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We use a front-tracking method to simulate solidification with volume change of a droplet on a fixed cooling plate. The 

problem includes temporal evolution of three interfaces, i.e., solid–liquid, solid–air, and liquid–air, that are explicitly 

tracked under the assumption of axisymmetry. The solid–liquid interface is propagated with a normal velocity that is 

calculated from the normal temperature gradient across the front and the latent heat. The liquid–air front is advected 

by the velocity interpolated from nearest bulk fluid flow velocities. Accordingly, the evolution of the solid–air front is 

simply the temporal imprint of the triple point at which simple and straightforward conditions are imposed. The govern-

ing Navier–Stokes equations are solved for the whole domain, setting the velocities in the solid phase to zero and with 

the non-slip condition on the solid–liquid interface. Computational results are compared with exact solutions for two-

dimensional Stefan problems and with corresponding experimental results, and show good agreement.

Introduction

A solidi�cation problem in which there is the presence 
of solid, liquid and gas appears in many methods of grow-
ing crystals from melts such as Czochralski crystal growth 
(Porrini, 2001), �oat-zone processing (Markvart, 2000), 
laser welding (Booth, 2004) and spraying (Minemoto and 
Takakura, 2007). �e three phases meet at the tri-junction, 
and the solid phase comes directly from the melt. �e evolu-
tion of the solidi�cation interface, i.e., the interface separat-
ing solid and liquid, and the tri-junction conditions deter-
mine the form of the solidi�ed product. In addition, density 
di�erence between solid and liquid in conjunction with the 
tri-junction e�ect can produce a curious shape (Ajaev and 
Davis, 2004).

Recently, a drop solidifying on a cold plate, which in-
cludes the above-mentioned aspects, has been paid much 
attention to. Experimental studies can be found in Anderson 
et al. (1996), Satunkin (2003) and Hu et al. (2010). However, 
direct numerical simulations of this problem are still lack-
ing. Schultz et al. (2001) used a boundary integral method 
to investigate a drop solidifying on a cold plate (Anderson et 

al., 1996), but neglecting the gravity e�ect. A similar meth-
od with �xed contact angles has been used by Ajaev and 
Davis (2004) to consider the e�ect of the density di�erence 
and contact angles on the shape of the solidi�ed drop under 

zero gravity. Virozub et al. (2008) included the gravity and 
surface tension e�ects to the problem. �e Young–Laplace 
equation in conjunction with a constant growth angle was 
numerically solved to �nd the position of the liquid–gas 
front. In another work (Pasandideh-Fard et al., 2002), the 
volume of �uid combined with the enthalpy method has 
been used to investigate the solidi�cation process of a drop. 
However, volume change was not accounted for.

In this paper, we deal with the solidi�cation process, 
which includes volume change and the tri-junction and 
gravity e�ects. We base on the front-tracking/�nite di�er-
ence method for dendritic solidi�cation (Al-Rawahi and 
Tryggvason, 2002) and impose simple and straightforward 
tri-junction conditions to simulate a drop solidifying on a 
cold plate.

1.　Mathematical Formulation and Numerical 

Method

Figure 1(a) shows the investigated problem. An axisym-
metric drop contacts with a cold plate at cold temperature Tc 
and then solidi�es from the bottom. Initially, the liquid drop 
surrounded by ambient (gas) at temperature Tg is at hot 
temperature Th that is greater than or equal to its melting 
temperature Tm. During solidi�cation, the volume change 
and the tri-junction play an important role in the ultimate 
shape of the drop. In addition, in the case of water, there ex-
ists evaporation from the freezing drop, which generates a 
condensation halo around the drop (Jung et al., 2012). For-
mation of evaporation and halos also a�ects the solidi�ca-
tion process. However, in this paper we neglect the e�ect of 

Received on July 18, 2013; accepted on September 7, 2013
DOI: 10.1252/jcej.13we169
Correspondence concerning this article should be addressed to T. V. Vu 
(E-mail address: vvt_gago@yahoo.com).

Research Paper



Vol. 46 No. 11 2013 727

the evaporation and condensation halo. �e focus points are 
volume change caused by density di�erence between solid 
and liquid, and e�ect of the tri-junction.

Here, we assume that the �uids are incompressible, im-
miscible and Newtonian. We treat all phases as one �uid 
with variable properties such as density ρ, viscosity μ, 
thermal conductivity k and heat capacity Cp. Accordingly, 
the governing equations are given as Eqs. (1) to (3). �e heat 
source at the solidi�cation front q̇f is given as Eq. (4).
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Equation (3) accounts for volume change at the solidi�ca-
tion front due to density di�erence between solid and liquid.

We use here a front-tracking/�nite di�erence method 
(Esmaeeli and Tryggvason, 2004) with modi�cation to ac-
count for the presence of three phases, phase change and 
volume change. �e three phases and their properties are 
speci�ed using indicator functions that are determined from 
known positions of the interface points: the points of the 
solidi�cation and solid–gas fronts are used to construct the 
indicator Is (Is=0 in solid and Is=1 in liquid and gas) while 
the indicator Il (Il=0 in liquid and solid and Il=1 in gas) is 
built from the points on the solid–gas and liquid–gas inter-
faces. Accordingly, the values of the material property �elds 
at every location are then given by

− −= + +g l l l s s s(1 )[ (1 )  ] I I I Iφ φ φ φ   (5)

Here, ϕ stands for ρ, μ, Cp, or k. Is is also used to set velocity 

�eld in the solid phase to zero. A detailed description of how 
to solve the above governing equations can be found in Es-
maeeli and Tryggvason (2004). Here we just describe how to 
incorporate conditions at the tri-junction, i.e., triple point in 
2D view as shown in Figure 1(b). We have three types of in-
terfaces represented by connected elements that move on a 
stationary grid. �e solidi�cation front propagates with the 
normal velocity Vn, Vn= q̇f/(ρsLh) while the liquid–gas front 
is advected by the velocity interpolated from the �xed grid 
velocities. At the triple point, we correct the position of this 
point by applying a constant growth angle (Virozub et al., 
2008). We do this by introducing an extended element at the 
end of each interface. We then estimate the tangent vector 
of each interface at the triple point by �tting a third-order 
polynomial through the triple point, the other point on the 
extended element and two adjacent points on the nearest 
elements. �ereby, the growth angle is de�ned as ϕgr=θs−θl 
where θs and θl are the angles between the tangent to the 
solid–air interface and the horizontal and between the tan-
gent to the liquid–air interface and the horizontal. We ad-
just the position of the triple point to satisfy the prescribed 
growth angle using the secant method.

2.　Numerical Parameters

We choose the wetting radius R as a scaling length, and 
τc=ρlClR

2/kl as the characteristic time scale. �e character-
istic velocity scale is thus not independent and is taken to 
be Uc=R/τ. With these above choices, it is possible to show 
that the dynamics of the problem is governed by the follow-
ing dimensionless parameters: Prandtl number Pr=Cpμl/kl; 
Stefan number St=(Tm−Tc)/Lh; Bond number Bo=ρlgR2/σ; 
Weber number We=ρlUc

2R/σ; density ratios ρsl=ρs/ρl and 
ρgl=ρg/ρl viscosity ratios μsl=μs/μl and μgl=μg/μl; thermal 
conductivity ratios ksl=ks/kl and kgl=kg/kl; heat capacity ra-
tios Cpsl=Cps/Cpl and Cpgl=Cpg/Cpl. �e temperature is non-
dimensionalized as Θ=(T−Tc)/(Th−Tc). �e non-dimen-
sional time is τ=t/τc.

Most of the experimental studies mentioned previously 

Fig. 1 A drop solidifying on a cold plate: (a) computational domain and (b) triple point treatment. In (b), solid elements represent actual fronts and 
dash elements are extended ones to account for calculations of contact angles and surface tension force
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concern the solid–liquid–gas systems. �e density and vis-
cosity ratios of liquids to gas are very high. However, our 
simulation results presented in this paper are limited to 
cases of moderate ratios of viscosity and density since, at 
high density ratios with high interfacial tension, typical of 
liquid–gas systems, high and irregular velocities appearing 
near the interfaces destroy the solution (Tryggvason et al., 
2011). In addition, high density and viscosity ratios result 
in a high computational cost. However, as shown below, our 
approximations for the density and viscosity ratios as well as 
for ratios of thermal properties are reasonable.

3.　Results and Comparisons

We �rst compare our computational results with analyti-
cal solutions for a 2D Stefan problem (Carslaw and Jaeger, 
1986) in which a line heat source Q causes a circular solid 
seed at the center to evolve in the direction of increasing 
the radius of the seed. Simulations are performed for this 
2D problem set at St=Cps/(ksLh)=0.1, 1, and 10. �e initial 
front location and temperature used for simulations are 
found from the exact solutions at the moment t=t0 when 
a small, circular solid seed with a radius r=0.1 has formed. 
Q is set at 10. Figure 2 shows that the computational results 
agree well with the exact solutions at di�erent Stefan num-
bers.

To verify the method, we investigate a case of drop so-
lidi�cation with Pr=0.02, St=0.1, Bo=0, We=1, ksl=1, 
kgl=0.01, Cpsl=Cpgl=1, μsl=5, μgl=0.1, ρsl=1, ρgl=0.1 and 
ϕgr=0°. Since there is no volume change with a zero growth 
angle, the shape of the solidi�ed drop must be the same 
as that of the initial liquid drop (Ajaev and Davis, 2004). 
Figure 3 con�rms this.

Next, we turn to the cases in which there exists volume 
change in conjunction with constant growth angles. In all 
cases presented below, at the beginning of computation τ= 
0, a thin solid layer at Θ=0 has formed at the cold plate, as 
shown in Figures 5 to 7.

Figure 4 shows the solidi�cation process of a water drop 
on a cold plate (Hu et al., 2010) with Pr=7.25, St=0.025, 
Bo=0.025, We=5×10−5, ksl=3.8, kgl=0.04, Cpsl=0.5, 
Cpgl=0.24, μsl=5, μgl=0.05, ρsl=0.9, ρgl=0.05, and ϕgr=0°. 
�e liquid drop initially has a spherical cap. During the 
freezing process, heat in the liquid phase is released to the 
gas and solid phase, leading to a decrease in the tempera-
ture. �e velocity �eld (on the right of Figure 4) indicates 

that the drop tends to expand in the vertical direction rather 
than in the horizontal direction (Enríquez et al., 2012). In 
addition, the velocity �eld becomes stronger as the liquid 
part decreases. �is causes heat in the liquid phase to be 
transferred faster to the gas phase during the last stages of 
solidi�cation. Detailed evolution of the solidi�cation front 
is shown in Figure 5(a) with a comparison with the ex-
perimental drop shape reported in Hu et al. (2010) (Figure 

5(b)). Because of di�erent density of the solid and liquid 
phases, the shape of the solidi�ed drop is profoundly di�er-

Fig. 2 Comparisons with exact solutions of Carslaw and Jaeger (1986)

Fig. 3 Method veri�cation: dash and solid lines represent solidi�ca-
tion and solid–gas fronts; circles represent the initial liquid–
gas front. �e solidi�cation front is plotted every Δτ=0.67

Fig. 4 Solidi�cation process of a water drop: �e le� showing the 
temperature �eld and the right showing the velocity �eld nor-
malized by Uc. Yellow lines on the le� represent the tempera-
ture contours
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ent from the liquid one. Figure 5(a) also indicates that the 
growth rate is high during the initial stages of solidi�cation 
because of a large temperature gradient. When the solidi-
�cation front goes further, the solidi�cation rate gradually 
decreases (Ajaev and Davis, 2004). However, when the drop 
has nearly solidi�ed, the growth rate again increases since 
the interface area shrinks to zero (Schultz et al., 2001). �e 
comparison with the experimental solidi�ed drop shape 
shows good agreement.

Figure 6(a) shows the solidi�cation process of a drop 
with Pr=0.013, St=0.116, Bo=1.32, We=0.05, ksl=0.5, 
kgl=0.01, Cpsl=Cpgl=1, μsl=5, μgl=0.05, ρsl=0.91, and 
ρgl=0.05. �ese parameters except for We correspond to sil-
icon (Si) (Satunkin, 2003). �e growth angle ϕgr is set to 12° 
according to the experiment of Satunkin (2003). Initially, the 
liquid–gas interface is spherical, and the liquid phase is at 
Th=Tm. During solidi�cation, the temperature in the liquid 
phase keeps at the melting temperature. Good agreement 
between computational and experimental solidi�ed drop 
shape has been found as shown in Figure 6(b).

Figure 7(a) shows the solidi�cation process of a drop 
with Pr=0.0255, St=0.278, Bo=0.6, We=0.008, ksl=0.39, 
kgl=0.01, Cpsl=0.77, Cpgl=3.7, μsl=5, μgl=0.03, ρsl=0.8, 
and ρgl=0.05. �ese parameters except for We correspond 
to indium antimonide (InSb) (Satunkin, 2003). Initially, 
the liquid phase has a spherical cap. Satunkin (2003) re-
ported that the growth angle increases, in the range of 
25 to 30°, with a decrease in the wetting radius. And this 
variable growth angle could be easily taken into account in 
our codes. However, ϕgr here is �xed at 25°, and reasonable 
agreement between the computational and experimental so-
lidi�ed drop shape is found as shown in Figure 7(b).

Fig. 5 Solidi�cation of a water drop: (a) Evolution of the solidi�ca-
tion front (dash line plotted every Δτ=0.0295); and (b) a com-
parison with the experimental solidi�ed drop shape reported 
in Hu et al. (2010). In (a), the dot line represents the initial 
liquid–gas front

Fig. 6 Solidi�cation of a Si drop. (a) �e le� shows the temperature 
contours at τ=1.2, and the right shows evolution of the solidi-
�cation front (dash line plotted every Δτ=0.4). (b) A compari-
son with the experimental solidi�ed drop shape reported in 
Satunkin (2003). In (a), the dot line on the right represents the 
initial liquid–gas front

Fig. 7 Solidi�cation of an InSb drop. (a) �e le� shows the drop 
states at τ=2.96 and the right shows evolution of the solidi�-
cation front (dash plotted every Δτ=0.592). (b) A compari-
son with the experimental solidi�ed drop shape reported in 
Satunkin (2003). In (a), the dot line on the right represents the 
initial liquid–gas front
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4.　Discussion

During the solidi�cation, the liquid phase is con�ned by 
balance of the interfacial tension and the gravitational forc-
es, while the volume change and the solidi�ed drop shape 
are mainly caused by both the di�erence between density 
of solid and liquid and the growth angle. In the case of zero 
growth angle, e.g. Figures 4 and 5, a cone formed near the 
axis of symmetry is mainly due to the density ratio (Ander-
son et al., 1996). Figures 5 and 7 show that the increasing 
the solid–liquid density ratio increases the corner angle at 
the top of the solidi�ed drop (Ajaev and Davis, 2004). �is 
angle also increases as the growth angle decreases, see Fig-
ures 5–7.

�e main focus in this paper is to demonstrate the capa-
bility of the front-tracking method for the problems includ-
ing the volume change and the tri-junction e�ect. We just 
reproduced, with some assumptions, the solidi�ed drop 
shape observed in the related experiments. Even though 
good agreement has been found, there have been still many 
unresolved issues. For instance, how the non-dimensional 
parameters a�ect the solidi�ed drop shape as well as the 
solidi�cation rate. In addition, more physics such as Maran-
goni e�ect, evaporation and formation of the condensation 
halo should be added to the method to provide more accu-
rate solutions.

Conclusions

We have presented a front-tracking method for simula-
tion of the drop solidi�cation with volume change. �e 
solidi�cation and liquid–gas interfaces are updated in dif-
ferent ways while the evolution of the solid–gas interface is 
determined by the triple point conditions. At this point we 
applied a constant growth angle. �e computational method 
was applied to simulate the solidi�cation process of water, Si 
and InSb drops. A�er solidi�cation, a cusp forms near the 
axis of symmetry. Comparisons with corresponding experi-
ments show that the method yielded the reasonably accurate 
solidi�ed drop shape.
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Nomenclature

Cp =  speci�c heat capacity [J/(kg K)]

g =  gravitational acceleration [m/s2]

I =  indicator function [—]

k =  thermal conductivity [W/(m K)]

Lh =  latent heat of fusion [J/kg]

n =  unit normal vector [—]

p =  pressure [N/m2]

q =  heat �ux [W/m2]

R =  wetting radius [m]

S =  surface [m2]

T =  temperature [K]

t =  time [s]

Uc =  characteristic velocity [m/s]

u =  velocity vector [m/s]

Vn =  solidi�cation rate [m/s]

x =  position vector [m]

δ =  delta function [m−3]

ϕgr =  growth angle [°]

κ =  curvature [m−1]

μ =  viscosity [Pa s]

θ =  contact angle [°]

ρ =  density [kg/m−3]

σ =  interfacial coe�cient [N/m]

τ =  dimensionless time [—]

Θ =  dimensionless temperature [—]

‹Subscripts›

c =  cold

f =  interface

g =  gas, air

h =  hot

l =  liquid

m =  melting

s =  solid

T =  transpose
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