
 Open access Proceedings Article DOI:10.1145/2543882.2543884

A fresh look at novice programmers' performance and their teachers' expectations
— Source link

Ian Utting, Allison Elliott Tew, M. McCracken, Lynda Thomas ...+7 more authors

Institutions: University of Kent, University of Washington, Georgia Institute of Technology, Aberystwyth University ...+6 more
institutions

Published on: 29 Jun 2013

Related papers:

 A multi-national, multi-institutional study of assessment of programming skills of first-year CS students

 Developing a validated assessment of fundamental CS1 concepts

 Notional machines and introductory programming education

 Failure rates in introductory programming revisited

 A multi-national study of reading and tracing skills in novice programmers

Share this paper:

View more about this paper here: https://typeset.io/papers/a-fresh-look-at-novice-programmers-performance-and-their-
4b2lj5h2qk

https://typeset.io/
https://www.doi.org/10.1145/2543882.2543884
https://typeset.io/papers/a-fresh-look-at-novice-programmers-performance-and-their-4b2lj5h2qk
https://typeset.io/authors/ian-utting-2gg2zivg8e
https://typeset.io/authors/allison-elliott-tew-15x7ojdz0i
https://typeset.io/authors/m-mccracken-4rcrn76qfc
https://typeset.io/authors/lynda-thomas-20ltohfyou
https://typeset.io/institutions/university-of-kent-zxotw2fe
https://typeset.io/institutions/university-of-washington-2tqpyv72
https://typeset.io/institutions/georgia-institute-of-technology-wm29vwt0
https://typeset.io/institutions/aberystwyth-university-1k1acg0c
https://typeset.io/papers/a-multi-national-multi-institutional-study-of-assessment-of-2tylxuc9k6
https://typeset.io/papers/developing-a-validated-assessment-of-fundamental-cs1-3mne76wkr4
https://typeset.io/papers/notional-machines-and-introductory-programming-education-19080j87t0
https://typeset.io/papers/failure-rates-in-introductory-programming-revisited-1gop163yld
https://typeset.io/papers/a-multi-national-study-of-reading-and-tracing-skills-in-543cusr6jw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-fresh-look-at-novice-programmers-performance-and-their-4b2lj5h2qk
https://twitter.com/intent/tweet?text=A%20fresh%20look%20at%20novice%20programmers'%20performance%20and%20their%20teachers'%20expectations&url=https://typeset.io/papers/a-fresh-look-at-novice-programmers-performance-and-their-4b2lj5h2qk
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-fresh-look-at-novice-programmers-performance-and-their-4b2lj5h2qk
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-fresh-look-at-novice-programmers-performance-and-their-4b2lj5h2qk
https://typeset.io/papers/a-fresh-look-at-novice-programmers-performance-and-their-4b2lj5h2qk

A Fresh Look at Novice Programmers’ Performance
and Their Teachers’ Expectations

Ian Utting
University of Kent,

 UK
I.A.Utting@kent.ac.uk

Allison Elliott Tew
University of Washington,

Tacoma, USA
aetew@u.washington.edu

Mike McCracken
Georgia Institute of Technology,

USA
mike@cc.gatech.edu

Lynda Thomas
Aberystwyth University,

UK
ltt@aber.ac.uk

Dennis Bouvier

Southern Illinois University
Edwardsville, USA

djb@acm.org

Roger Frye
Southern Illinois University

Edwardsville, USA
rfrye@siue.edu

James Paterson
Glasgow Caledonian University,

UK
James.Paterson@gcu.ac.uk

Michael Caspersen

Aarhus University,
 Denmark

mec@cse.au.dk

Yifat Ben-David Kolikant
The Hebrew University of Jerusalem,

Israel
yifat.kolikant@mail.huji.ac.il

Juha Sorva
Aalto University,

Finland
juha.sorva@aalto.fi

Tadeusz Wilusz
Cracow University of Economics,

Poland
wiluszt@uek.krakow.pl

ABSTRACT
This paper describes the results of an ITiCSE working group

convened in 2013 to review and revisit the influential ITiCSE

2001 McCracken working group that reported [18] on novice

programmers’ ability to solve a specified programming problem.

Like that study, the one described here asked students to

implement a simple program. Unlike the original study, students’

in this study were given significant scaffolding for their efforts,

including a test harness. Their knowledge of programming

concepts was also assessed via a standard language-neutral

survey.

One of the significant findings of the original working group was

that students were less successful at the programming task than

their teachers expected, so in this study teachers’ expectations

were explicitly gathered and matched with students’ performance.

This study found a significant correlation between students’

performance in the practical task and the survey, and a significant

effect on performance in the practical task attributable to the use

of the test harness. The study also found a much better correlation

between teachers’ expectations of their students’ performance

than in the 2001 working group.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computers and Information

Science Education—Computer Science Education

General Terms

Measurement, Experimentation.

Keywords

Programming, CS1, assessment, replication.

1. INTRODUCTION
In 2001, an ITiCSE working group led by Mike McCracken

(known as the McCracken Working Group and hereafter

abbreviated as MWG) met in Canterbury to complete and analyze

a study of novice programmers at institutions around the world.

The working group produced one of the most highly cited papers

in SIGCSE’s publication history [18] with two significant

outcomes: it demonstrated that CS1 students were less capable

programmers than their teachers expected; and it set the scene for

a number of subsequent medium- to large-scale multi-national,

multi-institutional studies. Despite this, and an explicit call for

replication in the original MWG paper, there has been very little

effort since directed at replicating or extending the work of the

original group.

In 2013, the ITiCSE conference returned to Canterbury and the

opportunity was taken to “reconvene” the MWG to address the

broad questions of whether “students in 2013 are any more likely

to fulfill our expectations than they were in 2001”, specifically

by:

 critically revisiting the original McCracken study and

subsequent work,

 partially replicating their experiment, and

 analyzing and reflecting on the results to determine the

extent to which the conclusions drawn by that group are

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org

ITiCSE-WGR’13 June 29--July 3, 2013, Canterbury, England, UK.

Copyright 2014 ACM 978-1-4503-2665-0/13/07...$15.00.

http://dx.doi.org/10.1145/2543882.2543884

15

still valid despite the changes in CS1 teaching and

students over the intervening years.

The authors, five of whom were members of the MWG,

administered both a practical programming task and a concept

assessment test (quiz) as detailed below, and also recorded their

expectations of their students’ performance. As in the original

working group, not everyone managed to collect data, due in part

to restrictions on gathering data from their own students, and in

part to the timing constraints imposed by operating as an ITiCSE

working group (which does not completely form until very close

to the end of the European/US academic year).

The task and the test data, along with notes of teachers’

expectations, were analyzed during the group’s meeting at

ITiCSE.

2. METHOD & COHORT DESCRIPTIONS

2.1 Method
To determine the programming ability of a cohort of students

from several universities (see Section 2.2 below), the working

group devised a two-part assessment. It consisted of a CS1

concept assessment that used The Foundational CS1 Assessment

Instrument [24] and a programming skill assessment (the clock

problem as described in Section 3). Lastly, we asked the faculty

to reflect on their expectations of the performance of their

students on the skill and concept assessments and on the actual

outcomes of the assessments as compared to their expectations.

The working group decided to use the two-part assessment

(concept and skill) to hopefully clarify or better understand the

outcomes of the skill assessment. In other words, if a student did

well on the skill assessment, did they comparably do well on the

concept assessment, and if they did poorly on the skill assessment

did they similarly do poorly on the concept assessment? The

linkage of skill and concepts is discussed widely in the cognitive

science literature (e.g. [19]), in programming cognition literature

(e.g. [20]), and examined in recent studies (e.g. [16]).

As became apparent after the fact in the original MWG, teachers

entering into studies like this one have a set of expectations

regarding the performance of the students on the tasks making up

the study. In this study we captured and reviewed these

expectations, as described in Section 7.

The concept assessment was a multiple-choice exam and was

scored in two ways. A complete score for each student was

computed from the 27 questions that cover nine concept areas:

Fundamentals, Logical Operators, Selection, Definite Loops,

Indefinite Loops, Arrays, Function/Method Parameters,

Function/Method Return Values and Recursion. For details on

the instrument, its validity, etc., please refer to [23]. A subset

score was also computed from the concept areas that the working

group determined were used in the skill assessment. That subset

of 15 questions was from the concept areas: Fundamentals,

Logical Operators, Selection, Function/Method Parameters and

Function/Method Return Values. Section 5 describes the concept

assessment and it’s scoring.

The skill assessment (the clock problem) was scored with a test

harness. The harness contained a set of black box tests that

validated the functionality of the student’s programs as described

in Section 3. The students wrote their programs in their language

of instruction. The languages were Java, Python, and C/C++.

2.2 Cohort
The total cohort for our study consisted of 418 first-year students

who have taken at least one introductory programming course at

university level. Some students had taken a few other non-

programming CS courses, and a few had taken a substantial

number. The amount of programming education for the cohort

varied between 4 and 10 ECTS with a weighted average of 7

ECTS. (An ECTS credit is a broad measure of student effort,

including formal teaching and self-study time. 1 ECTS credit is

equivalent to 25-30 hours of student effort [9]).

Members of the working group recruited the students for the

cohort. Most of the students were recruited within the institution

of the WG member, but some were from other institutions.

Overall, the cohort represents students from 12 institutions in 10

countries. 18% of the cohort is from the USA, and 82% is from

Europe. Approximately 50% of the total cohort is from a single

European university.

For organization of data collection and analysis, we divided the

cohort into eight groups. The groups vary in many ways, e.g.:

 amount and type of programming education prior to

data collection

 amount of additional non-programming CS education

 program of study (CS major, CS minor, Engineering,

CS/programming as an elective, etc.)

 type(s) of programming language(s) used

 language of instruction (native/foreign)

Table 1 provides an overview of the eight groups in the cohort

and which parts of the assessment they took part in, although not

all students who attempted both parts completed both parts.

Table 1: Overview of Cohort. “Credits” reflect the volume of

study, measured in ECTS credits

G
r
o
u

p
s

C
o
u

r
se

 s
e
c
ti

o
n

s

S
tu

d
y
 p

r
o
g
r
a
m

L
a
n

g
u

a
g
e
 a

n
d

st
y
le

P
ro

g
ra

m
m

in
g

C
re

d
it

s

O
th

er
 C

S

C
re

d
it

s

N

C
o
n

ce
p

t
te

st

C
lo

ck
 t

es
t

R1 1 Eng. Python(proc.) 5 0 151 x x

R2 1 Eng.+CS Python (OO) 10 0-10 58 x x

P 1 CS Java (OO) 10 25 26 x x

T 8 Mostly

CS

Java (OO) and

C (proc.)

10 20 57 x x

V 1 CS C# (proc.) ~10 ? 17 x

Q 2 CS C/C++ (proc.) 4 21 49 x x

S 1 Eng. C++ (proc.) 6 0 40 x x

U 1 CS Java (OO) 8 0 20 x

3. THE CLOCK TASK
As a test of programming ability, students were asked to

undertake a simple programming task. A reference

implementation was written in Java, with the instructions to

students embedded in comments in the code.

16

3.1 The Problem
Students were asked to complete the implementation of a class

(called Time) representing a 24-hour clock. The behavior of the

clock with respect to wrap-around of the hours, minutes and

seconds values was described with examples. The clock has four

operations which students were asked to implement: a tick

operation which advances the stored time by one second, a

comparison operation which determines the order of two times,

and add and subtract methods which calculate the sum or

difference of two time values.

The problem is designed to focus on students’ ability with the

concepts of selection, arithmetic and Boolean expressions,

although it also touches on their understanding of method

parameters and return values. Unlike the original MWG, it is also

designed only to require students to implement a part of a

complete program, with a strong bias towards ADT

implementation, rather than the original algorithm-focused input-

parse-output-loop style.

Students undertook the task in “closed lab” settings of around 90

minutes duration (group S had 75 minutes, and group U 110). For

most groups, the task was completed as part of a course and most

of the students on that course undertook it. In three cases (R1, R2

and P) the students were volunteers comprising 10-30% of their

respective cohorts. Analysis of their performance in the courses

from which they were recruited suggests that the volunteers were

representative of their cohorts. Most of the participants were

mildly incentivized to participate, either by entry to a small-prize

raffle (T,S and U), a coursework grade bonus (Q) or a small prize

and a grade bonus (R1 and R2). Group P students received no

incentive.

3.2 Reference Implementation
The reference version of the task was written in Java, and

translated into other (implementation) languages by individual

investigators. The instructions for undertaking the task were

included (as comments) in a skeleton implementation (Time.java)

provided as a starting point for students (see Appendix A). This

skeleton included the class boiler-plate code down to the level of

skeletons of the required methods as well as the descriptive

comments. As well as the skeleton code, the reference

implementation included an example solution and a test harness.

The intention was that the test harness and skeleton

implementation of the Time class should be provided to students

as a starting point and a check for their work. In some institutions

however, the test harness was not provided to students, although it

was subsequently used to assess the accuracy of their

implementations.

The skeleton of the Time class included full implementations of

the entire class, with the exception of the bodies of the methods

students were required to complete. In the case of the comparator

method the skeleton body included a return statement to ensure

that the skeleton compiled. As well as these methods, the skeleton

also included constructors and a toString() method (to produce a

printable representation of the time value) to support testing of the

implementation.

The reference implementation also included a test harness

containing 8-10 black-box tests for each of the four methods to be

completed in the Time class. These tests covered both simple

cases; all of the rollover cases for the tick() and add() methods,

and the “borrow” cases for subtract(). In addition, the Java and

OO Python implementations included tests for common

implementation problems (e.g. equality/identity confusions).

The test harness was organized so that all the tests for a particular

method were performed, independent of any failures, but tests for

subsequent methods were only executed if all prior tests had

passed. This was intended to avoid presenting students with a

long list of failure messages before they had started their work,

but had the effect of “ordering” students’ approach to the tasks.

Students using the test harness were discouraged from working on

methods before all the tests on “previous” methods passed. The

order of method tests in the reference test harness was: tick(),

compareTo(), add(), and subtract().

3.3 Translations
The reference implementation was translated into C/C++, C#

(which was eventually unused) and two variants in Python. In

addition, the comments in both Python versions were also

translated into the local (natural) language for use in one of the

institutions. Other institutions where the students’ first language

was not English nevertheless used the English versions of the

instruction/comment. All versions are available on request from

the first author.

4. THE TASK: ANALYSIS & RESULTS

4.1 Analysis
The participants’ Clock Task submissions were evaluated

using black-box tests. Using the same four sets of tests – one

for each method that needed to be implemented – provided to

most of the participants as part of the programming task.

However, in evaluating submissions, all tests were run, even if

an earlier test had failed. A method in one submission was

judged completely correct if it passed all of the tests for that

method; passing only some of the tests for a method was a

failure. Combining the results for each method in a submission

determined the overall mark for that submission, which is an

integer between 0 and 4 – a count of how many of the methods

in a submission passed all the tests.

4.1.1 Results
Table 2: Results on the Clock Task

C
o
h

o
rt

T
e
st

 H
a
r
n

e
ss

?

N
u

m
b

e
r
 o

f
st

u
d

e
n

ts

A
v

er
a

g
e

#
 o

f
m

et
h

o
d

s

w
o
rk

in
g

Success by method

(%)

ti
ck

()

co
m

p
a

re
T

o
()

a
d

d
()

su
b

tr
a
ct

()

R1 Yes 149 3.04 82 81 72 68

R2 Yes 57 3.86 98 98 96 93

P Yes 26 3.27 92 92 73 73

T Yes 38 3.21 84 89 76 71

Q No 15 0.80 33 13 27 7

S No 40 0.93 33 29 17 14

U No 20 0.65 30 15 10 10

combined Yes 270 3.26 87 87 78 74

combined No 75 0.83 32 22 17 12

17

combined All 345 2.72 75 73 65 61

Table 2 shows, for each cohort, the average number of methods

successfully completed by the participants as well as the

percentages of participants who successfully completed each

individual method. On average, the participants completed 2.72

methods out of 4. This overall average leans towards the larger

cohorts however, and as is obvious from the table, there were

substantial differences between the cohorts, with a group of

cohorts scoring very high and another group very low. As Table 2

also illustrates, a significant factor in this two-way split appears to

be whether the cohorts had been provided with a test harness or

not. In all cases, it was reported that students had previously been

exposed to ideas of testing software, but had not been asked to

take a systematic approach to it in their work. Below, we will

discuss the results of the two groups separately.

4.1.2 Cohorts with a Test harness
In four cohorts (R1, R2, P, T), the students completed an average

of 3.26 methods out of four, with the majority of students

completing all four. In all of these cohorts, the students were

provided with a test harness as described in Section 3.

The test harness strongly encouraged the students to attempt each

method in order and not skip ahead before they had a working

solution to the previous method. It is unsurprising; therefore, the

first method (tick()) was correctly implemented more than the

other methods, with the number of successful submissions

decreasing at each successive method.

Table 2 suggests there were two points in the four-method

sequence that caused some of the students to get stuck and not

make further progress. Some fell at the first hurdle: about 13 % of

the with-harness students could not produce a working

implementation of the tick() method. Nearly all of those who

succeeded with tick also did well on the next method,

compareTo(); in one cohort (T), the result was better for the

second method than the first. The second spot of difficulty arrived

with the third method, add(); about 9 % of the students failed at

this point, but those who succeeded went on to produce a fully

working solution to the last method, subtract(). The correlations

between methods shown in Table 3 bears out this interpretation:

success in implementing tick() and compareTo() correlate

relatively strongly with each other, as do add() and subtract() with

respect to each other. These results suggest that the students found

the first two methods to be easier than the other two.

Table 3: Correlation between Performance on Sub-tasks in

Clock Task, calculated for each student

Sub-task

ti
ck

()

co
m

p
ar

eT
o

()

ad
d

()

su
b

tr
ac

t(
)

tick() 1 .500 .354 .352

compareTo() 1 .262 .391

add()

1 .591

subtract() 1

4.1.3 Cohorts without a Test harness
Due to ambiguity in the methodology as explained to working

group members, participants at some institutions were not

provided the ‘test harness’. Some of these participants were only

given the Time class; others were given the Time code with a

main method, but no test cases.

In contrast to the cohorts discussed above, submissions from

participant cohorts not provided with the test harness (i.e., cohorts

Q, S, and U) have an average of 0.83 correct methods.

A few participants left traces of creating their own test harness in

their submissions, others may have created testing facilities but

not submitted them. Evidence suggests that less than 5% of the

students did any systematic testing. However, even in the absence

of a test harness, many student code submissions pass many of the

unit tests for one, or more, methods.

Not having the test harness requires students to identify and

correctly implement all the corner cases, as well as avoiding

inserting any unrecognized bugs of their own.

The possible implications of not having the test harness:

 It requires participants to understand the use of the

Clock class from its documentation alone, rather than

from the examples provided by the harness.

 It requires participants either to create their own test

cases, or not test their work at all.

 It requires participants using OO languages to realize

the Time class will be used by an object of another

class, which might be a novel approach for them.

 The harness imposes an order of work – non-harness

students may lack scaffolding without the ordering

imposed by the harness.

 A failing test in the harness may discourage students

from moving on to subsequent sub-tasks.

Mistakes (made less likely with the harness) seen in non-harness

participants (cohort U):

 including a main() method (2/20)

 creating a loop in the tick() method (3/20)

Observing that several students in the no-harness group have

partial solutions, an alternative analysis of these submissions was

devised. The same unit tests were run for the no-harness

submission. However, instead of recording a binary success / fail

for each method, the numbers of tests passed for each method

were tallied. Table 4 summarizes the results.

45 of 75 (60%) of the submissions were judged partially correct

code whereas only 3 of 75 (4%) of the submissions were judged

completely correct.

Table 4: Detailed success rates for non-harness students

(n=75)

Sub-task
Partial success

(%)

Complete

success(%)

Total

(%)

tick() 19 33 52

compareTo(

)
37 23 60

add() 21 19 40

subtract() 21 12 33

18

Figure 1 shows histograms of the number of test cases passed by

students not provided with a test harness for a) the tick() method,

b) the compareTo() method, c) the add() method, d) the subtract()

method, and e) all methods combined. As can be seen from this

figure, students in these cohorts had a tendency to either pass

none of the tests for a particular method, or pass all of them. This

leads to an apparent bi-modality in the outcomes at the method

level, which is not apparent at the aggregate level. This probably

represents a relaxation of the ordering imposed by the test

harness, with students here successfully completing some, but not

all, method implementations. The “spike” in successful

completion of the compareTo() method (with 2 successful unit

tests passed) is an artifact; the skeleton provided for this method

coincidentally passes two of the tests.

It should be noted that:

 3 of 75 submissions passed all N tests

 42 of 75 submissions passed between 1 and N-1 tests

 22 of 75 submissions passed at least one unit test for

each method

In these cohorts, too, a trend can be observed in that the students

were more successful with the first methods than the later ones,

although there is more variation in this respect in the no-harness

group than in the with-harness one. This greater variation is likely

to be a reflection of the no-harness students being less constrained

in their choice of which methods to tackle and when. It may be

that the order of appearance of the methods in the provided

skeleton, which was the same as the order of the method tests in

the test harness, suggested an implicit order in which students

attempted implementation.

Figure 1: Partial success for the non-harness groups

19

5. THE ASSESSMENT INSTRUMENT

5.1.1 Assessment of Conceptual Understanding
The Foundational CS1 (FCS1) Assessment Instrument was used

to measure students’ conceptual understanding of programming

concepts [24]. The FCS1 is a validated exam of topics commonly

found in a first computer science course and is written in pseudo-

code so that it can be used in courses that use a variety of

programming languages and pedagogies.

The exam uses a multiple-choice question format to investigate

topics in three different dimensions: definition, tracing, and code-

completion. The definition questions explore a student’s

understanding of a concept, while the tracing questions ask

students to predict the outcome of the execution of a piece of

code. Code-completion is the code-writing task, where students

are asked to fill in missing portions of code to complete a function

to produce a certain result.

The validity of the assessment instrument has previously been

demonstrated using a three-pronged mixed methods approach integrating both quantitative and qualitative techniques. Think

aloud interviews provided evidence that students were reading

and reasoning with the pseudo-code to answer questions in the

manner intended. Statistical analysis techniques demonstrated

both the quality of the questions themselves as well as a

correlation with external faculty definitions and measures of CS1

knowledge [24].

5.1.2 Data Collection & Analysis
The FCS1 was administered via a web-based survey tool at six

different universities. The exam was given under testing

conditions – a closed laboratory setting with proctors to supervise

the testing environment. Students were given one hour to

complete the assessment, and the majority (96.1%) finished

within the time limit, or at least did not appear to have run out of

time1. A two-page overview of the pseudo-code syntax was

provided to each student before the exam began and was available

for reference throughout the assessment.

5.1.3 Results
We received a total of 231 valid responses to the FCS1

assessment. Before data analysis could begin, outliers from the

data set that would bias or skew the results were removed.

Exclusionary criteria include: empty submission, entered the same

answer to 10 or more questions in a row, and spending less than

15 minutes on the entire exam (an average of 33 seconds per

question.) A second researcher verified the rules for exclusion

and independently reviewed all of the exams that were removed

from the data set to confirm that they met one or more of the

exclusionary criteria. After scrubbing, the final data set consisted

of 217 responses.

The FCS1 was then scored, awarding a 1 for a correct answer and

a 0 for an incorrect answer. (Any question left blank was not

scored.) The maximum score was a 25, and the minimum score

was a 2 out of a total of 27 questions. Student participants

answered an average of 11.35 (42.02%, σ = 4.711) questions

correctly. Questions about math operators and if statements were

among the most commonly answered correctly. The programming

1 A participant was determined to have run out of time if they worked on

the assessment for the full hour and left a significant percentage (>35%)

of the questions at the end blank.

constructs related to function parameters, function return values,

and definite loops were the most difficult questions. The

distribution of performance on the concept assessment by cohort

is shown in Table 5. There was a statistically significant

difference between groups as determined by one-way ANOVA

(F(6,210)=23.119, p = 0.000). A Tukey post-hoc test revealed

that cohorts R2 and P scored significantly higher than all of the

other cohorts (16.81 and 16.36 respectively). Further, the Tukey

post-hoc test identified a subset of cohorts (R1, T, and Q) that

performed better than the remaining two cohorts. There was no

statistically significant difference between the remaining two

cohorts (p = 1.000).

Table 5: Overall Student Scores on the FCS1 Assessment

Instrument by Cohort

Cohort N
Averag

e
% σ Median

R1 15 11.27 41.73 3.97 11

R2 16 16.81 62.27 4.56 17

P 25 16.36 60.59 4.23 15

T 57 12.02 44.51 4.08 12

V 17 7.53 27.89 3.47 7

Q 49 10.31 38.17 3.38 10

S 38 7.69 28.49 2.68 8

A subsequent analysis examined the performance of students on

the subset of topics on the FCS1 assessment that were identified

as learning objectives in the clock task skills assessment:

fundamentals, logical operators, selection statement, function

parameters and function return values. The maximum score was a

14, and the minimum score was a 0 out of a total of 15 questions.

Student participants answered an average of 5.96 (39.76%, σ =

2.657) questions correctly.

Table 6: Student Scores on the FCS1 Assessment Instrument

on Task Topics by Cohort

 Questions about math operators and logical operators were

among the most commonly answered correctly. The programming

constructs related to function parameters and function return

values remained the most difficult questions. The distribution of

performance on the concept assessment by cohort is shown in

Table 5. There was a statistically significant difference between

groups as determined by one-way ANOVA (F(6,211)=17.168, p =

0.000). A Tukey post-hoc test revealed that cohorts R2 and P

scored significantly higher than all of the other cohorts (8.81 and

8.64 respectively). Further the post-hoc analysis identified that

cohort T participants performed significantly better (6.33 ± 2.42

Cohort N Average % σ Median

R1 15 5.47 36.44 2.45 5

R2 16 8.81 58.75 2.81 8.5

P 25 8.64 57.60 2.66 8

T 57 6.33 42.22 2.42 6

V 17 4.76 31.76 1.64 5

Q 49 5.29 35.24 1.86 6

S 38 4.10 27.35 1.79 4

20

points, p = 0.000) than the S cohort. There were no statistically

significant differences between the remaining cohorts.

6. CORRELATIONS BETWEEN THE

ASSESSMENT AND THE CLOCK TASK

6.1 Overall Task Score and Concept

Assessment
A Pearson product-moment correlation coefficient was computed

to assess the relationship between the scores on the skills and

conceptual assessment instruments as enacted by the clock task

and the FCS1 assessment instrument respectively. There was a

positive correlation between the two variables, r = 0.653, n =140,

p = 000. Overall, there was a strong, positive correlation between

the overall score on the clock task (i.e. the number of tests a

student passed) and their score on the FCS1 assessment (see

Figure 2). Further, there also exists a strong positive correlation

between the clock task score and the score on the subset of the

topics isolated by the task (r = .605, n = 141, p = .000). See Table

7 for more details.

Figure 2: Graph of students' overall score on the Clock task vs

score on the FCS1 Assessment for the overall population

Subsequently, in order to investigate the extent to which the test

harness mediated task performance, we conducted another

correlation study with the total population split into two

subgroups by whether or not they conducted the clock task

assessment with the test harness A Pearson product-moment

correlation coefficient was computed to assess the relationship

between the scores on the skills and conceptual assessment

instruments as enacted by the clock task and the FCS1 assessment

instrument respectively by subgroup.

Table 7: Pearson’s Correlation between Clock Task Score and

Concept Assessment Score

There was a positive correlation between the two variables clock

task score and assessment score for both subgroups. However,

the decrease in correlation (r = .473 and r = .403) suggests that

the test harness is indeed scaffolding students’ performance,

perhaps beyond their ability to fully understand the conceptual

material exercised in the skills task. The weaker correlations in

the “without test harness” subgroup are likely caused by the very

strong floor effect in the task performance (see Figure 1). A

general view of students’ relative performance, separated by the

availability of the test harness is given in Figure 3 and Figure 4.

Figure 3: Graph of students' overall score on the Clock task vs

score on the FCS1 Assessment for students with a test harness.

Cohort N
Overall

FCS1 Score

Task Topics

FCS1 Score

 r p r p

Total 140 .653 .000 .605 .000

With Test Harness 89 .473 .000 .403 .000

Without Test

Harness
51 .287 .041 .392 .004

21

Figure 4: Graph of students' overall score on the Clock task vs

score on the FCS1 Assessment for students without a test

harness

6.2 Sub-task Test Score and Assessment
As described in Section 4.1.3, in order to give participants without

the benefit of the task harness an opportunity to demonstrate their

level of programming skill, the clock task was rescored awarding

one point for each unit test passed rather than an overall pass/fail

score if they had successfully completed all of the unit tests. The

results of this more detailed scoring were used to assess the

relationship between the scores on the skills and conceptual

assessment instruments for those participants who were not given

the testing harness.

A Pearson product-moment correlation coefficient was computed.

There was a positive correlation between the two variables, r =

0.292, n = 48, p = .044. Overall, the results are similar to those

found with the simplified scoring scheme. There was a positive

correlation between the overall score on the clock task and their

score on the FCS1 assessment. Further, there also exists a

somewhat stronger positive correlation between the clock task

score and the score on the subset of the topics isolated by the task

(r = .396, n = 49, p = .005) and no significant correlation between

the clock task score and the score on the subset of the topics that

were deemed outside of the scope of the task.

Further investigation is needed to fully understand the extent the

differences in the ways these two subgroups performed in the

clock task. However, the fact that the correlation of the task and

assessment scores on both task and non-task isolated topics was

similar (.403 and .454 respectively) suggests that while the test

harness clearly scaffolded performance on the clock task it did not

mask students’ latent understanding of the conceptual content

highlighted in the task.

7. TEACHERS’ EXPECTATIONS
As mentioned above the group members who brought data cohorts

were asked to fill in a short survey and describe their predictions

regarding the performance of their students in the FCS1

assessment. They were also asked to posteriori reflect on their

expectations and the actual performances of their students in the

Clock programming task as well as the FCS1. Although all

teachers were very familiar with the original MWG work, only

one of them gathered data in both the original study and this one.

7.1 Expectations regarding the FCS1
The teachers were asked to predict the overall score of their

students (0%-100%) in the FCS1, the topics and subtask that were

easiest and most difficult to their students (they had to choose

from the following list: Fundamentals, logical operators,

Selection, Definite Loops, Indefinite Loops, Arrays, Function

Parameters, Function Return Value, Recursion), and the

percentage of students who might have run out of time. Table 8

presents the teachers’ response regarding the foundational CS1

assessment instrument (FCS1)

Table 8: Teachers’ estimations on their students’ success in

comparison to students’ performance for the FCS1

 All the teachers unanimously thought that Recursion is the most

difficult topic. Fundamentals (i.e. variables, assignments, and so

forth) and selections were considered to be the easiest topics.

Teachers’ estimations were in the range of 40-63% (in literature

the average was 42% [24]). About half of the teachers’ believed

that the students’ conceptual knowledge was better than it

actually was (see Table 5 and Table 6).

In their reflections, teachers mentioned several concerns

regarding factors that might have influenced students’

performance in the assessment. Two teachers were concerned that

students did not have sufficient time. Another teacher was

concerned about the students’ limited knowledge in English, the

language of the test and the task. Another concern mentioned by

one teacher about a possible cultural bias was that the concept of

a 24-hour clock would be difficult to his students, who are

accustomed to a 12-hour clock.

Two teachers had concerns about their students’ conceptual

knowledge. One was concerned that their students had not been

exposed to some topics, such as recursion. Another teacher

stressed that, in his institute, they “prioritize practical

programming skills and techniques over deep conceptual

understanding”.

The teachers mentioned that they were familiar with the literature

relevant to the FCS1 assessment. This has “colored” or “biased”

their expectations.

7.2 Expectations from the Clock

programming task
The teachers were asked to rank the four sub-tasks from the

easiest (score of 1) to the most difficult (score of 4). Table 9

presents their ranking. The majority agreed that the subtract() sub-

Anticipated

Score
Score Easiest Topic

Most

Difficult

Topic

R1 44%
Realist

(2%)

Fundamentals

& Selection
Recursion

R2 63%
Realist

(1%)

Fundamentals

& Selection
Recursion

P 42%
Pessimist

(19%)
Fundamentals Recursion

T 56%
Optimist

(12%)
Selection

Recursion

& Arrays

Q 52%
Optimist

(14%)
Selection Recursion

S 40%
Optimist

(12%)
Fundamentals Recursion

22

task would be the most difficult and that the add() sub-task would

be the second most difficult.

Their explanations emphasized the relations between these two

sub-tasks. The most common argument was that add() is

“algorithmically more complicated” than tick() and compareTo(),

and subtract() is like “the add() function in reverse but will cause

students more difficulty[.]”.

Table 9: Teachers ranking of the sub-tasks

 tick compareTo add subtrac

t

R1+R2 1 2 3 4

P 1 2 3 4

T 2 1 3 4

Q 4 1 3 2

S 1 3 2 4

U 2 1 3 4

Average 1.83 1.67 2.83 3.67

σ 1.17 0.82 0.41 0.82

The tick() and the compareTo() sub-tasks were considered by the

majority to be easier than the add() and subtract() sub-tasks

because tick() requires “a simple manipulation” and compareTo()

requires a “relatively simple code”. They varied, however, in

their choice between the two. These estimations were correct, as

can be seen in from Table 3.

Teachers were also asked to estimate their a priori expectation of

complete success in the Clock task: what proportion of their

students they expected to be able to completely implement the

task (to the point of passing all tests), with the results given in

Table 10.

Table 10: Teachers’ estimations on their students’ success in

comparison to students’ performance for the Clock task

 Overall estimation-

overall

T 66% 50%

S 3% 4%

R1 68% 80%

R2 93% 99%

U 10% 10%

Q 0% 5%

P 73% 33%

8. COMPARISON WITH THE ORIGINAL

MCCRACKEN WORKING GROUP AND

OTHER, MORE RECENT, STUDIES
In this section we compare the original McCracken working

group study [18], the Sweden Group study (SG) [17] and this

study2.

The MWG study conducted a multi-national, multi–institutional

study in which the students were given one of three related

calculator exercises which were deemed to cover all parts of the

learning objectives framework. Two measures were used to

evaluate the students’ attempts: a General Evaluation (GE) which

included execution, verification, validation and style components,

and a Degree of Closeness evaluation (DOC) in which the code

was examined qualitatively. Overall the MWG “found that the

students’ level of skill was not commensurate with their

instructors’ expectations”. As measures of this we note that the

average GE score (which was mainly objective) was 22.9 out of

110.

The SG took the MWG as its starting point and gave the infix,

precedence-free calculator problem to 40 students at one

institution. The study addressed three research questions. The first

of these, and the goal most relevant to this paper, was how well

can the students at one institution solve a calculator problem if

they do not have to deal with various confounding issues

presented in the MWG study (unfamiliar environments and

conditions, the complex explanation of calculators, the need for a

stack for the postfix calculator, the complexities of Java I/O, and

no access to an online Java API). The SG results were much more

encouraging than in MWG. The GE score average was 68.2 out of

110. The authors conclude that “generally the students were able

to do at least part of the problem”. They offer several possible

explanations for these different results, which relate to the

specific issues mentioned above, and which they categorize as

environment, cognitive load and troublesome knowledge.

Another research question from the SG study is “can a modified

version of the instrument used by the MWG provide a useful

assessment?” They refer to MWG as having the goal of

evaluating its instrument, as well as the students. We think this is

a slight misunderstanding, since MWG asked participants to

choose students who “should” be able to solve the calculator

problem. The MWG question was rather: “are instructors’

expectations of their students realistic?”

In the current paper we are reporting on a study with similar goals

to the original MWG but with different assessment instruments,

including a (programming) language neutral test of students’

conceptual understandings. The cohort for this study is larger than

both MWG and SG.

Both MWG and SG used calculator problems. This study used the

clock problem, which was considered to be more in line with

object-oriented environments and less algorithmically complex. A

more important difference between MWG, SG and this study is

that MWG involved a problem that tested all the parts of the

learning objectives framework which they identified. In

particular, the first two parts (abstracting the problem and

generating sub-problems), which have been noted by SG and

2 A note on dates: the original MWG met in 2001, SG produced

their paper for ICER 2013, but this group was able to see a

preprint just before we met.

23

other researchers [16] as too high an expectation. SG gave the

participants a skeleton calculator and some I/O code as a starting

point. Our study also gave a quite explicit skeleton Time class

and the students were told to fill in the method bodies. A testing

framework was also made available to some of the students that

may have given them some scaffolding and a stopping criterion.

Thus, in both the SG study and the current study the design was

essentially given to the students.

In summary, MWG raised the whole issue of student performance

and instructor expectation in a multi-national context. The SG

study was able to remove many of the issues that confounded the

original MWG study. They showed that expecting students to be

able to code a no-precedence infix calculator with considerable

amounts of scaffolding code with a smaller cohort at a single

university produced better results than MWG. The current study

shows that instructors’ expectations appear to be more accurate

than in the era of MWG, that student performance is better when

students need not design a whole application and are able to

easily verify their results, which coincides more closely with the

SG study results than the MWG study.

9. THE WORLD IS DIFFERENT
In the 12 years between the original MWG and this study the

world as experienced by this digital generation of CS students has

changed. Many changes have taken place in the way we teach and

assess our students, and students themselves have changed in

terms of the prior knowledge they bring with them and of the way

they discover information and solve problems.

Changes in teaching and assessment

One of the issues identified as central to the effort of the MWG

was the development of CC2001[8]. The current study takes

place within the context of the development of CS2013[14] which

reviews and enhances CC2001 and the interim CS2008[25]. The

draft documentation for CS2013 identifies a number of interesting

features of the evolution of introductory CS courses from CC2001

to CS2013:

 Increase in the prevalence of “CS0” courses and

multiple pathways into and through the introductory

course sequence;

 Growing diversity in platforms used, e.g. web

development, mobile device programming;

 Broadening of the list of languages used, and trend

towards managed and dynamic and visual languages,

with no particular paradigm or language becoming

favored;

 Increasing adoption of software engineering

innovations, e.g. test-driven development[2], version

control, use of IDEs.

These features were reflected to a limited extent within this study.

There was some diversity in the pathways through the course

sequence among our cohorts, which presented difficulties in

comparing cohorts. All students participated in the task using

desktop or laptop computers, which matched the environments

they were accustomed to using. The only addition to the

languages used in the MWG was Python, while other cohorts used

Java and C/C++ as in the earlier study. The MWG acknowledged

the possibilities of Test-driven Development/Design (TDD)

approaches to allow students to check work at an earlier stage,

and the design of the task in this study made use of TDD

techniques for scaffolding the students’ activity in some cohorts.

However, by no means all the students in this study had

experience in their courses of developing software using a TDD

approach.

In addition to the features identified in CS2013, developments

arising from CS education research have had an impact on

teaching and learning, for example:

 Transition from written exam with pen and paper to

practical exam with computer and the development

tools and resources which students practice with in labs;

 Transition from procedural to object-oriented

programming;

 Recognition of the roles of variables [21];

 Transition toward a systematic and structured focus on

constructive alignment between intended learning

outcome, course activities, and assessment[6], including

instances of assessments specifically designed to

address issues raised by the findings of the MWG[4].

Modern object-oriented programming languages come with a

large class library and a well-documented API to ease access to it,

and many educators take advantage of the opportunity to produce

partially finished programs and/or provide classes as black boxes

for the students to use when solving the problem

In earlier days it was less common to use libraries and typically

students built everything from scratch when they were

programming. With object-oriented programming entering the

stage, it has become much more customary for students to

contribute to already existing code either by using standard

"slave" classes that offer various "low-level" functionality

(typically the Model in an MVC structure) or by using

frameworks that provide an overall structure where the students

contribute by concretizing hot spots in the framework (by

implementing virtual methods/subclasses)[7].

The building blocks that are given to students may be provided as

black-box or white-box components [13]. The former refers to

components that the students are supposed to use by only

referring to the specification of the components whereas the latter

are components that the students must open, read/study, and

modify. In the former case, the consequence is that students read

more APIs (specification level). The latter case has as a

consequence that the students read more code (implementation

level). Overall, students tend to spend more time studying

existing code now than they did when the MWG study was

conducted.

Of course, while the above observations reflect identifiable

trends, such developments are not universally accepted and

practiced, as evidenced, for example by a recent discussion on the

SIGCSE mailing list regarding written coding questions in

examinations, where educators expressed significant support for

requiring students to hand-write code without access to

documentation or syntax-checking[22].

Changes in the students

Today’s students have been described as belonging to the Net

generation, or as Digital Natives[15], who are active experiential

learners, dependent on technology for accessing information and

interacting with others. These students may not readily engage

with the instructional resources, such as textbooks, available to

previous generations. The existence of this generation has been

disputed, however, and it is not clear that a particular learning

style or preferences can be attributed to a whole generation [5].

Nevertheless, while there is little evidence that the level of CS

instruction experienced by students before coming to university

24

has increased significantly, it can be argued [12] that the

increasing use of computers, software and online resources among

young people leads students to have developed theories of how

computing works by the time they start their CS courses.

This type of digital literacy is from a user or user-programming

rather than a professional viewpoint [3], but it carries over into

some specific expectations when students are programming. CS

students now expect “always on” access to the Internet as they

code and this is likely to influence the strategies which they adopt

in attempting to solve programming problems. Instructors and

textbooks (e.g. [1]) often encourage use of online programming

language API documentation while developing programs, as good

software engineering practice. There are many more online spaces

where students can seek answers to specific questions from

instructors or peers within an educational context, for example

Piazza [11] or from members of the wider developer community,

such as StackOverflow (http://stackoverflow.com). The first

instinct of many programmers, students or otherwise, is probably

to search for an answer on Google, which in turn will often find

answers to similar questions which have been asked previously.

More general social media, such as Facebook and Twitter, are

also widely used by students and may be used to seek support.

The influence of these strategies on the activity within this study

is difficult to determine as this behavior was not explicitly

recorded or observed. The task, designed to translate easily to

different programming languages, requires little or no use of API

classes or functions, so online documentation would have been of

little use here. The task was administered in a time-limited

context, albeit with no restriction on access to the Internet. It is

unlikely, though not impossible, that a student would be able to

pose a question and receive an answer online within that

timescale. This consideration influenced the choice of the

problem for the task, as we searched to assure ourselves that this

was not a findable problem with “canned” solutions readily

available.

10. DISCUSSION
Overall, students seem to have performed better on the

programming task used in this working group than in the one used

in the original MWG. In fact, the low-scoring “no harness” groups

in this study performed as well (on the “passed all tests” measure)

as the average “general evaluation” score of 21% across all

cohorts in the MWG.

That having been said, there are clearly two distinct populations

within the current study’s overall cohort: one with an average

completion rate of >3.0 methods, and one with an average < 1.0

(Table 2). There are a number of potentially significant factors

involved in this difference:

Some of the cohorts in the high-average group had more prior

programming material in their University education than others.

That is: the size of the “CS1” component at the end of which they

participated in this study varied from 5-10 ECTS credits (Table

1). Discounting any pre-university programming experience, this

means that some students had twice as much exposure to (and

practice in) programming before attempting the task.

Some groups undertaking the Clock task were provided with the

test harness. This clearly had an effect on their performance in the

Clock task, as shown by the correlations with their performance in

FCS1 (Table 7). We believe that this explained by a scaffolding

effect:

 The test harness guides students in what they need to

do:

o It serves as a definition of correctness for the

students: what is a correct solution like?

o It disambiguates requirements that may have

otherwise been unclear: does tick() mean a

single tick or making the clock tick

continuously?

o It reminds the student of corner cases that

they may otherwise overlook.

 Assuming the student uses the harness, they receive

continuous, instant feedback about their program.

On a related note, students sometimes choose not to write tests

early, even when taught using practices such as TDD (e.g. [10]).

It is apparent from inspection that few, if any, in the no-harness

group wrote a set of tests and then implemented the required

methods; consequently, they would not have had access to

feedback as they worked incrementally on the four methods.

Being given a test harness also meant less work and less mental

load for the students:

 The harness takes care of I/O.

 The harness provides a main method and removes the

need for the students to design any of the overall

structure of their program, which represented two parts

of the MWG learning objectives framework.

 Having the harness simply means that there is less

implementation work to be done: the student does not

need to write tests, is less likely to run out of time, and

is less likely to suffer from time pressure.

Assuming that we are correct in stating that the four methods of

the Time class were in more or less increasing order of difficulty,

then the harness also suggested or even enforced an effective path

from tick() to subtract() so that implementing each preceding

method makes the next one a smaller step in difficulty.

Sequencing learning activities on a topic in order of increasing

complexity helps keep the students’ cognitive load in check [26].

Writing the tests is likely to have been difficult for some students.

Some aspects of test-writing may even have been conceptually

more difficult for them than aspects of the task proper. For

instance, using the Time class from the test code requires an

understanding of object-instantiation that is not required to

implement any of the methods in the Time class itself.

Finally it is worth commenting on our results in looking at

teachers’ expectations of their students’ performance. In the

MWG the teachers were all negatively surprised: “the first and

most significant result was that the students did much more poorly

than we expected” ([18] p. 132). The results of this study in this

aspect are different. Most working group members knew what to

expect. It should be noted that in the original study the

expectation were not empirically measured. Nonetheless, the fact

that in this experiment four out of six felt that the results, whether

poor or high, matched their expectations from the students, imply

that the teachers’ expectation were more attuned to their students.

We cannot rule out, however, the explanation that the teachers,

especially in this group, are familiar with previous studies

reported on students’ behavior, and have colored their

expectations accordingly. It may be that the longest-lasting effect

of the original MWG has been to depress teachers’ expectations

of their students’ ability!

25

11. ACKNOWLEDGEMENTS
The working group would like to acknowledge and thank the

following colleagues who provided access to their students and

helped collect data: Kerttu Pollari-Malmi, Satu Alaoutinen, Timi

Seppälä and Teemu Sirkiä; Tomasz Misztur; Luis Fernando de

Mingo Lopez, Nuria Gomez Blas, Irina Illina, Bernard Mangeol,

Paolo Boldi, Walter Cazzola, Dario Malchiodi, Marisa

Maximiano,Vitor Távora, Grzegorz Filo, Pawel Lempa, Lya van

der Kamp, Eddy de Rooij, Markku Karhu, Olli Hämäläinen,

Lucas Cosson, Erja Nikunen and Antti Salopuro.

12. REFERENCES
[1] Barnes, D. and Kölling, M. Objects first with Java : a

practical introduction using BlueJ. Pearson Education,

Upper Saddle River, N.J., 2011.

[2] Beck, K. Test-driven development: by example. Addison-

Wesley Professional, 2003.

[3] Ben-David Kolikant, Y. (Some) grand challenges of

computer science education in the digital age: a socio-

cultural perspective. In Anonymous Proceedings of the 7th

Workshop in Primary and Secondary Computing Education.

ACM, , 2012, 86-89.

[4] Bennedsen, J. and Caspersen, M. E. Programming in context:

a model-first approach to CS1. In Anonymous Proceedings

of the 35th SIGCSE technical symposium on Computer

science education. (Norfolk, Virginia, USA,). ACM, New

York, NY, USA, 2004, 477-481.

[5] Bennett, S., Maton, K. and Kervin, L. The ‘digital natives’

debate: A critical review of the evidence. British journal of

educational technology, 39, 5, 2008, 775-786.

[6] Caspersen, M. E. Educating novices in the skills of

programming. PhD Thesis, Aarhus University, Science and

Technology, Centre for Science Education, Aarhus,

Denmark, 2007.

[7] Caspersen, M. E. and Christensen, H. B. Here, there and

everywhere - on the recurring use of turtle graphics in CS1.

In Anonymous Proceedings of the Australasian conference

on Computing education. (Melbourne, Australia,). ACM,

New York, NY, USA, 2000, 34-40.

[8] Engel, G. and Roberts, E. Computing curricula 2001

computer science. IEEE-CS, ACM.Final Report, 2001.

[9] European Commission. European Credit Transfer System.

http://ec.europa.eu/education/lifelong-learning-

policy/ects_en. htm, 2013, 7/31, 2013.

[10] Fidge, C., Hogan, J. and Lister, R. What vs. How:

Comparing Students’ Testing and Coding Skills. In

Anonymous Proceedings of the Fifteenth Australasian

Computing Education Conference (ACE2013). Australian

Computer Society in the Conferences in Research and

Practice in Information Technology (CRPIT), 2013, 97-106.

[11] Ghosh, A. and Kleinberg, J. Incentivizing participation in

online forums for education. In Proceedings of the fourteenth

ACM conference on Electronic commerce. (Philadelphia,

Pennsylvania, USA,). ACM, New York, NY, USA, 2013,

525-542.

[12] Guzdial, M. We're too Late for "First" in CS1.

Blog@CACM, http://cacm.acm.org/blogs/blog-

cacm/102624-were-too-late-for-first-in-cs1, (December 7,

2010).

[13] Hmelo, C. E. and Guzdial, M. Of black and glass boxes:

scaffolding for doing and learning. In Anonymous

Proceedings of the 1996 international conference on

Learning sciences. (Evanston, Illinois,). International

Society of the Learning Sciences , 1996, 128-134.

[14] Joint ACM/IEEE-CS Task Force on Computing Curricula.

Computer Science Curricula 2013: Strawman Draft.

http://cs2013.org/strawman-draft/cs2013-strawman.pdf,

(February 2012 2012).

[15] Jones, C., Ramanau, R., Cross, S. and Healing, G. Net

generation or Digital Natives: Is there a distinct new

generation entering university? Computing Education, 54, 3,

2010, 722-732.

[16] Lopez, M., Whalley, J., Robbins, P. and Lister, R.

Relationships between reading, tracing and writing skills in

introductory programming. In Anonymous Proceedings of

the Fourth international Workshop on Computing Education

Research. (Sydney, Australia,). ACM, New York, NY,

USA, 2008, 101-112.

[17] McCartney, R., Boustedt, J., Eckerdal, A., Sanders, K. and

Zander, C. Can First-Year Students Program Yet? A Study

Revisited. In ICER '13: Proceedings of the ninth annual

international conference on International computing

education research. (Sab Diego, CA, USA, August 2013).

ACM, New York, NY, USA, 2013.

[18] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,

Hagan, D., Kolikant, Y. B., Laxer, C., Thomas, L., Utting, I.

and Wilusz, T. A multi-national, multi-institutional study of

assessment of programming skills of first-year CS students.

SIGCSE Bull, 33, 4, 2001, 125-180.

DOI=10.1145/572139.572181.

[19] Rittle-Johnson, B., Siegler, R. S. and Alibali, M. W.

Developing conceptual understanding and procedural skill in

mathematics: An iterative process. J. Educ. Psychol., 93, 2,

2001, 346.

[20] Rogalski, J. and Samurçay, R. Acquisition of programming

knowledge and skills. Psychology of programming, 18,

1990, 157-174.

[21] Sajaniemi, J. and Kuittinen, M. An experiment on using roles

of variables in teaching introductory programming.

Computer Science Education, 15, 1, 2005, 59-82.

[22] SIGCSE Members. Hand-writing code on exams.

http://listserv.acm.org/scripts/wa-

ACMLPX.exe?A1=ind1305C&L=SIGCSE-members#7, (15-

17 May 2013).

[23] Tew, A. E. Assessing fundamental introductory computing

concept knowledge in a language independent manner. PhD

Thesis, Georgia Institute of Technology, 2010.

[24] Tew, A. E. and Guzdial, M. The FCS1: a language

independent assessment of CS1 knowledge. In Anonymous

Proceedings of the 42nd ACM technical symposium on

Computer science education. (Dallas, TX, USA). ACM, New

York, NY, USA, 2011, 111-116.

[25] The Joint ACM/AIS/IEEE-CS Task Force on Computing

Curricula. Computer Science Curriculum 2008: An Interim

Revision of CS 2001.

26

http://www.acm.org/education/curricula/ComputerScience20

08. pdf, 2008.

[26] Van Merriënboer, J. J., Kirschner, P. A. and Kester, L.

Taking the load off a learner's mind: Instructional design for

complex learning. Educational psychologist, 38, 1, 2003, 5-

13.

Appendix A – Clock Task Reference Implementation Time.java
/**
 * Objects of the Time class hold a time value for a
 * European‐style 24 hour clock.
 * The value consists of hours, minutes and seconds.
 * The range of the value is 00:00:00 (midnight) to 23:59:59 (one
 * second before midnight).
 *
 * Type your UID here:
 * How long did this take you (hours):
 *
 * @version 1.1
 */
public class Time
{
 // The values of the three parts of the time
 private int hours;
 private int minutes;
 private int seconds;

 /**
 * Constructor for objects of class Time.
 * Creates a new Time object set to 00:00:00.
 * Do not change this constructor.
 */
 public Time()
 {
 this.hours = 0;
 this.minutes = 0;
 this.seconds = 0;
 }

 /**
 * Constructor for objects of class Time.

27

 * Creates a new Time object set to h:m:s.
 * Assumes, without checking, that the parameter values are
 * within bounds.
 * For this task, you don't need to worry about invalid parameter values.
 * Do not change this constructor.
 */
 public Time(int h, int m, int s)
 {
 this.hours = h;
 this.minutes = m;
 this.seconds = s;
 }

 /**
 * Add one second to the current time.
 * When the seconds value reaches 60, it rolls over to zero.
 * When the seconds roll over to zero, the minutes advance.
 * So 00:00:59 rolls over to 00:01:00.
 * When the minutes reach 60, they roll over and the hours advance.
 * So 00:59:59 rolls over to 01:00:00.
 * When the hours reach 24, they roll over to zero.
 * So 23:59:59 rolls over to 00:00:00.
 */
 public void tick()
 {
 // Task 1: complete the tick() method
 }

 /**
 * Compare this time to otherTime.
 * Assumes that both times are in the same day.
 * Returns ‐1 if this Time is before otherTime.
 * Returns 0 if this Time is the same as otherTime.
 * Returns 1 if this Time is after otherTime.
 */
 public int compareTo(Time otherTime)
 {
 // Task 2: complete the compareTo method
 return 0;
 }

 /**
 * Add an offset to this Time.
 * Rolls over the hours, minutes and seconds fields when needed.
 */
 public void add(Time offset)
 {
 // Task 3: complete the add method
 }

 /**
 * Subtract an offset from this Time.
 * Rolls over (under?) the hours, minutes and seconds fields when needed.
 */
 public void subtract(Time offset)
 {
 // Task 4: complete the subtract method
 }

 /**
 * Return a string representation of this Time.
 * String is of the form hh:mm:ss with always two digits for h, m and s.
 * Do not change this.

28

 */
 public String toString()
 {
 return pad(hours) + ":" + pad(minutes) + ":" + pad(seconds);
 }

 /**
 * Returns a string representing the argument value, adding a leading
 * "0" if needed to make it at least two digits long.
 * Do not change this.
 */
 private String pad(int value)
 {
 String sign = "";

 if (value < 0) {
 sign = "‐";
 value = ‐value;
 }

 if (value < 10) {
 return sign + "0" + value;
 } else {
 return sign + value;
 }
 }
}
 TimeTester.java
/**
 * Runs tests on instances of the Time class using the main method of this class.
 * Tests are divided into four sets, one for each of the
 * sub‐tasks described in the Time class, which are executed in the
 * order of the sub‐tasks.
 * Sets are only attempted if all the previous sets have passed.
 * Tests within a set are attempted even if previous tests in the set have failed.
 *
 * Do not change this class.
 *
 * @author Ian Utting
 * @version 1.1
 */
public class TimeTester
{
 /**
 * Run all of the sets of tests, running each one only if the previous
 * sets have all passed.
 * This makes the results less cluttered if you are attempting the
 * sub‐tasks in order.
 */
 public static void main(String [] args)
 {
 if (!tickTests()) return;
 System.out.println("All tick() tests passed.");
 if (!compareToTests()) return;
 System.out.println("All compareTo() tests passed.");
 if (!addTests()) return;
 System.out.println("All add() tests passed.");
 if (!subtractTests()) return;
 System.out.println("All subtract() tests passed.");
 System.out.println("All tests passed.");
 }

29

 /**
 * Test the tick() method of a Time.
 * All of these tests will run, independent of individual failures.
 */
 public static boolean tickTests()
 {
 boolean allPassed = true;

 allPassed &= tickTest(new Time(0, 0, 0), "00:00:01");
 allPassed &= tickTest(new Time(0, 0,58), "00:00:59");
 allPassed &= tickTest(new Time(0, 0,59), "00:01:00");
 allPassed &= tickTest(new Time(0,58,59), "00:59:00");
 allPassed &= tickTest(new Time(00,59,59), "01:00:00");
 allPassed &= tickTest(new Time(23,59,59), "00:00:00");

 Time t = new Time(0, 0, 0);
 allPassed &= tickTest(t, "00:00:01");
 allPassed &= tickTest(t, "00:00:02"); // Same t, ticked twice

 return allPassed;
 }

 /**
 * Test the compareTo() method of a Time.
 * All of these tests will run, independent of individual failures.
 */
 public static boolean compareToTests()
 {
 boolean allPassed = true;

 Time t1 = new Time(0, 0, 4);
 Time t1Clone = new Time(0, 0, 4);

 allPassed &= compareToTest(t1, t1, 0);
 allPassed &= compareToTest(t1, t1Clone, 0);

 Time t2 = new Time(0, 0, 5);

 allPassed &= compareToTest(t1, t2, ‐1);
 allPassed &= compareToTest(t2, t1, 1);

 allPassed &= compareToTest(new Time(2, 2, 2), new Time(1, 2, 2), 1);
 allPassed &= compareToTest(new Time(2, 2, 2), new Time(2, 1, 2), 1);
 allPassed &= compareToTest(new Time(2, 2, 2), new Time(2, 2, 1), 1);
 allPassed &= compareToTest(new Time(1, 2, 2), new Time(2, 2, 2), ‐1);
 allPassed &= compareToTest(new Time(2, 1, 2), new Time(2, 2, 2), ‐1);
 allPassed &= compareToTest(new Time(2, 2, 1), new Time(2, 2, 2), ‐1);

 return allPassed;
 }

 /**
 * Test the add() method of a Time.
 * All of these tests will run, independent of individual failures.
 */
 public static boolean addTests()
 {
 boolean allPassed = true;

 allPassed &= addTest(new Time(1, 1, 1), new Time(2, 2, 2), "03:03:03");
 allPassed &= addTest(new Time(0, 0, 59), new Time(0, 0, 1), "00:01:00");
 allPassed &= addTest(new Time(0, 59, 0), new Time(0, 0, 1), "00:59:01");

30

 allPassed &= addTest(new Time(0, 59, 59), new Time(0, 0, 1), "01:00:00");
 allPassed &= addTest(new Time(23, 0, 0), new Time(1, 0, 0), "00:00:00");
 allPassed &= addTest(new Time(23, 59, 0), new Time(0, 1, 0), "00:00:00");
 allPassed &= addTest(new Time(23, 59, 59), new Time(0, 0, 1), "00:00:00");
 allPassed &= addTest(new Time(23, 59, 59), new Time(23, 59, 59), "23:59:58");

 return allPassed;
 }

 /**
 * Test the subtract() method of a Time.
 * All of these tests will run, independent of individual failures.
 */
 public static boolean subtractTests()
 {
 boolean allPassed = true;

 allPassed &= subtractTest(new Time(2, 2, 2), new Time(1, 1, 1), "01:01:01");
 allPassed &= subtractTest(new Time(0, 1, 0), new Time(0, 0, 1), "00:00:59");
 allPassed &= subtractTest(new Time(1, 0, 0), new Time(0, 1, 0), "00:59:00");
 allPassed &= subtractTest(new Time(1, 0, 0), new Time(0, 0, 1), "00:59:59");
 allPassed &= subtractTest(new Time(1, 1, 1), new Time(1, 1, 1), "00:00:00");
 allPassed &= subtractTest(new Time(1, 1, 1), new Time(0, 0, 2), "01:00:59");
 allPassed &= subtractTest(new Time(1, 1, 1), new Time(0, 2, 2), "00:58:59");
 allPassed &= subtractTest(new Time(1, 1, 1), new Time(2, 2, 2), "22:58:59");

 return allPassed;
 }

 /**
 * Implementation of an individual tick test.
 */
 private static boolean tickTest(Time t, String expected)
 {
 String orig = t.toString();

 t.tick();

 if (t.toString().equals(expected)) return true;

 System.out.println("Test: with Time " + orig + ", tick() failed. " +
 "Expected \"" + expected + "\", got \""+ t + "\"");
 return false;
 }

 /**
 * Implementation of an individual comparison test.
 */
 private static boolean compareToTest(Time t1, Time t2, int expected)
 {
 int result = t1.compareTo(t2);

 if (result == expected) return true;

 System.out.println("Test: with Time " + t1 + ", compareTo(" + t2 + ") failed. " +
 "Expected \"" + expected + "\", got \"" + result + "\"");
 return false;
 }

 /**
 * Implementation of an individual addition test.
 */
 private static boolean addTest(Time t1, Time t2, String expected)

31

 {
 String hdr = "Test: with Time " + t1 + ", add(" + t2 + ") failed. ";
 String origT2 = t2.toString();

 t1.add(t2);

 if (!t2.toString().equals(origT2)) {
 // Second parameter should not be changed
 System.out.println(hdr +
 "Parameter changed from \"" + origT2 + "\"to \""+ t2 + "\"");
 return false;
 }

 if (!t1.toString().equals(expected))
 {
 System.out.println(hdr +
 "Expected \"" + expected + "\", got \""+ t1 + "\"");
 return false;
 }
 return true;
 }

 /**
 * Implementation of an individual subtraction test.
 */
 private static boolean subtractTest(Time t1, Time t2, String expected)
 {
 String hdr = "Test: with Time " + t1 + ", subtract(" + t2 + ") failed. ";
 String origT2 = t2.toString();

 t1.subtract(t2);

 if (!t2.toString().equals(origT2)) {
 // Second parameter should not be changed
 System.out.println(hdr +
 "Parameter changed from \"" + origT2 + "\"to \""+ t2 + "\"");
 return false;
 }

 if (!t1.toString().equals(expected))
 {
 System.out.println(hdr +
 "Expected \"" + expected + "\", got \""+ t1 + "\"");
 return false;
 }
 return true;
 }
}

32

