevant to the FCS1 assessment. This has “colored” or “biased” 

their expectations.  

7.2 Expectations from the Clock 

programming task 
The teachers were asked to rank the four sub-tasks from the 

easiest (score of 1) to the most difficult (score of 4). Table 9 

presents their ranking. The majority agreed that the subtract() sub-

 

Anticipated 

Score 
Score Easiest Topic 

Most 

Difficult 

Topic 

R1 44% 
Realist 

(2%) 

Fundamentals 

& Selection 
Recursion 

R2 63% 
Realist 

(1%) 

Fundamentals 

& Selection 
Recursion 

P 42% 
Pessimist 

(19%) 
Fundamentals Recursion 

T 56% 
Optimist 

(12%) 
Selection 

Recursion 

& Arrays 

Q 52% 
Optimist 

(14%) 
Selection Recursion 

S 40% 
Optimist 

(12%) 
Fundamentals Recursion 
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task would be the most difficult and that the add() sub-task would 

be the second most difficult.   

Their explanations emphasized the relations between these two 

sub-tasks. The most common argument was that add() is 

“algorithmically more complicated” than tick() and compareTo(), 

and subtract() is like “the add() function in reverse but will cause 

students more difficulty[.]”. 

 

Table 9: Teachers ranking of the sub-tasks 

 tick compareTo add subtrac

t 

R1+R2 1 2 3 4 

P 1 2 3 4 

T 2 1 3 4 

Q 4 1 3 2 

S 1 3 2 4 

U 2 1 3 4 

Average 1.83 1.67 2.83 3.67 

σ 1.17 0.82 0.41 0.82 

 

The tick() and the compareTo() sub-tasks were considered by the 

majority to be easier than the add() and subtract() sub-tasks 

because tick() requires “a simple manipulation” and compareTo() 

requires a “relatively simple code”.  They varied, however, in 

their choice between the two.  These estimations were correct, as 

can be seen in from Table 3.  

Teachers were also asked to estimate their a priori expectation of 

complete success in the Clock task: what proportion of their 

students they expected to be able to completely implement the 

task (to the point of passing all tests), with the results given in 

Table 10. 

 

Table 10: Teachers’ estimations on their students’ success in 

comparison to students’ performance for the Clock task 

 Overall estimation-

overall 

T 66% 50% 

S 3% 4% 

R1 68% 80% 

R2 93% 99% 

U 10% 10% 

Q 0% 5% 

P 73% 33% 

8. COMPARISON WITH THE ORIGINAL 

MCCRACKEN WORKING GROUP AND 

OTHER, MORE RECENT, STUDIES 
In this section we compare the original McCracken working 

group study [18], the Sweden Group study (SG) [17] and this 

study2.  

The MWG study conducted a multi-national, multi–institutional 

study in which the students were given one of three related 

calculator exercises which were deemed to cover all parts of the 

learning objectives framework. Two measures were used to 

evaluate the students’ attempts: a General Evaluation (GE) which 

included execution, verification, validation and style components, 

and a Degree of Closeness evaluation (DOC) in which the code 

was examined qualitatively. Overall the MWG “found that the 

students’ level of skill was not commensurate with their 

instructors’ expectations”. As measures of this we note that the 

average GE score (which was mainly objective) was 22.9 out of 

110.  

The SG took the MWG as its starting point and gave the infix, 

precedence-free calculator problem to 40 students at one 

institution. The study addressed three research questions. The first 

of these, and the goal most relevant to this paper, was how well 

can the students at one institution solve a calculator problem if 

they do not have to deal with various confounding issues 

presented in the MWG study (unfamiliar environments and 

conditions, the complex explanation of calculators, the need for a 

stack for the postfix calculator, the complexities of Java I/O, and 

no access to an online Java API). The SG results were much more 

encouraging than in MWG. The GE score average was 68.2 out of 

110. The authors conclude that “generally the students were able 

to do at least part of the problem”. They offer several possible 

explanations for these different results, which relate to the 

specific issues mentioned above, and which they categorize as 

environment, cognitive load and troublesome knowledge. 

Another research question from the SG study is “can a modified 

version of the instrument used by the MWG provide a useful 

assessment?” They refer to MWG as having the goal of 

evaluating its instrument, as well as the students. We think this is 

a slight misunderstanding, since MWG asked participants to 

choose students who “should” be able to solve the calculator 

problem. The MWG question was rather: “are instructors’ 

expectations of their students realistic?”  

In the current paper we are reporting on a study with similar goals 

to the original MWG but with different assessment instruments, 

including a (programming) language neutral test of students’ 

conceptual understandings. The cohort for this study is larger than 

both MWG and SG.  

Both MWG and SG used calculator problems. This study used the 

clock problem, which was considered to be more in line with 

object-oriented environments and less algorithmically complex. A 

more important difference between MWG, SG and this study is 

that MWG involved a problem that tested all the parts of the 

learning objectives framework which they identified. In 

particular, the first two parts (abstracting the problem and 

generating sub-problems), which have been noted by SG and 

                                                                 

2 A note on dates: the original MWG met in 2001, SG produced 

their paper for ICER 2013, but this group was able to see a 

preprint just before we met.  
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other researchers [16] as too high an expectation.  SG gave the 

participants a skeleton calculator and some I/O code as a starting 

point.  Our study also gave a quite explicit skeleton Time class 

and the students were told to fill in the method bodies.  A testing 

framework was also made available to some of the students that 

may have given them some scaffolding and a stopping criterion.  

Thus, in both the SG study and the current study the design was 

essentially given to the students. 

In summary, MWG raised the whole issue of student performance 

and instructor expectation in a multi-national context.  The SG 

study was able to remove many of the issues that confounded the 

original MWG study. They showed that expecting students to be 

able to code a no-precedence infix calculator with considerable 

amounts of scaffolding code with a smaller cohort at a single 

university produced better results than MWG.  The current study 

shows that instructors’ expectations appear to be more accurate 

than in the era of MWG, that student performance is better when 

students need not design a whole application and are able to 

easily verify their results, which coincides more closely with the 

SG study results than the MWG study. 

9. THE WORLD IS DIFFERENT 
In the 12 years between the original MWG and this study the 

world as experienced by this digital generation of CS students has 

changed. Many changes have taken place in the way we teach and 

assess our students, and students themselves have changed in 

terms of the prior knowledge they bring with them and of the way 

they discover information and solve problems. 

Changes in teaching and assessment 

One of the issues identified as central to the effort of the MWG 

was the development of CC2001[8].  The current study takes 

place within the context of the development of CS2013[14] which 

reviews and enhances CC2001 and the interim CS2008[25]. The 

draft documentation for CS2013 identifies a number of interesting 

features of the evolution of introductory CS courses from CC2001 

to CS2013: 

 Increase in the prevalence of “CS0” courses and 

multiple pathways into and through the introductory 

course sequence; 

 Growing diversity in platforms used, e.g. web 

development, mobile device programming; 

 Broadening of the list of languages used, and trend 

towards managed and dynamic and visual languages, 

with no particular paradigm or language becoming 

favored; 

 Increasing adoption of software engineering 

innovations, e.g. test-driven development[2], version 

control, use of IDEs. 

These features were reflected to a limited extent within this study. 

There was some diversity in the pathways through the course 

sequence among our cohorts, which presented difficulties in 

comparing cohorts. All students participated in the task using 

desktop or laptop computers, which matched the environments 

they were accustomed to using. The only addition to the 

languages used in the MWG was Python, while other cohorts used 

Java and C/C++ as in the earlier study. The MWG acknowledged 

the possibilities of Test-driven Development/Design (TDD) 

approaches to allow students to check work at an earlier stage, 

and the design of the task in this study made use of TDD 

techniques for scaffolding the students’ activity in some cohorts. 

However, by no means all the students in this study had 

experience in their courses of developing software using a TDD 

approach. 

In addition to the features identified in CS2013, developments 

arising from CS education research have had an impact on 

teaching and learning, for example: 

 Transition from written exam with pen and paper to 

practical exam with computer and the development 

tools and resources which students practice with in labs; 

 Transition from procedural to object-oriented 

programming;  

 Recognition of the roles of variables [21]; 

 Transition toward a systematic and structured focus on 

constructive alignment between intended learning 

outcome, course activities, and assessment[6], including 

instances of assessments specifically designed to 

address issues raised by the findings of the MWG[4]. 

Modern object-oriented programming languages come with a 

large class library and a well-documented API to ease access to it, 

and many educators take advantage of the opportunity to produce 

partially finished programs and/or provide classes as black boxes 

for the students to use when solving the problem  

In earlier days it was less common to use libraries and typically 

students built everything from scratch when they were 

programming.  With object-oriented programming entering the 

stage, it has become much more customary for students to 

contribute to already existing code either by using standard 

"slave" classes that offer various "low-level" functionality 

(typically the Model in an MVC structure) or by using 

frameworks that provide an overall structure where the students 

contribute by concretizing hot spots in the framework (by 

implementing virtual methods/subclasses)[7]. 

The building blocks that are given to students may be provided as 

black-box or white-box components [13].  The former refers to 

components that the students are supposed to use by only 

referring to the specification of the components whereas the latter 

are components that the students must open, read/study, and 

modify. In the former case, the consequence is that students read 

more APIs (specification level).  The latter case has as a 

consequence that the students read more code (implementation 

level).  Overall, students tend to spend more time studying 

existing code now than they did when the MWG study was 

conducted. 

Of course, while the above observations reflect identifiable 

trends, such developments are not universally accepted and 

practiced, as evidenced, for example by a recent discussion on the 

SIGCSE mailing list regarding written coding questions in 

examinations, where educators expressed significant support for 

requiring students to hand-write code without access to 

documentation or syntax-checking[22]. 

Changes in the students 

Today’s students have been described as belonging to the Net 

generation, or as Digital Natives[15], who are active experiential 

learners, dependent on technology for accessing information and 

interacting with others. These students may not readily engage 

with the instructional resources, such as textbooks, available to 

previous generations. The existence of this generation has been 

disputed, however, and it is not clear that a particular learning 

style or preferences can be attributed to a whole generation [5]. 

Nevertheless, while there is little evidence that the level of CS 

instruction experienced by students before coming to university 
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has increased significantly, it can be argued [12] that the 

increasing use of computers, software and online resources among 

young people leads students to have developed theories of how 

computing works by the time they start their CS courses.  

This type of digital literacy is from a user or user-programming 

rather than a professional viewpoint [3], but it carries over into 

some specific expectations when students are programming. CS 

students now expect “always on” access to the Internet as they 

code and this is likely to influence the strategies which they adopt 

in attempting to solve programming problems. Instructors and 

textbooks (e.g. [1]) often encourage use of online programming 

language API documentation while developing programs, as good 

software engineering practice. There are many more online spaces 

where students can seek answers to specific questions from 

instructors or peers within an educational context, for example 

Piazza [11] or from members of the wider developer community, 

such as StackOverflow (http://stackoverflow.com). The first 

instinct of many programmers, students or otherwise, is probably 

to search for an answer on Google, which in turn will often find 

answers to similar questions which have been asked previously. 

More general social media, such as Facebook and Twitter, are 

also widely used by students and may be used to seek support.  

The influence of these strategies on the activity within this study 

is difficult to determine as this behavior was not explicitly 

recorded or observed. The task, designed to translate easily to 

different programming languages, requires little or no use of API 

classes or functions, so online documentation would have been of 

little use here. The task was administered in a time-limited 

context, albeit with no restriction on access to the Internet. It is 

unlikely, though not impossible, that a student would be able to 

pose a question and receive an answer online within that 

timescale. This consideration influenced the choice of the 

problem for the task, as we searched to assure ourselves that this 

was not a findable problem with “canned” solutions readily 

available. 

10. DISCUSSION 
Overall, students seem to have performed better on the 

programming task used in this working group than in the one used 

in the original MWG. In fact, the low-scoring “no harness” groups 

in this study performed as well (on the “passed all tests” measure) 

as the average “general evaluation” score of 21% across all 

cohorts in the MWG.  

That having been said, there are clearly two distinct populations 

within the current study’s overall cohort: one with an average 

completion rate of >3.0 methods, and one with an average < 1.0 

(Table 2). There are a number of potentially significant factors 

involved in this difference: 

Some of the cohorts in the high-average group had more prior 

programming material in their University education than others. 

That is: the size of the “CS1” component at the end of which they 

participated in this study varied from 5-10 ECTS credits (Table 

1). Discounting any pre-university programming experience, this 

means that some students had twice as much exposure to (and 

practice in) programming before attempting the task. 

Some groups undertaking the Clock task were provided with the 

test harness. This clearly had an effect on their performance in the 

Clock task, as shown by the correlations with their performance in 

FCS1 (Table 7). We believe that this explained by a scaffolding 

effect: 

 The test harness guides students in what they need to 

do: 

o It serves as a definition of correctness for the 

students: what is a correct solution like?  

o It disambiguates requirements that may have 

otherwise been unclear: does tick() mean a 

single tick or making the clock tick 

continuously? 

o It reminds the student of corner cases that 

they may otherwise overlook. 

 Assuming the student uses the harness, they receive 

continuous, instant feedback about their program.  

On a related note, students sometimes choose not to write tests 

early, even when taught using practices such as TDD (e.g. [10]). 

It is apparent from inspection that few, if any, in the no-harness 

group wrote a set of tests and then implemented the required 

methods; consequently, they would not have had access to 

feedback as they worked incrementally on the four methods. 

Being given a test harness also meant less work and less mental 

load for the students: 

 The harness takes care of I/O. 

 The harness provides a main method and removes the 

need for the students to design any of the overall 

structure of their program, which represented two parts 

of the MWG learning objectives framework. 

 Having the harness simply means that there is less 

implementation work to be done: the student does not 

need to write tests, is less likely to run out of time, and 

is less likely to suffer from time pressure. 

Assuming that we are correct in stating that the four methods of 

the Time class were in more or less increasing order of difficulty, 

then the harness also suggested or even enforced an effective path 

from tick() to subtract() so that implementing each preceding 

method makes the next one a smaller step in difficulty. 

Sequencing learning activities on a topic in order of increasing 

complexity helps keep the students’ cognitive load in check [26]. 

Writing the tests is likely to have been difficult for some students. 

Some aspects of test-writing may even have been conceptually 

more difficult for them than aspects of the task proper. For 

instance, using the Time class from the test code requires an 

understanding of object-instantiation that is not required to 

implement any of the methods in the Time class itself. 

Finally it is worth commenting on our results in looking at 

teachers’ expectations of their students’ performance. In the 

MWG the teachers were all negatively surprised: “the first and 

most significant result was that the students did much more poorly 

than we expected” ([18] p. 132). The results of this study in this 

aspect are different. Most working group members knew what to 

expect. It should be noted that in the original study the 

expectation were not empirically measured. Nonetheless, the fact 

that in this experiment four out of six felt that the results, whether 

poor or high, matched their expectations from the students, imply 

that the teachers’ expectation were more attuned to their students. 

We cannot rule out, however, the explanation that the teachers, 

especially in this group, are familiar with previous studies 

reported on students’ behavior, and have colored their 

expectations accordingly. It may be that the longest-lasting effect 

of the original MWG has been to depress teachers’ expectations 

of their students’ ability! 
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Appendix A – Clock Task Reference Implementation Time.java 
/** 
 * Objects of the Time class hold a time value for a 
 * European‐style 24 hour clock.  
 * The value consists of hours, minutes and seconds.  
 * The range of the value is 00:00:00 (midnight) to 23:59:59 (one  
 * second before midnight). 
 *  
 * Type your UID here: 
 * How long did this take you (hours): 
 * 
 * @version 1.1 
 */ 
public class Time 
{ 
    // The values of the three parts of the time 
    private int hours; 
    private int minutes; 
    private int seconds; 
 
    /** 
     * Constructor for objects of class Time. 
     * Creates a new Time object set to 00:00:00. 
     * Do not change this constructor. 
     */ 
    public Time() 
    { 
        this.hours = 0; 
        this.minutes = 0; 
        this.seconds = 0; 
    } 
     
    /** 
     * Constructor for objects of class Time. 
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     * Creates a new Time object set to h:m:s. 
     * Assumes, without checking, that the parameter values are  
     * within bounds.  
     * For this task, you don't need to worry about invalid parameter values. 
     * Do not change this constructor.  
     */ 
    public Time(int h, int m, int s) 
    { 
        this.hours = h; 
        this.minutes = m; 
        this.seconds = s; 
    } 
 
    /** 
     * Add one second to the current time. 
     * When the seconds value reaches 60, it rolls over to zero. 
     * When the seconds roll over to zero, the minutes advance. 
     * So 00:00:59 rolls over to 00:01:00. 
     * When the minutes reach 60, they roll over and the hours advance. 
     * So 00:59:59 rolls over to 01:00:00. 
     * When the hours reach 24, they roll over to zero.  
     * So 23:59:59 rolls over to 00:00:00. 
     */ 
    public void tick() 
    { 
        // Task 1: complete the tick() method 
    } 
     
    /** 
     * Compare this time to otherTime. 
     * Assumes that both times are in the same day. 
     * Returns ‐1 if this Time is before otherTime. 
     * Returns 0 if this Time is the same as otherTime. 
     * Returns 1 if this Time is after otherTime. 
     */ 
    public int compareTo(Time otherTime) 
    { 
        // Task 2: complete the compareTo method 
        return 0; 
    } 
     
    /** 
     * Add an offset to this Time. 
     * Rolls over the hours, minutes and seconds fields when needed. 
     */ 
    public void add(Time offset) 
    { 
        // Task 3: complete the add method 
    } 
     
    /** 
     * Subtract an offset from this Time. 
     * Rolls over (under?) the hours, minutes and seconds fields when needed. 
     */ 
    public void subtract(Time offset) 
    { 
        // Task 4: complete the subtract method 
    } 
     
    /** 
     * Return a string representation of this Time. 
     * String is of the form hh:mm:ss with always two digits for h, m and s. 
     * Do not change this. 
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     */ 
    public String toString() 
    { 
        return pad(hours) + ":" + pad(minutes) + ":" + pad(seconds); 
    } 
     
    /** 
     * Returns a string representing the argument value, adding a leading  
     * "0" if needed to make it at least two digits long. 
     * Do not change this. 
     */ 
    private String pad(int value) 
    { 
        String sign = ""; 
         
        if (value < 0) { 
            sign = "‐"; 
            value = ‐value; 
        } 
         
        if (value < 10) { 
            return sign + "0" + value; 
        } else { 
            return sign + value; 
        } 
    } 
} 
 TimeTester.java 
/** 
 * Runs tests on instances of the Time class using the main method of this class. 
 * Tests are divided into four sets, one for each of the 
 * sub‐tasks described in the Time class, which are executed in the  
 * order of the sub‐tasks.  
 * Sets are only attempted if all the previous sets have passed.  
 * Tests within a set are attempted even if previous tests in the set have failed. 
 *  
 * Do not change this class. 
 *  
 * @author Ian Utting 
 * @version 1.1 
 */ 
public class TimeTester 
{ 
    /**  
     * Run all of the sets of tests, running each one only if the previous  
     * sets have all passed. 
     * This makes the results less cluttered if you are attempting the 
     * sub‐tasks in order. 
     */     
    public static void main(String [] args) 
    { 
        if (!tickTests()) return; 
        System.out.println("All tick() tests passed."); 
        if (!compareToTests()) return; 
        System.out.println("All compareTo() tests passed."); 
        if (!addTests()) return; 
        System.out.println("All add() tests passed."); 
        if (!subtractTests()) return; 
        System.out.println("All subtract() tests passed."); 
        System.out.println("All tests passed."); 
    } 
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    /**  
     * Test the tick() method of a Time. 
     * All of these tests will run, independent of individual failures. 
     */ 
    public static boolean tickTests() 
    { 
        boolean allPassed = true; 
   
        allPassed &= tickTest(new Time( 0, 0, 0), "00:00:01"); 
        allPassed &= tickTest(new Time( 0, 0,58), "00:00:59"); 
        allPassed &= tickTest(new Time( 0, 0,59), "00:01:00"); 
        allPassed &= tickTest(new Time( 0,58,59), "00:59:00"); 
        allPassed &= tickTest(new Time(00,59,59), "01:00:00"); 
        allPassed &= tickTest(new Time(23,59,59), "00:00:00"); 
         
        Time t = new Time(0, 0, 0); 
        allPassed &= tickTest(t, "00:00:01"); 
        allPassed &= tickTest(t, "00:00:02"); // Same t, ticked twice 
         
        return allPassed; 
    } 
     
    /**  
     * Test the compareTo() method of a Time. 
     * All of these tests will run, independent of individual failures. 
     */ 
    public static boolean compareToTests() 
    { 
        boolean allPassed = true; 
         
        Time t1 = new Time(0, 0, 4); 
        Time t1Clone = new Time(0, 0, 4); 
         
        allPassed &= compareToTest(t1, t1, 0); 
        allPassed &= compareToTest(t1, t1Clone, 0); 
         
        Time t2 = new Time(0, 0, 5); 
         
        allPassed &= compareToTest(t1, t2, ‐1); 
        allPassed &= compareToTest(t2, t1, 1); 
         
        allPassed &= compareToTest(new Time(2, 2, 2), new Time(1, 2, 2), 1); 
        allPassed &= compareToTest(new Time(2, 2, 2), new Time(2, 1, 2), 1); 
        allPassed &= compareToTest(new Time(2, 2, 2), new Time(2, 2, 1), 1); 
        allPassed &= compareToTest(new Time(1, 2, 2), new Time(2, 2, 2), ‐1); 
        allPassed &= compareToTest(new Time(2, 1, 2), new Time(2, 2, 2), ‐1); 
        allPassed &= compareToTest(new Time(2, 2, 1), new Time(2, 2, 2), ‐1); 
         
        return allPassed; 
    } 
     
    /**  
     * Test the add() method of a Time. 
     * All of these tests will run, independent of individual failures. 
     */ 
    public static boolean addTests() 
    { 
        boolean allPassed = true; 
         
        allPassed &= addTest(new Time(1, 1, 1), new Time(2, 2, 2), "03:03:03"); 
        allPassed &= addTest(new Time(0, 0, 59), new Time(0, 0, 1), "00:01:00"); 
        allPassed &= addTest(new Time(0, 59, 0), new Time(0, 0, 1), "00:59:01"); 
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        allPassed &= addTest(new Time(0, 59, 59), new Time(0, 0, 1), "01:00:00"); 
        allPassed &= addTest(new Time(23, 0, 0), new Time(1, 0, 0), "00:00:00"); 
        allPassed &= addTest(new Time(23, 59, 0), new Time(0, 1, 0), "00:00:00"); 
        allPassed &= addTest(new Time(23, 59, 59), new Time(0, 0, 1), "00:00:00"); 
        allPassed &= addTest(new Time(23, 59, 59), new Time(23, 59, 59), "23:59:58"); 
         
        return allPassed; 
    } 
     
    /**  
     * Test the subtract() method of a Time. 
     * All of these tests will run, independent of individual failures. 
     */ 
    public static boolean subtractTests() 
    { 
        boolean allPassed = true; 
 
        allPassed &= subtractTest(new Time(2, 2, 2), new Time(1, 1, 1), "01:01:01"); 
        allPassed &= subtractTest(new Time(0, 1, 0), new Time(0, 0, 1), "00:00:59"); 
        allPassed &= subtractTest(new Time(1, 0, 0), new Time(0, 1, 0), "00:59:00"); 
        allPassed &= subtractTest(new Time(1, 0, 0), new Time(0, 0, 1), "00:59:59"); 
        allPassed &= subtractTest(new Time(1, 1, 1), new Time(1, 1, 1), "00:00:00"); 
        allPassed &= subtractTest(new Time(1, 1, 1), new Time(0, 0, 2), "01:00:59"); 
        allPassed &= subtractTest(new Time(1, 1, 1), new Time(0, 2, 2), "00:58:59"); 
        allPassed &= subtractTest(new Time(1, 1, 1), new Time(2, 2, 2), "22:58:59"); 
 
        return allPassed; 
    } 
     
    /** 
     * Implementation of an individual tick test. 
     */ 
    private static boolean tickTest(Time t, String expected) 
    { 
        String orig = t.toString(); 
         
        t.tick(); 
         
        if (t.toString().equals(expected)) return true; 
         
        System.out.println("Test: with Time " + orig + ", tick() failed. " +  
            "Expected \"" + expected + "\", got \""+ t + "\""); 
        return false; 
    } 
     
    /** 
     * Implementation of an individual comparison test. 
     */ 
    private static boolean compareToTest(Time t1, Time t2, int expected) 
    { 
        int result = t1.compareTo(t2); 
         
        if (result == expected) return true; 
         
        System.out.println("Test: with Time " + t1 + ", compareTo(" + t2 + ") failed. " +  
            "Expected \"" + expected + "\", got \"" + result + "\""); 
        return false; 
    } 
     
    /** 
     * Implementation of an individual addition test. 
     */ 
    private static boolean addTest(Time t1, Time t2, String expected) 
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    { 
        String hdr = "Test: with Time " + t1 + ", add(" + t2 + ") failed. "; 
        String origT2 = t2.toString(); 
         
        t1.add(t2); 
         
        if (!t2.toString().equals(origT2)) { 
            // Second parameter should not be changed 
            System.out.println(hdr +  
                "Parameter changed from \"" + origT2 + "\"to \""+ t2 + "\""); 
            return false; 
        } 
         
        if (!t1.toString().equals(expected))  
        { 
            System.out.println(hdr +  
                "Expected \"" + expected + "\", got \""+ t1 + "\""); 
            return false; 
        } 
        return true; 
    } 
     
    /** 
     * Implementation of an individual subtraction test. 
     */ 
    private static boolean subtractTest(Time t1, Time t2, String expected) 
    { 
        String hdr = "Test: with Time " + t1 + ", subtract(" + t2 + ") failed. "; 
        String origT2 = t2.toString(); 
         
        t1.subtract(t2); 
         
        if (!t2.toString().equals(origT2)) { 
            // Second parameter should not be changed 
            System.out.println(hdr +  
                "Parameter changed from \"" + origT2 + "\"to \""+ t2 + "\""); 
            return false; 
        } 
         
        if (!t1.toString().equals(expected))  
        { 
            System.out.println(hdr +  
                "Expected \"" + expected + "\", got \""+ t1 + "\""); 
            return false; 
        } 
        return true; 
    } 
} 
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