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Abstract. We consider a mathematical problem for quasistatic contact between a
thermo-elastic-viscoplastic body with damage and an obstacle. The contact is frictional
and bilateral with a moving rigid foundation which results in the wear of the contact-
ing surface. We employ the thermo-elastic-viscoplastic with damage constitutive law
for the material. The damage of the material caused by elastic deformations. The evo-
lution of the damage is described by an inclusion of parabolic type. The problem is
formulated as a coupled system of an elliptic variational inequality for the displace-
ment, a parabolic variational inequality for the damage and the heat equation for the
temperature. We establish a variational formulation for the model and we prove the
existence of a unique weak solution to the problem. The proof is based on a classi-
cal existence and uniqueness result on parabolic inequalities, differential equations and
fixed point arguments.
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1 Introduction

Scientific research and recent papers in mechanics are articulated around two main compo-
nents, one devoted to the laws of behavior and other devoted to boundary conditions imposed
on the body. The boundary conditions reflect the binding of the body with the outside world.

Recent researches use coupled laws of behavior between mechanical and electric effects or
between mechanical and thermal effects. For the case of coupled laws of behavior between
mechanical and electric effects, general models for electro-elastic materials can be found in
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[18, 19], the study of an electro-viscoelastic body is considered in [13], a frictional contact
problem for an electro elastic-viscopalastic body with damage is studied in [1]. For the case
of coupled laws of behavior between mechanical and thermal effects, the transmission prob-
lem in thermo-viscoplasticity is studied in [16], contact problem with adhesion for thermo-
elastic-viscoplastic is considered in [3], thermo-elastic-viscoplastic materials with damage for
displacement-traction, and Neumann and Fourier boundary conditions was studied in [15].

Situations of contact between deformable bodies are very common in the industry and
everyday life. Contact of braking pads with wheels, tires with roads, pistons with skirts or the
complex metal forming processes are just a few examples. The constitutive laws with internal
variables have been used in various publications in order to model the effect of internal vari-
ables in the behavior of real bodies like metals, rocks, polymers and so on, for which the rate
of deformation depends on the internal variables. Some of the internal state variables consid-
ered by many authors are the spatial display of dislocation, the work-hardening of materials,
the temperature and the damage field, see for example [1, 2, 11, 15–17] and references therein
for the case of hardening, temperature and other internal state variables.

Wear is one of the processes which reduce the lifetime of modern machine elements. It
represents the unwanted removal of materials from surfaces of contacting bodies occurring in
relative motion. Wear arises when a hard rough surface slides against a softer surface, digs
into it, and its asperities plough a series of grooves. When two surfaces come into contact,
rearrangement of the surface asperities takes place. When they are in relative motion, some
of the peaks will break, and therefore, the harder surface removes the softer material. This
phenomenon involves the wear of the contacting surfaces. Material loss of wearing solids,
the generation and circulation of free wear debris are the main effects of the wear process.
The loose particles form a thin layer on the body surface. Tribological experiments show that
this layer has a great influence on contact phenomena and the wear particles between sliding
surface affect the frictional behavior. Realistically, wear cannot be totally eliminated.

Generally, a mathematical theory of friction and wear should be a generalization of exper-
imental facts and it must be in agreement with the laws of thermodynamics of irreversible
processes. The first attempts of a thermodynamical description of the friction and wear pro-
cesses were provided in [12]. General models of quasi-static frictional contact with wear
between deformable bodies were derived in [22] from thermodynamic considerations.

The aim of this paper is to study the coupling of a thermo-elastic-viscoplastic problem with
damage and wear. For this, we consider a rate-type constitutive equation with two internal
variables of the form

σ(t) = A(ε(u̇(t))) + B(ε(u(t)), β (t)) +
∫ t

0
G
(

σ(s)−A(ε(u̇(s))), ε(u(s)), θ(s)
)

ds, (1.1)

in which u, σ represent, respectively, the displacement field and the stress field where the dot
above denotes the derivative with respect to the time variable, θ represents the temperature,
β is the damage field, A and B are nonlinear operators describing the purely viscous and
the elastic properties of the material, respectively, and G is a nonlinear constitutive function
which describes the visco-plastic behavior of the material. The differential inclusion used for
the evolution of the damage field is

β̇− k1∆β + ∂ϕK(β) 3 S(ε(u), β),

where ϕK(β) denotes the subdifferential of the indicator function of the set K of admissible
damage functions defined by

K = {ξ ∈ V : 0 6 ξ(x) 6 1 a.e. x ∈ Ω},
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and S is a given constitutive function which describes the sources of the damage in the system.
When β = 1, the material is undamaged, when β = 0, the material is completely damaged,
and for 0 < β < 1 there is partial damage. General models of mechanical damage, which
were derived from thermodynamical considerations and the principle of virtual work, can
be found in [22] and references therein. The models describe the evolution of the material
damage which results from the excess tension or compression in the body as a result of
applied forces and tractions. Mathematical analysis of one-dimensional damage models can
be found in [15].

Damage may be initiated and evolves in both the elastic and plastic deformation processes.
Particularly, damage in the elastic deformation state is termed elastic damage which is the case
for most brittle materials while damage in the plastic deformation state is termed plastic dam-
age which is mainly for ductile materials. In this paper we use the damage caused by elastic
deformations for mechanical and mathematical reasons. Mechanically we use elastic damage
because the brittle materials are more susceptible to the damage and wear, mathematically
it is easier to treat the case of an internal variable outside the integral compared to the case
when the internal variable inside the integral term. The differential inclusion used for the
evolution of the temperature field is

θ̇ − k0∆θ = ψ(σ, ε(u̇), θ) + q.

Dynamic and quasistatic contact problems are the topic of numerous papers, e.g. [1, 2,
13]. A model of damage coupled to wear was studied in [10]. However, the mathematical
problem modelled the quasi-static evolution of damage in thermo-viscoplastic materials has
been studied in [18], the dynamic evolution of damage in elastic-thermo-viscoplastic materials
was studied in [15].

Most papers related with wear process use laws of behavior of mechanical kind or mechan-
ical nature with electric effects. In this paper we deal the case of laws of behavior coupled
between mechanical and thermal effects. In practice the thermal effect facilitates wear which
makes this paper closer to the reality.

The paper is organized as follows. In Section 2 we introduce the notations and give some
preliminaries. In Section 3 we present the mechanical problem, list the assumptions on the
data, give the variational formulation of the problem. In Section 4 we state our main existence
and uniqueness result Theorem 4.1.

2 Notations and preliminaries

In this short section, we present the notation we shall use and some preliminary material. For
more details, we refer the reader to [8]. We denote by Sd the space of second order symmetric
tensors on Rd (d = 2, 3), while “· ” and ‖ · ‖ denotes the absolute value if it is applied to a
scalar or the Euclidean norm if it applied to a vector on Sd and Rd, respectively.

Let Ω ⊂ Rd be a bounded domain with outer Lipschitz boundary Γ and let ν denote the
unit outer normal on ∂Ω = Γ. We shall use the notation

H = L2(Ω)d =
{

u = (ui) : ui ∈ L2(Ω)
}

, H =
{

σ =
(
σij
)

: σij = σji ∈ L2(Ω)
}

,

H1(Ω)d = {u = (ui) ∈ H : ui ∈ H1(Ω)}, H1 = {σ ∈ H : Div σ ∈ H}.

Here ε : H1(Ω)d → H and Div : H1 → H are the deformation and divergence operators,
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respectively, defined by

ε(u) = (ε ij(u)), ε ij(u) =
1
2
(ui,j + uj,i), Div σ = (σij,j).

Here and below, the indices i and j run from 1 to d, the summation convention over
repeated indices is used and the index that follows a comma indicates a partial derivative
with respect to the corresponding component of the independent variable. The spaces H, H,
H1(Ω)d and H1 are real Hilbert spaces endowed with the canonical inner products given by:

(u, v)H =
∫

Ω
uivi dx, u, v ∈ H, (σ, τ)H =

∫
Ω

σijτij dx, ∀σ, τ ∈ H,

(u, v)H1(Ω)d =
∫

Ω
u.v dx +

∫
Ω
∇u.∇v dx, ∀u, v ∈H1(Ω)d,

where

∇v = (vi,j), ∀v ∈H1(Ω)d,

(σ, τ)H1 = (σ, τ)H + (Div σ, Div τ)H, ∀σ, τ ∈ H1.

The associated norms are denoted by ‖ · ‖H, ‖ · ‖H, ‖ · ‖H1 and ‖ · ‖H1 , respectively. Let
HΓ = (H1/2(Γ))d and γ : H1(Γ))d → HΓ be the trace map. For every element v ∈ H1(Ω)d, we
also use the notation v to denote the trace map γv of v on Γ, and we denote by vν and vτ the
normal and tangential components of v on Γ given by

vν = v · ν, vτ = v−vνν. (2.1)

Similarly, for a regular (say C1) tensor field σ : Ω→ Sd we define its normal and tangential
components by

σν = (σν) · ν, στ = σν− σνν, (2.2)

and for all σ ∈ H1 the following Green’s formula holds

(σ, ε(v))H + (Div σ, v)H =
∫

Γ
σν.v da, ∀v ∈ H1(Ω)d.

We recall the following standard result for parabolic variational inequalities used in
Section 4 (see [4, p. 124]).

Let V and H be real Hilbert spaces such that V is dense in H and the injection map is
continuous. The space H is identified with its own dual and with a subspace of the dual V ′

of V. We write
V ⊂ H ⊂ V ′,

and we say that the inclusions above define a Gelfand triple. We denote by ‖·‖V , ‖·‖ H and
‖·‖V′ , the norms on the spaces V, H and V ′ respectively, and we use (·, ·)V′×V for the duality
pairing between V ′ and V. Note that if f ∈ H then

( f , v)V′×V = ( f , v)H , ∀v ∈ H.

Theorem 2.1. Let V ⊂ H ⊂ V ′ be a Gelfand triple. Let K be a nonempty, closed, and convex set of
V. Assume that a(·, ·) : V × V → R is a continuous and symmetric bilinear form such that for some
constants ζ > 0 and c0,

a (v, v) = c0 ‖v‖2
H > ζ ‖v‖2

V , ∀v ∈ H.
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Then, for every u0 ∈ K and f ∈ L2 (0, T; H), there exists a unique function u ∈ H1 (0, T; H) ∩
L2 (0, T; V) such that u (0) = u0, u (t) ∈ K for all t ∈ [0, T], and for almost all t ∈ (0, T),

(u̇ (t) , v− u (t))V′×V + a (u (t) , v− u (t)) > ( f (t) , v− u (t))H , ∀v ∈ K,

Finally, for any real Hilbert space X, we use the classical notation for the spaces Lp(0, T; X)

and Wk,p(0, T; X), where 1 6 p 6 ∞ and k > 1. For T > 0 we denote by C(0, T; X) and
C1(0, T; X) the space of continuous and continuously differentiable functions from [0, T] to X,
respectively, with the norms

‖f‖C(0,T;X) = max
t∈[0,T]

‖f (t) ‖X,

‖f‖C1(0,T;X) = max
t∈[0,T]

‖f (t) ‖X + max
t∈[0,T]

‖ḟ (t) ‖X,

respectively. Moreover, we use the dot above to indicate the derivative with respect to the time
variable and if X1 and X2 are real Hilbert spaces, then X1 × X2 denotes the product Hilbert
space endowed with the canonical inner product (·, ·)X1×X2 .

The mechanical problem may be formulated as follows.

3 Mechanical and variational formulations

The physical setting is the following. A body occupies the domain Ω ⊂ Rd (d = 2, 3) with
outer Lipschitz surface Γ. The body undergoes the action of body forces of density f0 and
external heat source q. It also undergoes the mechanical and thermal constraint on the bound-
ary. We consider a partition of Γ into three disjoint parts Γ1, Γ2 and Γ3. We assume that
meas(Γ1) > 0. Let T > 0 and let [0, T] be the time interval of interest.

We admit a possible external heat source applied in Ω× (0, T), given by the function q. The
body is clamped on Γ1× (0, T) and so the displacement field vanishes there. Surface tractions
of density f2 act on Γ2 × (0, T) and a volume force of density f0 is applied in Ω × (0, T).
Finally, on the part Γ3 the body may come into frictional and bilateral contact with a moving
rigid foundation which results in the wear of the contacting surface. We suppose that the body
forces and tractions vary slowly in time, and therefore, the accelerations in the system may
be neglected. Neglecting the inertial terms in the equation of motion leads to a quasistatic
approach to the process. For the body we use a thermo-elastic-viscoplastic constitutive law
with damage given by (1.1) to model the material’s behavior.

We now briefly describe the boundary conditions on the contact surface Γ3, based on the
model derived in [22]. We introduce the wear function w : Γ3 × [0, T] → R+ which measures
the wear of the surface. The wear is identified as the normal depth of the material that is lost.
Since the body is in bilateral contact with the foundation, it follows that

uν = −w on Γ3. (3.1)

Thus the location of the contact evolves with the wear. We point out that the effect of the wear
is the recession on Γ3 and therefore, it is natural to expect that uν 6 0 on Γ3, which implies
w > 0 on Γ3.

The evolution of the wear of the contacting surface is governed by a simplified version of
Archard’s law (see [22]) which we now describe. The rate form of Archard’s law is

ẇ = −kσν‖u̇τ − v∗‖,
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where k > 0 is a wear coefficient, v∗ is the tangential velocity of the foundation and ‖u̇τ − v∗‖
represents the slip speed between the contact surface and the foundation.

We see that the rate of wear is assumed to be proportional to the contact stress and the
slip speed. For the sake of simplicity we assume in the rest of the section that the motion of
the foundation is uniform, i.e., v∗ does not vary in time. Denote v∗ = ‖v∗‖ > 0.

We assume that v∗ is large so that we can neglect in the sequel u̇τ compared with v∗ to
obtain the following version of Archard’s law

ẇ = −kv∗σν. (3.2)

The use of the simplified law (3.2) for the evolution of the wear avoids some mathematical
difficulties in the study of the quasistatic thermo-elastic-viscoplastic contact problem.

We can now eliminate the unknown function w from the problem. In this manner, the
problem decouples, and once the solution of the frictional contact problem has been obtained,
the wear of the surface can be obtained by integration of (3.2). Let ζ = kv∗ and α = 1

ζ . Using
(3.1) and (3.2) we have

σν = αu̇ν. (3.3)

We model the frictional contact between the thermo-elastic-viscoplastic body and the foun-
dation with Coulomb’s law of dry friction. Since there is only sliding contact, it

‖στ‖ = µ‖σν‖, στ = −λ(u̇τ − v∗), λ > 0, (3.4)

where µ > 0 is the coefficient of friction. These relations set constraints on the evolution of the
tangential stress; in particular, the tangential stress is in the direction opposite to the relative
sliding velocity ‖u̇τ − v∗‖.

Naturally, the wear increases in time, i.e. ẇ > 0. Hence, it follows from (3.1) and (3.2) that
u̇ν 6 0 and σν 6 0 on Γ3. Thus, the conditions (3.3) and (3.4) imply

− σν = α‖u̇ν‖, ‖στ‖ = −µσν, στ = −λ(u̇τ − v∗), λ > 0. (3.5)

To simplify the notation, we do not indicate explicitly the dependence of various functions
on the variables x ∈ Ω ∪ Γ and t ∈ [0, T]. Then, the classical formulation of the mechanical
problem of a frictional bilateral contact with wear may be stated as follows.

Problem P

Find the displacement field u : Ω× [0, T]→ Rd, the stress field σ : Ω× [0, T]→ Sd, the damage
field β : Ω× [0, T]→ R and the temperature θ : Ω× [0, T]→ R such that

σ(t) = A(ε(u̇(t))) + B(ε(u(t)), β (t))

+
∫ t

0
G
(

σ(s)−A(ε(u̇(s))), ε(u(s)), θ(s)
)

ds in Ω a.e. t ∈ (0, T),
(3.6)

Div σ + f0 = 0 in Ω× (0, T), (3.7)

θ̇ − k0∆θ = ψ(σ, ε(u̇), θ) + q in Ω× (0, T), (3.8)

β̇− k1∆β + ∂ϕK(β) 3 S(ε(u), β) in Ω× (0, T), (3.9)

u = 0 on Γ1 × (0, T), (3.10)

σν = f2 on Γ2 × (0, T), (3.11)
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
σν = −α‖u̇ν‖, ‖στ‖ = −µσν

στ = −λ (u̇τ − v∗) , λ > 0,
on Γ3 × (0, T), (3.12)

k0
∂θ

∂ν
+ Bθ = 0 on Γ× (0, T), (3.13)

∂β

∂ν
= 0 on Γ× (0, T), (3.14)

u(0) = u0, θ(0) = θ0, β(0) = β0 in Ω. (3.15)

Here, equation (3.6) is the thermo-elastic-viscoplastic constitutive law with damage intro-
duced in the first section. Equation (3.7) represents is the steady equation for the stress field.
Equation (3.8) represents the energy conservation where ψ is a nonlinear constitutive function
which represents the heat generated by the work of internal forces and q is a given volume
heat source. Inclusion (3.9) describes the evolution of damage field, governed by the source
damage function φ, where ∂K ϕ(ς) is the subdifferential of indicator function of the set K of
admissible damage functions.

Equalities (3.10) and (3.11) are the displacement-traction boundary conditions, respectively.
(3.12) describes the frictional bilateral contact with wear described above on the potential
contact surface Γ3. (3.13), (3.14) represent, respectively on Γ, a Fourier boundary condition for
the temperature and a homogeneous Neumann boundary condition for the damage field on Γ.
The functions u0, θ0 and β0 in (3.15) are the initial data.

In the study of the mechanical problem P , we consider the following assumptions.

The viscosity operator A : Ω× Sd → Sd satisfies



(a) There exists LA > 0 such that

‖A(x, ε1)−A(x, ε2)‖ 6 LA‖ε1 − ε2‖ for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(b) There exists mA > 0 such that

(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) > mA‖ε1 − ε2‖2

for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ A(x, ε) is Lebesgue measurable on Ω, for any ε ∈ Sd.

(d) The mapping x 7→ A(x, 0) belongs to H.

(3.16)

The elasticity operator B : Ω× Sd ×R→ Sd satisfies



(a) There exists LB > 0 such that

‖B(x, ε1, α1)−B(x, ε2, α2)‖ 6 LB(‖ε1 − ε2‖ + ‖α1 − α2‖)
for all ε1, ε2 ∈ Sd, for all α1, α2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x 7→ B(x, ε, α) is Lebesque measurable on Ω,

for any ε ∈ Sd and α ∈ R.

(c) The mapping x 7→ B(x, 0, 0) belongs to H.

(3.17)
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The plasticity operator G : Ω× Sd × Sd ×R→ Sd satisfies

(a) There exists a constant LG > 0 such that

‖G(x, σ1, ε1, θ1)− G(x, σ2, ε2, θ2)‖ 6 LG(‖σ1 − σ2‖+ ‖ε1 − ε2‖+ ‖θ1 − θ2‖)
∀ σ1, σ2 ∈ Sd, ∀ ε1, ε2 ∈ Sd, ∀θ1, θ2 ∈ R a.e. x ∈ Ω.

(b) The mapping x→ G(x, σ, ε, θ) is Lebesgue measurable on Ω,

for all σ, ε ∈ Sd, for all θ ∈ R.

(c) The mapping x→ G(x, 0, 0, 0) ∈ H.

(3.18)

The nonlinear constitutive function ψ : Ω× Sd × Sd ×R→ R satisfies

(a) There exists a constant Lψ > 0 such that

‖ψ(x, σ1, ε1, θ1)− ψ(x, σ2, ε2, θ2)‖ 6 Lψ(‖σ1 − σ2‖+ ‖ε1 − ε2‖+ ‖θ1 − θ2‖)
∀ σ1, σ2 ∈ Sd, ∀ ε1, ε2 ∈ Sd, ∀θ1, θ2 ∈ R a.e. x ∈ Ω.

(b) The mapping x→ ψ(x, σ, ε, θ) is Lebesgue measurable on Ω,

for all σ, ε ∈ Sd, for all θ ∈ R.

(c) The mapping x→ ψ(x, 0, 0, 0) ∈ L2(Ω).

(3.19)

The damage source function S : Ω× Sd ×R→ R satisfies

(a) There exists a constant MS > 0 such that

‖S(x, ε1, α1)− S(x, ε2, α2)‖ 6 MS(‖ε1 − ε2‖+ ‖α1 − α2‖)
for all ε1, ε2 ∈ Sd, for all α1, α2 ∈ R, a.e. x ∈ Ω.

(b) for all ε ∈ Sd, α ∈ R, x 7→ S(x, ε, α) is Lebesgue measurable on Ω.

(c) The mapping x 7→ S(x, 0, 0) belongs to L2(Ω).

(3.20)

In order to write a variational formulation of mechanical problem, we introduce the closed
subspace of H1(Ω)d defined by

V =
{

v ∈H1(Ω)d : v =0 on Γ1

}
.

Since meas(Γ1) > 0, Korn’s inequality holds and there exists a constant Ck > 0, depending
only on Ω and Γ1, such that

‖ε (v) ‖H > Ck‖v‖H1(Ω)d , ∀v ∈V. (3.21)

A proof of Korn’s inequality may be found in [20, p. 79]. On the space V we consider the
inner product and the associated norm given by

(u, v)V = (ε (u) , ε(v))H, ‖v‖V = ‖ε(v)‖H, ∀u, v ∈V. (3.22)

It follows that the norms ‖ · ‖H1(Ω)d and ‖ · ‖V are equivalent on V and, therefore, the space
(V, (·, ·)V) is a real Hilbert space. Moreover, by the Sobolev trace theorem and (3.22), there
exists a constant C0 > 0, depending only on Ω, Γ1 and Γ3, such that

‖v‖L2(Γ3)d 6 C0‖v‖V , ∀v ∈ V. (3.23)
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The body forces, surface tractions, volume heat source and the functions α and µ, satisfy

f0 ∈ L2(0, T; H), f2 ∈ L2(0, T; L2(Γ2)
d), q ∈ L2(0, T; L2(Ω)), (3.24)

u0 ∈ V, θ0 ∈ V, β0 ∈ K, (3.25)

α ∈ L∞(Γ3) α (x) > α∗ > 0, a.e. on Γ3, (3.26)

µ ∈ L∞(Γ3), µ (x) > 0, a.e. on Γ3, (3.27)

B > 0, ki > 0, i = 0, 1. (3.28)

We denote by f(t) ∈ V ′ the following element

(f(t), v)V =
∫

Ω
f0(t).v dx +

∫
Γ2

f2(t).v da, ∀v ∈ V, t ∈ (0, T). (3.29)

The use of (3.24) permits to verify that

f ∈ C(0, T; V). (3.30)

We introduce the following bilinear forms ai : V ×V → R (i = 0, 1),

a0(ζ, ξ) = k0

∫
Ω
∇ζ · ∇ξ dx + B

∫
Γ

ζξ dγ, (3.31)

a1(ζ, ξ) = k1

∫
Ω
∇ζ · ∇ξ dx. (3.32)

Finally, we consider the wear functional j : V ×V → R,

j(u, v) =
∫

Γ3

α‖uν‖ (µ ‖vτ − v∗‖) + vν) da. (3.33)

Using the above notation and Green’s formula, we derive the following variational formu-
lation of mechanical problem P .

Problem PV

Find the displacement field u : [0, T] → V, the stress field σ : [0, T] → H1, the temperature
θ : [0, T]→ V, the damage field β : [0, T]→ K such that

σ(t) = A(ε(u̇(t))) + B(ε(u(t)), β (t))

+
∫ t

0
G(σ(s)−A(ε(u̇(s))), ε(u(s)), θ(s)) ds, a.e. t ∈ (0, T),

(3.34)

(σ(t), ε(v− u̇(t)))H + j(u̇(t), v)− j(u̇(t), u̇(t)) > (f(t), v− u̇(t))V ,

∀v ∈ V, a.e. t ∈ (0, T),
(3.35)

(θ̇(t), v)V′×V + a0(θ(t), v)

= (ψ(σ(t), ε(u̇(t)), θ(t)), v)V′×V + (q(t), v)L2(Ω), ∀v ∈ V, a.e. t ∈ (0, T)
(3.36)

(β̇(t), ζ − β(t))L2(Ω) + a1(β(t), ζ − β(t))

≥ (S (ε (u (t)) , β (t)) , ζ − β(t))L2(Ω) , ∀ζ ∈ K, a.e. t ∈ (0, T),
(3.37)

u(0) = u0, θ(0) = θ0, β(0) = β0 in Ω, (3.38)

Then {u, σ, θ, β} which satisfies (3.34)–(3.38) is called a weak solution of the mechanical of
frictional bilateral contact with wear.
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4 Main results

The main results are stated by the following theorems.

Theorem 4.1. Assume that (3.16)–(3.28) hold and, in addition, the smallness assumption

‖α‖L∞(Γ3)

(
‖µ‖L∞(Γ3)

+ 1
)
< α0, (4.1)

where α0 = mA
C2

0
, such that mA is defined in (3.16) and C0 defined by (3.23). Then there exists a unique

solution {u, σ, θ, β} to problem PV . Moreover, the solution has the regularity

u ∈ C1(0, T; V), (4.2)

σ ∈ C(0, T;H1), (4.3)

θ ∈W1,2(0, T; L2 (Ω)) ∩ L2(0, T; V), (4.4)

β ∈W1,2(0, T; L2 (Ω)) ∩ L2(0, T; H1 (Ω)), (4.5)

Remark 4.2. We remark that if v∗ is large enough then α = 1/(kv∗) is sufficiently small
and therefore, the condition (4.1) for the unique solvability of Problem PV is satisfied. We
conclude that the mechanical problem (3.6)–(3.15) has a unique weak solution if the tangential
velocity of the foundation is large enough. Moreover, having solved the problem (3.6)–(3.15),
we find that there exists a unique solution w ∈ C1(0, T; L2 (Γ3)), for the auxiliary problem (3.2)
and using the initial condition w(0) = 0 which means that at the initial moment the body is
not subject to any prior wear. Moreover, by using the Cauchy–Lipschitz theorem, we find that
there exists a unique solution w ∈ C1(0, T; L2 (Γ3)), for an auxiliary problem satisfying (3.2)
and w(0) = 0.

Remark 4.3. The element {u, σ, θ, β} which satisfies (3.34)–(3.38) is called a weak solution
of the contact problem PV . We conclude that, under the assumptions (3.16)–(3.28) and if
(4.1) holds, then the mechanical problem (3.6)–(3.15) has a unique weak solution having the
regularity (4.2)–(4.5).

The proof of Theorem 4.1 is carried out in several steps that we prove in what follows.
Everywhere in this section we suppose that assumptions of Theorem 4.1 hold, and we consider
that C is a generic positive constant which depends on Ω, Γ1 and Γ3 and may change from
place to place. The proof is based on arguments of elliptic variational inequalities, classical
and uniqueness results on parabolic inequalities and fixed point arguments.

First step

Let η ∈ C(0, T;H) and g ∈C(0, T; V) we consider the following variational problem.

Problem PVη,g

Find vη,g : [0, T]→ H1 such that

ση,g(t) = A(ε(vη,g(t))) + η (t) , ∀t ∈ [0, T] , (4.6)(
ση,g(t), ε(v− vη,g(t))

)
H + j(g(t), v)− j(g(t), vη,g(t)) > (f(t), v− vη,g(t))V , ∀v ∈ V. (4.7)
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Lemma 4.4. There exists a unique solution to problem PVη,g such that

vη,g ∈ C(0, T; V), ση,g ∈ C(0, T;H1).

Proof. It follows from classical results for elliptic variational inequalities, (see for example [6])
that there exists a unique pair {vη,g, ση,g}, vη,g ∈ V, ση,g ∈ H, which is a solution of (4.6) and
(4.7). Choosing v = vη,g(t)±Φ in (4.7), where Φ ∈ D (Ω)d is arbitrary, we find

(ση,g(t), ε(Φ))H = (f(t), Φ)V

Using the definition (3.29) for f, we deduce

Div ση,g(t) + f0(t) = 0, t ∈ (0, T) . (4.8)

With the regularity assumption (3.24) on f0 we see that Div ση(t) ∈ H. Therefore, ση(t) ∈
H1.

Let t1, t2 ∈ [0, T] and denote vη,g (ti) = vi, ση,g (ti) = σi, f (ti) = fi, g (ti) = gi and
η(ti) = ηi, for i = 1, 2. Using the relations (4.6) and (4.7), we find that

(A(ε(v1))−A(ε(v2)), ε(v1)− ε(v2))H

6 (f1 − f2, v1 − v2)V − (η1 − η2, ε(v1)− ε(v2))H

+j(g1, v2) + j(g2, v1)− j(g1, v1)− j(g2, v2).

(4.9)

Moreover, it follows form (3.21) and (3.16) that

(A(ε(v1))−A(ε(v2)), ε(v1)− ε(v2))H > C ‖v1 − v2‖2
V . (4.10)

From the definition of the functional j given by (3.33), we have

j(g1, v2) + j(g2, v1)− j(g1, v1)− j(g2, v2)

=
∫

Γ3

(α‖g1ν‖ − α‖g2ν‖) (µ ‖v2τ‖ − µ ‖v1τ‖) + v2ν − v1ν da.

The relation (3.23) and the assumptions (3.26) and (3.27) imply

‖j(g1, v2) + j(g2, v1)− j(g1, v1)− j(g2, v2)‖

6 C2
0 ‖α‖L∞(Γ3)

(
‖µ‖L∞(Γ3)

+ 1
)
‖g1 − g2‖V ‖v1 − v2‖V .

(4.11)

The relation (3.22), the assumption (3.16), and the inequality (4.10) combined with (4.11)
give us

mA ‖v1 − v2‖V 6 C2
0 ‖α‖L∞(Γ3)

(
‖µ‖L∞(Γ3)

+ 1
)
‖g1 − g2‖V + ‖f1 − f2‖V + ‖η1 − η2‖H . (4.12)

Moreover, from (3.16) and (4.6), we obtain

‖σ1 − σ2‖H 6 C
(
‖v1 − v2‖V + ‖η1 − η2‖H

)
. (4.13)

Now, from (3.30), (4.12) and (4.13), we obtain that vη,g ∈ C(0, T; V) and ση,g ∈ C(0, T;H),
then it follows from (3.24) and (3.17) that ση,g ∈ C(0, T;H1).
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Let us consider now the operator Λη : C(0, T; V)→ C(0, T; V), defined by

Ληg = vη,g, ∀g ∈ C(0, T; V). (4.14)

We have the following lemma.

Lemma 4.5. The operator Λη has a unique fixed point gη ∈ C(0, T; V).

Proof. Let g1, g2 ∈ C(0, T; V) and let η ∈ C(0, T;H). We use the notation vη,gi = vi and
ση,gi = σi for i = 1, 2. Using similar arguments as those in (4.12), we find

mA‖v1 (t)−v2 (t) ‖V 6 C2
0 ‖α‖L∞(Γ3)

(
‖µ‖L∞(Γ3)

+ 1
)
‖g1 (t)− g2 (t)‖V , ∀t ∈ [0, T] , (4.15)

From (4.14) and (4.15) we find that

‖Ληg1 (t)−Ληg2 (t) ‖V

6
C2

0
mA
‖α‖L∞(Γ3)

(
‖µ‖L∞(Γ3)

+ 1
)
‖g1 (t)− g2 (t)‖V , ∀t ∈ [0, T] .

(4.16)

Let

α0 =
C2

0
mA

,

where α0 is a positive constant which depends on Ω, Γ1, Γ3, and on the operator A. If (4.1)
is satisfied we deduce from (4.16) that the operator Λη is a contraction. From Banach’s fixed
point theorem we conclude that the operator Λη has a unique fixed point g∗η ∈ C(0, T; V).

For η ∈ C(0, T;H), let g∗η be the fixed point given by the above lemma, i.e. g∗η = vη,g∗η .
In the sequel we denote by (vη , ση) ∈ C(0, T; V)× C(0, T;H1) the unique solution of Prob-

lem PVη,g∗η , i.e. vη = vη,g∗η , ση = ση,g∗η . Also, we denote by uη : [0, T]→ V the function defined
by

uη(t) =
∫ t

0
v(s) ds + u0, ∀t ∈ [0, T]. (4.17)

From Lemma 4.4 we deduce that uη ∈ C1(0, T; V).

Second step

For χ ∈ C(0, T; V ′), we consider the following variational problem.

Problem PVχ

Find the temperature θχ : [0, T]→ V which is solution of the variational problem

(θ̇χ(t), v)V′×V + a0(θχ(t), v) = 〈χ(t) + q(t), v〉V′×V ∀v ∈ V, a.e. t ∈ (0, T), (4.18)

θχ(0) = θ0, in Ω. (4.19)

Lemma 4.6. For all χ ∈ C(0, T; V ′), there exists a unique solution θχ to the auxiliary problem PVχ

satisfying (4.4).
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Proof. By an application of the Friedrichs–Poincaré inequality, we can find a constant B′ > 0
such that ∫

Ω
‖∇ζ‖2 dx +

B
k0

∫
Γ
‖ζ‖2 dγ > B′

∫
Ω
‖ζ‖2 dx, ∀ζ ∈ V.

Thus, we obtain
a0(ζ, ζ) > c1‖ζ‖2

V , ∀ζ ∈ V, (4.20)

where c1 = k0 min(1, B′)/2, which implies that a0 is V-elliptic. Consequently, based on classi-
cal arguments of functional analysis concerning parabolic equations, the variational equation
(4.18) has a unique solution θχ satisfying (4.4).

Third step

For φ ∈ C(0, T; L2(Ω)), we consider the following variational problem.

Problem PVφ

Find the damage field βφ : [0, T]→ K such that

(β̇φ(t), ζ − βφ(t))L2(Ω) + a1(βφ(t), ζ − βφ(t)) ≥ (φ, ζ − βφ(t))L2(Ω),

∀ζ ∈ K a.e t ∈ [0, T],
(4.21)

βφ(0) = β0 in Ω. (4.22)

We apply Theorem 2.1 to problem PVφ.

Lemma 4.7. There exists a unique solution βφ to the auxiliary problem PVφ such that

βφ ∈W1,2(0, T; L2(Ω)
)
∩ L2(0, T; H1(Ω)

)
. (4.23)

Proof. The inclusion mapping of (H1 (Ω) , ‖ .‖H1(Ω)) into (L2 (Ω) , ‖ .‖L2(Ω)) is continuous and

its range is dense. We denote by
(

H1 (Ω)
)′ the dual space of H1 (Ω) and, identifying the dual

of L2 (Ω) with itself, we can write the Gelfand triple

H1 (Ω) ⊂ L2 (Ω) ⊂
(

H1 (Ω)
)′

.

We use the notation (·, ·)(H1(Ω))
′×H1(Ω) to represent the duality pairing between

(
H1 (Ω)

)′
and H1 (Ω). We have

(β, ξ)(H1(Ω))
′×H1(Ω) = (β, ξ)L2(Ω) , ∀β ∈ L2 (Ω) , ξ ∈ H1 (Ω)

and we note that K is a closed convex set in H1(Ω). Then, using the definition (3.32) of the
bilinear form a1 , and the fact that βφ ∈ K in (3.25), it is easy to see that Lemma 4.6 is a
consequence of Theorem 2.1.

By taking into account the above results and the properties of the operators B and G and
of the functions ψ and S, we may consider the operator

Λ : C(0, T;H×V ′ × L2(Ω))→ C(0, T;H×V ′ × L2(Ω)),

Λ(η, χ, φ)(t) = (Λ1(η, χ, φ)(t), Λ2(η, χ, φ)(t), Λ3(η, χ, φ)(t)),
(4.24)
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defined by

Λ1(η, χ, φ)(t) = B
(
ε
(
uη (t)

)
, βφ (t)

)
+
( ∫ t

0
G
(

ση(s)−A(ε(u̇η(s))), ε(uη(s), θχ(t))
)

ds
)

, ∀t ∈ [0, T] ,
(4.25)

Λ2(η, χ, φ)(t) = ψ
(
ε(uη(t)), βφ(t)

)
, ∀t ∈ [0, T] , (4.26)

Λ3(η, χ, φ)(t) = S
(
ση , ε(u̇η), θχ

)
, ∀t ∈ [0, T] . (4.27)

We have the following result.

Lemma 4.8. Let (4.4) be satisfied. Then for (η, χ, φ) ∈ C(0, T;H × V ′ × L2(Ω)), the mapping
Λ(η, χ, φ) : [0, T]→ H×V ′× L2(Ω) has a unique element (η∗, χ∗, φ∗) ∈ C(0, T;H×V ′× L2(Ω))

such that Λ(η∗, χ∗, φ∗) = (η∗, χ∗, φ∗).

Proof. Let (η1, χ1, φ1), (η2, χ2, φ2) ∈ C(0, T;H×V ′× L2(Ω)), and t ∈ [0, T]. We use the notation
uηi = ui, u̇ηi = vηi = vi, βφi = βi, θχi = θi and σηi = σi, for i = 1, 2. Using (3.22) and the
relations (3.17)–(3.20), we obtain

‖Λ(η1, χ1, φ1)(t)−Λ(η1, χ1, φ1)(t)‖H×V′×L2(Ω)

≤ LB
(
‖u1(t)− u2(t)‖V + ‖β1(t)− β2(t)‖L2(Ω)

)
+LG

∫ t

0

(
‖σ1(s)− σ2(s)‖H + LA‖v1(s)− v2(s)‖V

+ ‖u1(s)− u2(s)‖V + ‖θ1(s)− θ2(s)‖L2(Ω)

)
ds

+MS

(
‖u1(t)− u2(t)‖V + ‖β1(t)− β2(t)‖L2(Ω)

)
+Lψ

(
‖σ1(t)− σ2(t)‖H + ‖v1(t)− v2(t)‖V + ‖θ1(t)− θ2(t)‖L2(Ω)

)
.

(4.28)

Since

ui (t) =
∫ t

0
vi (s) ds + u0, ∀t ∈ [0, T] , (4.29)

we have

‖u1(t)− u2(t)‖V ≤
∫ t

0
‖v1 (s)− v2 (s) ‖V ds. (4.30)

Applying Young’s and Hölder’s inequalities, (4.28) becomes, via (4.30),

‖Λ(η1, χ1, φ1)(t)−Λ(η1, χ1, φ1)(t)‖H×V′×L2(Ω)

≤ C
(
‖β1(t)− β2(t)‖L2(Ω) +

∫ t

0

(
‖σ1(s)− σ2(s)‖H

+‖v1(s)− v2(s)‖V + ‖u1(s)− u2(s)‖V

+‖θ1(s)− θ2(s)‖L2(Ω)

)
ds
)

.

(4.31)

Taking into account that

σi(t) = A(ε(u̇i(t))) + ηi (t) , ∀t ∈ [0, T] , (4.32)

it follows that

(A(ε(v1(s)))−A(ε(v2(s))), ε(v1(s)− v2(s)))H
≤ j(v1(s), v2(s)) + j(v2(s), v1(s))− j(v1(s), v1(s))− j(v2(s), v2(s))

(4.33)
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So, by using (3.16), (3.33) and (3.23), we deduce that

mA‖v1(s)− v2(s)‖2
V ≤ C2

0‖α‖L∞(Γ3)

(
‖µ‖L∞(Γ3) + 1

)
‖v1(s)− v2(s)‖2

V

+ ‖η1(s)− η2(s)‖H‖v1(s)− v2(s)‖2
V

which, by the hypothesis (4.1), implies

‖v1(s)− v2(s)‖V ≤ C‖η1(s)− η2(s)‖H.

Also, by (4.30), we get∫ t

0
‖u1(s)− u2(s)‖V ds ≤ C

∫ t

0

∫ s

0
‖η1(r)− η2(r)‖H dr ds

≤
∫ T

0
‖η1(s)− η2(s)‖H ds.

For the temperature, if we take the substitution χ = χ1, χ = χ2 in (4.18) and subtracting
the two obtained equations, we deduce by choosing v = θ1 − θ2 as test function

‖θ1 (t)− θ2 (t)‖2
L2(Ω) + C1

∫ t

0
‖θ1 (t)− θ2 (t)‖2

V

6
∫ t

0
‖χ1 (s)− χ2 (s)‖V′ ‖θ1 (s)− θ2 (s)‖V ds, ∀t ∈ [0, T] ,

Employing Hölder’s and Young’s inequalities, we deduce that

‖θ1 (t)− θ2 (t)‖2
L2(Ω) +

∫ t

0
‖θ1 (s)− θ2 (s)‖2

V ds

6 C
∫ t

0
‖χ1 (s)− χ2 (s)‖2

V′ ds , ∀t ∈ [0, T] .

We use the inclusion L2(Ω) ⊂ V, we get

‖θ1 (t)− θ2 (t)‖2
L2(Ω) +

∫ t

0
‖θ1 (s)− θ2 (s)‖2

L2(Ω) ds

6 C
∫ t

0
‖χ1 (s)− χ2 (s)‖2

V′ ds, ∀t ∈ [0, T] .

From this inequality, combined with Gronwall’s inequality, we deduce that

‖θ1 (t)− θ2 (t)‖2
L2(Ω) 6 C

∫ t

0
‖χ1 (s)− χ2 (s)‖2

V′ ds. (4.34)

For the damage field, from (4.21) we deduce that

(β̇1 − β̇2, β1 − β2)L2(Ω) + a1(β1 − β2, β1 − β2) 6 (φ1 − φ2, β1 − β2)L2(Ω), a.e. t ∈ (0, T) .

Integrating the previous inequality with respect to time, using the initial conditions β1(0) =
β2(0) = β0 and the inequality a1(β1 − β2, β1 − β2) > 0 we find

1
2
‖β1(t)− β2(t)‖2

L2(Ω) 6
∫ t

0
(φ1(s)− φ2(s), β1(s)− β2(s))L2(Ω) ds, (4.35)
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which implies

‖β1(t)− β2(t)‖2
L2(Ω) 6

∫ t

0
‖φ1(s)− φ2(s)‖2

L2(Ω) ds +
∫ t

0
‖β1(s)− β2(s)‖2

L2(Ω) ds.

This inequality, combined with Gronwall’s inequality, leads to

‖β1(t)− β2(t)‖2
L2(Ω) 6 C

∫ t

0
‖φ1(s)− φ2(s)‖2

L2(Ω) ds, ∀t ∈ [0, T]. (4.36)

Applying the previous inequalities, the estimates (4.34) and (4.36), and substituting (4.31),
we obtain

‖Λ(η1, χ1, φ1)(t)−Λ(η2, χ2, φ2)(t)‖2
H×V′×L2(Ω)

6 C
∫ T

0
‖(η1, χ1, φ1)(s)− (η2, χ2, φ2)(s)‖2

H×V′×L2(Ω) ds.

Thus, for m sufficiently large, Λm is a contraction on C(0, T;H× V ′ × L2(Ω)), and so Λ
has a unique fixed point in this Banach space.

Now, we have all the ingredients to prove Theorem 4.1.
Existence

Let (η∗, χ∗, φ∗) ∈ C(0, T;H× V ′ × L2(Ω)) be the fixed point of Λ defined by (4.24)–(4.27)
and let g∗ = g∗η∗ be the fixed point of the operator Λη∗ given by Lemma 4.6. We denote by
{v, σ} the unique solution of Problem PVη∗,g∗ and we define

u(t) =
∫ t

0
v(s) ds + u0.

Also, let θ = θχ∗ and β = βφ∗ be the solutions of Problems PVφ∗ and respectively,
PVφ∗ obtained in Lemmas 4.6 and 4.7. As Λ1(η

∗, χ∗, φ∗) = η∗, Λ2(η∗, χ∗, φ∗) = χ∗ and
Λ3(η∗, χ∗, φ∗) = φ∗, the definitions (4.25)–(4.27) show that (3.34)–(3.38) are satisfied. Next,
from Lemmas 4.4, 4.6 and 4.7, the regularity conditions (4.2)–(4.5) follow.
Uniqueness

The uniqueness of the solution is a consequence of the uniqueness of the fixed point of the
operator Λ defined by (4.24)–(4.27) and the unique solvability of the Problem PVη,g, PVχ and
PVφ which completes the proof.
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