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Abstract This paper presents a novel treatment of the canonical extension of a bounded lat-
tice, in the spirit of the theory of natural dualities. At the level of objects, this can be achieved
by exploiting the topological representation due to M. Ploščica, and the canonical extension
can be obtained in the same manner as can be done in the distributive case by exploiting
Priestley duality. To encompass both objects and morphisms the Ploščica representation is
replaced by a duality due to Allwein and Hartonas, recast in the style of Ploščica’s paper.
This leads to a construction of canonical extension valid for all bounded lattices, which is
shown to be functorial, with the property that the canonical extension functor decomposes
as the composite of two functors, each of which acts on morphisms by composition, in the
manner of hom-functors.
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1 Introduction

Two valuable tools have been developed to study lattice-based algebras: the theory of canon-
ical extensions and the theory of topological dualities. Although the two methodologies
have largely been developed separately, they have a symbiotic relationship. In this paper we
present a new approach to the canonical extension of a bounded lattice, based on the dual
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representation due to Ploščica [12]. This yields a construction with strong affinities with the
theory of natural dualities—one which has clear categorical merits.

We shall consider only lattices which are bounded, and include the universal bounds,
0 and 1, in the signature; we denote the variety of all such lattices by L. The subvariety
of L consisting of distributive lattices is denoted by CCD. The canonical extension of a
member L of L is a particular lattice completion Lδ of L, having two properties, known as
density and compactness; we recall the definitions below. These properties characterise this
completion uniquely, up to an isomorphism fixing the original lattice.

The existence of canonical extensions for members of L was first established by Gehrke
and Harding [7], drawing on the theory of Galois connections; specifically, Lδ arises as the
complete lattice of Galois-stable sets associated with the polarity R between the filter lattice
Filt(L) and the ideal lattice Idl(L) of L given by (F, I) ∈ R if and only if F ∩ I 6= /0. Further
insight into the relationship between L, Filt(L), Idl(L) and Lδ was supplied by Gehrke and
Priestley [9].

The original investigation by Gehrke and Jónsson [8] of canonical extensions in the dis-
tributive case built Lδ by exploiting Priestley duality. Of course, uniqueness of the canonical
extension ensures that this construction leads to the same completion as do the (specialisa-
tions of) the constructions in [7] and [9]. However the translations between the various con-
crete realisations of the canonical extension of a distributive lattice are rather indirect. More
significantly, there are obstacles to extending, in a fully satisfactory and transparent way, the
duality approach beyond the distributive case. Therefore we contend that it is worthwhile to
explore in greater detail than hitherto the interface between canonical extensions and duality
theory for lattices, and a categorical context for these.

Each of Priestley duality for CCD and Stone duality for Boolean algebras, B, is an
instance of a natural duality. Indeed, these dualities provided prototypical examples for the
general theory, as presented in the text of Clark and Davey [3]. In its basic form, the theory
of natural dualities applies to a prevariety A = ISP(M), where M is some finite algebra.
One sets up functors D: A→ XT and E: XT → A between A and a suitable category XT

of structured Boolean spaces. Here D and E are hom-functors into, respectively, M and M∼T ,
where M∼T is an alter ego for M, that is, an object in XT whose underlying set is the same as
that of M. If, for a suitable choice of M∼T , we obtain A∼= ED(A) for all A ∈A, then we say
we have a duality; this suffices to give a topological representation for the members of A.
(Optimally, one also has X∼= DE(X) for all X ∈ XT and hence a dual category equivalence
between A and XT , but such full dualities are not of relevance here.) In the case of B and
CCD, the algebra M is a two-element algebra, and M∼T is the set {0,1} equipped with the
discrete topology and, respectively, no relations and a single relation, viz. the order relation
6 with 0 < 1. The functors D and E act on morphisms by composition, and this is a key
feature of the way in which the duality operates. Moreover, by modifying the functors D
and E, one arrives at a functorial construction of the canonical extension—one which makes
overt its categorical relationship to the duality. The canonical extension construction can
then be viewed in the way shown in Fig. 1.1. In the figure, [ denotes the functor forgetting
the topology and the functor G acts in the same manner as E does, but on untopologised
rather than topologised structures. The codomain CCD+ of G can be taken to be the category
of doubly algebraic distributive lattices with complete lattice homomorphisms. In fact, more
is true: there is a hom-functor F adjoint to G such that F and G set up a dual equivalence
between CCD+ and X (see [5,6]). However the functor F is not involved in the factorisation
of δ . On the other hand, we do make use of E:

L∼= ED(L)⊆ Lδ for all L ∈ CCD.
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Fig. 1.1 Factorising the canonical extension functor on CCD

Unlike B and CCD, the variety L of bounded lattices is not finitely generated. This
prevents it from coming within the scope of the theory of natural dualities. However there
is available a long-established representation of bounded lattices due to Urquhart [14]. This
does not stem from a dual category equivalence but it does provide a concrete topological
representation of each L ∈ L. Of greater relevance to us here, though, is the recasting of
Urquhart’s work by Ploščica [12]. This was motivated by natural duality theory, and is in the
spirit of that theory. In barest outline, Ploščica’s extension of the Priestley representation is
accomplished by replacing total maps into {0,1}, qua lattice or qua partially ordered set, by
appropriate maximally-defined partial maps of the same sort. One may then conjecture that,
mutatis mutandis, the canonical extension of an arbitrary bounded lattice may be obtained in
the same manner as in Fig. 1.1 by ‘forgetting the topology’ at the level of the Ploščica first
dual. The principal result of Section 3, Theorem 3.11, confirms that this is indeed the case.
In preparation, Section 2 summarises the key notions presented in Ploščica’s paper [12],
investigates the basic properties of the corresponding concepts for the topology-free setting,
and reveals the interplay between the topologised and untopologised versions. We emphasise
that the validation of our construction of the canonical extension is independent of pre-
existing theory of canonical extensions for L: we rely solely on the characteristic density
and compactness properties, to ensure that, for L ∈ L, our candidate for Lδ contains an
isomorphic copy of L. (A detailed discussion of the role of polarities in our framework, and a
reconciliation of alternative approaches will be presented separately (Craig and Haviar, [4]).)

So, at the object level, we have a construction which mimics the duality technnique
used in the distributive case. But it is with morphisms that obstacles arise with duality the-
ory for L. We are nonetheless able to present a functorial construction, and one in which
the canonical extension functor factorises in a manner analogous to that shown in Fig. 1.1.
Some sacrifice is unavoidable to achieve this, and in our approach this is the enlargement of
the first dual space of L. Specifically, our factorisation aligns with the duality for L due to
Allwein and Hartonas [1,2] and so it is expedient to recast the Allwein and Hartonas repre-
sentation at the object level in the Ploščica style. We retain a critical feature of the natural
duality framework, viz. that the functors involved behave very like hom-functors. By saying
a functor, H say, is ‘very like’ a hom-functor, we mean that there is some fixed target, N say
(not necessarily in the codomain of H), such that H sends an object C to a specified set of
partial maps from C into N and that H acts on morphisms by composition. Thus we are able
to retain key features present in the distributive case at the cost of amending the ancillary
functors into which the functor δ splits, but without having to change the very natural way in
which these functors act (see Figure 4.1 in Section 4). The major work involved in carrying
out our programme is in verifying that the functors we require are well-defined. Once this is
done, the lifting of homomorphisms to canonical extensions goes through very cleanly. We
could have worked with the Allwein and Hartonas duality from the outset and essentially
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bypassed Ploščica’s representation. We have elected not to do this for two reasons. Firstly,
in certain applications morphisms are not important, and it is then advantageous to have a
construction which coincides in the distributive case with the usual duality-based one. Sec-
ondly, we are able to convert the Ploščica-style construction at the object level to one based
on the enlarged first dual space, and so do not need to start afresh to encompass morphisms.

We note that canonical extensions of lattices provide a platform for studying lattice-
based algebras (also known as lattice expansions). A valuable recent survey of canonical
extensions for lattice-based algebras, including a discussion of their important role in the
semantic modelling of logics, is given by Gehrke and Vosmaer [10].

2 The framework for the construction

In this section we set up the framework within which we shall construct the canonical ex-
tension of a bounded lattice L. In outline, we look at the structures, and associated maps,
obtained by deleting the topology from the dual spaces employed in Ploščica’s representa-
tion. We thereby arrive at a complete lattice which we shall later show serves as Lδ .

We begin by recalling some basic definitions concerning completions. A completion
of a (bounded) lattice L is defined to be a pair (e,C) where C is a complete lattice and
e : L ↪→ C is an embedding. An element of a completion (e,C) of a (bounded) lattice L
which is representable as a meet (join) of elements from e(L) is called a filter element (ideal
element). Filter (ideal) elements are called closed (open) elements in the older literature. The
sets of such elements will be denoted F(C) and I(C), respectively. A completion (e,C) of L is
said to be dense if every element of C is both a join of meets and a meet of joins of elements
from e(L); it is said to be compact if, for any sets A,B⊆ L with

∧
e(A)6

∨
e(B), there exist

finite subsets A′ ⊆ A and B′ ⊆ B such that
∧

e(A′)6
∨

e(B′). A canonical extension of L is
a dense and compact completion. As noted above, every bounded lattice L has a canonical
extension and any two canonical extensions of L are isomorphic via an isomorphism that
fixes the elements of L.

The central idea in Ploščica’s representation of bounded lattices [12] is the replacement
of total maps by partial maps. Let L ∈ L. A partial map f : L1→ L2 between bounded lat-
tices is called a partial homomorphism if its domain is a 0,1-sublattice of L1 and f : dom( f )→
L2 is an L-homomorphism. A partial homomorphism is said to be maximal if there is no
partial homomorphism properly extending it; such a map is referred to as an MPH for short.
By Zorn’s Lemma, every partial homomorphism can be extended to an MPH. For bounded
lattices L and K, we denote by Lmp(L,K) the set of all MPH’s from L to K.

Let
2 := 〈{0,1};∨,∧,0,1〉 and 2∼ := 〈{0,1};6〉

denote, respectively, the two-element bounded lattice and the two-element ordered set with
0 < 1. The topological structures 2T and 2∼T are obtained by adding the discrete topology T

to 2 and 2∼, respectively.
Following Ploščica [12], for any bounded lattice L, the topological dual space of L is

defined in the following way. We equip the set Lmp(L,2) with the binary relation E defined
by the rule

( f ,g) ∈ E iff f (x)6 g(x) for every x ∈ dom( f )∩dom(g);

when needed, we also endow it with the topology T which has a subbasis of closed sets all
sets of the form

Va = { f ∈ Lmp(L,2) | f (a) = 0} and Wa = { f ∈ Lmp(L,2) | f (a) = 1},
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where a ∈ L. We let D(L) = (Lmp(L,2),E,T). The topology of D(L) is T1 and moreover,
it is compact (cf. Urquhart [14, Lemma 6]). If the lattice L is distributive, then Lmp(L,2) =
L(L,2), E coincides with the pointwise partial order of maps and D(L) is the usual dual
space of L in the Priestley duality [13].

Ploščica’s representation of L ∈ L is then obtained in the following way. One takes
the family of continuous E-preserving partial maps from D(L) into 2∼T , where E on 2∼ is
taken to be the usual order. The maximally-defined members of this set are then shown to
form a lattice isomorphic to L, the isomorphism being given by the natural evaluation map
eL : L→ ED(L). We recall further details of the construction in Section 3.

Our strategy for obtaining the canonical extension Lδ of L will be to replace D(L) above
by D[(L). Here D[ is the composition [ ◦D, where [ is the map forgetting the topology.
Thus the category we shall use to build the canonical extension will be the category G of
graphs X = (X ,E) and partial maps which preserve E. (We warn that what we are calling
a graph would usually be referred to as a digraph. We also warn that structures of the form
D[(L) will have special properties we shall need to exploit in due course.) Much of our
work leading up to Theorem 3.11 involves checking that the ancillary results on the graphs
with topology which underlie the Ploščica representation [12, Section 1] have appropriate
analogues in the topology-free setting.

Initially we let X = (X ,E) be any graph. For two graphs X = (X ,EX ) and Y = (Y,EY )
we use the notation G(X,Y) to denote the collection of total E-preserving maps from X to
Y. In Section 4 we will make use of the set of partial morphisms, Gp(X,Y). We note that,
by Zorn’s Lemma, every partial E-preserving map into 2∼ can be extended to a maximal
partial E-preserving map; by ‘maximal’ we mean here that there is no partial E-preserving
map properly extending it (in general such an extension will not be unique). We will denote
by Gmp(X, 2∼) the set of maximal partial E-preserving maps from X to 2∼. Let us use the
shorthand MPE to refer to an element of such a set.

In the distributive case we can restrict to the situation in which E is a partial order and
MPE’s are simply total maps which are order-preserving. It is immediate that the order-
preserving maps from a poset X into 2∼ always form a complete lattice under pointwise join
and meet. In the case of MPE’s on a graph the situation is more complicated.

We now work towards showing, for a general graph X = (X ,E), that Gmp(X, 2∼) does in-
deed form a complete lattice. As we shall see in Proposition 3.2 and the discussion preceding
it, the similarity between Lemma 2.1 below and the corresponding result, [12, Lemma 1.3],
concerning graphs with topology, is critical to the success of our approach to completions
built from dual spaces. The key point is that in [12, Lemma 1.3] the topological assertions
and those involving E alone can be separated.

Lemma 2.1 (cf. [12, Lemma 1.3]) Let X = (X ,E) be a graph and ϕ ∈ Gmp(X, 2∼). Then

(i) ϕ−1(0) = {x ∈ X | there is no y ∈ ϕ−1(1) with (y,x) ∈ E };
(ii) ϕ−1(1) = {x ∈ X | there is no y ∈ ϕ−1(0) with (x,y) ∈ E }.

Consider a family {ϕi ∈ Gmp(X, 2∼) | i ∈ I } for an index set I. Then we can define the
pointwise meet p

∧
ϕi and pointwise join p

∨
ϕi as follows:

p
∧
ϕi(x) =

{
1 if x ∈

⋂
i∈I ϕ

−1
i (1),

0 if x ∈
⋃

i∈I ϕ
−1
i (0)

and p
∨
ϕi(x) =

{
1 if x ∈

⋃
i∈I ϕ

−1
i (1),

0 if x ∈
⋂

i∈I ϕ
−1
i (0).

(The motivation for these definitions comes from Ploščica [12, Section 3].) To see that these
partial maps are E-preserving, let (p

∧
ϕi(x), p

∧
ϕi(y)) = (1,0). Then there exists j ∈ I with

ϕ j(y) = 0, and thus (ϕ j(x),ϕ j(y)) = (1,0) and so (x,y) /∈ E.
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We shall work with specific extensions of the maps p
∧
ϕi and p

∨
ϕi to elements of Gmp(X, 2∼).

The motivation for our choice of maximal maps comes from Lemma 2.1. Define e
∧
ϕi : X→ 2∼

and e
∨
ϕi : X→ 2∼ as follows:

e
∧
ϕi(x) =

{
1 if x ∈

⋂
i∈I ϕ

−1
i (1),

0 if there is no y ∈
⋂

i∈I ϕ
−1
i (1) with (y,x) ∈ E;

e
∨
ϕi(x) =

{
1 if there is no y ∈

⋂
i∈I ϕ

−1
i (0) with (x,y) ∈ E,

0 if x ∈
⋂

i∈I ϕ
−1
i (0).

We claim that e
∧
ϕi extends p

∧
ϕi . Let x ∈

⋃
i∈I ϕ

−1
i (0), so that x ∈ ϕ

−1
j (0) for some j ∈ I. Then

there is no y ∈
⋂

i∈I ϕ
−1
i (1) with (y,x) ∈ E, for otherwise (ϕ j(y),ϕ j(x)) = (1,0), which

contradicts the preservation of E by ϕ j. Analogously, e
∨
ϕi extends p

∨
ϕi . The next lemma shows

that e
∧
ϕi and e

∨
ϕi are maximal partial E-preserving extensions of p

∧
ϕi and p

∨
ϕi , respectively.

Lemma 2.2 Let X = (X ,E) be a graph and let {ϕi | i ∈ I } ⊆ Gmp(X, 2∼). Then the maps
e
∧
ϕi and e

∨
ϕi are elements of Gmp(X, 2∼) extending p

∧
ϕi and p

∨
ϕi , respectively.

Proof To see that e
∧
ϕi preserves E, consider (e

∧
ϕi(x1),e

∧
ϕi(x0))= (1,0). Then x1 ∈

⋂
i∈I ϕ

−1
i (1)

and there is no y ∈
⋂

i∈I ϕ
−1
i (1) with (y,x0) ∈ E. Thus (x1,x0) /∈ E as required.

We now show the maximality of e
∧
ϕi . Let ψ ∈ Gmp(X, 2∼) be a map extending e

∧
ϕi . Let

x ∈ X be such that x /∈ dom(e
∧
ϕi); thus x /∈

⋂
i∈I ϕ

−1
i (1) and there is y1 ∈

⋂
i∈I ϕ

−1
i (1) with

(y1,x) ∈ E. We want to show that x /∈ dom(ψ). Let j ∈ I be such that x /∈ ϕ
−1
j (1). Since

ϕ j ∈ Gmp(X, 2∼), by Lemma 2.1 there exists y0 ∈ ϕ
−1
j (0) with (x,y0) ∈ E. Hence ϕ j(y0) = 0

and so, by Lemma 2.1 again, there is no y ∈ ϕ
−1
j (1) with (y,y0) ∈ E. Hence there is no

y ∈
⋂

i∈I ϕ
−1
i (1) with (y,y0) ∈ E, which gives us e

∧
ϕi(y0) = 0. As ψ extends e

∧
ϕi , we obtain

ψ(y0) = 0. Moreover, as e
∧
ϕi(y1) = 1, we have ψ(y1) = 1.

Now suppose for a contradiction that x ∈ dom(ψ). Then (y1,x) ∈ E and (x,y0) ∈ E give
us 1 = ψ(y1)6 ψ(x)6 ψ(y0) = 0, which is false. ut

Theorem 2.3 Let X = (X ,E) be a graph. Then the set C(X) = Gmp(X, 2∼) ordered by the
rule

ϕ 6 ψ ⇐⇒ ϕ
−1(1)⊆ ψ

−1(1)

is a complete lattice.

Proof Obviously, the relation 6 is reflexive and transitive. The antisymmetry of 6 follows
from the fact that for any ϕ,ψ ∈ Gmp(X, 2∼), if ϕ−1(1) = ψ−1(1), then, by Lemma 2.1,
ϕ−1(0) = ψ−1(0), and hence ϕ = ψ .

To show that 6 is a (complete) lattice order, let {ϕi | i ∈ I } ⊆ Gmp(X, 2∼). We claim that∧
ϕi = e

∧
ϕi which is an element of C(X) by Lemma 2.2.

First note that (e
∧
ϕi)
−1(1) =

⋂
i∈I ϕ

−1
i (1) ⊆ ϕ

−1
i (1) for all i ∈ I. Thus in (C(X),6), we

have e
∧
ϕi 6 ϕi for all i ∈ I. Now let ψ 6 ϕi for all i ∈ I. Then ψ−1(1) ⊆ (

⋂
i∈I ϕi)

−1(1) =
(e
∧
ϕi)
−1(1), whence ψ 6 e

∧
ϕi as required. ut

Before we move on to incorporate topology we insert a lemma (of which proof is
straightforward) concerning maps between graphs. We shall need this in Section 4, when
we consider morphisms acting by composition.
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Lemma 2.4 Let X = (X ,EX ) and Y = (Y,EY ) be graphs and let α ∈ G(X,Y). Then for
ϕ ∈ Gp(Y, 2∼), the map ϕ ◦α , with the domain being determined by the set of elements for
which the composition is defined, is a partial map from X to 2∼ which preserves E.

A set equipped with a reflexive binary relation and a topology will be called a graph with
topology. We make the family GT of graphs with topology into a category in the following
way. A map ϕ : (X1,E1,τ1)→ (X2,E2,τ2) between graphs with topology is called a GT-
morphism if it preserves the binary relation and is continuous as a map from (X1,τ1) to
(X2,τ2). A partial map ϕ : (X1,E1,τ1)→ (X2,E2,τ2) is called a partial GT-morphism if its
domain is a τ1-closed subset of X1 and the restriction of ϕ to its domain is a morphism.
(We assume that dom(ϕ) inherits the binary relation and the topology from X1.) A partial
GT-morphism is called maximal, or an MPM for short, if there is no partial GT-morphism
properly extending it. For a graph with topology XT = (X ,E,T) we denote by G

mp
T (XT , 2∼T)

the set of MPM’s from XT to 2∼T .
Our candidate for the canonical extension of a bounded lattice L is the complete lattice

Gmp(D[(L), 2∼) = C(D[(L)). The embedding will be given, as in the Ploščica representation
(see Proposition 3.1 below) by the map eL, given by evaluation, onto the set of maps which
are maximal among continuous partial morphisms into 2∼T . It is therefore necessary to rec-
oncile the two versions of maximality—one with topology and the other without. This can
be done for graphs in general, rather than just those arising from dual spaces.

Proposition 2.5 Let XT = (X ,E,T) be a graph with topology and X = (X ,E) be its un-
topologised counterpart. Then G

mp
T (XT , 2∼T)⊆ Gmp(X, 2∼).

Proof We have already observed that Lemma 2.1 has a topological counterpart [12, Lemma 1.3].
Specifically, for ϕ ∈ G

mp
T (XT , 2∼T) we have

ϕ
−1(0) = {x ∈ X | there is no y ∈ ϕ

−1(1) with (y,x) ∈ E };
ϕ
−1(1) = {x ∈ X | there is no y ∈ ϕ

−1(0) with (x,y) ∈ E }.

Comparing this with the properties of Gmp(X, 2∼) in Lemma 2.1 we assert that any ϕ ∈
G

mp
T (XT , 2∼T) is maximal as a partial E-preserving map when the topology is suppressed. To

verify this, suppose for a contradiction that ψ ∈Gmp(X, 2∼) strictly extends ϕ ∈Gmp
T (XT , 2∼T).

Let x∈ dom(ψ)\dom(ϕ) and assume without loss of generality that ψ(x) = 1. By maximal-
ity of ψ , Lemma 2.1 implies that there is no y ∈ dom(ψ) such that ψ(y) = 0 and (x,y) ∈ E.
In particular, there is no y ∈ dom(ϕ) such that ϕ(y) = 0 and (x,y) ∈ E. Now, by the charac-
terisation of ϕ−1(1) for ϕ ∈ Gmp

T (XT , 2∼T), we deduce that x∈ ϕ−1(1), which is the required
contradiction. ut

The set Gmp
T (XT , 2∼T) can be considered as a subposet of the poset Gmp(X, 2∼) (recall

Proposition 2.5), with the partial order on G
mp
T (XT , 2∼T) given, as in [12], by

ϕ 6 ψ iff ϕ
−1(1)⊆ ψ

−1(1).

If in particular XT = D(L) then it was shown in [12] (see Proposition 3.1(iii) below) that
the partial order 6 on G

mp
T (XT , 2∼T) is a lattice order, and the lattice (G

mp
T (XT , 2∼T),6) is

clearly a sublattice of the lattice C(X) = (Gmp(X, 2∼),6) (see Theorem 2.3).
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3 Canonical extensions constructed via Ploščica’s representation

Our next task is to establish that, when we take a bounded lattice L and the graph X=D[(L),
then C(X) acts as a completion of L. For this we call on the Ploščica representation, and so
now need to recall further facts from [12]. The relationship between a lattice L and the set
G

mp
T (D(L), 2∼T) is summed up in the following result.

Proposition 3.1 ([12, Lemmas 1.2 and 1.5 and Theorem 1.7]) Let L ∈ L and let D(L) be
the graph with topology defining the dual space of L. For a ∈ L, let the evaluation map
ea : D(L)→ 2∼T be defined by

ea( f ) =

{
f (a) a ∈ dom( f ),
− undefined otherwise.

Then the following hold.

(i) The map ea ∈ G
mp
T (D(L), 2∼T) for each a ∈ L.

(ii) Every ϕ ∈ G
mp
T (D(L), 2∼T) is of the form ea for some a ∈ L.

(iii) The map eL : L→ G
mp
T (D(L), 2∼T) given by evaluation, a 7→ ea (a ∈ L), is an iso-

morphism of L onto the lattice G
mp
T (D(L), 2∼T), ordered by ϕ 6 ψ if and only if

ϕ−1(1)⊆ ψ−1(1).

By combining preceding results we obtain the following proposition.

Proposition 3.2 Let L ∈ L and let D(L) be the graph with topology dual to L and X =
D[(L). Then (e,C(X)) is a completion of L, where e : a 7→ ea (a ∈ L).

Proof Theorem 2.3 tells us that C(X) is a complete lattice. The result now follows directly
from Proposition 3.1 combined with the fact that every ϕ ∈Gmp

T (D(L), 2∼T), and in particular
any evaluation map ea, belongs to Gmp(D[(L), 2∼), by Proposition 2.5. ut

Proposition 3.2 identifies a completion for any bounded lattice constructed from the dual
space of the lattice. When the lattice is distributive this certainly does give the canonical
extension as introduced by Gehrke and Jónsson [8]. We would now like to prove that this
completion supplies a canonical extension for an arbitrary bounded lattice. To achieve this,
we need to examine more closely the structure of the dual space D(L) of a bounded lattice L.

In [12, Section 2], Ploščica demonstrates how his dual representation for lattices relates
to Urquhart’s topological representation [14]. At the level of the dual spaces, the passage
back and forth between Urquhart’s dual representation and Ploščica’s is set up by a bijection
between maximal disjoint filter-ideal pairs in L (as employed by Urquhart) and Lmp(L,2).
Instead of carrying a single binary relation E, Urquhart’s dual spaces are equipped with
a pair of quasi-orders, 61 and 62. Interpreted in terms of MPH’s, these two relations are
defined on the set Lmp(L,2) as follows:

f 61 g ⇐⇒ f−1(1)⊆ g−1(1) and f 62 g ⇐⇒ f−1(0)⊆ g−1(0).

These quasi-orders 61 and 62 prove to be a valuable ancillary tool for working with graphs
of the form D[(L) = (Lmp(L,2),E), and we shall use them, in an analogous manner but on
bigger domains, in Section 4.

Lemma 3.3 ([12, Theorem 2.1]) Let L ∈ L and let f ,g ∈ Lmp(L,2). Then

(i) ( f ,g) ∈ E if and only if there exists h ∈ Lmp(L,2) with f 61 h and g 62 h;
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(ii) f 62 g if and only if there is no h ∈ Lmp(L,2) with (h,g) ∈ E and (h, f ) /∈ E;
(iii) f 61 g if and only if there is no h ∈ Lmp(L,2) with (g,h) ∈ E and ( f ,h) /∈ E.

It is a consequence of (i) above that 61⊆ E and >2⊆ E. This will be used repeatedly
below.

Lemma 3.4 Let L ∈ L. Let X = D[(L) and let ϕ ∈ Gmp(X, 2∼). Then

(i) if f /∈ ϕ−1(0) there exists g ∈ ϕ−1(1) such that f 62 g;
(ii) if f /∈ ϕ−1(1) there exists g ∈ ϕ−1(0) such that f 61 g.

Proof (i) Given f /∈ ϕ−1(0), we have by Lemma 2.1 that there exists h ∈ ϕ−1(1) such
that (h, f ) ∈ E. By Lemma 3.3(i) there exists g ∈ X such that h 61 g and f 62 g, and we
now claim that g ∈ ϕ−1(1). If we suppose that g /∈ ϕ−1(1), by Lemma 2.1 there must exist
u ∈ ϕ−1(0) such that (g,u) ∈ E. Now (g,u) ∈ E if and only if there exists v ∈ X such that
g 61 v and u 62 v, again by Lemma 3.3(i). By the transitivity of 61 we have that h 61 v.
Applying this with u62 v gives (h,u)∈E. Since u∈ϕ−1(0) and h∈ϕ−1(1), this contradicts
that ϕ is E-preserving. Thus g ∈ ϕ−1(1). The proof of (ii) is similar. ut

Lemma 3.5 Let L ∈ L, X = D[(L) and ϕ ∈ Gmp(X, 2∼). For f ,g ∈ Lmp(L,2)

(i) if f 62 g and ϕ( f ) = 0, then ϕ(g) = 0;
(ii) if f 61 g and ϕ( f ) = 1, then ϕ(g) = 1.

Proof Let f 62 g and ϕ( f ) = 0 and suppose that g /∈ ϕ−1(0). Then by Lemma 3.4(i) there
exists h ∈ ϕ−1(1) such that g 62 h. By the transitivity of 62, we then see that f 62 h and so
(h, f ) ∈ E. Now ϕ(h) = 1 
 0 = ϕ( f ), contradicting the fact that ϕ is E-preserving. Thus
ϕ(g) = 0. ut

We can now show that Gmp(D[(L), 2∼), as an extension of Gmp
T (D(L), 2∼T), satisfies the

density condition. That is, every element of Gmp(D[(L), 2∼) can be written as both a join of
meets and a meet of joins of elements of Gmp

T (D(L), 2∼T).

Proposition 3.6 (Density) Let L ∈L and let X = D[(L). Then every element ϕ ∈ C(X) =
Gmp(D[(L), 2∼) can be expressed as

ϕ =
∨{∧

F
∣∣∧F 6 ϕ

}
=

∧{∨
I
∣∣ ϕ 6

∨
I
}

where F ranges over the filters of G
mp
T (D(L), 2∼T) and I over the ideals.

Proof If ψ =
∨{∧

F |
∧

F 6 ϕ
}

, it is clear that ψ 6 ϕ . In order to show that ϕ 6
ψ , we must check that ϕ−1(1) ⊆ ψ−1(1). Therefore, using the definitions of joins and
meets in Gmp(D[(L), 2∼) in Lemma 2.2, and given x ∈ ϕ−1(1), we must show that if y ∈⋂
{(
∧

F)−1(0) |
∧

F 6 ϕ }, then (x,y) /∈ E.
To do this, we claim that

⋂
{(
∧

F)−1(0) |
∧

F 6 ϕ } ⊆ ϕ−1(0). Suppose that f /∈
ϕ−1(0). By Lemma 3.4(i) there exists g ∈ ϕ−1(1) such that f 62 g. Now let Fg := {a ∈
L | g(a) = 1} be a filter of L. From Proposition 3.1(iii), we know that F ⊆ G

mp
T (D(L), 2∼T)

is a filter if and only if F = {eb | b ∈ F } where F is a filter of L. This gives us a fil-
ter G on G

mp
T (D(L), 2∼T), with G = {ea | a ∈ Fg }, and we will show that

∧
G 6 ϕ . If

h ∈ (
∧

G)−1(1), then h ∈
⋂
{e−1

a (1) | a ∈Fg }. That is, for every a ∈ L such that g(a) = 1,
h(a) = 1. So g−1(1) ⊆ h−1(1), giving us that g 61 h. Now we use Lemma 3.5(ii) to get
ϕ(h) = 1 and hence (

∧
G)−1(1)⊆ ϕ−1(1).
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We have
∧

G 6 ϕ and now show that f /∈ (
∧

G)−1(0). By definition(∧
G
)−1

(0) =
{

b ∈ Lmp(L,2)
∣∣ for all c ∈

⋂
{e−1

a (1) | a ∈Fg },(c,b) /∈ E
}

and clearly g ∈
⋂
{e−1

a (1) | a ∈ Fg }. Now f 62 g gives us that (g, f ) ∈ E and so f /∈
(
∧

G)−1(0). Clearly now f /∈
⋂
{(
∧

F)−1(0) |
∧

F 6 ϕ } and thus we have
⋂
{(
∧

F)−1(0) |∧
F 6 ϕ } ⊆ ϕ−1(0).

Now recall that x ∈ ϕ−1(1) and let y ∈
⋂
{(
∧

F)−1(0) |
∧

F 6 ϕ }. Then (x,y) ∈ E
would imply ϕ(x) = 1
 0 = ϕ(y), contradicting ϕ being E-preserving. Thus (x,y) /∈ E and
we have x ∈ ψ−1(1) as required. ut

In Proposition 3.6 we proved very directly that C(D[(L)) supplies a dense completion
of L. We now want to prove that this completion is compact. This is true, but not entirely
straightforward to prove. We shall go via a somewhat circuitous route, obtaining on the way
characterisations of filter and ideal elements in C(D[(L)) which are of independent interest.

In order to describe the filter and ideal elements of the extension C(D[(L)) we need to
look more closely at the topology on D(L)= (Lmp(L,2),E,T). We recall that T has subbasic
closed sets of the form Va = { f ∈Lmp(L,2) | f (a) = 0} and Wa = { f ∈Lmp(L,2) | f (a) =
1} for a ∈ L. We observe that from Lemma 3.5, for any ϕ ∈ Gmp(D[(L), 2∼), we have that
ϕ−1(1) is a 61-increasing set, and ϕ−1(0) is a 62-increasing set. We also note that the
intersection of a collection of closed sets of the form Wb for b ∈ L will be 61-increasing,
while the intersection of sets of the form Va with a ∈ L will be 62-increasing.

The following result parallels [12, Lemma 1.4] though our approach in proving it is
different.

Lemma 3.7 Let L ∈ L and let a ∈ L. Let X = D[(L) and let ϕ ∈ Gmp(D[(L), 2∼). Then

(i) ϕ−1(0)∩Wa = /0 implies ϕ−1(0)⊆Va;
(ii) ϕ−1(1)∩Va = /0 implies ϕ−1(1)⊆Wa.

Proof We consider (i). Let ϕ−1(0)∩Wa = /0. Suppose that f ∈ ϕ−1(0) and f /∈ Va. As
Va = e−1

a (0), by Lemma 3.4(i) there exists g ∈ ϕ−1(1) such that f 62 g. Since ϕ( f ) = 0, by
Lemma 3.5(i) we obtain ϕ(g) = 0, a contradiction. ut

Lemma 3.8 Let L ∈ L, let XT = D(L) and let ϕ be an element of Gmp(D[(L), 2∼). Then

(i) ϕ−1(1) is a T-closed subset of XT if and only if ϕ−1(1) =
⋂
{Wb | b∈K }, for some

K ⊆ L;
(ii) ϕ−1(0) is a T-closed subset of XT if and only if ϕ−1(0) =

⋂
{Va | a ∈M } for some

M ⊆ L.

Proof We consider (i) and so let X denote the underlying set of XT , that is, X = Lmp(L,2).
The sufficiency is clear as each Wb is T-closed. For the necessity, let ϕ−1(1) be a T-closed
subset of XT . Let

S := {Wb | b ∈ L, ϕ
−1(1)⊆Wb }

be the family of all sets Wb containing ϕ−1(1) and let K := {b ∈ L | Wb ∈ B}. Since
ϕ−1(1) ⊆Wb for each b ∈ K, it is obvious that ϕ−1(1) ⊆

⋂
{Wb | b ∈ K }. The reverse in-

clusion will hold too provided we can show that f /∈ ϕ−1(1) implies the existence of Wb ∈ S
such that f /∈Wb.

Let f /∈ ϕ−1(1). By Lemma 2.1(ii), there exists g ∈ ϕ−1(0) such that ( f ,g) ∈ E. As g ∈
ϕ−1(0), for every h ∈ ϕ−1(1) we necessarily have (h,g) /∈ E. By definition of the relation E
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this means that there exists bh ∈ L such that h(bh) = 1 and g(bh) = 0. We note that each
set X \Vbh is T-open and h ∈ X \Vbh . Hence ϕ−1(1) ⊆

⋃
{X \Vbh | h ∈ ϕ−1(1)}. Since

the space XT is compact and ϕ−1(1) is a T-closed subset of XT by hypothesis, there are
b1, . . . ,bn ∈ L such that g(b1) = · · ·= g(bn) = 0 and ϕ−1(1)⊆ (X \Vb1)∪·· ·∪(X \Vbn). Let
b := b1∨·· ·∨bn ∈ L. We have g(b) = 0 and ϕ−1(1)⊆X \Vb. The latter by Lemma 3.7 yields
ϕ−1(1) ⊆Wb, and thus Wb ∈ S. Since ( f ,g) ∈ E and g(b) = 0, we cannot have f (b) = 1.
Hence f /∈Wb, as required. ut

Proposition 3.9 (Filter and ideal elements) Let L ∈ L, let XT = D(L) and let ϕ ∈
Gmp(D[(L), 2∼) = C(X). Then the three conditions in (i) are equivalent and the three condi-
tions in (ii) are equivalent:

(i) (1) ϕ is a filter element of C(X);
(2) ϕ−1(1) =

⋂
{Wb | b ∈ K }, for some K ⊆ L;

(3) ϕ−1(1) is a T-closed subset of XT .
(ii) (1) ϕ is an ideal element of C(X);

(2) ϕ−1(0) =
⋂
{Va | a ∈M }, for some M ⊆ L;

(3) ϕ−1(0) is a T-closed subset of XT .

Proof The equivalences of (2) and (3) in (i) and (ii) come from Lemma 3.8. Now let (1)
in (i) hold, that is, let ϕ be a filter element of C(X). Then ϕ =

∧
ψi where {ψi | i ∈ I } ⊆

G
mp
T (D(L), 2∼T) for some index set I. From the representation theorem (see Proposition 3.1),

we know that each ψi is in fact ebi for some bi ∈ L and from the definition of a meet of
elements of Gmp(D[(L), 2∼), we have that

ϕ
−1(1) =

⋂
i∈I

ψ
−1
i (1) =

⋂
i∈I

e−1
bi
(1) =

⋂
i∈I

Wbi .

Hence (1) implies (2). Now let (2) hold. Then ϕ−1(1) =
⋂

i∈I e−1
bi
(1), and thus ϕ−1(1) can be

expressed as the meet of images of lattice elements in C(X), yielding (1). The equivalence
of (1) and (2) in (ii) can be shown analogously. ut

We are now able to prove that our completion is indeed a compact completion.

Proposition 3.10 (Compactness) Let L ∈ L and let XT = (Lmp(L,2),E,T). The lattice
C(X) = Gmp(D[(L), 2∼) is a compact completion of L.

Proof Let {ϕi | i ∈ I } and {ψ j | j ∈ J } be families of elements of Gmp
T (D(L), 2∼T), and

let
∧
{ϕi | i ∈ I } 6

∨
{ψ j | j ∈ J }. We shall find finite subsets I′ ⊆ I and J′ ⊆ J such that∧

{ϕi | i ∈ I′ }6
∨
{ψ j | j ∈ J′ }. Let ϕ :=

∧
{ϕi | i ∈ I } and ψ :=

∨
{ψ j | j ∈ J }. As in the

proof of Proposition 3.9(i) we use that each ϕi (ψ j) is ebi (ea j ) for some bi ∈ L (a j ∈ L) with

ϕ
−1(1) =

⋂
i∈I

ϕ
−1
i (1) =

⋂
i∈I

Wbi and ψ
−1(0) =

⋂
j∈J

ψ
−1
j (1) =

⋂
j∈J

Va j .

Now ϕ 6 ψ means ϕ−1(1)⊆ ψ−1(1)⊆ X \ψ−1(0), and hence⋂
i∈I

Wbi ⊆ X \
⋂
j∈J

Va j =
⋂
j∈J

(X \Va j ).

Since XT is compact and each Wbi is T-closed and each X \Va j is T-open, the topological
compactness yields the existence of finite subsets I′ := {i1, . . . , ir}⊆ I and J′ := { j1, . . . , js}⊆
J such that

Wbi1
∩·· ·∩Wbir

⊆ (X \Va j1
)∪·· ·∪ (X \Va js

).



12 A. P. K. Craig et al.

Let
b := bi1 ∧·· ·∧bir and a := a j1 ∨·· ·∨a js .

Then
Wb =Wbi1

∩·· ·∩Wbir
⊆ (X \Va j1

)∪·· ·∪ (X \Va js
) = X \Va.

Now let
ϕ
′ :=

∧
{ϕi | i ∈ I′ } and ψ

′ :=
∨
{ψ j | j ∈ J′ }.

We claim that ϕ ′ 6 ψ ′, or equivalently, ϕ ′−1(1)⊆ ψ ′−1(1). Obviously,

ϕ
′−1

(1) = ϕ
−1
i1 (1)∩·· ·∩ϕ

−1
ir (1) =Wbi1

∩·· ·∩Wbir
=Wb.

Now, by Lemma 3.7(ii), ϕ ′−1(1) = Wb ⊆ X \Va yields that Wb ⊆Wa. Hence it suffices to
show that Wa ⊆ ψ ′−1(1). Let f ∈Wa, so f (a) = 1. To show f ∈ ψ ′−1(1) we show that for
every g ∈ ψ ′−1(0), we have ( f ,g) /∈ E, and we then apply Lemma 2.1. Let g ∈ ψ ′−1(0).
Since

ψ
′−1

(0) = ψ
−1
j1 (0)∩·· ·∩ψ

−1
js (0) =Va j1

∩·· ·∩Va js
,

we have g ∈Va, so g(a) = 0. Hence ( f (a),g(a)) = (1,0), and thus ( f ,g) /∈ E as required.
We have shown that

∧
{ϕi | i ∈ I′ }6

∨
{ψ j | j ∈ J′ }. ut

The principal result of this section is now an immediate consequence of Propositions 3.6
and 3.10.

Theorem 3.11 (Canonical extension) Let L ∈ L and let X = (Lmp(L,2),E). The lattice
C(X) = Gmp(X, 2∼) ordered by

ϕ 6 ψ ⇐⇒ ϕ
−1(1)⊆ ψ

−1(1)

is the canonical extension of L.

We summarise in Fig. 3.1 what we have achieved. Here

D: L 7−→ XT := (Lmp(L,2),E,T),
[ : XT 7−→ X := (Lmp(L,2),E),
G: X 7−→ C(X) := Gmp(X, 2∼),

and L ↪→Lδ via a 7→ ea. The fact that the diagram commutes is the content of Theorem 3.11.

L
D- GT

L+

δ

?
�

G
G

[

?

Fig. 3.1 Factorisation of δ on objects in L
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4 A categorical framework for the canonical extension

The canonical extension construction on L is functorial; see [7,9]. And, as we observed in
Section 1, there is, in the distributive case, a factorisation of the canonical extension functor
in terms of functors obtained from the hom-functors setting up Priestley duality. In this
section we seek an analogous result for L, insofar as this is possible. Specifically we seek
to set up a commutative diagram as shown in Fig. 4.1, paralleling that shown for CCD in
Fig. 1.1.

L
D-�
E

YT

L+

δ

?
�

G
Y

[

?

Fig. 4.1 Seeking to factorise the functor δ on L

In Fig. 4.1 we require

– L+ to be the category of complete lattices with complete lattice homomorphisms,
– YT to be a category of graphs with topology and Y the corresponding category of graphs,

obtained by forgetting the topology;
– D and E to set up a dual adjunction such that, for all L ∈ L, we have L ∼= ED(L) with

the isomorphism given by a natural evaluation map,
– D, E and G to be contravariant functors, sending an object C into some appropriately

specified set of partial maps into, respectively, 2, 2∼T and 2∼, and
– each of D, E and G to act on morphisms by composition.

Thinking in terms of maps between objects, rather than functors, we have seen (see
Fig. 3.1) that we can obtain a diagram of this kind, based on the Ploščica representation.
But regrettably there are inherent obstacles to adding morphisms within Ploščica’s frame-
work. For u ∈ L(L,K), the morphism D[(u) : D[(K)→ D[(L) would need to be given by
D[(u)( f ) := f ◦u, for all f ∈D[(K), where the domain is determined by the set of elements
for which the composition is defined. Certainly, for f a maximal partial homomorphism,
f ◦ u is a partial homomorphism. But, as the example in Fig. 4.2 demonstrates, f ◦ u need
not be maximal.

We have already noted that Ploščica’s representation is a recasting of Urquhart’s topo-
logical representation for bounded lattices. Urquhart was able to set up a dual representation
for surjective L-morphisms but not for L-morphisms in general. Therefore our example
should come as no surprise. Moreover, it is very easy to see that f ◦ u is maximal if u is a
surjective morphism and f an MPH.

A solution to the problem of making duality for lattices functorial was proffered by Har-
tung [11], using topological contexts, but this approach does not fit our needs. Our remedy
is quite different. We shall call on the topological representation of bounded lattices due to
Allwein and Hartonas [1,2]. This is in the same style as that of Urquhart, in that it makes
use of disjoint filter-ideal pairs of L to construct a dual space for L. However such pairs
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1

a

0

L

u

b c d

K

f

1

0

2

Fig. 4.2 Failure of morphisms to act on MPH’s by composition

are not required to be maximal, as they are in Urquhart’s representation. Allwein and Har-
tonas thereby overcome the problem encountered by Urquhart and are able to set up a dual
equivalence between L and a specified category of topological structures. This is achieved
at the cost of working with a greatly enlarged dual space. A key feature of Priestley duality
is its ‘logarithmic’ property (cf. [3, Section 6.3]). For a finite lattice, moving to a dual space
which is bigger than the lattice itself constitutes a major sacrifice, and much of the appeal
and power of duality for distributive lattices is lost. This doubtless explains why the work of
Allwein and Hartonas has attracted little attention. However the Allwein–Hartonas duality,
recast, insofar as this is necessary, in terms of suitable partially defined morphisms, provides
exactly the formalism we need to achieve our aim of linking the canonical extension con-
struction to duality in a functorial way, as in Fig 4.1. We shall now outline what we have to
do to carry out our programme.

First of all, we require a Ploščica-style presentation of the Allwein–Hartonas dual spaces.
The first task is to recognise which partial homomorphisms from L into 2 correspond to dis-
joint filter-ideal pairs and appropriately to equip the resulting set of partial homomorphisms
with the structure of a graph with topology We may consider the full subcategory YT of
GT whose objects are the enlarged dual spaces (in our graph formulation, given below) of
members of L. We then let Y be the image of YT under [. Because of their provenance, we
shall refer to the objects of Y as L-graphs.

The results of Allwein and Hartonas [1,2] imply that there are contravariant functors
D: L→ YT and E: YT→L which are such that L∼= ED(L) for every L ∈L; we show that
the isomorphism is set up by evaluation maps in the same manner as in Proposition 3.1 (see
Propositions 4.3 and 4.4). There is now an obvious candidate for the canonical extension
of L: we forget the topology on D(L) and take the set of all maximal partial morphisms
into 2∼. Rather than verifying directly that we thereby obtain a dense and compact comple-
tion we instead set up an order-isomorphism between our new candidate for the canonical
extension and the one based on the Ploščica representation. Finally we check out that we
really do have a well-defined functor G making the diagram in Fig. 4.1 commute, and at
the same time use our diagram to confirm, in a transparent way, that δ does lift each L-
morphism to a complete lattice homomorphism. We now implement the strategy we have
set out.

Let L ∈ L. Then the disjoint filter-ideal pairs of L are obviously in bijective correspon-
dence with those partial homomorphisms f into 2, for which ( f−1(1), f−1(0)) is a (disjoint)
filter-ideal pair of L; let us call them special partial homomorphisms, SPH’s for short, and
denote the set of all such maps by Lsp(L,2). We note that every maximal partial homo-
morphism into 2 is special but that it is easy to find examples of partial homomorphisms
into 2 which fail to be special. The presentation by Allwein and Hartonas now permits a
translation into an equivalent formulation in terms of special partial homomorphisms (for



Canonical extensions for bounded lattices 15

the first dual) and continuous partial morphisms (for the second dual). The topology in [2]
is defined in the same way as for the representation theorem of Ploščica. That is, let sets of
the form

Va = { f ∈ Lsp(L,2) | f (a) = 0} and Wa = { f ∈ Lsp(L,2) | f (a) = 1},

form a subbasis for the closed sets of the topology T. We now define the relation E on
Lsp(L,2) by the rule

( f ,g) ∈ E iff f (x)6 g(x) for every x ∈ dom( f )∩dom(g),

that is, we take the obvious extension of E, as defined earlier on the subset Lmp(L,2). We
denote the dual space of L by D(L) = (Lsp(L,2),E,T). The dual space specified in [2],
called an enhanced L-space, takes the form of a topological space equipped with two quasi-
orders (61 and 62) and a specified subbasis of closed sets.

We shall need the following two lemmas concerning SPH’s. The first of these relates the
relation E to quasi-orders 61 and 62 (defined on Lsp(L,2) exactly as on Lmp(L,2)). For
the case of Lmp(L,2) it appears as Lemma 3.3, which we carried over from [12]; here we
show that the result extends to SPH’s in general.

Lemma 4.1 Let L ∈ L and let f ,g ∈ Lsp(L,2). Then

(i) ( f ,g) ∈ E if and only if there exists h ∈ Lsp(L,2) with f 61 h and g 62 h;
(ii) f 62 g if and only if there is no h ∈ Lsp(L,2) with (h,g) ∈ E and (h, f ) /∈ E;

(iii) f 61 g if and only if there is no h ∈ Lsp(L,2) with (g,h) ∈ E and ( f ,h) /∈ E.

Proof (i) If ( f ,g)∈E then f−1(1)∩g−1(0)= /0. Consider h∈Lsp(L,2) defined by h−1(1)=
f−1(1) and h−1(0) = g−1(0). Then f 61 h and g 62 h. Conversely, if there exists h ∈
Lsp(L,2) with f−1(1) ⊆ h−1(1) and g−1(0) ⊆ h−1(0) then clearly f−1(1)∩ g−1(0) = /0
and so ( f ,g) ∈ E.

(ii) Suppose that f 62 g and let h∈Lsp(L,2). Now suppose that (h, f ) /∈ E. This implies
that there exists a ∈ L such that h(a) = 1 and f (a) = 0. Clearly g(a) = 0 and so (h,g) /∈ E.

Next, assume that f 
2 g. This implies that there exists a ∈ L such that f (a) = 0 and
g(a) 6= 0. Consider h ∈ Lsp(L,2) defined by h−1(1) = ↑a and h−1(0) = g−1(0). Clearly
(h,g) ∈ E and (h, f ) /∈ E, completing the proof of (ii). Part (iii) is proved in the same way.

ut

We now derive an extension of Lemmas 3.5 and 3.7 from D[(L) to D[(L):

Lemma 4.2 Let L ∈ L. Let Y = (Lsp(L,2),E) and let ϕ ∈ Gmp(Y, 2∼) and f ,g ∈Y . Then

(i) if f 62 g and ϕ( f ) = 0, then ϕ(g) = 0;
(ii) if f 61 g and ϕ( f ) = 1, then ϕ(g) = 1.

Further, for a ∈ L, we have

(iii) ϕ−1(0)∩Wa = /0 implies ϕ−1(0)⊆Va;
(iv) ϕ−1(1)∩Va = /0 implies ϕ−1(1)⊆Wa.

Proof Let f 62 g and ϕ( f )= 0. Then by Lemma 2.1, for all h∈ϕ−1(1) we have (h, f ) /∈EY ,
that is, h−1(1)∩ f−1(0) 6= /0. From f 62 g we have f−1(0) ⊆ g−1(0), and then clearly for
all h ∈ ϕ−1(1) we have h−1(1)∩ g−1(0) 6= /0, whence (h,g) /∈ EY . Thus g ∈ ϕ−1(0), again
by Lemma 2.1.

Now consider part (iii). Let ϕ−1(0)∩Wa = /0 and suppose that f /∈ Va but f ∈ ϕ−1(0).
Since f (a) 6= 0, consider the special partial homomorphism g f : L→ 2 defined by g−1

f (1) =
↑a and g−1

f (0) = f−1(0). Now g f ∈Wa, but since f 62 g f we have by (i) that g f ∈ ϕ−1(0).
ut
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We are now ready to confirm that L can be recaptured from the graph with topology
D(L) in the same manner as, by Ploščica’s representation, it is recaptured from D(L). We
first reformulate the representation due to Allwein and Hartonas [1,2] in terms of graphs
with topology in the same way that Ploščica reformulated the L-spaces of Urquhart. We want
to represent the lattice L by the maximal partial continuous E-preserving maps (MPM’s)
from D(L) into 2∼T .

Let L∈L and let YT =D(L) and Y=(Lsp(L,2),E). Let a∈L and define ēa : YT→ 2∼T

for f ∈ Lsp(L,2) by

ēa( f ) =

{
f (a) if a ∈ dom( f ),
− otherwise.

Proposition 4.3 Let L ∈ L and define YT = D(L), Y = (Lsp(L,2),E), and ēa as above.
Then ēa ∈ G

mp
T (YT , 2∼T). Furthermore, if ēa is regarded as a map from Y to 2∼, then ēa ∈

Gmp(Y, 2∼).

Proof We note that ē−1
a (1) = Wa and ē−1

a (0) = Va are closed sets and since dom(ēa) =
Wa∪Va is closed, too, we have that ēa : dom(ēa)→ 2∼T is continuous. Suppose ēa( f )= 1 and
ēa(g) = 0. Then ( f ,g) /∈ E and so ēa is E-preserving. Now assume that φ ∈ G

mp
T (YT , 2∼T)

and the domain of φ : YT→ 2∼T properly extends the domain of ēa. The first case to consider
is f ∈ dom(φ)\dom(ēa) such that φ( f ) = 1. This implies that for all g ∈ ē−1

a (0), ( f ,g) /∈ E.
In particular it means that for h ∈ Lsp(L, 2∼) with h−1(1) = {1} and h−1(0) = ↓a we have
( f ,h) /∈ E. Since f−1(1) is a filter, this can only happen if f (a) = 1 and so f ∈ dom(ēa), a
contradiction. Similarly one can show that if φ( f ) = 0 then f (a) = 0, a contradiction. Thus
the domain of ēa is maximal.

The fact that ēa ∈ Gmp(Y, 2∼) follows from Proposition 2.5. ut

The proof of part (i) of the following result mimics that of [12, Lemma 1.5]. We shall
exploit the compactness of the topology T of D(L) [2, Lemma 3.17].

Proposition 4.4 Let L ∈ L and let YT = D(L).

(i) Every ϕ ∈ G
mp
T (YT , 2∼T) is of the form ēa for some a ∈ L.

(ii) L is order-isomorphic to G
mp
T (YT , 2∼T) via the map a 7→ ēa.

Proof Since ϕ is E-preserving, for any f ∈ ϕ−1(1) and g ∈ ϕ−1(0) we get that ( f ,g) /∈ E.
Thus there must exist a f g ∈ L such that f (a f g) = 1 and g(a f g) = 0. We form the set U f g =
{h ∈ Lsp(L,2) | h(a f g) 6= 0}, which is open since U f g = Lsp(L,2)\Va f g . The collection
{U f g | f ∈ ϕ−1(1)} is a cover of ϕ−1(1) since f ∈U f g for all f ∈ ϕ−1(1). Now ϕ−1(1) is
compact as it is a closed subset of the compact space D(L). Thus there is a finite set {ai |
1 6 i 6 n} ⊆ g−1(0) such that ϕ−1(1)⊆ {Lsp(L,2)\Vai | 1 6 i 6 n}. We can now set ag =∨
{ai | 1 6 i 6 n}. Since g ∈ Lsp(L,2), g−1(0) is an ideal and so g(ag) = 0. Furthermore,

we have that ϕ−1(1) ⊆ Lsp(L,2)\Vag . From Proposition 2.5 we have that ϕ ∈ Gmp(Y, 2∼)
and so using Lemma 4.2(iv) we get ϕ−1(1)⊆Wag .

Now ϕ−1(0) is covered by open sets of the form Lsp(L,2)\Wag for g ∈ ϕ−1(0).
Since ϕ−1(0) is also compact, we can take a finite set {a j | 1 6 j 6 m} so that ϕ−1(0) ⊆⋃
{Lsp(L,2)\Wa j | 1 6 j 6 m}. We can also see that ϕ−1(1)⊆

⋂
{Wa j | 1 6 j 6 m}. If we

set a =
∧
{a j | 1 6 j 6 m} then ϕ−1(1) ⊆Wa and ϕ−1(0) ⊆ Lsp(L,2)\Wa. Now Lemma

4.2(iii) gives us that ϕ−1(0)⊆Va and by the maximality of ϕ we now get ϕ−1(1) =Wa and
ϕ−1(0) =Va and so ϕ = ēa.
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From Proposition 4.3 and part (i) we have G
mp
T (YT , 2∼T) = { ēa | a ∈ L}. Now the map

a 7→ ēa is an order-isomorphism of L to G
mp
T (YT , 2∼T) since a 6 b if and only if ē−1

a (1) ⊆
ē−1

b (1). To see this, let a 6 b and f ∈ ē−1
a (1) for f ∈ Lsp(L,2). Thus f (a) = 1 and since

f−1(1) is a filter, we obtain f (b) = 1, whence f ∈ ē−1
b (1) as required. For the converse,

let a 
 b in L. Then (↑a,↓b) is a disjoint filter-ideal pair with an associated special partial
homomorphism f : L→ 2 with f−1(1) = ↑a and f−1(0) = ↓b. Then f ∈ ē−1

a (1) but f /∈
ē−1

b (1). ut

We are finally set up to build a canonical extension of a bounded lattice L, analogous
to the one in Theorem 3.11 but now based on the larger dual space D(L). We let Y =
Lsp(L,2) and shall show that the complete lattice of maximal partial E-preserving maps
from the larger graph Y = (Y,EY ) into 2∼ is order-isomorphic to the canonical extension
from Theorem 3.11. To accomplish this we recall that X = (Lmp(L,2),EX ) and we define a
map Ψ : Gmp(X, 2∼)→ Gmp(Y, 2∼) such that for ϕ ∈ Gmp(X, 2∼) and f ∈ Y ,

(Ψ(ϕ))( f ) =


1 if ∀g ∈ ϕ−1(0)

(
( f ,g) /∈ EY

)
,

0 if ∀h
(
∀g ∈ ϕ−1(0)

(
(h,g) /∈ EY ⇒ (h, f ) /∈ EY

))
,

− otherwise.
(∗)

The next proposition establishes, inter alia, that Ψ is well defined.

Proposition 4.5 Let X = (Lmp(L,2),EX ) and let the map Ψ be defined by (∗) above. For
every ϕ ∈ Gmp(X, 2∼),

(i) ϕ−1(1)⊆ (Ψ(ϕ))−1(1) and ϕ−1(0)⊆ (Ψ(ϕ))−1(0);
(ii) the map Ψ(ϕ) is a maximal E-preserving map from Y = (Lsp(L,2),EY ) into 2∼, and

consequently, Ψ(ϕ) ∈ Gmp(Y, 2∼).

Proof Consider (i). Let f ∈ Lmp(L,2) with f ∈ ϕ−1(1). By Lemma 2.1(ii), for all g ∈
ϕ−1(0), ( f ,g) /∈ EX and so ( f ,g) /∈ EY . Hence by the definition of Ψ(ϕ), we get f ∈
(Ψ(ϕ))−1(1). If f ∈ ϕ−1(0), let us consider h ∈ Lsp(L,2) such that if g ∈ ϕ−1(0), then
(h,g) /∈EY . Clearly (h, f ) /∈EY , which by the definition ofΨ(ϕ) shows that f ∈ (Ψ(ϕ))−1(0).

Now consider (ii). Assume that (Ψ(ϕ))(h) = 1 and (Ψ(ϕ))( f ) = 0 for some h, f ∈
Lsp(L,2). From the definition of (Ψ(ϕ))−1(1) we get that (h,g) /∈ EY for every g ∈ ϕ−1(0).
Using this, we obtain from the definition of (Ψ(ϕ))−1(0) that (h, f ) /∈ EY . This shows that
Ψ(ϕ) is EY -preserving.

Suppose there exists an E-preserving map φ : Y→ 2∼ with dom(Ψ(ϕ))( dom(φ). Let
f ∈ dom(φ) \ dom(Ψ(ϕ)) for f ∈ Lsp(L,2). First, let us consider the case φ( f ) = 1.
Since f /∈ (Ψ(ϕ))−1(1), there exists g ∈ ϕ−1(0) such that ( f ,g) ∈ EY . Now ϕ−1(0) ⊆
(Ψ(ϕ))−1(0) by Lemma 4.5(i), and since (Ψ(ϕ))−1(0) ⊆ φ−1(0), we get g ∈ φ−1(0).
This yields that φ is not EY -preserving, a contradiction. Now let φ( f ) = 0. Since f /∈
(Ψ(ϕ))−1(0), there exists g ∈ (Ψ(ϕ))−1(1) with (g, f ) ∈ EY . But then g ∈ φ−1(1) and so φ

is not EY -preserving, a contradiction. We have shown the maximality of Ψ(ϕ). ut

The following lemma will be deployed in the proof of Theorem 4.7.

Lemma 4.6 Let Ψ be defined as in (∗). For η ∈ Gmp(Y, 2∼), let ϕη : X→ 2∼ be the restric-
tion of η to X. Then ϕη ∈ Gmp(X, 2∼) and Ψ(ϕη) = η .
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Proof It is easy to see from the definition that ϕη is EX -preserving. Suppose there exists
φ : X→ 2∼ such that dom(ϕη)( dom(φ). Consider first the case of f ∈Lmp(L,2) with f ∈
φ−1(1)\ϕ−1

η (1). This implies that there exists g ∈ η−1(0) such that ( f ,g) ∈ EY . Consider
h ∈ Lsp(L,2) defined by h−1(1) = f−1(1) and h−1(0) = g−1(0). We can extend h to h∗ ∈
Lmp(L,2) and by Lemma 4.2 (i) we get h∗ ∈ ϕ−1

η (0). But ϕ−1
η (0)⊆ φ−1(0) and ( f ,h)∈ EX ,

contradicting φ being EX -preserving. Using the same method we can show that the existence
of f ∈ φ−1(0)\ϕ−1

η (0) implies that φ cannot be EX -preserving. Hence ϕη ∈ Lmp(L,2).
By the definition of the order of the lattice C(Y) = Gmp(Y, 2∼) (see Theorem 2.3), it

suffices to prove (Ψ(ϕη))
−1(1) = η−1(1). If f ∈ η−1(1) then for all g ∈ η−1(0), we have

( f ,g) /∈EY where f ,g∈Lsp(L,2). In particular this applies to all g∈η−1(0)∩Lmp(L, 2∼) =
ϕ−1

η (0). Hence f ∈ (Ψ(ϕη))
−1(1) and so η−1(1)⊆ (Ψ(ϕη))

−1(1).
If f /∈ η−1(1), there exists g ∈ η−1(0) such that ( f ,g) ∈ EY . Let h ∈ Lsp(L, 2∼) be de-

fined by h−1(1) = f−1(1) and h−1(0) = g−1(0). We know that we can extend h to an h∗ ∈
Lmp(L, 2∼). Now g−1(0)⊆ h−1

∗ (0) and so by Lemma 4.2(i) we have h∗ ∈η−1(0)∩Lmp(L,2)=
ϕ−1

η (0). Since f−1(1) ⊆ h−1
∗ (1), we have ( f ,h∗) ∈ EY and so clearly f /∈ (Ψ(ϕη))

−1(1).
Thus (Ψ(ϕη))

−1(1)⊆ η−1(1). ut

The next result shows that the complete lattices Gmp(X, 2∼) and Gmp(Y, 2∼) are order-
isomorphic under Ψ , and that this map fixes the underlying lattice L.

Theorem 4.7 Let L ∈ L. Let X = (Lmp(L,2),EX ), Y = (Lsp(L,2),EY ) and let Ψ be the
map defined by (∗). Then Gmp(X, 2∼) is order-isomorphic to Gmp(Y, 2∼) under the map Ψ .

Moreover, Ψ(ea) = ēa for any a ∈ L, where ea ∈ Gmp(X, 2∼) and ēa ∈ Gmp(Y, 2∼) are
the evaluation maps representing the elements of L inside its completions Gmp(X, 2∼) and
Gmp(Y, 2∼), respectively.

Proof The surjectivity of Ψ has been proved. That Ψ is an order-isomorphism can be seen
from the fact that ϕ 6 ψ if and only if ϕ−1(1)⊆ ψ−1(1) (see Theorem 2.3), and this occurs
if and only if ψ−1(0)⊆ ϕ−1(0) (by Lemma 2.1), which occurs if and only if (Ψ(ϕ))−1(1)⊆
(Ψ(ψ))−1(1) (by the definition of Ψ ).

The equality Ψ(ea) = ēa follows from Lemma 4.6 using the fact that the restriction of
ēa to X is ea. ut

Combining the preceding theorem with Theorem 3.11 we obtain the following.

Corollary 4.8 Let L ∈ L. Then, with respect to the embedding set up by a 7→ ēa, the com-
plete lattice C(Y) = Gmp(Y, 2∼) is the canonical extension of L.

We are almost ready to define the functors needed in our categorical approach. First, we
make some observations about the relationship between the categories we defined earlier: G,
of graphs and E-preserving maps, and its topological analogue GT , of graphs with topology
and continuous E-preserving maps.

From Lemma 4.1 we note that any L-graph X = (X ,E) is automatically equipped with
the quasi-orders 61 and 62, as previously defined. Thus, when considering X it is not nec-
essary explicitly to state that 61 and 62 are part of the structure of X. We note too that on
2∼ (which is not an L-graph) we have quasi-orders 61 and 62 defined as follows:

61 = E =6 and 62 = E−1 => .

We shall use 2∼ to denote both the graph ({0,1},E) and the doubly-ordered set ({0,1},61
,62).
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The quasi-order relations 61 and 62 were used by Allwein and Hartonas [2] as well as
by Urquhart [14]. Furthermore, Urquhart [14] defines maps ` : ℘(X)→℘(X) and r : ℘(X)→
℘(X), given by

`(A) = { f ∈ X | ∀g ∈ A( f 
1 g)} and r(A) = { f ∈ X | ∀g ∈ A( f 
2 g)},

for A⊆ X .
The maps ` and r are order-reversing on (℘(X),⊆) and form a Galois connection. A

subset A⊆ X is defined to be `-stable if `r(A) = A and r-stable if r`(A) = A. The following
result is a simple consequence of the theory of Galois connections.

Lemma 4.9 Let X ∈ Y and let A⊆ X. Then

(i) A is `-stable if and only if A = `(B) for some B⊆ X;
(ii) A is r-stable if and only if A = r(B) for some B⊆ X.

Now we define morphisms between L-graphs. It is obvious that we would want any
such morphism to preserve the two quasi-orders 61 and 62. We also want morphisms to
preserve the way in which these two quasi-orders interact with one another. This we achieve
by requiring that inverse images of stable subsets of the codomain be stable sets in the
domain of the morphism. We state this more precisely below.

Let X and Y be L-graphs and α : X→ Y. Then α is an L-graph morphism if

(i) α preserves 61 and 62;
(ii) if A⊆ Y is an `-stable set, then α−1(rY (A)) = rX (α

−1(A));
(iii) if A⊆ Y is an r-stable set, then α−1(lY (A)) = lX (α−1(A)).

We can now give formal definitions of our categories YT and Y: the former consists of
L-graphs with continuous L-graph morphisms; the latter is obtained by applying [ to YT .
Lemma 4.10 serves to tell us that category Y (respectively YT) is a full subcategory of G
(respectively GT).

Lemma 4.10 Let X = (X ,EY ) and Y = (Y,EY ) be objects in Y and consider the map
α : X→ Y. If α is an L-graph morphism, then α is E-preserving.

Proof Let f ,g ∈ X and suppose that ( f ,g) ∈ EX . Then by Lemma 4.1(i) there exists h ∈ X
such that f 61 h and g 62 h. Since α is 61-preserving, we have that α( f ) 61 α(h), and
since α is 62-preserving, we have α(g) 62 α(h). Thus there exists y = α(h) ∈ Y with the
required properties, and so (α( f ),α(g)) ∈ EY . ut

Not for the first time we are faced with the need to reconcile two notions which might
possibly not coincide. We shall now prove that MPE’s from L-graphs into 2∼ are exactly the
maximal partial L-graph morphisms into 2∼.

Proposition 4.11 Let X= (X ,E) be an L-graph, and let ϕ : X→ 2∼ be a partial map. Then
the following are equivalent:

(1) ϕ is a maximal partial E-preserving map;
(2) ϕ−1(1) = `(ϕ−1(0)) and ϕ−1(0) = r(ϕ−1(1));
(3) ϕ is a maximal partial L-graph morphism.
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Proof We start by showing the equivalence of (1) and (2). If ϕ ∈ Gmp(X, 2∼) and g∈ ϕ−1(0)
then, by Lemma 2.1, for all f ∈ ϕ−1(1) we have that ( f ,g) /∈ E. Since g 62 f implies
that ( f ,g) ∈ E, we have for all f ∈ ϕ−1(1) that g 
2 f and hence g ∈ r(ϕ−1(1)). Thus
ϕ−1(0)⊆ r(ϕ−1(1)). If we suppose that g /∈ ϕ−1(0), then by Lemma 2.1 we have that there
exists f ∈ ϕ−1(1) such that ( f ,g)∈ E. Now by Lemma 4.1(i) there exists h such that f 61 h
and g 62 h and Lemma 4.2(ii) gives us that h ∈ ϕ−1(1). Thus g /∈ r(ϕ−1(1)) and hence
r(ϕ−1(1)) = ϕ−1(0). We can similarly show that `(ϕ−1(0)) = ϕ−1(1).

Now assume (2) and let A := ϕ−1(1). To show that ϕ preserves E, let f ,g be in the
domain of ϕ , and suppose ( f ,g) ∈ E but ϕ( f ) = 1 and ϕ(g) = 0. From ϕ( f ) = 1 we get
f ∈ `r(A) = `(ϕ−1(0)) and ϕ(g) = 0 gives g ∈ r(ϕ−1(1)) = r(A). Lemma 4.1(i) gives us
that there exists h such that f 61 h and g 62 h. Now f ∈ `r(A) means that for all q ∈ r(A)
we have f 
1 q and hence h /∈ r(A). This implies that there exists k ∈ A such that h 62 k.
The transitivity of 62 then implies that g /∈ r(A), a contradiction. In order to see that ϕ is
maximal, suppose that domϕ ⊆ domψ for some ψ ∈ Gmp(X, 2∼). It is clear that A⊆ ψ−1(1)
and r(A) ⊆ ψ−1(0). If f ∈ ψ−1(1) and g ∈ ψ−1(0), then ( f ,g) /∈ E and hence f 
1 g and
g
2 f . Thus any f ∈ψ−1(1) must be in `(ψ−1(0)) and similarly ψ−1(0)⊆ r(ψ−1(1)). We
then get ψ−1(1) ⊆ `(ψ−1(0)) ⊆ `r(A) = A and hence A = ψ−1(1). We also have r(A) =
ψ−1(0) and so ψ = ϕ , showing that ϕ is maximal. Hence (1) holds.

Now assume (3). Note that {0} is r-stable and {1} is `-stable in 2∼ as r({1}) = {0}
and `({0}) = {1}. From (ii) and (iii) in the definition of morphisms of L-graphs we get
ϕ−1(0) = ϕ−1(r({1})) = r(ϕ−1(1)) and ϕ−1(1) = ϕ−1(`({0})) = `(ϕ−1(0)).

Finally, assuming (2), we get that for f ,g ∈ X , if ϕ( f ) = 1 and ϕ(g) = 0, then f ∈
`(ϕ−1(0)) and g ∈ r(ϕ−1(1)). By the definition of ` and r we see that f 
1 g and g 
2 f .
Thus ϕ is 61- and 62-preserving on its domain. Since {0} and {1} are the r- and `-stable
subsets of 2∼, we have that ϕ obeys properties (ii) and (iii) required of an L-graph morphism.
We now suppose that there exists a partial L-graph morphism ψ from X to 2∼ such that
dom(ϕ)⊆ dom(ψ). Suppose there exists f ∈ dom(ψ) but f /∈ dom(ϕ), and suppose ψ( f ) =
1. Since f /∈ ϕ−1(1) = `(ϕ−1(0)), there exists g ∈ ϕ−1(0)⊆ ψ−1(0) such that f 61 g. This
implies that ψ is not 61-preserving. Similarly, if we suppose that ψ( f ) = 0 we see that ψ

will not be 62-preserving. Hence dom(ϕ) is maximal. So we have shown (3). ut

We are, at last, ready to set up the functors we require. We claim that we can define
D: L→ YT and G: Y→ L+ as follows:

D: L 7→ (Lsp(L,2),E,T) on objects:

D: u 7→ −◦u on morphisms:

and

G: Y 7→ Gmp(Y, 2∼), on objects:

G: α 7→ −◦α. on morphisms:

In the action on morphisms of D and G the domain of the image map is the set on
which the composite map is defined. In legitimising these definitions what is at stake is
well-definedness: we must ensure that the images of morphisms under D and G are again
morphisms for the categories concerned.

Proposition 4.12 Let L,K ∈ L and let u : L→ K be a lattice homomorphism. Then the
map D[(u) : D[(K)→ D[(L) is an L-graph morphism.
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Proof Let f ,g ∈ D[(K) with f 61 g and a ∈ ((D[(u))( f ))−1(1) = ( f ◦u)−1(1). This gives
us that u(a) ∈ f−1(1) and hence u(a) ∈ g−1(1). Thus a ∈ (D[(u))(g)−1(1) and so D[(u) is
61-preserving. Likewise, D[(u) is 62-preserving.

Now consider A⊆D[(L) such that A is `-stable. We want to show that (D[(u))−1(r(A))=
r((D[(u))−1(A)). Let f ∈ D[(K) such that f /∈ r((D[(u))−1(A)). This implies that there
exists g ∈ (D[(u))−1(A) such that f 62 g. We note that g ∈ (D[(u))−1(A) if and only if
g◦u ∈ A. Now since D[(u) is 62-preserving, we have that (D[(u))( f ) = f ◦u 62 g◦u and
hence f /∈ (D[(u))−1(r(A)). Thus we have (D[(u))−1(r(A))⊆ r((D[(u))−1(A)).

Now if f /∈ (D[(u))−1(r(A)) then f ◦u /∈ r(A) and so there exists h∈ A such that f ◦u62
h. Consider the map gh : K→ 2 defined for b ∈K by

gh(b) =


0 if b ∈ f−1(0),
1 if b ∈ ↑(u[h−1(1)]),
− otherwise.

We show that gh ∈ Lsp(L,2). If b ∈ ↑(u[h−1(1)]) then there exists a ∈ h−1(1) such that
u(a)6 b. Since f ◦u 62 h we have that h−1(1)∩ ( f ◦u)−1(0) = /0 and so a /∈ ( f ◦u)−1(0).
If b ∈ f−1(0) then u(a) ∈ f−1(0), a contradiction. Hence g−1

h (1)∩g−1
h (0) = /0. We need to

show that g−1
h (1) is a filter of K, so we consider b1,b2 ∈ g−1

h (1). By the definition of gh,
there must exist a1,a2 ∈ h−1(1) such that u(a1)6 b1 and u(a2)6 b2. Now since h−1(1) is a
filter of L, we have that a1∧a2 ∈ h−1(1) and since u(a1∧a2) is a lower bound for {b1,b2}
we have that u(a1∧a2)6 b1∧b2 and so b1∧b2 ∈ g−1

h (1). Hence gh ∈ Lsp(K,2).
If a ∈ h−1(1) then u(a) ∈ u[h−1(1)] and so u(a) ∈ g−1

h (1). Hence gh(u(a)) = 1 and we
have h 61 gh ◦u. Now since h ∈ A = `r(A) and using the definition of ` and the transitivity
of 61, we have that gh ◦ u ∈ `r(A) = A. Now clearly f 62 gh and since gh ∈ (D[(u))−1(A)
we have f /∈ r((D[(u))−1(A)). Thus r((D[(u))−1(A))⊆ (D[(u))−1(r(A)). ut

In order to show the well-definedness of G, we must verify that the image of a morphism
under G takes MPE’s to MPE’s. To address this question we first prove a technical lemma.

Lemma 4.13 Let X,Y ∈ Y and let α : X→ Y be such that α ∈ Y(X,Y). Further, let ϕ ∈
Gmp(Y, 2∼) and f ∈ X. Then

(i) if there exists m ∈ ϕ−1(0) such that (α( f ),m) ∈ EY then there exists gm ∈ X such
that ϕ(α(gm)) = 0 and ( f ,gm) ∈ EX ;

(ii) if there exists n ∈ ϕ−1(1) such that (n,α( f )) ∈ EY then there exists gn ∈ X such that
ϕ(α(gn)) = 1 and (gn, f ) ∈ EX .

Proof Considering (i), we have from Lemma 2.1 that α( f ) /∈ ϕ−1(1). This implies that
f /∈ α−1(ϕ−1(1)) = α−1(`(ϕ−1(0))). Now since α−1 preserves `-stable sets, we have that
f /∈ `(α−1(ϕ−1(0))). This implies that there exists gm ∈ α−1(ϕ−1(0)) such that f 61 gm.
Now clearly α(gm) ∈ ϕ−1(0) and ( f ,gm) ∈ EX . ut

Proposition 4.14 Let X,Y ∈ Y and let α : X→ Y be an L-graph morphism. Then for any
ϕ ∈ Gmp(Y, 2∼) it is the case that (G(α))(ϕ) ∈ Gmp(X, 2∼).

Proof We have from Lemma 4.10 that α is E-preserving, and hence we can apply Lemma
2.4 to conclude that (G(α))(ϕ) is a partial E-preserving map from X to 2∼. We show that its
domain is maximal.

Suppose that there exists an E-preserving map ψ extending (G(α))(ϕ) and that f /∈
dom((G(α))(ϕ)) for some f ∈ X . We want to show that f /∈ dom(ψ). Since f /∈ dom(ϕ ◦α)
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we know that (ϕ ◦α)( f ) 6= 1 and hence by Lemma 2.1 there must exist m0 ∈ ϕ−1(0) such
that (α( f ),m0) ∈ EY . Similarly, since f /∈ (ϕ ◦α)−1(0) we know that ϕ(α( f )) 6= 0 and
hence by Lemma 2.1 there must exist m1 ∈ ϕ−1(1) such that (m1,α( f )) ∈ EY .

Now from Lemma 4.13 we have gm0 ,gm1 ∈ X such that ϕ(α(gm1)) = 1 with (gm1 , f ) ∈
EX and ϕ(α(gm0)) = 0 with ( f ,gm0) ∈ EX . From this we see that gm1 ∈ ((G(α))(ϕ))−1(1)
whence ψ(gm1) = 1 and gm0 ∈ ((G(α))(ϕ))−1(0) whence ψ(gm0) = 0. If we now suppose,
for contradiction, that f ∈ dom(ψ), then from (gm1 , f ) ∈ EX we obtain 1 = ψ(gm1)6 ψ( f )
and from ( f ,gm0) ∈ EX we obtain ψ( f )6 ψ(gm0) = 0, which is impossible. ut

The next result confirms that the codomain of G really is L+, as our commuting diagram
demands. The theorem which follows shows that under δ an L-morphism lifts to an L+-
morphism. We emphasise that the proof of the first result is a completely routine definition
chase. By contrast, lattice homomorphisms were regarded by Gehrke and Harding [7] as
instances of additional operations which are join- and meet-preserving, and their liftings
treated using the machinery developed to handle extensions of maps in general.

Proposition 4.15 Let X,Y ∈ Y and α ∈ Y(X,Y). Then G(α) : Gmp(Y, 2∼)→ Gmp(X, 2∼) is
a complete lattice homomorphism. That is, G(α) ∈ L+(G(Y),G(X)).

Proof We prove that G(α) is meet-preserving. The fact that G(α) is join-preserving will
then follow by a similar argument. Let f ∈ X and consider the collection {ϕi | i ∈ I } ⊆
Gmp(Y, 2∼). Then

f ∈
(∧

i∈I
(G(α)(ϕi))

)−1
(1) ⇐⇒ f ∈

⋂
i∈I

(G(α)(ϕi))
−1(1)

⇐⇒ (∀ i ∈ I) (ϕi ◦α)( f ) = 1

⇐⇒ (∀ i ∈ I) ϕi(α( f )) = 1

⇐⇒ α( f ) ∈
⋂
i∈I

ϕ
−1
i (1)

⇐⇒
(∧

i∈I
ϕi
)
(α( f )) = 1

⇐⇒
(
(
∧

i∈I
ϕi)◦α

)
( f ) = 1

⇐⇒ f ∈
(
G(α)(

∧
i∈I

ϕi)
)−1

(1).

ut
We can now present the main result of this section.

Theorem 4.16 Let u ∈ L(L,K) be a homomorphism of bounded lattices. Then

GD[(u) : GD[(L)→ GD[(K)

given by the composition of functors G ◦[ ◦D is a complete homomorphism of the corre-
sponding canonical extensions.

Proof This follows from Propositions 4.12 and 4.15. ut

In conclusion, we sum up what we have achieved.

Theorem 4.17 Let the categories L, L+, YT and Y be as above and construct D and G as
indicated. Then
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(i) D: L→ YT and G: Y→ L+ are well-defined functors;
(ii) the functor D has a right adjoint E such that the unit of the adjunction is given by

evaluation maps which are isomorphisms;
(iii) with the categories and functors as defined above, the diagram in Fig. 4.1 commutes,

so that the canonical extension functor on L factorises as the composition G◦[ ◦D.
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