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TO THE RANDOM CHOICE METHOD

NILS HENRIK RISEBRO

(Communicated by Barbara L. Keyfitz)

Abstract. An alternative to Glimm's proof of the existence of solutions to
systems of hyperbolic conservation laws is presented. The proof is based on an
idea by Dafermos for the single conservation law and in some respects simplifies
Glimm's original argument. The proof is based on construction of approximate
solutions of which a subsequence converges. It is shown that the constructed
solution satisfies Lax's entropy inequalities. The construction also gives a nu-
merical method for solving such systems.

1. INTRODUCTION

We study the initial value problem for the general system of hyperbolic con-
servation laws

"» + f(u)x = 0.
Our analysis is based on Lax's [1] solution of the Riemann problem. We give
here an alternative proof of Glimm's fundamental result [2] not based on a
random sequence. Since Glimm's paper, there have been few generalizations of
his result, but Liu [3] showed that Glimm's proof did not actually depend on
the random sequence and that it converged for any equidistributed sequence.
Chorin [4] developed Glimm's construction into a numerical method. Using
Glimm's construction, Lax [5] showed that the conctructed solution satisfied the
entropy inequalities provided the system admitted an additional conservation
law. This system of equations models a diverse range of physical phenomena,
e.g., traffic flow [6], gas dynamics [7], and multiphase flow in porous media [8].

Our proof is based on ideas from the study of the single conservation law.
Dafermos [9] used a piecewise linear continuous approximation to the flux func-
tion / to obtain approximate piecewise constant solutions. This idea was fur-
ther developed into a numerical method by LeVeque [10] and by Holden et al.
[11] and was generalized to several space dimensions by Hoegh-Krohn and Rise-
bro [12]. The idea of approximating rarefaction waves by piecewise constant
states was also investigated by Swartz and Wendroff [ 13] for the system of gas
dynamics.
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1126 N. H. RISEBRO

We construct our solutions by starting with an approximation to the solution
of the Riemann problem where the rarefaction part of the solution is replaced
by an approximating step function. The inital value function is also approxi-
mated by a step function, which defines a series of Riemann problems. Each
discontinuity in the approximate solution is then tracked until it interacts with
other discontinuities. For such interactions we can use some of the estimates
in [2] directly, and here we only give the differences from Glimm's proof. Our
main result is that if the total variation of the initial data is small, then a weak
solution of the initial value problem exists. Without assuming the existence of
an additional conservation law, we show that our constructed solution satisfies
Lax's entropy inequalities, and therefore is not of what Glimm [2] called "ex-
tranous" type. The construction in a natural way defines a numerical method
for solving hyperbolic conservation laws. For general background we refer the
reader to [14, part 3] and the references therein.

2. Method and notation

We will consider the Cauchy problem

(2 n ut + f(u)x = 0,
u(x, 0) = uo(x)

where /: R" —> Rn is a smooth function. We assume that the system is strictly
hyperbolic, that is, the Jacobian df has real eigenvalues Xx(u), ... , X„(u) such
that Xx (u) < X2(u) < ■■■ <Xn(u). We want to construct a weak solution to (2.1),
that is, a function «:lxR+^R"

/•OO       i»00 poo

(2.2) /     /    (4>tu + 4>xf(u))dxdt+ /     cj)(x, 0)uo(x) dx = 0
Jo     J—oo J—oo

for all smooth 0 with compact support in (x, t).
The Riemann problem for (2.1) is the initial value problem where

(13) "°W = U,       x>0.
The solution of this Riemann problem consists of three ingredients: shocks,
rarefaction waves, and contact discontinuities. For an explanation of these see
[14, Chapter 17].
Theorem 1 (Lax). Let u\ e N c R" and suppose (2.1) is strictly hyperbolic and
that each characteristic field is either genuinely nonlinear or linearly degenerate
in N. Then there is a neighbourhood M c N such that for ur e M, (2.3)
has a solution. This solution consists of at most n + 1 constant states separated
by shocks, rarefaction waves, and contact discontinuities. There is only one such
solution in M, and discontinuities in this solution will satisfy the Lax inequalities
(3.13).
Proof. See [14, Theorem 17.18].   □

We will construct an approximation to this solution. Through each point u
in M we have n one-parameter families of curves Uk(u, e), k = I, ... , n .
These have continuous derivatives of order two at e = 0 and have the property
that if ur is on Uk(ui, e) and the A:th field is genuinely nonlinear,  ur can
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A FRONT TRACKING ALTERNATIVE 1127

be connected to «/ by a rarefaction wave iff e > 0 and by a shock iff e < 0,
Uk(ui, 0) = Ui. We call |e| the strength of the wave. If the kth field is linearly
degenerate Uk(u, e) consists of the states that can be connected to u by a
contact discontinuity. For a more detailed description of these concepts we
again refer to [14].

We will take this correct solution to the Riemann problem and approximate
it in the following way: We start with the correct solution to (2.3). Leave each
shock or contact discontinuity as it is. Along the rarefaction curves, we fix an
initial 8 > 0, approximate the rarefaction fan by constant states

uf)^Uk(uk,i8) = Uk(uf_}l,8)

for i=l,... , m, where m is chosen such that u^+2 is "past" the next con-
stant state in the solution: uk+x . The states uf* and wj+, will be separated by
a discontinuity moving with speed Xk(u\+X). This approximation corresponds
to making a step function approximation of u(x, t) at each fixed t. We call
our approximation ug(x, t). We have that

lim ug = u    for all t.

The limit is in LX°C(R, dx) for each /. Furthermore u will satisfy (2.2), and
since supp 0 is confined to t < T < oo, we have that

/•OO     fOO /»oo

/     /    (<j),us + (j)xf(us))dxdt+        cj)(x,0)uo(x)dx^O
JO     J— oo J—oo

as 8 —* 0, since, by the bounded convergence theorem, f(ug) —► f(u) in Lx .
Therefore ug is an approximate solution to (2.3), and we will call this a 8-
approximation to the solution of (2.3).

Our strategy will now be to construct an approximation to a more general
initial value problem, by using this ^-approximation on a series of Riemann
problems. Assume that Uq(x) is in L',oc n B.V., then we define the sequence
{*i}f by

xx=inf\x:\uo(x)-   lim   uo(x)\> 8}
L x—>-oo J

x„+\ = infix : x > x„ and |mo(.x) - lim u0(x)\ > 8\.
t x->xt >

Now we define the approximated initial function u50 by

(limx^-00uo(x),       x<x\,

u0(x„), xe[xn,xn+x),
\imx^oauo(x), x>xM.

We have that ||Mq - "oik, -> 0 as <5 —» 0. At each discontinuity in ud0 we
construct the ^-approximation to the solution of the Riemann problem defined
by (uo(xn-X), Uo(xn)). When two ^-approximations interact at some / > 0,
we are still in the class of step functions with compact support and a finite
number of steps. Therefore the process can be repeated. With a slight abuse of
notation we will call this "solution" u# .
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1128 N. H. RISEBRO

It is clear that this process can be repeated an arbitrary number of times.
If we define the tj as the /th time discontinuities collide, we can continue our
appproximation up to a time T = lim,_00 U . In order to remove this restriction
we will make a modification of our method: We construct our solution up to
some time tx . At tn we will not use (5-approximations to "solve" the Riemann
problems, but we will use an approximation where some of the small waves
originating from these are ignored. The next time discontinuities collide we will
again use ^-approximations until some new tpp , and the process is repeated.
We will show that it is sufficient to do this a finite number of times depending
on 8 in order to carry our approximation up to infinite time. In order to show
that this is a well-defined construct we need some lemmas.

We follow the notation in [14, p. 370]. By

(2.4) («/, ur) = [(wo»• • • , un)/(ex, ... , £„)]

we mean that uk is connected to uk_x by a k-shock or a k-rarefaction wave
with strength \ek\, i.e., uk = U^(uk_x, ek), and M/ = Mo and un - ur. Now
let ui,um, ur be given states near a given state u, and let

(2.5) (ui, um) = [(u0, ... , un)/(ax,... , an)],

(2.6) (Um , Ur) = [(Mo , . . .   , U„)/(f3X ,...  , fin)].
With these definitions in hand we can prove the following slight modification
of [14, Theorem 19.2] or [2, Theorem 2.1].
Lemma 1. Assume that a discontinuity a (in our scheme) of family j separating
(ui, um) and a discontinuity B of family k separating (um, ur) collide and that
(2.4), (2.5), and (2.6) hold. Then

e, = <Jl7a + (5,fcj8 + 0(l)H|i?|.
Proof. The proof of this is the same as the proof of Theorem 2.1 in [2].   D

Let tt be the /th time discontinuities in ug collide, and let \ej\ be the
strength of the y'th discontinuity from the left in the strip t, < t < tj+y . We say
two discontinuities in ug are approaching if the speed of the one on the left is
larger than the speed of the one on the right. We define

j

G* = £KIIAtl
where the sum in Qk is taken over all approaching pairs in tk < t < tk+x.

Lemma 2. Let m, n > 0. If n > m and Tm is sufficiently small, then

Qn<Qm, Tn+KQn<Tm + KQm
for some K > 0.
Proof. The proof is similar in spirit to the proof of the corresponding theorem
for Glimm's construction, see [2] or [14] . We first assume that n = m + 1 . Let
the collision at tm+x take place at x (if there are several collisions we can use
the same argument at each collision). Since discontinuities propagate at finite
speed, we can find e > 0 and an interval J such that x e J, and at tm+x -e all
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'         I       ̂            J       I      /           I

-'     \ / '-      ^^

|        -I V |/ \

Figure 1

colliding discontinuities are in 7, and at /m+i+e all discontinuities emanating
from (x, tm+\) are in J . These are also the only discontinuities in J in the
time interval [tm+x - e, tm+x + e]. Let I = R \ J , cf. Figure 1. Let Tk(I) be
Tk with the summation restricted to /, similarly for Qk(I). From Lemma 1
we have

Tn < Tm + KoQm(J) > Qn = Qn(I) + Qn(I, J)
where Qk(I, J) is the sum with one wave from / and the other from J .

Qn(I,J)=    ]T   \e„\\S\<      £     (\a\ + \B\)\8\ + KoQm(J)Tm(I)
5 appr e„ S appr a or p

< Qm(I, J) + KoQm(J)Tm < Qm(I, J) + {Qm(J)        if K0Tm < {.
Therefore

Qn~Qm = [Qn(I) + Qn(I, J)] ~ [Qm(I) + Qm(J) + Qm(I, /)]
(2.7) < Qm(I, J) + \Qm(J) - Qm(J) - Qm(I, J) = -\Qm(J) < 0.
Now

Tn + KQn <Tm + KoQm(J) + KQm - (K/2)Qm(J)
<Tm + KQm    ifK0-K/2<0.

Summing we have that the inequalities hold for any n > m .   □

Corollary 1. // T.V.(uq) is sufficiently small then

oscug < T.V.(ug) < cT„ < cT0 < cT.V.(uq)

where all constants are independent of t and 8.
Proof,  osc < T.V. is always true.  T.V. < cT since they are equivalent norms.
Tn < Tn + KQn < T0 + KQ0 <T0 + KT2 < 2T0 if KT0 < 1 .    □

Now define
^ = EK~'IKI

where the sum is taken over those discontinuities that collide at tk (typically
Pk = \e{-1\\e{\).
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1130 N. H. RISEBRO

Lemma 3.  £,- Pi < °° •
Proof. If AQk = Qk- Qk+X , then by (2.7) AQk > \Pk . Therefore

k .    k
Qo>Qo-Qk = $>&■ > -£/>,.   □

Now we can define /#, , where iVi < oo is the smallest number such that Pk <
8 for all k > Nx, and we relabel the collision times up to /#,: t^, t\,... , t- .
At the collision(s) at txN , we do not construct waves of families different from
the ones that are colliding, although we allow these to change their speeds. What
this means is perhaps best illustrated by an example: Assume that the collision
at txN is between a discontinuity of family / and one of family m . Assume
also that the solution of the Riemann problem defined by the states to the left
and right of this collision has a solution that contains waves of families k,
m, n , and /. Note that Lemma 1 says that the waves of families k and n
will be small. In making the step function approximation to the solution of
the Riemann problem the small waves of family n and k are ignored and the
solution is regarded as constant over these waves.

This constant is chosen as follows: If the small wave is of a family smaller
than the familiy of both the colliding waves, i.e., its speed is strictly smaller
than the speeds of the colliding waves, then the state to the right of this wave is
set equal to the state to the left of it. Similarly if the family of the wave to be
ignored is larger than the families of the colliding waves, then the state to the
left of the small wave is set equal to the state to the right of it. If the familiy of
the small wave is between the families of the colliding waves, we may choose
either to set the state to the left of it equal to the state on the right, or vice
versa.

This of course introduces an additional error into our approximation, but
it is neccesary to remove some discontinuities in order to limit the number of
fronts to track. In Lemmas 5 and 6 we show that this error is so small that the
approximation remains an approximate weak solution.

The next collision time after tlN we label /q . At this collision we again
use the original approximation technique where all waves in the solution of a
Riemann problem are approximated. We continue using this approximation
up to a collision time t2N , where N2 is defined like Nx . When solving the
Riemann problems at t2N we again ignore waves of new families. Continuing
in this way we get collision times for the ug

to,... , tNt, tQ, ... , tff2, tQ,... , tNi, ... , t0, ... , tNj, ... .

Lemma 2 was shown only for collisions at /j where j < Nj, but it is easily
seen that Qn and Tn+KQ„ are decreasing also for the collisions at tlN . Hence
Lemma 3 will hold when the sum is taken over all collisions. We restate this as

i    k=0

where Plk refers to the collision(s) taking place at t'k . Therefore there is an
integer M such that J2kLo P'k - ^ ^or a^ i > M.  For such i we have that
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A FRONT TRACKING ALTERNATIVE 1131

Pl< 8 for all k . Hence, after t^~l   , we do not create waves of new familiesk — ' Nu-[-i
at collision points. Since we have a strictly hyperbolic system where the speeds
of waves of different families are different, we see that after a certain time all
discontinuities will have passed through each other and there will be no more
interactions. Thus the approximation ug can be defined at any (x, t) in the
upper halfplane.

We remark that the above reasoning could also be used on the following
approximation strategy: If Pk is less than 8 for some k , we do not construct
waves of new families at tk , and we define /q to be the first time after tk that
discontinuities existing already before tk collide. This strategy may be more
practical and one can also show (as we will do) that it gives an approximate
weak solution.

3. Results

Corollary 2. If T.V.(uo) is small then

T.V.x(us) + sup \us\ < cT.V.(u0)
x

where c is independent of t and 8.

This corollary is a consequence of Corollary 1, and its proof may be found
in [14, p. 384].
Corollary 3.

\\ug(-, tx) - Ug(-, t2)\\Ll <c\t2-tx\

where c is independent of 8, tx, and t2.
Proof. Let M < oo be the maximum speed at which a wave may propagate.
Thus, if tx < t2 then \ug(x, t2) - Ug(x, tx)\ is bounded by the spatial variation
of Ug(y, tx) over the interval (x-M\t2-tx\) < y < (x + M\t2-tx\). However,
Ug(-, t) is of bounded variation, so that we may write

/oo /-oo   i-x+M\t2-t,\   J
\us(x,t2)-ug(x,tx)\dx = 0(l)        / -7— dxdy.

-oo J-ooJx-M\h-t\\     ay

Here, \dug/dy\ dxdy is a measure of mass T.V.ug(x, t), and by changing the
order of integration we have

/oo \ug(x,t2)-ug(x,tx)\dx = 0(l)M\t2-tx\T.V.ug(x,t)
-oo

<O(l)M\t2-tx\T.V.u0yg(x),

where the last inequality holds by Corollary 1.   □

Now we have that the ug functions satisfy

(3.i) IM-,-)lloo<Ari,
(3.2) T.V.x(ug(-,t))<M2,
(3.3) \\u8(-, tx) - us(-, t2)\\Lt < M3\t2 - h\.

The constants M, are independent of the 8 and the times tx and t2. Using
Helly's theorem as in [14] one can show that (3.1) to (3.3) imply the following
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1132 N. H. RISEBRO

Theorem 3. If(3. 1)—(3.3) hold then a subsequence of the family {ug} converges
in tL'00 . For this subsequence f(ug) —► f(u) in Lxxoc, where u is the limit junc-
tion.

We use this theorem for the sequence of functions {us} as 8 —► 0. Now we
have to check whether the limit is a weak solution to our problem. To this end
we define

/•OO     /*oo /*oo

(3.4)      S+(u,f)=        /    (tj)tu + <t>xf(u))dxdt+        </>(x, 0)u0(x)dx
JO     J—oo J — oo

and
rh    roo

Jr^h(u,fi)=   /    /    (<j)tu + cj>xf(u))dxdt
(3 5} '       °°\    '    ' /"OO poo

+ /     cj>(x, tx)u(x, tx)dx - j    <j>(x, t2)u(x, t2)dx
J — oo J — oo

for all smooth 0 with compact support in Ixlj. We now fix 8 and 0.
Let s, t he consecutive times when discontinuites of Ug collide. If we had
tracked all waves from the Riemann problems in ug(x, s), we could compare
it with an exact solution in the strip [s, t], since the exact solution here would
be a series of noninteracting solutions to Riemann problems. Comparing ug
with this exact solution we would get an "error" estimate, telling us how far
Ug is from being a weak solution. But we cannot do this directly, since we do
not neccesarily know the weak solution in the whole strip (t, s). Therefore we
define vg to be a 8 -approximation to the initial value problem

(3.6) v, + f(v)x = 0,        v(x, s) = us(x, s).
Let to = s. Since discontinuities of vg propagate with finite speed, they will
either collide at some tx < t, or else not collide until /, in which case we define
tx = t. If tx < t then from tx we define vg to be the 8 -approximation to the
same problem with initial values ug(x, tx). Now either the discontinuites of Vg
will either not collide until /, in which case we set t2 = t ,or else collide at some
t2 < t. We can continue in this fashion to obtain a sequence {/,}. We have that
either this sequence is finite and tk = t for some k , or else lim, tj = t. To see
this, let di denote the smallest distance between discontinuities of ug(-, t,).
Note that d( > 0 if /, ^ /. But since discontinuities of vg have finite speed we
have that di < M(tj+X -/,), where M is a bound on the speed of discontinuities.
Thus we see that lim f,- > t. Thus we have filled the interval [/, s] with at most
countably many intervals [/,, ti+x] such that t - s - 5K'/+i - U) > cf. Figure 2.

In the strip [/,, /,+i] we define v(x, t) to be the weak solution of

vt + f(v)x = 0,
v(x, tj) = vs(x, U) = ug(x, tt).

The function v(x, t) can be defined in this strip since the different Riemann
problems only will interact at /,+ i . With these definitions in mind we can state
the following

Lemma 4. For t e [t,, ti+x] we have

(3.7) fX2\v-us\dx = 0(8)(t-tl).
Jx,
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Discontinuity of u / /     \.       ^Discontinuity of v

Figure 2

Proof
rx2 rx2 rx2

(3.8) /    \v-ug\dx< I    \v -vs\dx +       \vs-ug\dx.
J Xi J X\ J X\

For the first term note that v = vg exept when (x, /) is in a rarefaction fan.
In a rarefaction fan the difference \vg-v\ is always less than or equal to 0(8).
If ur, «/ are the states to the right and left of such a fan respectively, then the
integral across the fan will be a sum of integrals across each step of vg . The
number of such steps is 0(\ur - Uj\/8), and the width of each region where
vg differs from v is (/ - tt)0(AX), where AX = \X(vf]) - X(vf+\)\ = 0(8).
Therefore the first term in (3.8) is a sum over all rarefaction fans of vg

^0[^^0(d)(t-ti)0(d).

But this is less than
T.V.(ug(x,tl))(t-ti)0(8).

We have that vg and ug both are step functions with a finite number of steps.
Furthermore they are equal except possibly in a fan emanating from each dis-
continuity in vg(x, tj). Let Xj be in the y'th interval from the left where
vg(x, t) differs from ug(x, t). We label the discontinuities not tracked in ug ,
but tracked in vg , by {rjj}, where | nj \ is the strength of this discontinuity.

/    \vg(x, t) - us(x, 01 dx <22 Mi* ~ ti)\vg(xj, t) - us(xj, 01
Jx< j

(here M is a constant such that M > supu6C \Xn(u) - Xx (u)\, C = convex hull of
{Ran{M(5}})

= M(t - ti)Yi\vs(Xj, t) - u6(Xj, t)\
j

= M(t-tl)olj2\nJ\\.

But by construction of us we have that ^•I'/y'l - ^W and the result fol-
lows.   □
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1134 N. H. RISEBRO

Lemma 5. If we let U, ti+x be as before we have

^-'■+,(ug, fi) = 0(8)((tl+l - U) + (ti+x - U)1).
Proof. Let M > sup{|0x|, |0(|, |0|, \df\} , and let v(x, t) be as before; then

(3.9)

J^"'M(u8,f)\ = \^"tM{Us,f) -jr'»^(v,f)\

= | /        ((ug-v)tj>t + (f(ug)-f(v))(j)xdxdt- j 4>(x, ti+x)(ug - v)dx

<m( \ug-v\dxdt+     \ug-v\dx+ \f(ug) - f(v)\dxdt).

Now
f(us) - fi(v) = df(ud -v) + 02(Ug - v)

and

(3.10) f\f(us) - f(v)\ dx<M f\ug- v\dx + f\02(ug - v)\ dx.

Using (3.10) in (3.9), Lemma 4 on (3.9), and integrating in / will give Lemma
5.    D

Lemma 6. If t and s are as before we have

^'s(ug,f)<0(8)([s-t) + (s-t)2).

Proof. By Lemma 5

S<>s(ug, /) = 0(8) Y,iiti+. - tt) + (tl+x - U)2)

where /, is as before. We have X)(*/+i _ U) = (s — t), which means that the
second term in the sum is less than (s - t)2.   □

Lemma 7.  lim^o^^ ,f) = 0.
Proof. If we let s,■, Sj+X be consecutive times when discontinuities of Ug collide
we have

i
therefore by Lemma 6

(3.11) J^(us , f) = 0(8) E((5,+1 - St) + (si+x - st)2).

We now have ^(^i+i ~ si) ^ T where T is such that supp 0 is contained in
{/ < T} . Therefore the sum in (3.11) is finite, and the lemma follows.   D

Thus ug converges to a weak solution, and we have proved the following
theorem.
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A FRONT TRACKING ALTERNATIVE 1135

Theorem 4. Assume /: R" -> 1" is strictly hyperbolic and genuinely nonlinear
and uo: R —> Rn is such that T.V.x(uq) is sufficiently small. Then there exists
a weak solution u(x, t) to the initial value problem

(3.12) u, + f(u)x = 0,       u(x, 0) = uo(x).
For the solution of the Riemann problem we have that all discontinuities

satisfy the Lax entropy conditions:

(3.13) Xk(ur) < sk < Xk+X(ur),       Xk_x(ut) < sk < Xk(u,)
where sk is the speed of a /c-shock. Since discontinuities of ug, at least
if they have a magnitude larger than 8, almost (in the sense of (3.14) and
(3.15)) satisfy these conditions, one may ask whether discontinuities in the
limit function satisfy (3.13). The next theorem gives a partial answer to this.
If u(x, t) has a discontinuity at (x, t), and there is a neighbourhood N of
(x, t) such that we can find a smooth curve x(s) in N where x(t) - x, and
in N we can define

u+(t) =   lim   u(x,t),        U-(t) =   lim   u(x, t),
x-»x(0+ x-*x(t)~

and m± are continuous in N, and U-(t) ^ u+(t) for t in N, then we say that
the discontinuity at (x, t) is isolated.

Theorem 5. An isolated discontinuity in u = lim^o us moving with a speed s(t)
satisfies (3.13) for some k.
Proof. Assume that for a fixed time t we have an isolated discontinuity in the
limit function u at x moving with a speed 5. Let

U\ =  lim u(x,t),        ur = lim u(x,t).
x—>x~ x—*x+

Since convergence in Lx°c implies pointwise convergence almost everywhere,
we can find sequences {xgjx}, {xgryX}, {xgjy2}, {xgry2}, and {tgyX} and
{^,2} with tSyX < tgy2 such that

tg , k —» t, Xgjyk —> X    , Xgryk —» x    ,

Ug(Xgyiyk , tgyk) —> Uj, Ug(Xgyryk , tgk) —> Mr

as 8 —> 0 for k — 1, 2. Furthermore we may define a paralellepiped £,5 with
corners (xgytyX, txs), (xdyryX, t\), (xgyKy2, tj), and (xSjy2,t}) such that the
diagonals have slope not too different from s, i.e.,

*<5,r,l - Xg j 2 ...  ^ „ ^ XS,!,l -Xgyry2 ,-.'    1 _ ,2 ~ £ W < 5 < 1 _ ,2-+ e^ >
lS      lS lS      l5

for some e(8) that vanishes as 8 —> 0.
We call a discontinuity line in ug an approximate shock wave if it represents

a shock in the solution to the Riemann problem where it originated. Similarly
we call a discontinuity line an approximate rarefaction wave if it represents part
of a rarefaction fan. These are the only kind of discontinuity lines in Ug . Let

mi =   E- '*'   ,
x6,r,k - Xgylyk

where the sum is taken over the approximate rarefaction waves crossing the line
segment tk& x [xgjk , Xgr,k] f°r k= 1, 2. If this is unbounded as 8 -» 0 then
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the limit function u must have a rarefaction wave centered at (x, t) and the
discontinuity would not be isolated here. Thus Mg is bounded as 8 —> 0. Now

\ug,r,k -ugylyk\      zZlappr. rarefaction| + £jappr. shock|
xS,r,k ~Xgylyk    ~ Xgyryk ~ Xgyiyk

_ Mk    E lappr. shock|
XS , r, k ~ Xgyiyk

Since the fraction on the left is unbounded as 8 —> 0, there must be approximate
shocks crossing the line segment tks x [xSjyk , xgyFyk\ for such small 8 .

Since the discontinuity is isolated, it follows that the total strength of all
approximate waves of Ug crossing the left and right sides of Eg must vanish
as 8 -» 0.

We now define a shock line to be a sequence of approximate shock waves
of the same family in ug . Assuming that a shock line has been defined for
t < tn , where {/„} are the collision times of ug , and in the strip /„ < t < tn+x
consists of the approximate shock n. If n does not collide at t„+x then the
shock line continues as n until t„+2. If n collides at tn+x the shock line stops
if the approximate solution of the Riemann problem defined by the collision
of n does not contain an approximate shock wave of the same family as n . If
the approximated solution of this Riemann problem contains an approximate
shock wave of the same family as r\, it continues as that approximate shock
wave. Note that to each shock line there corresponds one family.

It now follows that there must be shock lines in Eg that do not intersect
the left or right side of Eg and that the state to the left of the leftmost of
these must tend to u\ as 8 tends to zero. To see this, label this state V[, and
let the position of this approximated shock line at r£ be y\, then \u/ - v/\ <
I"/ ~ ud, i, k I + \vi - Ug y i y k |. The first of these two terms tends to zero. Between yt
and xg/k , ug only varies over discontinuities that are either approximated
rarefaction waves and therefore arbitrarily small as 8 becomes small, or are
shock lines that leave Eg through the left or right side, and the strength of
these must also be arbitrarily small as 8 tends to zero. Similarly the state to
the right of these shock lines must tend to ur as 8 tends to zero.

Since e(r5) vanishes as 8 —> 0, the family of all shock lines not intersecting
the left or right sides of Eg must be the same, say k, since our system is
strictly hyperbolic. Furthermore the speed of the approximated shock waves
which constitute these shock lines must tend to 5 as 8 —> 0. Any approximate
shock wave of family k and left and right states Vj and vr respectively, will
satisfy the approximate Lax inequalities

(3.14) Xk.l(v,)<s + 0(S)<Xk(vl),
(3.15) Xk(vr) < s + 0(8) < Xk+X(vr),

where 5 is the speed of the approximate shock wave. Now the result follows by
applying (3.14) to the leftmost of the shock lines contained in Eg and (3.15)
to the rightmost,   a

After a certain time, we have that our approximation ug will consist of con-
stant states with discontinuities that are moving apart. This has some similarity
to the solution of a Riemann problem, and we will show that the limit function
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also has such a property. We now let Tg be the last time discontinuities in ug
collide. After Tg , ug will consist of a number of states; {m,}^ separated by
discontinuities moving apart. We define the real states of Ug to be those u,
such that m,_i is connected to m, by a different wave than the one connecting
Ui to mj+i . We label the real states of ug : {Ui}x C {w,}^ . Concerning the
real states of ug we have the following result.

Theorem 6. For sufficiently small 8, let {u~i}x be the real states of ug after Tg .
Then N < n + 1 (where n is the dimension of the system) and there exists some
ui, ur such that

(uL, UR) = [(Uq, ...  , UNI)/(E\, ...  , Bff')], N < N'< n + I ,

where |m, - m,-| < 0(8) for i < N.
If (Uj, Uj+i) is a shock with speed Sj, then (w,, m,+i) is a single discontinuity

moving with speed s~j and |J,- - s(\ < 0(8).
If (Uj, ui+l) is a rarefaction wave, which we call u(s) for s = x/t, then

(Tii,Ui+i) is a series of approximate rarefaction waves {(uij, m,;+,)}^=1 . If
(utj, Uij+l) is separated by a discontinuity moving with speed stj then

\u(sij) - Uij\ < 0(8)    and    \u(sh) - uij+l \ < 0(8).
Proof. We first show that N < n + 1 . By construction of ug we have that the
solution to the Riemann problem (m, , m,+i) consists of at most n + 1 states
{Vj} and that there exists a k such that for j < k , |m, —Vj\ < 0(8), and for
j > k, |m,+i —Vj\ < 0(8). That is, all waves in the Riemann solution are small
exept the A;-wave. Since we have no collisions in ug after Tg , this wave will be
either a single discontinuity or a single approximate rarefaction wave by genuine
nonlinearity, and because (3.14) and (3.15) will hold for an approximate shock
wave. The approximation ug is constructed so that the speed of this /c-wave
will be close to the speed of the approximate wave; for a shock the speeds will
be the same, for a rarefaction the speed of the head or tail of the wave may
differ from the correct speed by at most 0(8). For sufficiently small 8 we have
that N < n + 1 since I, < si+x.

To prove the second statement we use induction on Af; the number of real
states in ug after Tg . In case N = 2 we have just seen that the theorem holds.
Assume it to be true for yV. By "near" we will in the following mean 0(8).
By construction of us and what was said in the last paragraph we have states
{Vi, vr} such that (v/, vr) is near (Un , Un+\) , and that the Riemann problem
(vi, vr) is solved by a y-wave, where j > N - 1 . By the induction hypothesis,
we also have states (mi , ... , «#) near (mi , ... ,un) such that the Riemann
problem (mi , «#) is solved by (Mi, ... , «#). We now have states m^ , «/,
and vr, such that m# is near v\, and vi is connected to vr by a y-wave.
Assume that we can find a state m^+i near vr, and that u^ is connected to
un+\ by a y'-wave. Then

\UN+X - UN+X | < \UN+X -Vr\ + \vr- UN+X \ < 20(8) ,

and the induction step will be completed.
To show the existence of such a state we consider two cases: First we assume

that the y'-wave is a rarefaction wave. In this case vr lies on an orbit starting
from v/ of the vector field of the right eigenvector ry. Orbits starting from
nearby points will stay close to the orbit starting from vt for small rarefaction
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strengths. Such a state can therefore be found if the wave is sufficiently weak.
This will be the case if T.V.(uo) is sufficiently small.

If the y'-wave is a shock, then V/, vr will satisfy the Hugoniot relation

(3.16) S](Vr-Vl) = f(Vr)-fi(Vl).
By continuity of /, we can find a state u^+i near vr, and a speed s^ near
Sj, such that (3.16) holds for the triplet {un , "v+i, $n} • By the continuity
of the eigenvalues of df this triplet will also satisfy (3.13). The proof of the
statement for rarefaction waves is similar.   □

There is an immediate corollary of this:

Corollary 4. Let u = lim^^oM<5. Hmx^-00uo(x) = Ul, and limx^oauo(x) —
ur. As t —> oo, u will consist of a finite number of constant states {M,}f»
separated by rarefaction waves or shocks, where N < n + 1. These states are
the states in the solution to the Riemann problem (ul, ur) , and they will be
separated by the same waves as the corresponding states in the solution to the
Riemann problem.
Proof. By the proof of the preceding theorem, we can define a function
Tig(x, t) for t > Tg such that Tig consists of N constant states separated
by shocks or rarefaction waves. Let || • ||i denote the LX°C(R) norm. As 8 —> 0
the difference \\ug - w,s||i —> 0. Therefore

||W" "cSlll < \\U-Ug\\x + \\Ug-Ug\\x.
Here both terms on the right tend to zero as 8 —> 0. Note that u does not
necessarily become equal to some Jig in finite time.   □

We remark that the equivalent of Corollary 4 was shown to hold for the
Glimm construction by Liu in [15].
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