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Abstract. Process Conformance is a crucial step in the area of Process
Mining: the adequacy of a model derived from applying a discovery al-
gorithm to a log must be certified before making further decisions that
affect the system under consideration. Among the different conformance
dimensions, in this paper we propose a novel measure for precision, based
on the simple idea of counting these situations were the model deviates
from the log. Moreover, a log-based traversal of the model that avoids
inspecting its whole behavior is presented. Experimental results show a
significant improvement when compared to current approaches for the
same task. Finally, the detection of the shortest traces in the model that
lead to discrepancies is presented.

Key words: Process Mining, Process Conformance.

1 Introduction and Related Work

Nowadays, the organizations make use of a wide variety of Process-Aware Infor-
mation Systems (PAISs) to conduct their business processes [13]. These systems
record all kind of information about the processes in logs, which can be used for
different purposes. Process Mining is an area of research that aims at the dis-
covery, analysis and extension of formal models in a PAIS, in order to support
its design and maintenance.

The problem of deriving a formal model from a log is known as Process
Discovery. For this problem, several algorithms exist which derive models that
represent (maybe partially) processes detected by observing the traces in the
log. In particular, the production of a Petri net [7] whose underlying behav-
ior is related to the traces in the log has been presented extensively in the
literature [17,2,14,4,18]. The Petri nets produced by many of these algorithms
represent overapproximations of the log, i.e. the set of traces accepted in the net
is a superset of the set of traces in the log. Therefore, one can not rely on the
accuracy of the discovered model unless some minimality property is guaranteed
([2,4]), or a certification provided by a metric ensures its quality.

Process Conformance aims at evaluating the adequacy of a model in describ-
ing a log. Analyzing conformance is a complex task which involves the interplay
of different and orthogonal dimensions [8,9]:



? Fitness: indicates how much of the observed behavior is captured by (i.e.
“fits”) the process model.

? Precision: refers to overly general models, preferring models with minimal
behavior to represent as closely as possible the log.

? Generalization: addresses overly precise models which overfit the given log,
thus been possible to generalize.

? Structure: refers to models minimal in structure which clearly reflect the
described behavior.

Different algorithms for conformance checking have been presented in the
literature (a complete survey can be found in [9]). In particular, some examples
of approaches focused on precision are: [6] (measuring the percentage of potential
traces in the model that are in the log), [5] (comparing two models and a log to see
how much of the first model’s behavior is covered by the second) used in [14], [19]
(comparing the behavioral similarity of two models without a log), and [3] (using
minimal description length to evaluate the quality of the model). In this work
we focus on the precision between a model (a Petri net in our case) and a log.
On this regard, the methods presented in [10,11] may be seen as a seminal work,
were metrics for fitness, structural and precision are presented. In particular,
the precision metric presented (called advanced behavioral appropriateness) is
limited to comparing the ordering relations between events in the model with
the ones from the log. This approach needs the exhaustive exploration of the
model’s state space, which can be impractical for large models that exhibit a
high degree of concurrency, i.e. the state-space explosion problem arises.

Briefly, this paper presents a novel technique to measure precision, which aims
at: i) complementing the precision information provided by other techniques, ii)
fighting the inherent complexity that relies in checking conformance for industrial
or real-life models and logs and, iii) providing useful information for later Process
Extension, i.e. the stage where the model may be extended to better reflect the
log. The initial implementation is available as the ETConformance plug-in in
the ProM 6 framework [1].

The approach can be summarized as follows:
given a model and a log, the behavior of the model
restricted to the log is computed (part with gray
background in the figure on the right). The bor-
der between the log’s and model’s behavior defines
crucial points where the model deviates from the
log. We call these situations escaping edges. By
quantifying these edges and their frequency, we
aim at providing an accurate measurement of the
precision dimension. Moreover, the escaping edges
denote inconsistencies that might be treated in the
process extension phase.

In the previous figure it has been considered that the model’s behavior in-
cludes all the log’s behavior (perfect fitness), in order to evaluate its precision.
When the fitness condition does not hold, we recommend (as in [10]), to analyse



the conformance in two phases: in the first phase the fitness is evaluated, fil-
tering the noise and analysing the discrepancies. In the second phase, the other
three dimensions are evaluated. Section 7 briefly comments how to deal with
non-fitting models.

1.1 Why a new measure to quantify Precision?

A fresh look at precision We aim at providing a precision metric that
estimates the effort needed to obtain an accurate model, focusing on the
discrepancies detected. This contrasts with the existing approaches for precision
that only provide discrepancies in the event relations [11].

Efficiency To compute the precision metric, we present a log-based traversal
of the model’s behavior . The technique avoids the traversal of the complete
model’s behavior, i.e., only the behavior of the model reflected in the log is
explored (see the figure above). Hence, the approach can handle inputs that can
not be handled by other approaches which traverse the complete behavior.

Granularity The closest measure to the one presented in this paper, is the
advanced behavioral appropriateness, by Rozinat et al [11], denoted by a′B . This
approach consists in computing the precedence/follows relations between tasks
in the model and in the log, and compares both relations, thus providing a
behavioral metric for precision. However, these relations can only have three
possible values: Always, Never and Sometimes. Our approach works directly
with the behavior of the model, getting a deeper view of the precision problem.

Extensionality Finally, we feel that, in addition to the metric, it is important
to provide an appropiate mechanism for the later Process Extension. On this
regard, the methods presented in this paper output also the exact points of
discrepancy, i.e., the traces where the model starts to deviate from the log.

The background for the understanding of this paper is presented in Section 2.
Section 3 describes informally the approach, whereas Sections 4 and 5 present
the algorithm to collect escaping edges and the metric for precision analysis,
respectively. Section 6 introduces the notion of disconformant traces. Section 7
discuss some extensions and experimental results are presented in Section 8.

2 Preliminaries

In this section we present the two main inputs needed to perform the con-
formance analysis: Petri nets and logs (Event Logs). Additionally, Transitions
Systems will be presented to link these two inputs.

Some mathematical notation is provided for the understanding of the paper.
Given a set S, we denote P(S) as the powerset over S, i.e. the set of possible
subsets of elements of S. Given a set T , a sequence σ ∈ T ∗ is a called trace.



Given a trace σ = t1t2 . . . tn, and a natural number 0 ≤ k ≤ n, hdk(σ) is the
trace t1t2 . . . tk, also called the prefix of length k in σ. Notice that hd0(σ) = λ,
i.e., the empty word. Finally, given a set of traces L, we denote Pref (L) the set
of all prefixes for traces in L.

2.1 Petri Nets

Definition 1 (Petri Net [7]). A Petri Net (PN) is a tuple (P, T,W,M0)
where P and T represent finite sets of places and transitions, respectively, with
P ∩ T = ∅. And W : (P × T ) ∪ (T × P )→ N is the weighted flow relation. A
marking is a mapping P → N. M0 is the initial marking, i.e. defines the initial
state of the system.

A transition t ∈ T is enabled in a marking M iff ∀p ∈ P : M(p) ≥ W (p, t).
An enabled transition can be fired resulting in a new marking M ′ such that
∀p : M ′(p) = M(p) −W (p, t) + W (t, p). A marking M ′ is reachable from M if
there is a sequence of firings σ = t1t2 . . . tn that transforms M into M ′, denoted
by M [σ〉M ′. A sequence of transitions σ = t1t2 . . . tn is a feasible sequence if
M0[σ〉M , for some M . The set of reachable markings from M0 is denoted by
[M0〉, and form a graph called reachability graph. A PN is said to be k-bounded
or simply bounded if ∀p : M ′(p) does not exceed a number k for any reachable
marking M ′ from M0. If no such number exists, it is said to be unbounded.

2.2 Event Logs

Event logs contain executions of a system [16]. These executions represent the
ordering between different tasks, but may also contain additional information,
like the task originator or its timestamp. For the purposes of this paper, all this
information is abstracted:

Definition 2 (Event Log). An event log EL is a set of traces, i.e., EL ∈ P(T ∗).

We denote by |EL| the number of traces of the log. As notation, these traces can
be iterated through σ1 . . . σ|EL|.

2.3 Relation between a Petri Net and an Event Log

Similarly as it is done in [10], tasks in the log and transitions in the Petri net
must be mapped in order to establish a relation between both objects. Besides the
most simple relation between only one task and one transition, the mapping may
have some more complex scenarios: (i) Duplicate tasks, two or more tasks in the
model are associated with the same task in the log. (ii) Invisible tasks, a task in
the model is associated with no task in the log1. In this paper, the invisible tasks

1 The reasons for this lack of relation may be different: non recordable steps in the
process (phone calls, meetings, . . . ), introduced in the model for routing purposes,
relaxations of the model, or invisible tasks resulting from some discovery algorithm
(e.g., [14]).



in the model will be represented as transitions filled black. (iii) Non Modelled
tasks, a task in the log is associated with no task in the model. Non modelled
tasks are not relevant for the purpose of this paper. Therefore, they can be
removed from the log before starting the analysis. The techniques presented in
this paper cover all the scenarios above. Note that, for the sake of clarity, we
refer to task, event or transition indistinctly, whenever no mistake is possible.

2.4 Transitions Systems

Definition 3 (Transition system). A transition system (TS) is a tuple
(S, T,A, sin), where S is a set of states, T is an alphabet of actions,
A ⊆ S × T × S is a set of (labelled) transitions, and sin ∈ S is the initial state.

We will use s
e→ s′ as a shortcut for (s, e, s′) ∈ A, and the transitive closure

of this relation will be denoted by
∗→. The language of a transition system TS,

L(TS), is the set of traces feasible from the initial state.

3 Problem Statement and Approach

As was said in the introduction, our goal is to measure the precision of a model
with respect to a log. Moreover, we strive to locate inconsistencies between the
model and the log, thus allowing the later extension of the model.

Let us introduce the PN and EL shown in Fig. 1(a) and (b), respectively, based
on the examples used in [11]. We will use this example in the rest of the paper
as a running example. The PN reflects the typical process of liability insurance
claim in a bank. Note that, although the log represents a plausible situation,
the control flow shown in the model is not realistic, i.e., the Consult Expert task
should be executed exactly once. This inconsistence may seem obvious in this
small scenario, but may be not for larger and realistic cases. Hence, we use it to
illustrate the conformance analysis.

(a) PN1 (b) EL1

Fig. 1. Running example.

The precision metric introduced in this paper is computed smoothly: in con-
trast to other approaches that require a complete exploration of both the model



and the log [11], in our approach the model exploration is restricted to the ob-
served log’s behavior. As a consequence, the computational requirements are
bounded to the log size, thus being independent of the whole model’s underlying
behavior. This might be crucial for models obtained from a mining algorithm
that may have an underlying behavior of intractable size.

The key concept of the approach is that of Escaping Edges, i.e., the situations
were the model allows more behavior than the log, thus exhibiting less precision.
We base our measure on the relation between the number and frequency of es-
caping edges with respect to model’s behavior restricted to the log . Hence, the
more the model deviates from the log, the less precise is its precision value. It is
important to stress the fact that a model can have few escaping edges (thus ex-
hibiting good precision) but with underlying behavior substantially bigger than
the log: it is not the aim of this work to compare sizes between the model and the
log, but providing an estimation of the efforts required to improve the model to
precisely describe the log. Figure 2 shows the route map of the ETConformance
approach, and indicates the section where each part is explained in detail.

Fig. 2. Route map of ETConformance: a log and a Petri net are the inputs of the
technique. Internally, log and Petri net states are identified and mapped. Finally, both
the metric and the set of minimal discrepancies are reported.

4 Log-based Traversal of the Model’s Behavior

This section describes the log-based traversal of the model’s behavior. We have
an assumption on the input log: every trace in the log is possible in the model,
i.e. it has fitness value one (see how to adapt the technique to non-fitting models
in Section 7). This assumption is grounded on the correlations that exist between
fitness and precision dimensions, as pointed in [10]. Hence, the fitness analysis
and corresponding adjustments can be done before the precision analysis. There
are some approaches to perform this task, e.g., [11].

4.1 Basic Idea

In order to perform a log-based traversal of the model behavior, it is necessary to
find a common comparable domain between log and model, i.e. a domain where



1  r,s,sb,p,ac,ap,c

2  r,sb,em,p,ac,ap,c

3  r,sb,p,em,ac,rj,rs,c

4  r,em,sb,p,ac,ap,c

5  r,sb,s,p,ac,rj,rs,c

6  r,sb,p,s,ac,ap,c

7  r,sb,p,em,ac,ap,c
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Fig. 3. (a) event log EL, (b) corresponding transition system TS such that L(TS) = EL.

states of the model and log states could be mapped. For performing such task,
state information must be obtained for both objects (model and log). In the log
side, several algorithms are presented in [15] to incorporate state information in
the log. These algorithms are parametrizable with respect to the decision of a
state (past, future or both), the representation of the information (sequence, set
and multiset), and its horizon (limited or infinite). In particular, using the past,
sequence and infinite settings allows to derive a behavioral representation of the
log (a transition system) with the same language. The states of that transition
system will be the states of the log.

Definition 4 (Prefix automaton, Log states). Given an event log EL, let
TS = (S, T,A, s0) be the automaton derived by using the construction presented
in [15] using the past, sequence and infinite settings. We call this automaton
prefix automaton. The set S will be denoted as the set of states of EL. Given a
trace σi = t1 . . . t|σi| ∈ EL, sij ∈ S denotes the state in TS corresponding to the
prefix t1 . . . tj−1, for 0 ≤ j ≤ |σi|+ 1.

Fig. 3 shows an example of this transformation. The states of this transition
system correspond to prefixes of the traces in the log: for instance, the state
filled in Fig. 3 corresponds to the prefix r, sb, p, contained in traces 3, 6 and 7.

To obtain state information for a Petri net model, its reachable states can be
computed. However, due to the well-known space-explosion problem, Petri nets
can exhibit a large or even infinite behavior, making this approach impractical
for these instances. Instead, the approach presented in this paper only visits
those reachable markings of the net for which there is at least one state in the
log (see Def. 4) mapped. Let us define formally the mapping:

Definition 5 (Mapping between log states and Petri net markings). Let
EL and PN = (P, T,W,M0) be a log and a Petri net, respectively, and consider
the prefix automaton TS = (S, T,A, s0) from EL. A marking M is mapped to the

state s ∈ S, denoted by M ( s, if there exists a trace σ such that s0
σ→ s in TS

and M0[σ〉M .

Due to this mapping, the Petri net traversal can be controlled to reach only
markings for which there is a corresponding mapped state in the log. Moreover,
for each one of the markings reached on this guided traversal, the local precision



on this marking can be measured by collecting the discrepancies between the
behavior allowed in the model with respect to the behavior observed in the log:

Definition 6 (Allowed Tasks and Reflected Tasks). Let s be a state of the
prefix automaton TS = (S, T,A, s0) from EL, and PN = (P, T,W,M0) a Petri

net. We define AT (s) = {t ∈ T |M ( s ∧ M [t〉M ′} and RT (s) = {t ∈ T | s t→
s′)} as the set of allowed and reflected tasks in s.

Since we are assuming fitness value one of the model with respect to the log,
clearly RT (s) ⊆ AT (s) for every state s of TS, i.e. the model overapproximates
the log. Now it is possible to define the concept of escaping edge:

Definition 7 (Escaping Edges). Let s be a state of the prefix automaton
TS = (S, T,A, s0) from EL, and PN = (P, T,W,M0) a Petri net. The Escap-
ing Edges (EE) of s is defined as EE(s) = AT (s) \RT (s).

An example of escaping edge for the pair (PN1,EL1 ) in Fig. 1 is H in the log
state reached after the prefix AC: here PN1 accepts the H task, whereas this is
not reflected in EL1. It is important to stress that the tasks reflected of a state
s are the ones that appear in any of the traces that contain s. For instance, for
the example of Fig. 1, the prefix A has two allowed tasks in the model (B and
C) but given that both are reflected in the log (in different traces), no escaping
edge arise in the log state after observing A. The algorithm to collect the set of
escaping edges is presented as Algorithm. 1.

Input: EL, PN
foreach State s in EL do

RT := outEdges (s)
σ := prefix (s,EL)
mark := fire (σ,PN) // Fire σ and get the reached marking

AT := enable (mark,PN) // Get the enable transitions of mark
EE := AT \ RT // Allowed tasks minus Reflected Tasks

register (s,EE)

Algorithm 1: ComputeEscapingEdges

4.2 Duplicate and Invisible tasks

Until now, the methods have been explained without considering duplicate or
invisible tasks. Although the approach presented in this paper can deal with du-
plicate and invisible tasks, we must remark some issues concerning the potential
indeterminism that may arise.

When trying to determine the marking associated to a log state, it may
happen that firing the sequence of tasks cannot be done in a deterministic way,
i.e., one log task is associated to two or more enabled transitions in the model,



and therefore, one of the transitions must be chosen to continue the firing. A
similar situation occurs when a sequence of invisible tasks that enables a visible
log task must be fired. In this cases, part of the state space of the model reachable
from the current marking must be explored. To avoid producing an infinite state
space (for instance, because the Petri net might be unbounded), we construct
the invisible coverability graph: a variant of the well-known coverability graph
algorithm [7] where the nodes are ω-markings and the edges are only invisible
tasks. Informally, this graph will contain all the paths of invisible tasks that lead
to the enabling of a visible one. It may occur that a visible task is enabled for
several and different sequences of invisible tasks, and therefore, a guess between
the different sequences must be made to continue the traversal.

In real-life scenarios, dealing with indeterminism requires the use of heuristics
and therefore, the inconsistencies detected (escaping edges in our framework)
might be caused by a bad guess and not by a real precision problem. In [11] a
heuristic that uses the shortest sequence of invisible that enables a visible task
is proposed. This heuristic tries to minimize the possibility that a invisible fired
task interfere the future firing of another task. In general, the availability of
several heuristics can be helpful to apply ad-hoc explorations which depend on
the scenario considered.

5 Evaluating Precision

As it has been seen before, the escaping edges are a good indicator for measuring
the behavior of a model compared to the behavior reflected in the log. For that
reason, we propose a metric to take into account these escaping edges and their
frequency. This metric also allows us to compare between models to know which
one captures better the behavior reflected of a log. Let us formalize the metric:

Metric 1 (ETC Precision) Let EL = {σ1, . . . , σ|EL|} and PN = (P, T,W,M0)
be a log and a Petri net, respectively. For each trace σi (1 ≤ i ≤ |EL|), state
sij (1 ≤ j ≤ |σi|+ 1) denotes the j − th state of σi (see Def. 4). The metric is
defined as follows:

etcP (EL,PN) = 1−
∑|EL|
i=1

∑|σi|+1
j=1 |EE(sij)|∑|EL|

i=1

∑|σi|+1
j=1 |AT (sij)|

By dividing the set of escaping edges by the set of allowed tasks in the model,
the metric evaluates the amount of overapproximation in each trace. Note that,
for all sij , |EE(sij)| ≤ |AT (sij)|, and therefore 0 ≤ etcP ≤ 1. The fact that we
take into account the frequency of the traces makes that the most used and
appropriate traces would contribute with higher weight than the noisy traces
and the wrong indeterministic choices. The metric value of the example for the
pair (PN1, EL1 ) in Fig. 1 is

1− 0 + 3 + 3 + 2

6 + 12 + 13 + 12
= 0.81



where every i-th summand of the numerator/denominator is processing the pe-
nalizations for the escaping edges of trace σi, e.g., in trace σ4 ∈ EL1 there are 2
escaping edges and 12 allowed tasks.

As was done in [10], we present some of the quality requirements a good
metric should satisfy and a brief justification on its fulfillment.

Validity (The metric and the property to measure must be sufficiently corre-
lated with each other). In the case of Metric 1, the more escaping edges, the
lower value will be provided (even closer to 0 in the worst case). This inverse
correlation quantifies if a model is a precise description of a log.

Stability (The metric must be as little as possible affected by the properties that
are not measured). In other words, the metric must measure only one dimension
(precision in this case) independently of the others (e.g., fitness, structural,
generalization). With regard to fitness or generalization, the metric is not stable
since there is a correlation between precision and both dimensions. In contrast,
by only focusing on the underlying behavior of the model, etcP is independent
to the structural dimension. To illustrate this, Fig.4 show PN2 and PN3, two
Petri Nets with the same behavior and different structure. The result provided
by etcP is 1 in both cases when compared with the log EL2.

(a) PN2 (b) EL2 (c) PN3

Fig. 4. Stability of the metric with respect to structure.

Analyzability (It relates to the properties of the measured values. In our
case, the emphasis is on the requirement that the measured values should
be distributed between 0 and 1, with 1 being the best and 0 being the worst
value. It is important to be 1 when there is no precision problem). The values
returned by etcP are distributed between 0 and 1. In addition, the value 1
can be reached, indicating that there are no inconsistencies. Notice that, to
achieve this value it is not necessary to have only one enabled at each point
of the trace (like in aB [11]). This is because the metric does not depend on
the idea of more enabled tasks, more behavior, but in the concept behavior
allowed vs reflected itself. Moreover, the metric value can be 1, even if the whole
behavior of the model is distributed in two or more different traces. This is
because decision on escaping edges is done globally after processing the whole set
of traces. This can be seen in PN4 and EL3 (cf. Fig. 5), that has a etcP value of 1.

Localizability (The system of measurement forming the metric should be able
to locate those parts in the analyzed object that lack certain measured proper-
ties). This is a crucial requirement in conformance analysis, due to the fact that



(a) PN4 (b) EL3

Fig. 5. Global analysis of the traces leads to a global analysis of escaping edges.

providing the discrepancy points we are making possible to identify the poten-
tial points of model’s enhancement. This is done in the approach of this paper
through the escaping edges, identified by their marking and the task used to
escape from the reflected behavior in the log. However, given the importance of
the localizability in conformance, we go a step further and in the next section a
technique to collect the traces leading to these situations is presented.

6 Minimal Disconformant Traces

Given a log and a model, we are interested in identifying these minimal traces
that lead to a situation where the model starts to deviate from the log. Some
of these traces may represent meaningful abstractions that arise in the model
and therefore no further action is required. For the rest of traces, a decision
on whereas the model or the log are wrong shall be made. In the case of an
erroneous model, process extension techniques must be applied.

Definition 8 (Minimal Disconformant Traces). Let EL and
PN = (P, T,W,M0) be a log and a Petri net, respectively. We define the
Minimal Disconformant Traces (MDT) as the set of traces σ = σ′t such that
M0[σ〉M , σ′ ∈ Pref(EL) and σ /∈ Pref(EL).

The escaping edges computed in previous section can be used to obtain the
Minimal Disconformant Traces. Algorithm 2 shows how to generate this set
of traces using the escaping edges: for each state s with a escaping edge, the
sequence to reach s is computed and it is concatenated with the escaping edge.
Finally, Lemma 1 ensures a minimality criterion on the derived traces.

Input: EL
Output: M
foreach State s in EL do

foreach Task t in EE(s) do
σ := prefix (s,EL)
σ := σ · t // Concatenate

addTrace (σ, M) // Register σ as an MDT
return M

Algorithm 2: ComputeMDT

Lemma 1. Algorithm 2 computes the Minimal Disconformant Traces.



Proof: Let M the set of traces computed by the algorithm ComputeMDT and
MDT the set of traces that satisfy Definition 8. To prove M = MDT, we will
prove M ⊆ MDT and then MDT ⊆M .

Let σ = σ′t be any trace of M . By construction σ′ is a prefix of the log.
However, given the formation of RT and EE in Algorithm 1, σ is not a prefix
of the log. Furthermore, σ′ is a feasible sequence of the model because it is a
prefix of the log, and all traces in the log are compliant with the model (since
we assume fitness value one). In addition, by construction of AT and EE , σ is a
feasible sequence by the model too. Therefore, σ ∈ MDT.

Now, let σ = σ′t be any trace of MDT. σ′ is a prefix of the log. According
to Definition 4, it must be defined a log state s after the sequence σ′. The task
t must be in the AT of s, because σ is a feasible sequence of the model. But t
must not appear in RT because σ is not a prefix of the log. By construction of
RT , t is a Escaping Edge. Therefore, σ ∈M . 2

Fig. 6. MDTs

Following with the running example, Fig. 6 shows the
MDTs for the model PN1 and log EL1 (described in Fig. 1).
The MDT traces shown are result of the unseen behavior pro-
duced by the loop of G, which even allows the possibility of
skipping G. Note that, the set of MDTs computed by Algo-
rithm 2 might be seen as a log (i.e sequence of traces). Consequently, all kind
of Process Mining techniques can be applied to it in order to get a general view
of the information. In particular, mining methods can be used to obtain a Petri
Net representing this extra behavior.

7 Extensions

Log States as Markings The first possible extension is to consider log states
just as Petri net markings, i.e., two traces reaching the same marking correspond
to the same state. With that approach we could have a more high-level vision of
the precision, e.g., the RT sets of two different states (with the same associated
marking) now will be united in only one set corresponding to the new state.
Although it could be useful in some occasion, we must be awared about all the
information we are not considering. For instance, the etcP value of (PN1, EL1 )
using this new approach would be 1, losing all track about the extra behavior
introduced by the G loop.

LEE
MO
DE
L

LO
GEE

Non-fitting models Symmetric to the Escap-
ing Edges (EE), we can define the Log Escaping
Edges(LEE), i.e., the points where the log deviates
from the model. All these points could be evaluated,
providing a metric that, in this case, would mesure
fitness instead of precision.

All these extensions might be incorporated to extend the applicability of the
approach presented in this paper.



8 Experimental Results

The technique presented in this paper, implemented as the ETConformance
plug-in within ProM 6, has been evaluated on existing public-domain bench-
marks [1]. The purpose of the experiments is:

? Justify the existence of a new metric to evaluate precision, i.e. demonstrate
the novelty of the concept when compared to previous approaches.

? Show the capacity of the technique to handle large specifications.

Table 1(a) shows a comparison of the technique presented in this paper with
the technique presented in [11], implemented in ProM 5.2 as the Conformance
Checker. The rows in the table represent benchmarks with small size (few traces).
The names are shortened, e.g., GFA5 represents GroupedFollowsA5. We report
the results of checking precision for both conformance checkers in columns un-
der a′B and etcP , respectively, for the small Petri nets obtained by the Parikh
miner [18] which derived Petri nets with fitness value one. For the case of our
checker, we additionally provide the number of minimal disconformant traces
(|MDT|). We do not report CPU times since checking precision in both ap-
proaches took less than one second for each benchmark.

From Table (a) one can see that when the model describes precisely the log,
both metrics provide the maximum value. Moreover, when the model is not a
precise description of the log, only three benchmarks provide opposite results
(GFBN2, GFl2l, GFl2lSkip). For instance, the GFl2lSkip benchmark a′B is providing
a significant lower value: this is because the model contains an optional loop
that is always traversed in the log. This variability is highly penalized by simply
observing the tasks relations. On the other hand, metric etcP will only penalize
the few situations where the escaping edges appear in the log.

Larger benchmarks for which Conformance Checker cannot handle are pro-
vided in Table 1(b). For these benchmarks, we report the results (precision value,
number of MDT and CPU time in seconds) for the models obtained by the Parikh
miner and the RBMiner [12]. These are two miner that guarantee fitness value
one. For each one of the aN benchmarks, N represents the number of tasks
in the log, while the 1 and 5 suffixes denote its size: 100 and 900 traces, re-
spectively. The t32 has 200 ( 1) and 1800 ( 5) traces. The pair of CPU times
reported denote the computation of etcP without or with the collection of MDTs
(in parenthesis). Also, we provide the results of the most permissive models, i.e.,
models with only the transitions but without arcs or places (MT ). These models
allow any behavior and thus, they have a low etcP value, as expected.

A first conclusion on Table 1 (b) is the capability of handling large bench-
marks in reasonable CPU time, even for the prototype implementation carried
out. A second conclusion is the loss of precision of the metric with respect to
the increase of abstraction in the mined models: as soon as the number of tasks
increases, the miners tend to derive models less precise to account for the com-
plex relations between different tasks. Often, these miners derive models with a
high degree of concurrency, thus accepting a potentially exponential number of
traces which might not correspond to the real number of traces in the log.



Table 1. Experimental results for small (a) and big (b) benchmarks.

(a)

Benchmark a′B etcP |MDT| Benchmark a′B etcP |MDT|
GFA6NTC 1.00 1.00 0 GFl2lOpt 1.00 0.85 7
GFA7 1.00 1.00 0 GFAL2 0.86 0.90 391
GFA8 1.00 1.00 0 GFDrivers 0.78 0.89 2
GFA12 1.00 1.00 0 GFBN3 0.71 0.88 181
GFChoice 1.00 1.00 0 GFBN2 0.59 0.96 19
GFBN1 1.00 1.00 0 GFA5 0.50 0.57 35
GFParallel5 1.00 0.99 11 GFl2l 0.47 0.75 11
GFAL1 1.00 0.88 251 GFl2lSkip 0.30 0.74 10

(b)

MT Parikh RBMiner

Benchmark |TS| etcP |P | |T | etcP |MDT| CPU |P | |T | etcP |MDT| CPU

a22f0n00 1 1309 0.06 19 22 0.63 1490 0(0) 19 22 0.63 1490 0(0)
a22f0n00 5 9867 0.07 19 22 0.73 9654 0(3) 19 22 0.73 9654 0(4)
a32f0n00 1 2011 0.04 31 32 0.52 2945 0(0) 32 32 0.52 2944 0(1)
a32f0n00 5 16921 0.05 31 32 0.59 22750 2(10) 31 32 0.59 22750 2(11)
a42f0n00 1 2865 0.03 44 42 0.35 7761 0(2) 52 42 0.37 7228 0(2)
a42f0n00 5 24366 0.04 44 42 0.42 60042 5(28) 46 42 0.42 60040 6(29)
t32f0n00 1 7717 0.03 30 33 0.37 15064 1(15) 31 33 0.37 15062 1(12)
t32f0n00 5 64829 0.04 30 33 0.39 125429 9(154) 30 33 0.39 125429 8(160)

Finally, three charts are provided: the relation between the log size with
respect to the CPU time, the etcP value and the number of MDTs are shown
in Fig. 7. For these charts, we selected different log sizes for different types of
benchmarks (a22f0, a22f5, a32f0,a32f5 for the two bottom charts, a42f0, t32f5
and t32f9 for the top chart). For the two bottom charts, we used the Petri nets
derived by the Parikh miner to perform the conformance analysis on each log,
whereas we use a single Petri net for the top chart to evaluate the CPU time
(without collecting MDTs) on different logs, illustrating the linear dependance of
our technique on the log size. The chart on top clearly shows the linear relation
between log size and CPU time for these experiments, which is expected by the
technique presented in Sect. 4. The two charts on bottom of the figure show:
(left) since for the a22/a32 benchmarks the models derived are very similar
independently of the log, the more traces are included the less escaping edges
are found. On the other hand, the inclusion of more traces contributes to the
incorporation of more MDTs, as it is shown in the right chart at the bottom.

9 Conclusion

This paper has presented a low-complexity technique that allows checking the
precision of a general Petri net with respect to a log. By only focusing on the
underlying behavior of the Petri net that is reflected in the log, the technique
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Fig. 7. CPU and etcP versus log size for some large benchmarks.

avoids the potential state explosion that might arise when dealing with large
and highly concurrent nets. The theory has been implemented as a plugin within
ProM 6 and experimental results are promising. The technique is enriched with
the detection of minimal disconformant traces that may be the starting point
for extension of the model to better represent the log.
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