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Abstract. We consider a quasistatic contact problem for an electro-viscoelastic body. The
contact is frictional and bilateral with a moving rigid foundation which results in the wear of
the contacting surface. The damage of the material caused by elastic deformation is taken
into account, its evolution is described by an inclusion of parabolic type. We present a
weak formulation for the model and establish existence and uniqueness results. The proofs
are based on classical results for elliptic variational inequalities, parabolic inequalities and
fixed point arguments.
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1. Introduction

The piezoelectric effect is characterized by the coupling between the mechanical

and electrical behavior of the materials. Indeed, the appearance of electric charges

on some crystals submitted to the action of body forces and surface tractions was

observed and their dependence on the deformation process was underlined. Con-

versely, it was proved experimentally that the action of electric field on the crystals

may generate strain and stress. A deformable material which exhibits such a be-

havior is called a piezoelectric material. Piezoelectric materials are used extensively

as switches and actuators in many engineering systems, in radioelectronics, elec-

troacoustics and measuring equipment. However, there are very few mathematical

results concerning contact problems involving piezoelectric materials and therefore,

there is a need to extend the results on models for contact with deformable bodies

which include coupling between mechanical and electrical properties. General mod-

els for elastic materials with piezoelectric effects can be found in [2], [10]. A static
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frictional contact problem for electric-elastic materials was considered in [3], [12].

A slip-dependent frictional contact problem for electro-elastic materials was studied

in [16]. Contact problems with friction or adhesion for electro-viscoelastic materials

were studied recently in [5], [11], [14], [15].

The goal of this paper is to make the coupling of an electro-viscoelastic problem

with damage and a frictional contact problem with wear. We study a quasistatic

problem of frictional bilateral contact with wear. We model the material behavior

with an electro-viscoelastic constitutive law with damage and the contact is frictional

and bilateral with a moving rigid foundation. We derive a variational formulation

and prove the existence and uniqueness of the weak solution.

The paper is structured as follows. In Section 2 we present notation and some

preliminaries. The model is described in Section 3, where the variational formulation

is given. In Section 4, we present our main result stated in Theorem 4.1 and its proof

which is based on arguments for elliptic variational inequalities, parabolic inequalities

and fixed point.

2. Notation and preliminaries

In this short section, we present the notation we shall use and some preliminary

material. For more details, we refer the reader to [4], [6], [13]. We denote by Sd the

space of second order symmetric tensors on Rd (d = 2, 3), while “·” and | · | represent

the inner product and the Euclidean norm on Sd and R
d, respectively. Let Ω ⊂ R

d

be a bounded domain with outer Lipschitz boundary Γ and let ν denote the unit

outer normal on ∂Ω = Γ. We shall use the notation

H = L2(Ω)d = {u = (ui) : ui ∈ L2(Ω)},

H1(Ω)d = {u = (ui) : ui ∈ H1(Ω)},

H = {σ = (σij) : σij = σji ∈ L2(Ω)},

H1 = {σ ∈ H : Div σ ∈ H},

where ε : H1(Ω)d → H and Div : H1 → H are the deformation and divergence

operators, respectively, defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Div σ = (σij,j).

Here and below, the indices i and j run from 1 to d, the summation convention

over repeated indices is used and the index that follows a comma indicates a partial

derivative with respect to the corresponding component of the independent variable.
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The spacesH , H1(Ω)d,H, andH1 are real Hilbert spaces endowed with the canonical

inner products given by

(u,v)H =

∫

Ω

u · v dx ∀u,v ∈ H,

(u,v)H1(Ω)d =

∫

Ω

u · v dx+

∫

Ω

∇u · ∇v dx ∀u,v ∈ H1(Ω)d,

where

∇v = (vi,j) ∀v ∈ H1(Ω)d,

(σ, τ )H =

∫

Ω

σ · τ dx ∀σ, τ ∈ H,

(σ, τ )H1
= (σ, τ )H + (Div σ,Div τ )H ∀σ, τ ∈ H1.

The associated norms on the spaces H , H1(Ω)d, H, and H1 are denoted by | · |H ,

| · |H1(Ω)d , | · |H, and | · |H1
, respectively. Let HΓ = H1/2(Γ)d and let γ : H1(Ω)d → HΓ

be the trace map. For every element v ∈ H1(Ω)d, we also use the notation v to denote

the trace γv of v on Γ and we denote by vν and vτ the normal and the tangential

components of v on the boundary Γ given by

(2.1) vν = v · ν, vτ = v − vνν.

Similarly, for a regular (say C1) tensor field σ : Ω → Sd we define its normal and

tangential components by

(2.2) σν = (σν) · ν, στ = σν − σνν,

and for all σ ∈ H1 the following Green’s formula holds:

(2.3) (σ, ε(v))H + (Div σ,v)H =

∫

Γ

σν · v da ∀v ∈ H1(Ω)d.

Finally, for any real Hilbert space X , we use the classical notation for the spaces

Lp(0, T ;X) and W k,p(0, T ;X), where 1 6 p 6 ∞ and k > 1. For T > 0 we denote

by C(0, T ;X) and C1(0, T ;X) the space of continuous and continuously differentiable

functions from [0, T ] to X , respectively, with the norms

|f |C(0,T ;X) = max
t∈[0,T ]

|f(t)|X ,

|f |C1(0,T ;X) = max
t∈[0,T ]

|f(t)|X + max
t∈[0,T ]

|ḟ (t)|X ,

respectively. Moreover, we use the dot above to indicate the derivative with respect

to the time variable and if X1 and X2 are real Hilbert spaces then X1 ×X2 denotes

the product Hilbert space endowed with the canonical inner product (·, ·)X1×X2
.
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3. Mechanical and variational formulations

We describe the model for the process and present its variational formulation. The

physical setting is the following. An electro-viscoelastic body occupies a bounded

domain Ω ⊂ R
d (d = 2, 3) with outer Lipschitz surface Γ. The body is submitted to

the action of body forces of density f0 and volume electric charges of density q0. It is

also submitted to mechanical and electric constraint on the boundary. We consider

a partition of Γ into three disjoint measurable parts Γ1, Γ2, and Γ3, on the one hand,

and into two measurable parts Γa and Γb, on the other hand, such that meas(Γ1) > 0,

meas(Γa) > 0 and Γ3 ⊂ Γb. Let [0, T ] be the time interval of interest. The body is

clamped on Γ1 × (0, T ), so the displacement field vanishes there. A surface traction

of density f2 acts on Γ2 × (0, T ) and a body force of density f0 acts in Ω× (0, T ). We

also assume that the electrical potential vanishes on Γa× (0, T ) and a surface electric

charge of density q2 is prescribed on Γb×(0, T ). The contact is frictional and bilateral

with a moving rigid foundation which results in the wear of the contacting surface.

We suppose that the body forces and tractions vary slowly in time, and therefore,

the accelerations in the system may be neglected. Neglecting the inertial terms in

the equation of motion leads to a quasistatic approach to the process. We denote

by u the displacement field, by σ the stress tensor field and by ε(u) the linearized

strain tensor. We use an electro-viscoelastic constitutive law with damage given by

σ = A(ε(u̇)) + G(ε(u), β) − E∗E(ϕ),

D = Eε(u) +BE(ϕ),

where A is a given nonlinear function, E(ϕ) = −∇ϕ is the electric field, E = (eijk)

represents the third order piezoelectric tensor, E∗ is its transpose and B denotes the

electric permittivity tensor. The symbol G represents the elasticity operator, where

β is an internal variable describing the damage of the material caused by elastic

deformations. The inclusion used for the evolution of the damage field is

β̇ − k△β + ∂ϕK(β) ∋ S(ε(u), β),

where K denotes the set of admissible damage functions defined by

K = {ξ ∈ H1(Ω): 0 6 ξ 6 1 a.e. in Ω},

k is a positive coefficient, ∂ϕK denotes the subdifferential of the indicator func-

tion ϕK and S is a given constitutive function which describes the sources of the

damage in the system. When β = 1 the material is undamaged, when β = 0 the

material is completely damaged, and for 0 < β < 1 there is partial damage. General

92



models of mechanical damage, which were derived from thermodynamical consider-

ations and the principle of virtual work, can be found in [7] and [8] and references

therein. The models describe the evolution of the material damage which results

from the excess tension or compression in the body as a result of applied forces and

tractions. Mathematical analysis of one-dimensional damage models can be found

in [9].

We now briefly describe the boundary conditions on the contact surface Γ3, based

on the model derived in [18], [19]. We introduce the wear function w : Γ3 × [0, T ] →

R+ which measures the wear of the surface. The wear is identified as the normal

depth of the material that is lost. Since the body is in bilateral contact with the

foundation, it follows that

(3.1) uν = −w on Γ3.

Thus the location of the contact evolves with the wear. We point out that the effect

of the wear is the recession on Γ3 and therefore, it is natural to expect that uν 6 0

on Γ3, which implies w > 0 on Γ3.

The evolution of the wear of the contacting surface is governed by a simplified

version of Archard’s law (see [18], [19]) which we now describe. The rate form of

Archard’s law is

ẇ = −k1σν |u̇τ − v∗|,

where k1 > 0 is a wear coefficient, v∗ is the tangential velocity of the foundation and

|u̇τ − v∗| represents the slip speed between the contact surface and the foundation.

We see that the rate of wear is assumed to be proportional to the contact stress

and the slip speed. For the sake of simplicity we assume in the rest of the section

that the motion of the foundation is uniform, i.e., v∗ does not vary in time. Denote

v∗ = |v∗| > 0. We assume that v∗ is large so that we can neglect in the sequel u̇τ as

compared with v∗ to obtain the following version of Archard’s law

(3.2) ẇ = −k1v
∗σν .

The use of the simplified law (3.2) for the evolution of the wear avoids some mathe-

matical difficulties in the study of the quasistatic electro-viscoelastic contact problem.

We can now eliminate the unknown function w from the problem. Let ζ = k1v
∗

and α = 1/ζ. Using (3.1) and (3.2) we have

(3.3) σν = αu̇ν .

We model the frictional contact between the electro-viscoelastic body and the foun-

dation with Coulomb’s law of dry friction. Since there is only sliding contact, it
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follows that

(3.4) |στ | = µ|σν |, στ = −λ(u̇τ − v∗), λ > 0,

where µ > 0 is the coefficient of friction. These relations set constraints on the

evolution of the tangential stress; in particular, the tangential stress is in the direction

opposite to the relative sliding velocity u̇τ − v∗.

Naturally, the wear increases in time, i.e. ẇ > 0. Hence, it follows from (3.1) and

(3.2) that u̇ν 6 0 and σν 6 0 on Γ3. Thus, the conditions (3.3) and (3.4) imply

(3.5) −σν = α|u̇ν |, |στ | = −µσν , στ = −λ(u̇τ − v∗), λ > 0.

To simplify the notation, we do not indicate explicitly the dependence of various

functions on the variables x ∈ Ω ∪ Γ and t ∈ [0, T ]. Then, the classical formulation

of the mechanical problem of a frictional bilateral contact with wear may be stated

as follows.

P r o b l e m P. Find a displacement field u : Ω × [0, T ] → R
d, a stress field σ :

Ω×[0, T ] → Sd, an electric potential field ϕ : Ω×[0, T ] → R, an electric displacement

field D : Ω × [0, T ] → R
d and a damage field β : Ω × [0, T ] → R such that

σ = A(ε(u̇)) + G(ε(u), β) + E∗∇ϕ in Ω × (0, T ),(3.6)

D = Eε(u) −B∇ϕ in Ω × (0, T ),(3.7)

β̇ − k△β + ∂ϕK(β) ∋ S(ε(u), β) in Ω × (0, T ),(3.8)

Div σ + f0 = 0 in Ω × (0, T ),(3.9)

div D = q0 in Ω × (0, T ),(3.10)

u = 0 on Γ1 × (0, T ),(3.11)

σν = f2 on Γ2 × (0, T ),(3.12)
{

σν = −α|u̇ν |, |στ | = −µσν ,

στ = −λ(u̇τ − v∗), λ > 0 on Γ3 × (0, T ),
(3.13)

∂β

∂ν
= 0 on Γ × (0, T ),(3.14)

ϕ = 0 on Γa × (0, T ),(3.15)

D · ν = q2 on Γb × (0, T ),(3.16)

u(0) = u0, β(0) = β0 in Ω.(3.17)

First, (3.6) and (3.7) represent the electro-viscoelastic constitutive law with dam-

age, the evolution of the damage field is governed by the inclusion of parabolic type
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given by relation (3.8), where S is the mechanical source of the damage growth, as-

sumed to be rather general function of the strains and damage itself, and ∂ϕK is the

subdifferential of the indicator function of the admissible damage functions set K.

Equations (3.9) and (3.10) represent the equilibrium equations for the stress and

electric-displacement fields while (3.11) and (3.12) are the displacement and traction

boundary condition, respectively, (3.13) represents the frictional bilateral contact

with wear described above. The relation (3.14) represents a homogeneous Neumann

boundary condition, where ∂β/∂ν represents the normal derivative of β, (3.15) and

(3.16) represent the electric boundary conditions, and (3.17) represents the initial

displacement field and the initial damage field. To obtain the variational formulation

of the problem (3.6)–(3.17), we introduce the closed subspace of H1(Ω)d defined by

V = {v ∈ H1(Ω)d : v = 0 on Γ1}.

Since meas(Γ1) > 0, Korn’s inequality holds and there exists a constant Ck > 0,

depending only on Ω and Γ1, such that

|ε(v)|H > Ck|v|H1(Ω)d ∀v ∈ V.

A proof of Korn’s inequality may be found in [13, p. 79]. On the space V we consider

the inner product and the associated norm given by

(3.18) (u,v)V = (ε(u), ε(v))H, |v|V = |ε(v)|H ∀u,v ∈ V.

It follows that |·|H1(Ω)d and |·|V are equivalent norms on V and therefore, (V, |·|V )

is a real Hilbert space. Moreover, by the Sobolev Trace Theorem and (3.18), there

exists a constant C0 > 0, depending only on Ω, Γ1, and Γ3, such that

(3.19) |v|L2(Γ3)d 6 C0|v|V ∀v ∈ V.

We also introduce the spaces

W = {φ ∈ H1(Ω): φ = 0 on Γa},

W = {D = (Di) : Di ∈ L2(Ω), div D ∈ L2(Ω)},

where div D = (Di,i). The spaces W and W are real Hilbert spaces with the inner

products given by

(ϕ, φ)W =

∫

Ω

∇ϕ · ∇φdx,

(D,E)W =

∫

Ω

D ·E dx+

∫

Ω

div D · divE dx.
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The associated norms will be denoted by | · |W and | · |W , respectively. Moreover,

when D ∈ W is a regular function, the following Green’s type formula holds:

(D,∇φ)H + (div D, φ)L2(Ω) =

∫

Γ

D · νφda ∀φ ∈ H1(Ω).

Notice also that, since meas(Γa) > 0, the following Friedrichs-Poincaré inequality

holds:

(3.20) |∇φ|H > CF |φ|H1(Ω) ∀φ ∈W,

where CF > 0 is a constant which depends only on Ω and Γa. In the study of the

mechanical problem (3.6)–(3.17), we assume that the viscosity function A : Ω×Sd →

Sd satisfies

(3.21)



































































(a) There exists a constant LA > 0 such that

|A(x, ε1) −A(x, ε2)| 6 LA|ε1 − ε2| ∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(b) There exists a constant mA > 0 such that

(A(x, ε1) −A(x, ε2)) · (ε1 − ε2) > mA|ε1 − ε2|
2

∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x → A(x, ε) is Lebesgue measurable on Ω

for any ε ∈ Sd.

(d) The mapping x → A(x,0) belongs to H.

The elasticity operator G : Ω × Sd × R → Sd satisfies

(3.22)











































(a) There exists a constant LG > 0 such that

|G(x, ε1, α1) − G(x, ε2, α2)| 6 LG(|ε1 − ε2| + |α1 − α2|)

∀ ε1, ε2 ∈ Sd, ∀α1, α2 ∈ R a.e. x ∈ Ω.

(b) The mapping x → G(x, ε, α) is Lebesgue measurable on Ω

for any ε ∈ Sd and α ∈ R.

(c) The mapping x → G(x,0, 0) belongs to H.

The damage source function S : Ω × Sd × R → R satisfies

(3.23)











































(a) There exists a constant LS > 0 such that

|S(x, ε1, α1) − S(x, ε2, α2)| 6 LS(|ε1 − ε2| + |α1 − α2|)

∀ ε1, ε2 ∈ Sd, ∀α1, α2 ∈ R a.e. x ∈ Ω.

(b) For any ε ∈ Sd and α ∈ R, x → S(x, ε, α)

is Lebesgue measurable on Ω.

(c) The mapping x → S(x,0, 0) belongs to L2(Ω).
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The electric permittivity operator B = (bij) : Ω × R
d → R

d satisfies

(3.24)























(a) B(x)E = (bij(x)Ej) ∀E = (Ei) ∈ R
d, a.e. x ∈ Ω.

(b) bij = bji, bij ∈ L∞(Ω).

(c) There exists a constant mB > 0 such that

BE · E > mB|E|2 ∀E = (Ei) ∈ R
d, a.e. x ∈ Ω.

The piezoelectric operator E : Ω × Sd → R
d satisfies

(3.25)

{

(a) E(x)τ = (eijk(x)τjk) ∀ τ = (τ ij) ∈ Sd, a.e. x ∈ Ω.

(b) eijk = eikj ∈ L∞(Ω).

We also suppose that the body forces and surface tractions have the regularity

f0 ∈ C(0, T ;H), f2 ∈ C(0, T ;L2(Γ2)
d),(3.26)

q0 ∈ C(0, T ;L2(Ω)), q2 ∈ C(0, T ;L2(Γb)),(3.27)

q2(t) = 0 on Γ3 ∀ t ∈ [0, T ].(3.28)

The functions α and µ have the following properties:

α ∈ L∞(Γ3), α(x) > α∗ > 0 a.e. on Γ3,(3.29)

µ ∈ L∞(Γ3), µ > 0 a.e. on Γ3.(3.30)

Note that we need to impose the assumption (3.28) for physical reasons, indeed the

foundation is assumed to be an insulator and therefore, the electric charges (which

are prescribed on Γb ⊃ Γ3) have to vanish on the potential contact surface. The

initial displacement field satisfies

(3.31) u0 ∈ V,

and the initial damage field satisfies

(3.32) β0 ∈ K.

We define the bilinear form a : H1(Ω) ×H1(Ω) → R by

(3.33) a(ξ, ϑ) = k

∫

Ω

∇ξ · ∇ϑ dx.

Next, we denote by f : [0, T ] → V the function defined by

(3.34) (f(t),v)V =

∫

Ω

f0(t) · v dx+

∫

Γ2

f2(t) · v da ∀v ∈ V, t ∈ [0, T ],
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and we denote by q : [0, T ] →W the function defined by

(3.35) (q(t), φ)W =

∫

Ω

q0(t) · φdx−

∫

Γb

q2(t) · φda ∀φ ∈W, t ∈ [0, T ].

Next, we denote by j : V × V → R the functional defined by

(3.36) j(u,v) =

∫

Γ3

α|uν |(µ|vτ − v∗| + vν) da ∀u,v ∈ V.

We note that conditions (3.26) and (3.27) imply

(3.37) f ∈ C(0, T ;V ), q ∈ C(0, T ;W ).

Using standard arguments we obtain the variational formulation of the mechanical

problem (3.6)–(3.17).

P r o b l e m PV. Find a displacement field u : [0, T ] → V , a stress field σ :

[0, T ] → H1, an electric potential field ϕ : [0, T ] → W , an electric displacement

field D : [0, T ] → H and a damage field β : [0, T ] → H1(Ω) such that

σ(t) = A(ε(u̇(t))) + G(ε(u(t)), β(t)) + E∗∇ϕ(t), t ∈ (0, T ),(3.38)

(σ(t), ε(v − u̇(t)))H + j(u̇(t),v) − j(u̇(t), u̇(t))(3.39)

> (f(t),v − u̇(t))V ∀v ∈ V, t ∈ (0, T ),

β(t) ∈ K for all t ∈ [0, T ],(3.40)

(β̇(t), ξ − β(t))L2(Ω) + a(β(t), ξ − β(t)) > (S(ε(u(t)), β(t)), ξ − β(t))L2(Ω)

∀ ξ ∈ K, a.e. t ∈ (0, T ),

D(t) = Eε(u(t)) −B∇ϕ(t), t ∈ (0, T ),(3.41)

(D(t),∇φ)H = −(q(t), φ)W ∀φ ∈ W, t ∈ (0, T ),(3.42)

u(0) = u0, β(0) = β0.(3.43)

We notice that the variational problem PV is formulated in terms of displacement

field, stress field, electrical potential field, electric displacement field and damage

field and the functions u, σ, ϕ, D, and β which satisfy (3.38)–(3.43) are called a

weak solution of the contact problem P. The existence of the unique solution of

Problem PV is stated and proved in the next section.
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4. An existence and uniqueness result

Now, we propose our existence and uniqueness result.

Theorem 4.1. Assume that (3.21)–(3.32) hold. Then there exists a constant α0

which depends only on Ω, Γ1, Γ3 and A such that if

(4.1) |α|L∞(Γ3)(|µ|L∞(Γ3) + 1) < α0,

then there exists a unique solution {u,σ, ϕ,D, β} to Problem PV. Moreover, the

solution satisfies

u ∈ C1(0, T ;V ),(4.2)

σ ∈ C(0, T ;H1),(4.3)

ϕ ∈ C(0, T ;W ),(4.4)

D ∈ C(0, T ;W),(4.5)

β ∈W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).(4.6)

The functions u, σ, ϕ, D, and β which satisfy (3.38)–(3.43) are called a weak solu-

tion of the contact problem P. We conclude that, under the assumptions (3.21)–(3.32)

and if (4.1) is satisfied, the mechanical problem (3.6)–(3.17) has a unique weak

solution satisfying (4.2)–(4.6). The proof of Theorem 4.1 is carried out in sev-

eral steps that we prove in what follows. Everywhere in this section we suppose

that the assumptions of Theorem 4.1 hold, and we denote by C a generic pos-

itive constant which depends on Ω, Γ1, and Γ3 and may change from place to

place.

R em a r k 4.1. We remark that if v∗ is large enough then α = 1/(k1v
∗) is

sufficiently small and therefore, the condition (4.1) for the unique solvability

of Problem PV is satisfied. We conclude that the mechanical problem (3.6)–

(3.17) has a unique weak solution if the tangential velocity of the foundation

is large enough. Moreover, having solved the problem (3.6)–(3.17), we can find

the wear function by integrating (3.2) and using the initial condition w(0) = 0

which means that at the initial moment the body is not subject to any prior

wear.

Let η ∈ C(0, T ;H) and g ∈ C(0, T ;V ) be given. In the first step we consider the

following variational problem.
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P r o b l e m PVηg. Find a displacement field vηg : [0, T ] → V and a stress field

σηg : [0, T ] → H such that

σηg(t) = A(ε(vηg(t))) + η(t), t ∈ [0, T ],(4.7)

(σηg(t), ε(v − vηg(t)))H + j(g(t),v) − j(g(t),vηg(t)) > (f(t),v − vηg(t))V(4.8)

∀v ∈ V, t ∈ [0, T ].

In the study of Problem PVηg we have the following result.

Lemma 4.1. PVηg has a unique weak solution such that

(4.9) vηg ∈ C(0, T ;V ), σηg ∈ C(0, T ;H1).

P r o o f. We define the operator A : V → V such that

(4.10) (Au,v)V = (A(ε(u)), ε(v))H ∀u,v ∈ V.

It follows from (4.10) and (3.21) (a) that

(4.11) |Au −Av|V 6 LA|u− v|V ∀u,v ∈ V,

which shows that A : V → V is Lipschitz continuous. Now, by (4.10) and (3.21) (b)

we find

(4.12) (Au −Av,u − v)V > mA|u− v|2V ∀u,v ∈ V,

i.e., that A : V → V is a strongly monotone operator on V . Moreover, using Riesz

Representation Theorem, we may define an element F ∈ C(0, T ;V ) by

(F(t),v)V = (f(t),v)V − (η(t), ε(v))H.

Since A is a strongly monotone and Lipschitz continuous operator on V and since

v → j(g(t),v) is a proper convex lower semicontinuous functional, it follows from

classical result on elliptic inequalities (see for example [4]) that there exists a unique

function vηg(t) ∈ V which satisfies

(Avηg(t),v − vηg(t))V + j(g(t),v) − j(g(t),vηg(t)) > (F(t),v − vηg(t))V(4.13)

∀v ∈ V.
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We use the relation (4.7), the assumption (3.21), and the properties of the deforma-

tion tensor to obtain that σηg(t) ∈ H. Since v = vηg(t) ± ψ satisfies (4.8), where

ψ ∈ D(Ω)d is arbitrary, using the definition (3.34) for f(t), we find

(4.14) Div σηg(t) + f0(t) = 0, t ∈ (0, T ).

With the regularity assumption (3.26) on f0 we see that Div σηg(t) ∈ H . Therefore,

σηg(t) ∈ H1. Let t1, t2 ∈ [0, T ] and denote η(ti) = ηi, f(ti) = fi, g(ti) = gi,

vηg(ti) = vi, σηg(ti) = σi for i = 1, 2. Using the relation (4.8), we find that

(A(ε(v1)) −A(ε(v2)), ε(v1 − v2))H(4.15)

6 (f1 − f2,v1 − v2)V + (η2 − η1, ε(v1 − v2))H

+ j(g1,v2) − j(g1,v1) + j(g2,v1) − j(g2,v2).

From the definition of the functional j given by (3.36) we have

j(g1,v2) − j(g1,v1) + j(g2,v1) − j(g2,v2)

=

∫

Γ3

(α|g1ν | − α|g2ν |)(µ|v2τ − v∗| − µ|v1τ − v∗| + v2ν − v1ν) da.

The relation (3.19) and the assumptions (3.29) and (3.30) imply

|j(g1,v2) − j(g1,v1) + j(g2,v1) − j(g2,v2)|(4.16)

6 C2
0 |α|L∞(Γ3)(|µ|L∞(Γ3) + 1)|g1 − g2|V |v1 − v2|V .

The relation (3.18), the assumption (3.21), and the inequality (4.16) combined

with (4.15) give us

mA|v1 − v2|V(4.17)

6 C2
0 |α|L∞(Γ3)(|µ|L∞(Γ3) + 1)|g1 − g2|V + |f1 − f2|V + |η1 − η2|H.

The inequality (4.17) and the regularity of the functions f , g, and η show that

vηg ∈ C(0, T ;V ).

From the assumption (3.21) and the relation (4.7) we have

(4.18) |σ1 − σ2|H 6 LA|v1 − v2|V + |η1 − η2|H,

and from (4.14) we have

(4.19) Div σ(ti) + f0(ti) = 0, i = 1, 2.

The regularity of the function η, v, f0 and the relations (4.18)–(4.19) show that

σηg ∈ C(0, T ;H1).

�
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Let g ∈ C(0, T ;V ) and let η ∈ C(0, T ;H) be given. We consider the following

operator

Λη : C(0, T ;V ) → C(0, T ;V )

defined by

(4.20) Ληg = vηg ∀g ∈ C(0, T ;V ).

Lemma 4.2. Assume that (3.21)–(3.32) hold. Then there exists a real α0 > 0

which depends only on Ω, Γ1, Γ3, and A such that if (4.1) is satisfied then the

operator Λη has a unique fixed point g
∗
η ∈ C(0, T ;V ).

P r o o f. Let g1,g2 ∈ C(0, T ;V ) and let η ∈ C(0, T ;H). We use the notation

vi = vηgi
and σi = σηgi

for i = 1, 2. Using similar arguments as those in (4.17), we

find

mA|v1(t) − v2(t)|V(4.21)

6 C2
0 |α|L∞(Γ3)(|µ|L∞(Γ3) + 1)|g1(t) − g2(t)|V ∀ t ∈ [0, T ].

From (4.20) and (4.21) we find that

|Ληg1(t) − Ληg2(t)|V(4.22)

6
C2

0

mA
|α|L∞(Γ3)(|µ|L∞(Γ3) + 1)|g1(t) − g2(t)|V ∀ t ∈ [0, T ].

Let

α0 =
mA

C2
0

,

where α0 is a positive constant which depends on Ω, Γ1, Γ3 and on the operator A. If

(4.1) is satisfied we deduce from (4.22) that the operator Λη is a contraction. From

Banach’s Fixed Point Theorem we conclude that the operator Λη has a unique fixed

point g∗
η ∈ C(0, T ;V ). �

Denote

(4.23) vη = vηg∗

η
, ση = σηg∗

η
,

and let uη : [0, T ] → V be the function defined by

(4.24) uη(t) =

∫ t

0

vη(s) ds+ u0 ∀ t ∈ [0, T ].

Using (4.9) we find that uη satisfies the regularity expressed in (4.2). In the second

step, let η ∈ C(0, T ;H); we use the displacement field uη obtained in (4.24) and

consider the following variational problem.
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P r o b l e m QVη. Find the electric potential field ϕη : [0, T ] →W such that

(B∇ϕη(t),∇φ)H − (Eε(uη(t)),∇φ)H(4.25)

= (q(t), φ)W ∀φ ∈ W, t ∈ (0, T ).

We have the following result.

Lemma 4.3. QVη has a unique solution ϕη which satisfies the regularity (4.4).

P r o o f. We define a bilinear form b(·, ·) : W ×W → R such that

(4.26) b(ϕ, φ) = (B∇ϕ,∇φ)H ∀ϕ, φ ∈ W.

We use (3.24) to show that the bilinear form b is continuous, symmetric, and coercive

on W . Moreover using the Riesz Representation Theorem we may define an element

qη : [0, T ] →W such that

(qη(t), φ)W = (q(t), φ)W + (Eε(uη(t)),∇φ)H ∀φ ∈ W, t ∈ (0, T ).

We apply the Lax-Milgram Theorem to deduce that there exists a unique element

ϕη(t) ∈ W such that

(4.27) b(ϕη(t), φ) = (qη(t), φ)W ∀φ ∈W.

We conclude that ϕη(t) is a solution of QVη. Let t1, t2 ∈ [0, T ]. It follows from (3.20),

(3.24), (3.25), (4.26), and (4.27) that

|ϕη(t1) − ϕη(t2)|W 6 C(|uη(t1) − uη(t2)|V + |q(t1) − q(t2)|W ),

and the previous inequality and the regularity of uη and q imply that ϕη ∈

C(0, T ;W ). �

In the third step, we let θ ∈ C(0, T ;L2(Ω)) be given and consider the following

variational problem for the damage field.

P r o b l e m PVθ. Find a damage field βθ : [0, T ] → H1(Ω) such that

βθ(t) ∈ K,(4.28)

(β̇θ(t), ξ − βθ(t))L2(Ω) + a(βθ(t), ξ − βθ(t)) > (θ(t), ξ − βθ(t))L2(Ω)

∀ ξ ∈ K, a.e. t ∈ (0, T ),

βθ(0) = β0.(4.29)
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To solve PVθ, we recall the following standard result for parabolic variational

inequalities (see [17, p. 47] or [1, p. 124]). Let V and H be real Hilbert spaces such

that V is dense in H and the injection map is continuous. The space H is identified

with its own dual and with a subspace of the dual V ′ of V . We write

V ⊂ H ⊂ V ′

and we say that the inclusions above define a Gelfand triple. We denote by | · |V ,

| · |H , and | · |V ′ , the norms on the spaces V , H and V ′ respectively, and we use

(·, ·)V ′×V for the duality pairing between V
′ and V .

Note that if f ∈ H then

(f, v)V ′×V = (f, v)H ∀ v ∈ H.

Theorem 4.2. Let V ⊂ H ⊂ V ′ be a Gelfand triple. Let K be a nonempty,

closed, and convex set of V . Assume that a(·, ·) : V × V → R is a continuous and

symmetric bilinear form such that for some constants ζ > 0 and c0,

a(v, v) + c0|v|
2
H > ζ|v|2V ∀ v ∈ V.

Then, for every u0 ∈ K and f ∈ L2(0, T ;H), there exists a unique function u ∈

H1(0, T ;H) ∩ L2(0, T ;V ) such that u(0) = u0, u(t) ∈ K for all t ∈ [0, T ], and for

almost all t ∈ (0, T ),

(u̇(t), v − u(t))V ′×V + a(u(t), v − u(t)) > (f(t), v − u(t))H ∀ v ∈ K.

We apply this theorem to Problem PVθ.

Lemma 4.4. Problem PVθ has a unique solution βθ such that

(4.30) βθ ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

P r o o f. The inclusion mapping of (H1(Ω), | · |H1(Ω)) into (L2(Ω), | · |L2(Ω)) is

continuous and its range is dense. We denote by (H1(Ω))′ the dual space of H1(Ω)

and, identifying the dual of L2(Ω) with itself, we can write the Gelfand triple

H1(Ω) ⊂ L2(Ω) ⊂ (H1(Ω))′.

We use the notation (·, ·)(H1(Ω))′×H1(Ω) to represent the duality pairing between

(H1(Ω))′ and H1(Ω). We have

(β, ξ)(H1(Ω))′×H1(Ω) = (β, ξ)L2(Ω) ∀β ∈ L2(Ω), ξ ∈ H1(Ω),

and we note that K is a closed convex set in H1(Ω). Then, using the definition (3.33)

of the bilinear form a, and the fact that β0 ∈ K in (3.32), it is easy to see that

Lemma 4.4 is a straightforward consequence of Theorem 4.2. �
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Finally, as a consequence of these results and using the properties of the operator G,

the operator E and the function S, for t ∈ [0, T ], we consider the element

(4.31) Λ(η, θ)(t) = (Λ1(η, θ)(t),Λ2(η, θ)(t)) ∈ H× L2(Ω),

defined by the equalities

Λ1(η, θ)(t) = G(ε(uη(t)), βθ(t)) + E∗∇ϕη(t), t ∈ [0, T ],(4.32)

Λ2(η, θ)(t) = S(ε(uη(t)), βθ(t)), t ∈ [0, T ].(4.33)

We have the following result.

Lemma 4.5. Let (4.1) be satisfied. Then for (η, θ) ∈ C(0, T ;H × L2(Ω)), the

function Λ(η, θ) : [0, T ] → H × L2(Ω) is continuous, and there is a unique element

(η∗, θ∗) ∈ C(0, T ;H× L2(Ω)) such that Λ(η∗, θ∗) = (η∗, θ∗).

P r o o f. Let (η, θ) ∈ C(0, T ;H×L2(Ω)), and t1, t2 ∈ [0, T ]. Using (3.18), (3.22),

and (3.25), we have

|Λ1(η,θ)(t1) − Λ1(η, θ)(t2)|H(4.34)

6 |G(ε(uη(t1)), βθ(t1)) − G(ε(uη(t2)), βθ(t2))|H

+ |E∗∇ϕη(t1) − E∗∇ϕη(t2)|H

6 C(|uη(t1) − uη(t2)|V + |ϕη(t1) − ϕη(t2)|W

+ |βθ(t1) − βθ(t2)|L2(Ω)).

Next, due to the regularities of uη, ϕη, and βθ expressed in (4.2), (4.4), and (4.6),

respectively, we deduce from (4.34) that Λ1(η, θ) ∈ C(0, T ;H). By similar arguments,

from (4.33) and (3.23) it follows that

|Λ2(η, θ)(t1) − Λ2(η, θ)(t2)|L2(Ω)(4.35)

6 C(|uη(t1) − uη(t2)|V + |βθ(t1) − βθ(t2)|L2(Ω)).

Therefore, Λ2(η, θ) ∈ C(0, T ;L2(Ω)) and Λ(η, θ) ∈ C(0, T ;H × L2(Ω)). Let now

(η1, θ1), (η2, θ2) ∈ C(0, T ;H × L2(Ω)). We use the notation g∗
ηi

= gi, σηigi
= σi,

uηigi
= ui, u̇ηigi

= vηigi
= vi, ϕηi

= ϕi and βθi
= βi for i = 1, 2. From the notation

used in (4.20) and (4.23), we deduce that vi = gi. Arguments similar to those used

in the proof of (4.34) and (4.35) yield

|Λ(η1, θ1)(t) − Λ(η2, θ2)(t)|
2
H×L2(Ω)(4.36)

6 C(|u1(t) − u2(t)|
2
V + |ϕ1(t) − ϕ2(t)|

2
W + |β1(t) − β2(t)|

2
L2(Ω)).
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Since

ui(t) =

∫ t

0

vi(s) ds+ u0, t ∈ [0, T ],

we have

(4.37) |u1(t) − u2(t)|
2
V 6 C

∫ t

0

|v1(s) − v2(s)|
2
V ds ∀ t ∈ [0, T ].

It follows now from PVηg for η = ηi, i = 1, 2, that

σi(t) = A(ε(vi(t))) + ηi(t) ∀ t ∈ [0, T ],(4.38)

(σi(t), ε(v − vi(t))H + j(gi(t),v) − j(gi(t),vi(t)) > (f(t),v − vi(t)V(4.39)

∀v ∈ V, ∀ t ∈ [0, T ].

Using the relations (4.39) we obtain that

(σ1(t) − σ2(t), ε(v1(t) − v2(t)))H

6 j(g1(t),v2(t)) − j(g1(t),v1(t)) + j(g2(t),v1(t)) − j(g2(t),v2(t))

∀ t ∈ [0, T ],

and similar arguments to those used in (4.16) on the functional j yield

(σ1(t) − σ2(t), ε(v1(t) − v2(t)))H

6 C2
0 |α|L∞(Γ3)(|µ|L∞(Γ3) + 1)|g1(t) − g2(t)|V |v1(t) − v2(t)|V .

Keeping in mind that vi = gi for i = 1, 2, it follows that

(σ1(t) − σ2(t), ε(v1(t) − v2(t)))H

6 C2
0 |α|L∞(Γ3)(|µ|L∞(Γ3) + 1)|v1(t) − v2(t)|

2
V

∀ t ∈ [0, T ].

We substitute (4.38) into the previous inequality and use (3.18) and (3.21) to deduce

that

(mA − C2
0 |α|L∞(Γ3)(|µ|L∞(Γ3) + 1))|v1(t) − v2(t)|V 6 |η1(t) − η2(t)|H

∀ t ∈ [0, T ].

It follows from (4.1) that

(4.40) |v1(t) − v2(t)|
2
V 6 C|η1(t) − η2(t)|

2
H.
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For the electric potential field, we use (4.25), (3.20), (3.24), and (3.25) to obtain

(4.41) |ϕ1(t) − ϕ2(t)|
2
W 6 C|u1(t) − u2(t)|

2
V .

From (4.28) we deduce that

(β̇1 − β̇2, β1 − β2)L2(Ω) + a(β1 − β2, β1 − β2)

6 (θ1 − θ2, β1 − β2)L2(Ω) a.e. t ∈ (0, T ).

Integrating the previous inequality with respect to time, using the initial conditions

β1(0) = β2(0) = β0 and the inequality a(β1 − β2, β1 − β2) > 0, we find

1

2
|β1(t) − β2(t)|

2
L2(Ω) 6

∫ t

0

(θ1(s) − θ2(s), β1(s) − β2(s))L2(Ω) ds,

which implies that

|β1(t) − β2(t)|
2
L2(Ω)

6

∫ t

0

|θ1(s) − θ2(s)|
2
L2(Ω) ds+

∫ t

0

|β1(s) − β2(s)|
2
L2(Ω) ds.

This inequality combined with Gronwall’s inequality lead to

(4.42) |β1(t) − β2(t)|
2
L2(Ω) 6 C

∫ t

0

|θ1(s) − θ2(s)|
2
L2(Ω) ds ∀ t ∈ [0, T ].

We substitute (4.41) into (4.36) and use (4.37) to obtain

|Λ(η1, θ1)(t) − Λ(η2, θ2)(t)|
2
H×L2(Ω)

6 C

(
∫ t

0

|v1(s) − v2(s)|
2
V ds+ |β1(t) − β2(t)|

2
L2(Ω)

)

.

It follows now from the previous inequality, the estimates (4.40) and (4.42) that

|Λ(η1, θ1)(t) − Λ(η2, θ2)(t)|
2
H×L2(Ω)

6 C

∫ t

0

|(η1, θ1)(s) − (η2, θ2)(s)|
2
H×L2(Ω) ds.

Reiterating this inequality m times leads to

|Λm(η1, θ1) − Λm(η2, θ2)|
2
C(0,T ;H×L2(Ω))

6
CmTm

m!
|(η1, θ1) − (η2, θ2)|

2
C(0,T ;H×L2(Ω)).

Thus, for m sufficiently large, Λm is a contraction on the Banach space C(0, T ;H×

L2(Ω)), and so Λ has a unique fixed point. �
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Now, we have all the ingredients to prove Theorem 4.1.

P r o o f of Theorem 4.1. Existence. Let (η∗, θ∗) ∈ C(0, T ;H × L2(Ω)) be the

fixed point of Λ defined by (4.31)–(4.33) and let (v,σ) be the solution of PVηg for

η = η
∗ and g = g∗

η∗ obtained in Lemma 4.1. Denote u = uη∗ (see (4.24)). Let

now ϕ = ϕη∗ and β = βθ∗ be the solutions of QVη and PVθ for η = η
∗ and θ = θ∗

obtained in Lemmas 4.3 and 4.4. The equalities Λ1(η
∗, θ∗) = η

∗ and Λ2(η
∗, θ∗) = θ∗

combined with (4.32) and (4.33) show that (3.38)–(3.42) are satisfied. Next, (3.43)

and the regularity (4.2)–(4.6) follow from Lemmas 4.1, 4.3, 4.4, and (3.42).

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of

the fixed point of the operator Λ defined by (4.31)–(4.33) and the unique solvability

of Problems PVηg, QVη, and PVθ. �
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