
A Friendly Framework for Hidding fault enabled
virus for Java Based Smartcard

Tiana Razafindralambo, Guillaume Bouffard, and Jean-Louis Lanet

Secure Smart Devices (SSD) Team
XLIM/Université de Limoges – 123 Avenue Albert Thomas, 87060 Limoges, France

aina.razafindralambo@etu.unilim.fr,
{guillaume.bouffard,jean-louis.lanet}@xlim.fr

Abstract. Smart cards are the safer device to execute cryptographic
algorithms. Applications are verified before being loaded into the card.
Recently, the idea of combined attacks to bypass byte code verification
has emerged. Indeed, correct and legitimate Java Card applications can
be dynamically modified on-card using a laser beam to become mutant
applications or fault enabled viruses. We propose a framework for manip-
ulating binary applications to design viruses for smart cards. We present
development, experimentation and an example of this kind of virus.

Keywords: Java Card, Virus, Logical Attack, Hidding Code.

1 Introduction

Nowadays, a new deployment model has been developed which has the abil-
ity to load third tier application in the SIM card through an application store
controlled by the network operator. Unfortunately, these applications are be-
ing subjected to fault attacks as it is possible to design inoffensive applications,
made hostile once hit by a laser beam. We call them fault enabled viruses. Our
contribution is twofold, first we propose an architecture as tool and we provide
a set of constraints to choose an instruction which will be subjected to a laser
attack.

2 Context

Software attacks against smart card can be classified into two categories: ill-
typed applications or well-typed applications. But the second category is again
divided into permanent well-typed applications or transient well-typed applica-
tions. In ill-typed applications [9,4] the input file has been modified in order to
illegally obtain information. Permanent well-typed application [8], relies on some
weakness of the specification. Transient well-typed applications is a new research
field [3,16,4] where an application mutes when a fault occurs. In this way, we
have fault enabled viruses. Ill-typed applications and transient well-typed ap-
plications need to apply byte code transformation engineering at the CAP file
level.

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 122–128, 2012.
c© IFIP International Federation for Information Processing 2012

A Friendly Framework for Hidding fault enabled virus 123

2.1 State of the Art

Physical Attacks. As explained by [2], a modification of the input current
may modify the execution flow as the card is not self-powered as described
in [1,10]. We also have attacks, explained by S. Skorobogatov and R. Anderson
in [15], that use the light (LED, laser, etc.) and focus on a specific part of
the chip, and the light provides enough energy in the memory-cell to change its
value. Electromagnetic attack, presented in [13] and [14], as the inducted current
provides a way to modify the memory value, and it also helps in characterizing
the chip area used during a critical operation.

LogicalAttacks. In E. Hubbers et al.’s paper [8], they presented a quick overview
of the available classical attacks and gave some counter-measures.There are differ-
ent way to get the type confusion: CAP file manipulation after the building step
to bypass an off-card Byte Code Verifier (BCV); using fault injection to bypass
the on-card one (difficult and expensive). There is also the use of the shareable
interface mechanism, but on recent cards this attack is no longer possible. And fi-
nally, we have the transaction mechanism, that consists of making a set of atomic
operations. By definition, the rollback mechanism should also deallocate any ob-
jects allocated during an aborted transaction and reset references to such objects
as null. However, the authors found some cases where the card keeps the refer-
ence to the objects allocated during transaction even after a rollback. The idea of
EMAN attack [9], explained by J. Iguchi-Cartigny et al., is to abuse the firewall
mechanism with the unchecked static instructions (as getstatic, putstatic and
invokestatic) to call malicious byte codes. In a malicious CAP file, the param-
eter of invokestatic instruction may redirect the control flow graph (CFG) of
another installed applet in the targeted smart card. At CARDIS 2011,G. Bouffard
et al. described, in [4], two methods to change the Java Card CFG. The EMAN2
attack will be further explained in the subsection 3.1.

2.2 The CAP File

As described by S. Hamadouche in [7], the CAP (Convert APplet) file format is
based on the notion of interdependent components that contain specific informa-
tion from the Java Card package. For instance, the Method component contains
the methods byte code, and the Class component contains the information on
classes such as references to their super-classes or declared methods.

3 The CapMap

3.1 Modification of a CAP File

CapMap has been developed [12] with the aim of having a handy and a friendly
way to parse and modify a CAP file. It is very useful and very convenient while
designing a logical attack to test Java Cards security. There are three steps to
modify a CAP file using the CapMap: identifying which CAP file’s components
are located in our target, getting the right set of elements, and then applying

124 T. Razafindralambo, G. Bouffard, and J.-L. Lanet

changes to the components; thanks to setters provided by the CapMap over each
CAP file elements. This is a simple example that makes the use of CapMap more
clear: it is a reference to the EMAN2 attack. We are going to use the CapMap
to particularly manipulate the instruction sstore to perform our attack. First,
we need to target our method within the Method Component, interdependent
to the other components. Element within it are indexed. A method is a set of
instructions, and an instruction is a set of byte-values. They both are indexed
in structures provided by CapMap. Secondly, to target the sstore instruction,
we are going to change its operand value. By changing the operand value we can
write in return function address as listing 1.1.

CapFi leEditable capFi l e = new CapFi leEditable () ;

capFi l e . load (MY CAP FILE) ; // Load the cap f i l e

ArrayList<MethodInfo> methods = // Get methods

capFi l e . getMethodComponent () . getMethods () ;

// Set the i n s t r u c t i on you want to r e p l ac e

methods . get (METHOD INDEX) . getBytecodes () . s e t

(SSTORE OPERAND INDEX, RETURN ADDRESS REGISTER) ;

Listing 1.1. CAP File modification with CapMap

3.2 Stack Evaluation

If the byte code of a java program is dedicated to be a fault enabled virus it
needs to avoid the software counter-measures embedded into the card. This type
of verification is performed for each method presented in the package. The type
checking ensures that no disallowed type conversion is performed. For example,
an integer cannot be converted into an object reference. A downcast can only be
performed using the checkcast instruction, and the arguments which are given
to the methods have to be compatible types. The most complicated step and
quite expensive (both time and memory), is to retrieve the type of local variables
by analyzing the byte code. It requires computing the type of each variable and
stack element for each instruction and each execution path, accepting programs
(set of instructions) where each stack element and local variable have the same
type whatever the path taken to reach an instruction. This also requires that the
stack size is the same for each instruction and for each path that can reach this
instruction. Another constraint is that the stack must never reach a maximum
size which allows checking, if we are not overflowing or underflowing the stack.
So, each time we modify a method we can verify the correctness type of the
modification. The most important thing for virus implementation is to define
the set of instructions eligible to be added to the byte array: only instructions
that are compatible with the previous instruction execution can be added to the
method. The type information associated to an instruction corresponds to the
type of the local variables and of the runtime stack before the instruction
is executed. The post conditions generated by the execution of the instruction
must be checked as pre-condition for the next instruction. This defines a set of
constraints that must be guaranteed by each byte code sequence.

A Friendly Framework for Hidding fault enabled virus 125

3.3 Constraint Solving

To design a fault enabled virus we have to hide the real operation as a part of
the operands of the preceding instruction. Thus, when the preceding instruction
is hit by the laser and transformed as a NOP instruction: its operand becomes an
instruction. Within this fault model, we need to find an instruction which needs
one operand and satisfies several constraints, or an instruction which needs two
operands. In such a case, the first operand becomes either the first instruction
of the virus, or an instruction without operand and the second operand becomes
the first instruction of the virus. We need to be able to select an instruction
that satisfies several constraints, hence we will be able to hide viruses in a well-
typed program. We try to build a sequence of instructions prog, empty at the
beginning, such that it exists an instruction ins, with an operand number greater
than one, for which the consumption of the stack is empty and the production
on the stack is lower than the maximum value of the stack. If such an instruction
exists, we can concatenate the sequence prog with the sequence virus minus
its head. Executing the new sequence prog must lead to an empty stack at the
end of execution. Unfortunately, the resulting program may be a non valid Java
program: not all sequences of byte code can be generated by a compiler. But the
certification scheme proposed by GlobalPlatform [5] do not indicate the source
code. The certification process must be done at the CAP file level.

3.4 Java Card Code Reverser

The complete process of generating a fault enabled virus needs four steps using
CapMap. Firstly, finding a sequence of instructions which hides the virus code that
satisfies a set of constraints. The resulting CAP File represents a valid Java pro-
gram in term of stack typing. Next, to evaluate the resulting cap file using an off-
card BCV is the second step. If it is rejected, it means that either stack evaluation
goeswrong, or the constraint solver failed. If the off-card BCVevaluation succeeds,
the third step is, using our Cap2Class tool to reverse the code. Finally, converting
the class file to Java file by means of existing tools, if the generated code is valid.

4 Evaluation of the Threat Capacities

4.1 Building a fault enabled virus with the CapMap

The listing 1.2 explains how to build the virus. It’s aim is to send a clear text which
has the value of an encrypted key container. Of course any analysis will reject this
code as the secret key is being sent to the external world. This code can be split
into three parts. The first one (B1) is mandatory and corresponds to the APDU
reception. The second block (B2) corresponds to the code to obfuscate and which
should only be executable once a fault occurs. It decrypts the key container and
put the value in the APDU buffer at offset 0. The last one (B3) sends the content
of the apdu buffer from offset 0 for 16 elements (a 3-DES key) to the reader. If we
can replace the B2 block by an inoffensive code, it is said to be a fault enabled smart
card virus. This code corresponds to the following byte code listed in 1.3.

126 T. Razafindralambo, G. Bouffard, and J.-L. Lanet

public void pr oc e s s (APDU apdu) {
short l o c a l S ; byte l oca lB ;

byte [] apduBuffer = apdu . g e tBu f f e r () ; // ge t the APDU bu f f e r

i f (s e l e c t i ngApp l e t ()) { return ; } B1
byte r ece i vedByte = (byte) apdu . setIncomingAndReceive () ;

−−
// any code can be p laced here

DES keys . getKey (apduBuffer , (short) 0) ; B2
−−

apdu . setOutgoingAndSend ((short) 0 ,16) ; B3
}

Listing 1.2. The unwanted code

/∗00bd∗/ L0 : a l oad 1 // apdu

/∗00 be∗/ i nvokev i r tua l 8 // g e tBu f f e r (APDU c l a s s)

/∗00c1∗/ a s to r e 4 // L4 = apduBuffer

/∗00c3∗/ a l oad 0 // t h i s=Apple t ins tance

/∗00c4∗/ i nvokev i r tua l 9 // s e l e c t i n gApp l e t ()

/∗00c7∗/ i f e q L1 // r e l :+3 (@00CA)

/∗00c9∗/ return

/∗00ca∗/ L1 : a l oad 1 // apdu B1
/∗00 cb∗/ i nvokev i r tua l 10

/∗00 ce∗/ s2b // redByte

/∗00 c f ∗/ s s t o r e 5 // L5 = redByte

−−
/∗00d6∗/ g e t f i e l d a t h i s 1 // DES keys

/∗00d8∗/ aload 4 // L4=>apdubuf f e r

/∗00da∗/ s con s t 0

/∗00db∗/ i n v ok e i n t e r f a c e nargs : 3 , index : 0 , B2
const : 3 , method : 4 // ge t key

/∗00e0∗/ pop // returned Le by t e

−−
/∗00e1∗/ a l oad 1 //L1 apdu

/∗00e2∗/ s con s t 0

/∗00e3∗/ bspush 0x0F // DES keys s i z e

/∗00e5∗/ i n v ok e i n t e r f a c e nargs : 1 , index : 0 , B3
const : 3 , meth . : 1

/∗00ea∗/ i nvokev i r tua l 11 // setOutgoingAndSend

/∗00ed∗/ return

Listing 1.3. The virus code at the byte code level

The B1 block is the preamble, a correct code that must be executed. The
B2 block corresponds to the code that must be obfuscated, and the last one B3

is the postamble. After the execution of the B1 block the state of the stack is

A Friendly Framework for Hidding fault enabled virus 127

{ref, ref, value}. By obfuscating B2 will insert an instruction before in a such
a way that constraints explained in the previous section are verified. But prior
to select an instruction, we need to link statically the B2 code fragment. The
final linking process is done inside the card and we can not rely on this process
to resolve automatically the addresses. For that purpose, we have developed an
attack, presented in [6], that provides us the way to retrieve (for most of the
current cards) the linking information. For this card, the linked address of the
getKey method is 0x023C. Then the code to hide becomes:

/∗00db∗/ i n v o k e i n t e r f a c e nargs : 3 , @023c , method : 4

/∗00e0∗/ pop // pop the return by t e o f t he method

Listing 1.4. Resolved address of the B2 block

If we consider the single fault model then one of the selectable instructions is
ifle (Ox65) . It uses a short value and its operand is an offset to the branching
instruction. The B2 code fragment to be loaded into the card is given in the
listing 1.5. If the byte at the offset 0x00D6 becomes 0x0000 (thanks to the laser
hit) the original B2 code will be executed.

/∗00d6∗/ [6 5] i f l e @0x8D // 0x8D corresponds to i n v o k e s t a t i c

/∗00d8∗/ [0 3] s c on s t 0 // corresponds to the nargs

/∗00d9∗/ [0 2] sconst m1 // corresponds to the address high

/∗00da∗/ [3 c] pop2 // corresponds to the address low

/∗00db∗/ [0 4] s c on s t 1 // corresponds to the method number

/∗00dc∗/ [3 b] pop // resynchron i zed with the o r i g i n a l code

Listing 1.5. The hiding code

4.2 Detecting a fault enabled virus with SmartCM

The starting point of this study was the development of SmartCM [11], a sim-
ulator that detects such attack, and aims to analyze the effect of a fault on a
Java Card program using different modules like the code mutation engine, the
risk analysis tool, and the mutants reducer.

5 Conclusion

We have presented in this paper a complete CAP file engineering tool to modify
each component of the CAP file in a coherent way. Within this tool, we have the
possibility to design a very efficient attack using ill-typed application but also
fault enabled viruses. It includes a stack checker to avoid embedded counter-
measures and a minimalist constraint solver to generate the hiding sequence.
We demonstrated the efficiency of the constraint solver to build a valid program
which hides a fault enabled virus. We have developed a static analyzer SmartCM
that is able to detect such a fault enabled virus. Recently, it appears that the

128 T. Razafindralambo, G. Bouffard, and J.-L. Lanet

single fault model is out of date and we must consider the possibility of a dual
fault attack as a valid hypothesis. Thus, the CapMap tool is able to build such
a second order virus by simply applying twice the process. But the constraints
for the second pass must be different, and should not reveal the hidden code.
This is a new research direction on which we are working now.

References

1. Agoyan,M., Dutertre, J.-M., Naccache, D., Robisson, B., Tria, A.:WhenClocks Fail:
On Critical Paths and Clock Faults. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny,
J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 182–193. Springer, Heidelberg (2010)

2. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault Attacks
on RSA with CRT: Concrete Results and Practical Countermeasures. In: Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275.
Springer, Heidelberg (2003)

3. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0 Combining Fault
and Logical Attacks. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.)
CARDIS 2010. LNCS, vol. 6035, pp. 148–163. Springer, Heidelberg (2010)

4. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.-L.: Combined Software and Hardware
Attacks on the Java Card Control Flow. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 283–296. Springer, Heidelberg (2011)

5. Global Platform: Composition Model Security Guidelines for Basic Applications
(2012)

6. Hamadouche, S., Bouffard, G., Lanet, J.L., Dorsemaine, B., Nouhant, B., Magloire,
A., Reygnaud, A.: Subverting Byte Code Linker service to characterize Java Card
API. Submitted at SAR-SSI (2012)

7. Hamadouche, S.: Étude de la sécurité d’un vérifieur de Byte Code et génération
de tests de vulnérabilité. Master’s thesis, Université de Boumerdés (2012)

8. Hubbers, E., Poll, E.: Transactions and non-atomic API calls in Java Card: speci-
fication ambiguity and strange implementation behaviours. Tech. rep., University
of Nijmegen (2004)

9. Iguchi-Cartigny, J., Lanet, J.: Developing a trojan applets in a smart card. Journal
in Computer Virology 6(4), 343–351 (2010)

10. Kömmerling, O., Kuhn, M.: Design principles for tamper-resistant smartcard pro-
cessors. In: Proceedings of the USENIXWorkshop on Smartcard Technology (1999)

11. Machemie, J.B., Mazin, C., Lanet, J.L., Cartigny, J.: SmartCM A Smart Card Fault
Injection Simulator. In: IEEE International Workshop on Information Forensics
and Security - WIFS (2011)

12. Noubissi, A., Séré, A., Iguchi-Cartigny, J., Lanet, J., Bouffard, G., Boutet, J.:
Cartes à puce: Attaques et contremesures. MajecSTIC 16(1112) (November (2009)

13. Quisquater, J., Samyde, D.: Eddy current for magnetic analysis with active sensor.
In: Proceedings of Esmart (2002)

14. Schmidt, J., Hutter, M.: Optical and em fault-attacks on crt-based rsa: Concrete
results. In: Proceedings of the Austrochip, pp. 61–67. Citeseer (2007)

15. Skorobogatov, S., Anderson, R.: Optical Fault Induction Attacks. In: Kaliski Jr.,
B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003)

16. Vetillard, E., Ferrari, A.: Combined Attacks and Countermeasures. In: Gollmann,
D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp.
133–147. Springer, Heidelberg (2010)

	A Friendly Framework for Hidding fault enabledvirus for Java Based Smartcard
	Introduction
	Context
	State of the Art
	The CAP File

	The CapMap
	Modification of a CAP File
	Stack Evaluation
	Constraint Solving
	Java Card Code Reverser

	Evaluation of the Threat Capacities
	Building a fault enabled virus with the CapMap
	Detecting a fault enabled virus with SmartCM

	Conclusion
	References

