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Abstract

We settle a long standing open problem which has pursued a full characterization of completeness of
(potentially randomized) finite functions for 2-party computation that is secure against active adversaries.
Since the first such complete function was discovered [Kilian, FOCS 1988], the question of which finite
2-party functions are complete has been studied extensively, leading to characterization in many special
cases. In this work, we completely settle this problem.

We provide a polynomial time algorithm to test whether a 2-party finite secure function evaluation
(SFE) functionality (possibly randomized) is complete or not. The main tools in our solution include:

• A formal linear algebraic notion of redundancy in a general 2-party randomized function.

• A notion of statistically testable games. A kind of interactive proof in the information-theoretic
setting where both parties are computationally unbounded but differ in their knowledge of a secret.

• An extension of the (weak) converse of Shannon’s channel coding theorem, where an adversary
can adaptively choose the channel based on it view.

We show that any function f , if complete, can implement any (randomized) circuit C using only
O(|C|+ κ) calls to f , where κ is the statistical security parameter. In particular, for any two-party func-
tionality g, this establishes a universal notion of its quantitative “cryptographic complexity” independent
of the setup and has close connections to circuit complexity.
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1 Introduction

Understanding the complexity of functions is central to theoretical computer science. While the most studied
notion of complexity in this literature is that of computational complexity, there have also been other impor-
tant aspects explored, most notably, communication complexity [Yao79]. Another aspect of complexity of
a (distributed) function is its cryptographic complexity, which seeks to understand the cryptographic utility
of a function, stemming from how it hides and reveals information. While it is only recently that the term
has been explicitly used, cryptographic complexity theory has been vigorously pursued at least since Kilian
introduced the notion of completeness of cryptographic primitives [Kil88] a quarter century ago.

Completeness has been the first and most important question of cryptographic complexity: what proper-
ties of a function let all other cryptographic tasks (in the context of secure computation) be reduced to it. This
question has been asked and answered several times [Kil88, CK88, Kil91, Kil00, CMW04, KM11, MPR12]
each time for a different class of functions, or restricted to different kinds of reductions (see Figure 1 for a
summary of the state of the art). These works produced several exciting ideas and advances, and brought
together concepts from different fields. For instance, [Kil00] used the Nash equilibrium in a zero-sum game
defined using the function to obtain a secure protocol; earlier [CK88] identified the binary symmetric chan-
nel (noisy channel) as a complete function, paving the way to a fruitful and successful connection with
information-theory literature.

However, these works left open what is arguably the hardest part of the characterization: completeness
of randomized functions under reductions that are secure against an active adversary (see Figure 1). Indeed,
even with a (usually simplifying) restriction that only one of the two parties receives an output from the
function, it was not known which randomized functions are complete. In this work, we finally provide
a full characterization of completeness of general1 2-party functions. This work brings to close this rich
line of investigation, but also introduces several new ideas and notions, and poses new questions regarding
cryptographic complexity.

Prior to our work, the only completeness results known for randomized functions against active adver-
saries were for the very restricted case of channels [CMW04], i.e. randomized functions that only take input
from one party, and deliver the output to the other. Thus, in particular, before our work, no completeness
characterization results against active adversaries were known for any randomized function classes that take
input from both parties.

Also, along the way to our main construction, we generalize a result in another line of work, on black-
box protocol constructions [IKLP06, Hai08, IPS08, CDMW09]. We give a black-box transformation from
a passive-secure OT protocol in a hybrid setting (wherein the protocol has access to an ideal functionality)
to a UC-secure OT protocol in the same hybrid setting, with access to the commitment functionality.2 Our
transformation relativizes with respect to any ideal functionality, as long as that functionality is “redun-
dancy free” (see later). Though our focus is on information-theoretic security, we note that by considering
ideal functionalities that are not information-theoretically complete, our transformation implies black-box
equivalence of related computational assumptions.

1By a general function, we mean one without any restrictions on which parties have inputs and which parties have outputs.
Earlier work on characterizing randomized functions considered only “symmetric” (both parties get same output) and “asymmetric”
(only one party gets any output) functions. Beyond this, only specific examples were known, like correlated random variables
considered by Beaver [Bea95].

2It is interesting to note that, unlike in many other settings, a black-box transformation in the plain model does not imply a
transformation in a hybrid model. That is, there is no analogue of universal composition for black-box protocol compilation.
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Passive-Completeness Active-Completeness
Example Characterization Example Characterization

Deterministic
OT: Symmetric: [Kil91] OT: [Kil88] Symmetric: [Kil91]
[GV87, HM86] Asymmetric: [BMM99] Asymmetric: [Kil00]

General: [KM11] General: [KM11]

Randomized
Rabin-OT: Symmetric: [Kil00] Rabin-OT: Channels: [CMW04]
[Cré87] Asymmetric: [Kil00] [Cré87] Symmetric/Asymmetric/General: Open

General: [MPR12] Settled in this paper

Figure 1 Summary of Completeness Characterization Results.

Finally, our tools for analysis are novel in this line of work.

In particular, we introduce the notion of statistically testable games, which is a kind of interactive proof
in the information-theoretic setting where both parties can be computationally unbounded, but differ in their
knowledge of some secret. We discuss these in more detail in Section 1.2 and in subsequent sections.

We also formulate and prove a new converse of Shannon’s Channel Coding theorem to obtain a hiding
property from a “channel.” This is perhaps an unusual (but in hindsight, natural) use of a converse of
the channel coding theorem, which was originally used to establish the optimality of the channel coding
theorem.

1.1 Our Results

We provide the first algorithmic characterization of all finite 2-party (potentially randomized) functions that
are complete for secure function evaluation against active adversaries: Namely, our results provide the first
explicit algorithm (see Figure 3) that can analyze any given (randomized) function f , and output whether or
not f is complete against active adversaries.

The algorithm has two steps: finding what we call the “core” of a given function f and then checking if
it is “simple” or not: f is complete if and only if its core is not simple.

We now provide a high-level intuitive explanation of our algorithmic characterization works, by con-
sidering some easy and well-known examples. This will help in understanding our exact characterization,
which is somewhat more involved since it covers general randomized functions.

The core of f is computed by removing “redundant” parts of the function f . To develop some intuition
for this, consider the one-sided OR function which takes two bits from Alice and Bob and outputs the logical
OR of these two bits to only Bob. This function is not complete against active adversaries, and in fact is
trivial: the reason is that a corrupt Bob can always choose his input to be “0” – and by doing so, it can
always learn Alice’s input, without Alice detecting this. (Thus, even a trivial protocol in which Alice sends
her bit to Bob is indeed secure against active adversaries, since if Bob is corrupt, he could have learned
Alice’s input even in the ideal world.) Because of this, we say that Bob’s input “1” is redundant from the
adversary’s point of view: the adversary is always better off using the input “0”.

When extended to the setting of randomized functions, redundancy becomes more subtle. For instance,
an input can become redundant because instead of using that input, an adversary could use a distribution over
other inputs, without being detected. Another form of redundancy that appears for randomized functions is
that of redundant outputs (for the same input). As an example, suppose in the above example, when Bob’s
input is 0, if Alice’s input is 0 then he receives 0, but if her input is 1, he receives the output symbol α

2



with probability 3/4 and the symbol β with probability 1/4. Here, we observe that the two outcomes α and
β give Bob the same information about Alice’s input, and could be merged into a single outcome. More
generally, if two possible outputs that the adversary can obtain for the same input have identical conditional
distributions for the other party’s input-output pair, then the distinction between these two output values is
redundant.

We provide a novel formal definition of redundancy that fully captures both these forms of redundancy:
(1) it identifies inputs that are useless for the adversary; and (2) it identifies if the output can be compressed
to remove aspects of the output that are useless for the adversary’s goal of gaining information about the
honest party’s inputs. While the above intuition is useful, it is not exactly the motivation behind our formal
definition. The formal definition balances the following two requirements on redundancy:

• Adding or removing redundancy does not change a function’s complexity (as far as security against
active corruption alone is concerned): in particular, f is complete if and only if its core is complete.

• A redundancy free function removes the possibility for a party to freely deviate from its interaction
with a functionality without the rest of the system (the environment and the other party) detecting any
difference.

The formal definition (based on Equation 1) is linear algebraic, inspired by simulatability considerations,
and seemingly more general; but as will be discussed in Section 1.2 and later, this definition coincides with
exactly the above two forms of redundancies (Lemma 1 and Lemma 2). An explicit algorithm for removing
redundancy and finding the “core” is given in Figure 4 in Appendix A.2.

The second phase of our algorithm determines whether the core of f is simple, a notion defined earlier
by [MPR12] generalizing Kilian’s condition for passive completeness [Kil00]. Informally, a function g
is simple if it preserves the independence of views. To develop intuition for this, consider a common
randomness function that ignores the inputs of the two parties and simply outputs a uniform independent
random bit to both parties. This function is intuitively useless because, at least in the passive-security setting,
this function can be trivially realized by one party sampling this bit, and sending it to the other party. The
formal notion of a simple function generalizes this to arbitrary randomized functions, by ensuring that if the
parties start with independent inputs, then conditioned on the “common information” present after function
evaluation, the views of the two players remain independent of each other (see Section 5 for details). A
natural explicit algorithm for determining whether a function is simple was already given by [MPR12],
which we use here.

Beyond the basic feasibility result, we also show that secure evaluation of any finite function g to a
complete finite function f can be carried out, asymptotically, at “constant rate.” That is, n copies of g can be
evaluated with access toO(n+κ) copies of f , and in fact, onlyO(n+κ) communication, overall. Here κ is
a statistical security parameter; that is, the error in security (simulation error) is negligible in κ. In fact, the
total amount of communication in the protocol (including the interaction with copies of f ) is also bounded
by O(n+ κ).

This leads to our main theorem:

Theorem 1. A finite 2-party function is UC-complete (or equivalently, standalone-complete) against active
adversaries if and only if its core is not simple. Further, if f is such a function, n copies of any finite 2-party
function can be securely evaluated by a protocol in f -hybrid with communication complexity O(n + κ),
where κ is the security parameter.

As an aside, we remark that the protocols we obtain for showing completeness are UC-secure as well
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as passive-secure. Thus our results do not change if instead of UC-security against active adversaries, we
consider a stronger notion which requires a protocol to be secure against active and passive adversaries (with
simulation by active and passive simulators, respectively).

Connections to Circuit Complexity. An interesting measure of complexity of a function g (modeled as a
2-party function) is its “OT complexity” – the number of (1 out of 2, bit) OT instances needed for securely
evaluating it.3 As sketched below, the OT complexity of a function is closely related to its circuit complexity
and may provide an approach to proving explicit circuit lowerbouds. Our results show that instead of
OT complexity, one could consider f -complexity, for any f whose core is not simple. This establishes
“cryptographic complexity” as a fundamental complexity measure of (2-party) functions, independent of
which complete finite 2-party function is used to securely realize it, just the same way circuit complexity is
independent of which specific set of universal finite gates are used to implement it.

Circuit complexity and OT complexity are closely related to each other as follows. By a simple protocol
due to [GMW87, GV87, HM86], we know that the OT complexity of a function g (defined with respect
to passive security) is O(C(g)), where C(g) stands for the circuit complexity of g. This means that a
super-linear lowerbound for OT complexity of g gives a super-linear lowerbound on C(g). Of course, this
only shows that it is a hard problem to lowerbound OT complexity. But interestingly, this connection does
open up a new direction of approaching circuit complexity lowerbounds: the fact that most functions have
exponential circuit complexity is an easy consequence of a counting argument due to Shannon; but for OT
complexity, even such an existential lowerbound is not known. Resolving this could be an easier problem
than finding explicit circuit lowerbounds, yet could lead to new insights to proving explicit OT complexity
and circuit complexity lowerbounds.

The same argument applies for OT complexity defined with respect to active adversaries as well, due to
the result of [IPS08]. Note that it would be easier to lowerbound OT complexity when it is defined this way,
than when defined with respect to passive adversaries. The relevance of our result is that instead of OT, one
can consider any 2-party function f whose core is not simple. As we show that OT can be reduced to any
such function at a constant rate, a super-linear lowerbound on (amortized) f -complexity will indeed translate
to a super-linear lowerbound on circuit complexity. We discuss this more in our conclusion (Section 6) and
leave it as an important direction to study.

Recently Beimel et al. [BIKK13] have shown that the OT-complexity of random functions is signif-
icantly lower than their (AND) circuit complexity, but still exponential in the input length, in the worst
case.

Related Work. We briefly summarize the results on completeness from prior work (also refer to Figure 1).
The function oblivious transfer (OT) was identified independently by Wiesner and Rabin [Rab81, Wie83].
Brassard et al. [BCR86] showed that various flavors of OT can be reduced to each other with respect to secu-
rity against active adversaries. In a seminal work, Kilian identified OT as the first active-complete function
[Kil88]. Prior to this Goldreich and Vainish, and independently Micali and Haber, showed that OT is passive-
complete [HM86, GV87]. Crépeau and Kilian then showed that the noisy channel is also active-complete
[CK88]. The first characterization of completeness appeared in [Kil91] where it was shown that among de-
terministic “symmetric” functions (in which both parties get the same output) a function f is active-complete

3One may also define OT complexity to be the total amount of communication (possibly amortized) needed for securely evalu-
ating g, in the OT-hybrid model.
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if and only if there is an “OR minor” in the matrix representing f . Beimel, Malkin and Micali showed that
among “asymmetric” functions (in which only one party gets the output), a function if passive-complete if
and only if it is not “trivial” [BMM99]. ([BMM99] also concerned itself with the computational setting and
asked cryptographic complexity questions regarding computational assumptions.) Kilian vastly generalized
this by giving several completeness characterizations: active-complete deterministic asymmetric functions,
passive-complete symmetric functions and passive-complete asymmetric functions [Kil00]. Kilian’s result
for active-completeness was extended in two different directions by subsequent work: Crépeau, Morozov
and Wolf [CMW04] considered “channel functions” which are randomized asymmetric functions (only one
party has output), but with the additional restriction that only one party has input; Kraschewski and Müller-
Quade [KM11] considered functions in which both parties can have inputs and outputs, but restricted to
deterministic functions.

Kilian’s result for passive-completeness was extended to all functions in a recent work [MPR12], which
also presented a unification of all the prior characterizations and posed the question of completing the char-
acterization. The full characterization we obtain matches the unified conjecture from [MPR12].

A related, but different line of work investigated secure computability and completeness for multi-
party computation (with more than 2 parties) (e.g., [CCD88, BGW88, RB89, KMO94, KKMO00, FM00,
FGMO05]). We restrict ourselves to 2-party functions in this work. Another direction of research considers
whether a short protocol for f (instead of a black-box implementing f ) is complete or not [LOZ12].

1.2 Technical Overview

An important ingredient of our result is a combinatorial/linear-algebraic characterization of “redundancy”
in a general 2-party function. The importance of redundancy is two fold:

– Any function f is “equivalent” (or weakly isomorphic, as defined in [MPR12]) to a “core” function f̂
which is redundancy free, so that f is complete against active adversaries if and only if f̂ is. Thus it
is enough to characterize completeness for redundancy free functions.

– Our various protocols rely on being given access to a redundancy free function. Redundancy makes it
possible for an adversary to deviate from a prescribed interaction with a function without any chance
of being detected. Thus the statistical checks used to enforce that the adversary does not deviate from
its behavior crucially rely on the protocol using only redundancy free functions.

While redundancy of special classes of 2-party functions have appeared in the literature previously, it
turns out that for general 2-party functions, the nature of redundancy is significantly more intricate. Recall
that we discussed redundancy informally by considering an adversary that tries to learn about the other
party’s input-output pair: any input it can avoid, and distinction between outputs (for the same input) that
provide it with identical information are both redundant. However, the role of redundancy in showing
completeness is somewhat different: redundancy in a function makes it hard (if not impossible) to use it
in a protocol, as it allows an active adversary to deviate from behavior prescribed by a protocol, with no
chance of being caught. Possible deviation includes replacing its prescribed input to the function by a
probabilistically chosen input, and probabilistically altering the output it receives from the function before
using it in the protocol, at the same time. The goal of this deviation is to minimize detectability by the
other party (and the environment). Our formal definition of redundancy uses this point of view. We define
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irredundancy quantitatively (Definition 1) as a lowerbound on the ratio of the detection advantage to the
extent of deviation (“irredundancy = detection/deviation”).

The first step in our characterization is to bridge the gap between these two formulations of redundancy.
While the definition of irredundancy is what allows us to use a redundancy-free function in our protocols,
to find the core of a function, we rely on the formulation in terms of redundancy of individual inputs – we
shall reduce redundancy one input or output at a time, until we obtain a redundancy free function. Clearly
when redundancy is present, irredundancy would be 0 (i.e., can deviate without being detected); but we
show that conversely, when irredundancy is 0, then one of the two forms of redundancy must be present. We
stress that a priori, it is not at all obvious that irredundancy cannot be 0 even if there is no redundancy (i.e.,
detection/deviation could approach 0 by a sequence of deviations that are smaller and smaller, achieving
even smaller detectability). We provide a non-trivial linear algebraic analysis of irredundancy and show that
this is not the case (Lemma 3).

Simple Function. Following [MPR12], we define a simple function, in Section 5. First, we present a
combinatorial characterization (given in Lemma 1 in [MPR12]) of a simple function, which constitutes the
algorithm for determining if a function is simple or not.

Given a 2-party randomized function f : X × Y →W × Z, consider the |Y ||Z| × |X||W | matrix Pf ,
with rows indexed by (y, z) ∈ Y × Z and columns indexed by (x,w) ∈ X ×W , such that Pf

(y,z),(x,w) =

pf [w, z|x, y]. The function f is simple if Pf can be partitioned into a set of rank-1 minors such that no
row or column of the matrix pass through two of these minors. Being of rank 1, each minor has all its
rows (equivalently, columns) parallel to each other. (In [MPR12], this is described in terms of a bipartite-
graph in which each connected component is a complete bipartite graph, with weights on the edges being
proportional to the product of the weights on the two end points of the vertex.)

To better understand what being simple means, we briefly explain how it is defined (Definition 3).
The kernel of a function f is a symmetric function that provides both the parties with only the “common
information” that f provides them with. A simple function is one which is “isomorphic” to its kernel: i.e.,
given just the output from the kernel, the rest of the information from f can be locally sampled by the two
parties, independent of each other.

As stated in Lemma 7, the passive-complete functions are exactly those which are not simple. Our
construction shows that restricted to the class of redundancy free functions, the same characterization holds
for complete functions for active-security as well.

The construction. Our main construction shows that any redundancy free function f which is not simple
is also UC-complete. This construction separates into two parts:

– A protocol to UC-securely reduce the commitment functionality FCOM to f .

– A protocol in theFCOM-hybrid model that UC-securely reduces OT to f , starting from a passive-secure
reduction of OT to f (since f is passive-complete, such a protocol exists). That is, we compile (in a
black-box manner) a passive-secure OT protocol using f , to a UC-secure OT protocol using f (and
FCOM).

In building the commitment functionality we rely on a careful analysis of functions that are redundancy
free and not simple, to show that there will exist two or more extreme views for one party (which cannot be
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equivocated) that are confusable by the second party (provided it uses inputs from an “unrevealing distribu-
tion” — something that can be verified by the first party). We interpret the function invocations as a channel
through which the first party transmits a message using the set of its extreme views as the alphabet. This
message is encoded using an error correcting code of rate 1 − o(1) and o(1) distance; the distance would
be sufficient to prevent equivocation during opening. To argue hiding, we rely on a well-known result from
information theory, namely the (weak) converse of Shannon’s Channel Coding Theorem. We extend this
theorem to the case of adaptively chosen channel characteristics, corresponding to the fact that the receiver
can adaptively choose its input to the function and that determines the channel characteristics. Due to con-
fusability, the capacity of this channel will be less than 1 (measured with the logarithm of the input alphabet
size as the base). Since the rate of the code is higher than the capacity of the channel, this gives us some
amount of hiding (which is then refined using an extractor).

The second part, which gives a compiler, is similar in spirit to prior protocols that established that a
passive-secure OT protocol (in the plain model) can be converted to an active-secure OT protocol in a
black-box manner [IKLP06, Hai08, CDMW09]. In particular, its high-level structure resembles that of the
protocol in [CDMW09]. However, the key difference in our protocol compared to these earlier protocols
(which were all in the computational setting), is that the passive-secure OT protocol that we are given is not
in the plain model, but is in the f -hybrid model. The technical difficulty in our case is in ensuring that a
cut-and-choose technique can be used to verify an adversary’s claims about what inputs it sent to a 2-party
function and what outputs it received, when the verifier has access to only the other end of the function. This
is precisely where the statistical testability of redundancy free functions (see below) is invoked.

Also, in contrast with the above mentioned compilers, we do not use a two-step compilation to first
obtain security against active corruption of the receiver and then that of the sender. Instead, we directly
obtain a somewhat “noisy” OT protocol that is secure against active corruption of either player, and use
techniques from [IPS08, IKO+11] to obtain the final protocol. In particular, we show how the result in
[IPS08] can be extended so that it works in a noisy OT-hybrid rather than a regular OT-hybrid. (A similar
extension was used in [IKO+11], to allow using a noisy channel hybrid instead of a regular OT-hybrid.)
These tools help us achieve a constant rate in implementing OTs from instances of f .

Statistically Testable Games. We introduce a formal notion of statistically testable game, which is an
information-theoretic analogue of interactive proofs where both players can be computationally unbounded.
Note that interactive proofs are not interesting in this information-theoretic setting (or if P=PSPACE). In a
statistically testable game, the statements being proven (tested) are statements regarding the private observa-
tions of the prover in a system, which provides partial observations to the verifier as well. The non-triviality
of such a proof system stems not from the computational limitations of the verifier, but from the fact that
the verifier cannot observe the entire system. While such proofs have been implicitly considered in several
special cases in many prior works (e.g. [CK88, CMW04, IPS08, IKO+11]), the class of games we consider
is much more general than those implicitly considered in these earlier instances, and the soundness of the
tests we consider is not at all obvious.

The game we consider is of 2-party function evaluation, in which the prover and the verifier interact
with a (stateless) trusted third party which carries out a randomized function evaluation for them. The
prover first declares a sequence of n inputs it will feed the function (the verifier chooses its inputs privately
and independently). After n invocations of the function, the prover declares to the verifier the sequence
of the n outputs it received from the invocations. A statistical test is a sound and complete proof system
which convinces the verifier that the input and output sequences declared by the prover has a o(1) fraction
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hamming distance from the actual sequences in its interaction with the trusted party. Note that the verifier
can use its local observations (its input-output sequences) to carry out the verification.

A major technical ingredient of our compiler is the following theorem:

Evaluation of a 2-party function f is statistically testable if and only if f is redundancy free.

Clearly, if a function is not redundancy free, it admits is no sound statistical test. But a priori, it may
seem possible that even if no single input has redundancy, the prover can map the entire sequence of inputs
and outputs to a different sequence, with only a small statistical difference in the verifier’s view, such that
this difference vanishes with the length of the sequence. We show that this is not the case: if the function is
redundancy-free, then there is a lowerbound on the ratio of the “detection advantage” to “extent of deviation”
that does not vanish with the number of invocations.

This naturally motivates our approach of compiling a passive-secure protocol in f -hybrid, where f is
redundancy free, into one that is secure against active adversaries. We should be able to enforce honest
behavior by “auditing” randomly chosen executions from a large number of executions, and the auditing
would use the statistical tests. However, this idea does not work directly: the statical test models a test by
an environment: it lets the adversary arbitrarily interact with f and report back a purported output, but the
purported input it sent to f was fixed by the environment before the adversary obtained the output from f .
On the other hand, in a protocol, the honest party does not get to see the input to be sent to the functionality
ahead of time. It is to solve this issue that we rely on the commitment functionality: the input each party
should be sending to f is fixed a priori using commitments (and coin-tossing-in-the-well). When a session
is chosen for auditing, the adversary could indeed have sent a different input to f than it was supposed to,
and it can lie about the output it received from f as well, but it cannot choose the purported input it sent to
f after interacting with f .

2 Preliminaries

Matrix Definitions. In the following we shall refer to the following matrix norms: ‖A‖∞ = maxi
∑

j |aij |
(maximum absolute row sum norm), and ‖A‖sum =

∑
i,j |aij | (absolute sum norm). We shall also use the

function max(A) = maxi,j aij (maximum value among all entries); not that here we do not consider the
absolute value of the entries in A. For a probability distribution pXover a space X (denoted as vectors), we
define min(pX) = minx∈X pX [x], the minimum probability it assigns to an element in X . The norm ‖·‖∞
when applied to a column vector simply equals the largest absolute value entry in the vector. We say that a
matrix P is a probability matrix if its entries are all in the range [0, 1] and ‖P‖sum = 1. We say that a matrix
is a stochastic matrix (or row-stochastic matrix) if all its entries are in the range [0, 1] and every row sums up
to 1. For convenience, we define the notation 〈M〉I for a square matrix M to be the diagonal matrix derived
from M by replacing all non-diagonal entries by 0.

2-Party Secure Function Evaluation. A two-party randomized function (also called a secure function
evaluation (SFE) functionality) is specified by a single randomized function denoted as f : X × Y →
W × Z. Despite the notation, the range of f is, more accurately, the space of probability distributions over
W × Z. The functionality takes an input x ∈ X from Alice and an input y ∈ Y from Bob and samples
(w, z) ∈W ×Z according to the distribution f(x, y); then it delivers w to Alice and z to Bob. Through out,
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we shall denote the probability of outputs being (w, z) when Alice and Bob use inputs x and y respectively
is represented by pf [w, z|x, y]. We use the following variables for the sizes of the sets W,X, Y, Z:

|X| = m |Y | = n |W | = q |Z| = r.

In this paper we shall restrict to function evaluations where m, n, q and r are constants, i.e. as the security
parameter increases the domains do not expand. (But the efficiency and security of our reductions are only
polynomially dependent onm,n, q, r, so one could let them grow polynomially with the security parameter.
We have made no attempt to optimize this dependency.) W.l.o.g., we shall assume that X = [m] (i.e., the
set of first m positive integers), Y = [n], W = [q] and Z = [r].

We consider standard security notions in the information-theoretic setting: UC-security, standalone-
security and passive-security against computationally unbounded adversaries (and with computationally
unbounded simulators). Using UC-security allows to compose our sub-protocols securely [Can05]. Error
in security (simulation error) is always required to be negligible in the security parameter of the protocol,
and the communication complexity of all protocols are required to be polynomial in the same parameter.
However, we note that a protocol may invoke a sub-protocol with a security parameter other than its own (in
particular, with a constant independent of its own security parameter).

Complete Functionalities. A two-party randomized function evaluation f is standalone-complete (re-
spectively, UC-complete) against information theoretic adversaries if any functionality g can be standalone
securely (respectively, UC securely) computed in f hybrid. We shall also consider passive-complete func-
tions where we consider security against passive (semi-honest) adversaries.

3 Main Tools

In this section we introduce the main tools used in our construction.

3.1 Characterizing Irredundancy

Redundancy in a function allows at least one party to deviate in its behavior in the ideal world and not be
detected (with significant probability) by an environment. In our protocol, which are designed to detect
deviation, it is important to use a function in a form in which redundancy has been removed. We define
irredundancy in an explicit linear algebraic fashion, and introduce a parameter to measure the extent of
irredundancy.

Irredundancy of a System of Stochastic Matrices. Let Pi, i = 1, . . . ,m be a collection of s×q probabil-
ity matrices (i.e., entries in the range [0, 1], with ‖Pi‖sum = 1). Consider tuples of the form (j, {Mi, αi}mi=1),
where j ∈ [m], Mi are q × q stochastic matrices, and αi ∈ [0, 1] are such that

∑
i αi = 1. Then we define

the irredundancy of this system as

D(P1, . . . , Pm) = inf
(j,{αi,Mi}mi=1)

‖(
∑m

i=1 αiPiMi)− Pj‖∞
1− αj‖Pj · 〈Mj〉I‖sum

(1)

9



where the infimum is over tuples of the above form. (Recall that 〈Mj〉I refers to the diagonal matrix with
the diagonal entries of Mj .)

Intuitively, consider the rows of Pi to be probability distributions over a q-ary alphabet produced as the
outcome of a process with the row index corresponding to a hidden part of the outcome, and the column
index being an observable outcome. Then, irredundancy measures how well a Pj can (or rather, cannot) be
approximated by a convex combination of all the matrices Pi, possibly with the observable outcome trans-
formed using a stochastic matrix (corresponding to a probabilistic mapping of the observable outcomes);
the denominator normalizes the approximability by how much overall deviation (probability of changing
the process or changing the outcome) is involved. This excludes the trivial possibility of perfectly matching
Pj by employing zero deviation (i.e., taking αj = 1 and Mj = I).

Irredundancy of a 2-Party Secure Function Evaluation Function. Recall that a 2-party SFE function f
with input domains, X × Y and output domain W × Z is defined by probabilities pf [w, z|x, y]. We define
left and right redundancy of f as follows. Below, |X| = m, |Y | = n, |W | = q, |Z| = r.

To define left-redundancy, consider representing f by the matrices {P x}x∈X where each P x is an nr×q
matrix with P x(y,z),w = pf [w, y, z|x]. Here, pf [w, y, z|x] , 1

np
f [w, z|x, y] (where we pick y independent of

x, with uniform probability pf [y|x] = 1
n ).

Definition 1. For an SFE function f : X×Y →W×Z, represented by matrices {P x}x∈X , with P x(y,z),w =

Pr[w, y, z|x], we say that an input x̂ ∈ X is left-redundant if there is a set {(αx,Mx)|x ∈ X}, where
0 ≤ αx ≤ 1 with

∑
x αx = 1, and each Mx is a q × q stochastic matrix such that if αx̂ = 1 then Mx̂ 6= I ,

and P x̂ =
∑

x∈X αxP
xMx.

We say x̂ is strictly left-redundant if it is left-redundant as above, but αx̂ = 0. We say x̂ is self left-
redundant if it is left-redundant as above, but αx̂ = 1 (and hence Mx̂ 6= I).

We say that f is left-redundancy free if there is no x ∈ X that is left-redundant.

Right-redundancy notions are defined analogously. f is said to be redundancy-free if it is left-redundancy
free and right-redundancy free.

Lemma 1. For an SFE function f , if x̂ is left-redundant, then it is either strictly left-redundant or self
left-redundant.

Proof. Suppose x̂ is left-redundant. Then P x̂ =
∑

x∈X αxP
xMx as in the definition of left-redundancy. If

αx̂ = 1, then by definition it is self left-redundant. If αx̂ < 1, we shall show that it is strictly left-redundant.
We can write P x̂(I − αx̂Mx̂) =

∑
x 6=x̂ αxP

xMx. To rewrite P x̂ as required by strict left-redundancy we
depend on the following the observation.

Claim 1. IfM is a q×q stochastic matrix and 0 ≤ α < 1, then I−αM is invertible and (1−α)(I−αM)−1

is a stochastic matrix.

Proof. Consider the series D = I + αM + α2M2 + · · · . Since |α| < 1 and M is stochastic (and in
particular, ‖αM‖∞ < 1), this series converges, and then since, D = I+αM ·D, we have (I−αM)D = I .
Further, D · 1T = 1

1−α · 1
T (where 1 is the row matrix of all 1’s), because M t is stochastic for all t and

αtM t · 1T = αt · 1T .

10



Using the above claim, let M = (1− αx̂)(I − αx̂Mx̂)−1 be a stochastic matrix. Then

P x̂ =
1

1− αx̂
· P x̂ · (I − αx̂Mx̂) ·M

=
1

1− αx̂
·
∑
x 6=x̂

αxP
x ·MxM =

∑
x 6=x̂

α′x · P x ·M ′x

where α′x = αx
1−αx̂ (except α′x̂ = 0) and M ′x = Mx · M satisfy the conditions required for strict left-

redundancy.

As we shall see later, in removing redundancy of f while retaining equivalence (i.e., to find the core
of f ), we will need to identify strictly-redundant inputs and simply remove them. Note that checking if an
input for f is strictly-redundant can be framed as the feasibility of a linear program. However, if an input is
self-redundant, we cannot simply remove this input. Instead we need to compress the corresponding output
space. The following lemma gives a simple characterization of self-redundancy.

Lemma 2. For an SFE function f : X × Y → W × Z defined by the probability matrices {P x}x∈X , if
there is a self left-redundant input x̂ ∈ X , then P x̂ has two non-zero columns which are scalar multiples
of each other. That is, if x̂ is self-redundant, then there should be two output values w,w′ ∈ W such that
Bob’s input-output pair is distributed identically conditioned on Alice’s view being (x,w) or being (x,w′).

Similarly, if ŷ ∈ Y is a self right-redundant input, then there must be two non-zero columns in P ŷ that
are scalar multiples of each other.

In fact, we shall need the following quantitative version, which shows that if no two columns of P x̂ are
close to being scalar multiples of each other, then x̂ is not close to being self left-redundant.

Claim 2. Suppose M is a q × q stochastic matrix such that max(M − I) ≥ δ > 0. Also, suppose P
is an s × q matrix such that for any two columns ci and cj of P , infγ ‖ci − γcj‖∞ ≥ ε > 0. Then
‖PM − P‖∞ ≥ δε.

The proof, given in Appendix A.1 uses an inductive argument. This claim (along with Claim 1) is used
in proving the next lemma, that the (left and right) irredundancy parameters of a function that is not (left or
right) redundant are bounded away from 0.

Lemma 3. Suppose a 2-party function f : X×Y →W ×Z is left redundancy free. Let pY be a probability
distribution over Y . Let the probability matrices {P x}x∈X , be defined by P x(y,z),w = pf [w, z|x, y]pY [y].
Then there is a constant εf > 0 (depending only on f ) such that D(P 1, · · · , Pm) ≥ εfmin(pY ).

The analogous statement holds for right redundancy.

3.2 Statistically Testable Function Evaluation

In this section we consider the notion of a statistically testable function evaluation game. (The notion is
more general and could be extended to reactive systems, or multi-player settings; for simplicity we define
it only for the relevant setting of 2-party functions.) We informally defined a statistical test in Section 1.2.
As mentioned there, we shall show that evaluation of a 2-party function is statistically testable if and only
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if the function is redundancy free. For simplicity, we define a particular test and show that it is sound and
complete for redundancy free functions (without formally defining statistical tests in general). (It is easy to
see that functions with redundancy cannot have a sound and complete test. Since this is not relevant to our
proof, we omit the details.)

Let f be redundancy free. Consider the following statistical test, formulated as a game between an
honest challenger (verifier) and an adversary (prover) in the f -hybrid.

Left-Statistical-Test(f, pY ;N):

1. The adversary picks x̃ = (x̃1, . . . , x̃N ) ∈ XN , and for each i ∈ [N ] the challenger (secretly) picks
uniform i.i.d yi ∈ Y , according to the distribution pY .

2. For each i ∈ [N ], the parties invoke f with inputs xi and yi respectively; the adversary receives wi
and the challenger receives zi, where (wi, zi)

$← f(xi, yi).

3. The adversary then outputs w̃ = (w̃1, . . . , w̃N ) ∈WN .

The adversary wins this game (breaks the soundness) if the following conditions hold:

1. Consistency: Let µw̃,x̃,y,z be the number of indices i ∈ [N ] such that w̃i = w̃, x̃i = x̃, yi = y and
zi = z. Also, let µx̃,y be the number of indices i ∈ [N ] such that x̃i = x̃ and yi = y. The consistency
condition requires that ∀(w, x, y, z) ∈W ×X × Y × Z,

µw̃,x̃,y,z = µx̃,y × pf [w̃, z|x̃, y]±N2/3.

2. Separation: Let vectors A, Ã ∈ (W × X)N be defined by Ai := (wi, xi) and Ãi = (w̃i, x̃i). The
separation condition requires that the hamming distance between the vectors A and Ã is ∆(A, Ã) ≥
N7/8.

The Right-Statistical-Test(f, pX ;N) is defined analogously. The experiment Statistical-Test(f, pX , pY ;N)
consists of Left-Statistical-Test(f, pY ;N) and Right-Statistical-Test(f, pX ;N), and the adversary wins if it
wins in either experiment.

Before proceeding, we note that the above statistical test is indeed “complete”: if the prover plays
“honestly” and uses x̃ = x and w̃ = w, then the consistency condition will be satisfied with all but
negligible probability (for any choice of x).

Lemma 4. If f is redundancy free, and pXand pY are constant distribution which have full support over
X and Y respectively, then the probability that any adversary wins in Statistical-Test(f, pY , pX ;N) is
negl(N).4

Proof. We prove this in Appendix B. Here we sketch the outline of that proof, omitting the calculations.

We shall only argue that if f is left-redundancy free, then the probability of any adversary winning the
Left-Statistical-Test(f, pY ;N) is negligible in N . The argument for the Right-Statistical-Test is similar.
Then the result follows by union bound.

4 The distributions pXand pY are constant while N is a growing parameter.
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The experiment involves the adversary adaptively choosing xi. To facilitate the analysis, instead we
shall analyze all choices of (x̃,x,w, w̃), but restricted to w being “typical” for a randomly chosen y (for
the given vector x). Since this would hold except with negligible probability (over random choice of y
and the randomness of f ), this restriction will not affect the conclusion. Then, assuming that the adversary
satisfies the sufficient-distance condition, we analyze the probability of the consistency condition holding.
We shall argue that this probability is negligible if f is redundancy free.

We shall consider the expectation of the quantity µw̃,x̃,y,z − pf [w̃, z|x̃, y]µx̃,y and argue that for some
value of x, ỹ, z̃, the absolute value of this expectation should be large, say, Ω(N7/8). Note that, once we fix
(x̃,x,w, w̃), then for any quadruple (x̃, x, w, w̃), µw̃,x̃,y,z and µx̃,y can both be written as the sum of i.i.d
indicator random variables. This is because the random experiment we consider consists only of picking
yi, zi, for each i independently: if xi = x and wi = w, then Pr[yi = y, zi = z] = pf,Y [y, z|x,w] :=

pY [y]·pf [w,z|x,y]∑
z′,y′ p

Y [y′]·pf [w,z′|x,y′] . Then by Chernoff bounds, we obtain that except with negligible probability, the
consistency condition will be violated.

We shall define the set Good of “good” (x̃,x,w) in which, for each x̃, x, w, the number of positions
i with wi = w among the positions i with x̃i = x̃, xi = x is as expected (over uniformly random i.i.d
yi and randomness of f ) up to an additive error of N2/3. (Note that this assumption is non-trivial only
when there are at least N2/3 positions with x̃i = x̃, xi = x.) The analysis below would be for every tuple
(x̃,x,w) ∈ Good. W.l.o.g we assume that for each (x̃,x,w) the adversary chooses w̃ deterministically.

Fix (x̃,x,w) ∈ Good and an arbitrary w̃. By the separation condition of the test, we know that there
is some value x̂ ∈ X such that in at least 1

mN
7/8 indices i where x̃i = x̂, the adversary deviates: either

xi 6= x̃i or wi 6= w̃i. In the rest of the analysis we restrict our attention to the set of indices with x̃i = x̂. We
write Ĩx̃ to denote this set of indices, and J̃x̂ ⊆ Ĩx̂ to denote the subset of indices where there is a deviation.

The probabilities in the expressions below are conditioned on (x̃,x,w), where the random choices made
are of y and (w, z). (We do not assume any distribution over x̃ and x which are chosen by the adversary.)

We show (see Appendix B for the calculations) the following:

E
[
µw̃,x̂,y,z − pf [w̃, z|x̂, y] · µx̂,y

]
= |Ĩx̂|

(
(
∑
x

αxP x ·Bx)− P x̂
)

(y,z),w̃

±O(N2/3)

where P x is an nr × q matrix with P x(y,z),w = pf,Y [w, y, z|x], Bx is a q × q stochastic matrix for each x,

and αx ≥ 0 with
∑

x α
x = 1. Further, we can rewrite |Ĩx̂| in terms of |J̃x̂| using

|J̃x̂| = |Ĩx̂|
(

1− αx̂‖P x̂ · 〈Bx̂〉I‖sum

)
±N2/3

Putting these together (and using the fact that |J̃x̂| = Ω(N7/8)), we can show that the expected difference,
maximized over all (w̃, y, z) is

max
(w̃,y,z)

|E
[
µw̃,x̂,y,z − pf [w̃, z|x̂, y] · µx̂,y

]
| ≥ |J̃x̂|

q
D(P 1, . . . , Pm)± o(N7/8).

Finally, by Lemma 3, since f is redundancy free, D(P 1, . . . , Pm) ≥ εf · min(pY ), where εf > 0 is a
constant. Since pY has full support (and is independent of N ), min(pY ) > 0 is also a constant. Thus,
the above quantity is Ω(N7/8). To complete the proof we use Chernoff bounds to argue that with all but
negligible probability, for (w̃, y, z) which maximizes the above expectation, |µw̃,x̂,y,z−pf [w̃, z|x̂, y]·µx̂,y| >
N2/3 (when N is sufficiently large).
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3.3 A Converse of The Channel Coding Theorem

A converse of the channel coding theorem states that message transmission is not possible over a noisy
channel at a rate above its capacity, except with a non-vanishing rate of errors (see, for e.g., [CT91]). We
give a generalization of the (weak) converse of channel coding theorem where the receiver can adaptively
choose the channel based on its current view. We show that if in at least a µ fraction of the transmissions,
the receiver chooses channels which are noisy (i.e., has capacity less than that of a noiseless channel over
the same input alphabet), then we can lower bound its probability of error in predicting the input codeword
as a function of µ, an upper bound on the noisy channel capacities, and the rate of the code.

Lemma 5 (Weak Converse of Channel Coding Theorem, Generalization). Let F = {F1, . . . ,FK} be a set
of K channels which take as input alphabets from a set Λ, with |Λ| = 2λ. Let G ⊆ [K] be such that for all
i ∈ G, the capacity of the channel Fi is at most λ− c, for a constant c > 0.

Let C ⊆ ΛN be a rate R ∈ [0, 1] code. Consider the following experiment: a random codeword
c1 . . . cN ≡ c

$← C is drawn and each symbol c1 . . . cN is transmitted sequentially; the channel used for
transmitting each symbol is chosen (possibly adaptively) from the set F by the receiver.

Conditioned on the receiver choosing a channel in G for µ or more transmissions, the probability of
error of the receiver in predicting c is

Pe ≥ 1− 1

NRλ
− 1− cµ/λ

R
.

We prove this in Appendix C. This result is used in our commitment protocol (Section 4.1).

4 Main Construction

In this section we prove the following theorem, which forms the main ingredient for the proof of Theorem 1.

Theorem 2. If f is a redundancy free 2-party function and f is passive-complete, then there is a constant
rate UC-secure protocol for FOT in the f -hybrid model.

Since f is passive-complete we know that OT does reduce to f against passive adversaries. We shall
take such a passive-secure OT protocol in the f -hybrid, and convert it into a UC-secure protocol. For
this we need two ingredients: first a UC-secure commitment protocol in the f -hybrid model, and secondly
a compiler to turn the passive secure OT protocol in the f -hybrid model to a UC-secure protocol in the
commitment-hybrid model. In building the UC-secure commitment protocol, we rely on the irredundancy
of f as well as the combinatorial characterization that passive-complete functions are exactly those that are
not simple (see Section 1.2).

4.1 A UC Secure Commitment Protocol

In this section we present the outline of a UC-secure commitment protocol in the f -hybrid model, for any
2-party randomized function f that is redundancy free (Definition 1) and is not simple (see Section 1.2).
The full details of the construction are given in Appendix D.

The high-level structure of the protocol is as follows. The underlined terms will be explained below.
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1. Commitment phase:

(a) The sender plays the role of (say) Alice in f , and the receiver plays the role of Bob in f , and
invoke f several times, with random inputs x ∈ X . The receiver will be required to pick its
inputs from an unrevealing distribution pY .

(b) The sender checks if the frequencies of all the input-output pairs (x,w) it sees are consistent
with the receiver using pY .

(c) The sender announces a subset of indices for which in the corresponding invocations, it obtained
an extreme input-output pair.

(d) The sender picks a random codeword from an appropriate code, and masks this codeword with
the sequence of input-output pairs from the previous step, and sends it to the receiver.

(e) The sender also sends the bit to be committed masked by a bit extracted from the codeword in
the previous step.

2. Reveal phase: The sender sends its view from the commitment phase. The receiver checks that this
is consistent with its view and the protocol (in particular, the purported codeword indeed belongs to
the code, and for each possible value (x,w) of the sender’s input-output pair to f , the frequency of
input-output pairs (y, z) on its side are consistent with the function). If so, it accepts the purported
committed bit.

In the above protocol, security will be obtained as follows:

• Binding: extreme input-output pairs are such that the sender cannot significantly equivocate during
the reveal phase without being detected (even when the receiver is using the prescribed distribution pY ). The
error-correcting code ensures that a small number of equivocations cannot yield an explanation consistent
with the protocol.

• Hiding: the unrevealing distribution pY is such that there will be non-zero “confusion” for the receiver
about the sender’s input-output pair (even when restricted to extreme input-output pairs for the sender, and
even if the receiver somewhat deviates from pY ). We can interpret f as a collection of channels, with the
receiver adaptively choosing which channel to use for each symbol, with the restriction that a significant
fraction of the time a “noisy” channel (i.e., one with capacity less than that of a noiseless channel over
the same alphabet) is chosen. The error-correcting code will have a high rate (in fact, 1 − o(1)) and by
(an appropriate extension of) the weak converse of Shannon’s channel coding theorem, we can show that
that receiver has significant uncertainty about the codeword being sent. Then the extraction step (following
[DORS08]) ensures that the committed bit is well-hidden.

The delicate part of this construction is to show that there will indeed be a set of extreme input-output
pairs and an unrevealing distribution as required above. We point out that we cannot use our results on
statistical testability of the function evaluation game from Section 3.2 directly to argue that binding would
hold for all input-output pairs. This is because the game there requires the adversary to declare the input
part of its purported view before invoking the function. Indeed, once we have a commitment functionality
at our disposal, we can exploit the binding nature of this game; but to construct our commitment protocol
this is not helpful.

Before pointing to our results on their existence, we sketch the definitions extreme input-output pairs and
unrevealing distribution. We consider the matrix Pf whose rows are indexed by Bob views (y, z) ∈ Y ×Z
and columns are indexed by Alice views (x,w) ∈ X ×W . The entry in this matrix indexed by Bob’s view
(y, z) and Alice’s view (x,w) is pf [w, z|x, y].
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Extreme views and confusability. An Alice view (x,w) is an extreme view if the column indexed by
(x,w) cannot be written as convex linear combination of other columns in Pf .5 This prevents Alice from
claiming that in a set of invocations she obtained a certain extreme view, unless most of those invocations
actually had this view.

The set of all extreme views of Alice is represented by af . We say af is confusable if there exists a Bob
view (y, z) such that there are two different views (x,w) and (x′, w′) in af such that the two entries in Pf

indexed by ((y, z), (x,w)) and ((y, z), (x′, w′)) are both positive.

It is not necessary that af be confusable. However, we show that if f is not simple then afor bf is
confusable (Lemma 11), where bf is defined analogous to af . Below, we shall assume that af is confusable
(see Remark below).

Unrevealing Distribution. An unrevealing distribution pY has three competing requirements: (a) it should
not allow Bob to learn Alice’s view exactly, even when it is given that Alice obtained a view in af ; (b) Alice
should be able to use her view to ensure that Bob is choosing his inputs from this distribution – or at least
that he is not using a completely “revealing” input distribution; (c) extreme views for Alice should remain
extreme (and hence unequivocable) even when Bob is choosing his inputs from this distribution.

The last condition is easily satisfied by picking pY to have all of Y as its support (with at least a constant
weight on each y ∈ Y ). To ensure the other conditions, consider the set Y0 ⊆ Y such that restricted to
y ∈ Y0, no two extreme views of Alice are confusable. Since af is confusable, we know that there is at least
one y∗ ∈ Y \ Y0. Alice needs to ensure that Bob is not choosing his inputs (almost) exclusively from Y0.
We say that y∗ ∈ Y \ Y0 is mimiced by Y0, if there exists a probability distribution over Y0 such that Alice’s
view when Bob is choosing his inputs from this distribution is indistinguishable from her view when Bob is
using y∗. We show that if y∗ ∈ Y \ Y0 can be mimiced by Y0 then y∗ is strictly redundant (Lemma 12).

The requisite unrevealing distribution pY (as defined in Equation 6) can be obtained as an appropriate
convex combination of the uniform distribution over Y (so that the support of pY is all of Y ) and a distribu-
tion that puts all its weight on an unmimicable y∗ ∈ Y (Lemma 13).

Remark. The commitment protocol above could require that f be used in a specific direction only (i.e.,
sender in the commitment could be required to play, say, the role of Alice in f ) since Lemma 11 ensures
only that either af or bf is confusable. Since in our final OT protocol, we shall require both parties to make
commitments to each other, this would require f to be used in both directions. However, we can obtain a
sharper result which requires f to be used in only one direction, by obtaining commitment protocols that
can use f in either direction. In the final version, we describe how commitment in one direction can be
leveraged to build a commitment protocol in the other direction in the f -hybrid model.

4.2 Passive-to-Active Security Compiler

For any redundancy free SFE f , we describe a “compiler” Πf which takes a 2-party semi-honest OT protocol
πSH-OT in the f -hybrid and produces another 2-party protocol Πf (πSH-OT) in the commitment-hybrid such
that if πSH-OT is a semi-honest

(
2
1

)
-OT protocol, then Πf (πSH-OT) is a UC secure

(
2
1

)
-OT protocol. For

5For simplicity, here we ignore the possibility that different columns could be parallel to each other. In Appendix D, we use
maps φA (resp. φB) to identify parallel columns (resp. rows) with each other.
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convenience, we shall place a requirement on πSH-OT that it uses f with uniformly independent inputs chosen
independently by the two parties.6

We present the compiled protocol in two steps. In the first step, we build a protocol ρ
ÕT

that UC-securely

realizes the following functionality F (δ)

ÕT
, both of which are shown in Figure 2.

Then we shall implement an OT protocol in the F (δ)

ÕT
-hybrid using techniques from [IPS08, IKO+11].

This involves invoking the protocol ρ
ÕT

with a large enough constant security parameter, and using a (new)
extended form of the IPS-compiler [IPS08]. The resulting protocol is a constant rate protocol in the f -
hybrid model. This step is detailed in Appendix G. In the rest of this section, we focus on how to implement
F (δ)

ÕT
in the commitment hybrid model.

We prove the security of the compiled protocol in Appendix E. This gives us the following result.

Lemma 6. Suppose f is a 2-party randomized SFE which is redundancy free and passive-complete, and π
is a passive-secure protocol for FOT in the f -hybrid model. Then the protocol ρ

ÕT
in the (f,FCOM)-hybrid

UC-securely realizes F (δ)

ÕT
, for δ(κ) = κ15/16 (where κ is the security parameter).

5 Full Characterization of Completeness

In this section we prove Theorem 1 from the constructions so far, and other observations regarding redun-
dancy free functions. This derivation is summarized in Figure 3.

First, we introduce some definitions, following [MPR12]. In a local protocol for f which uses g as a
setup, each party probabilistically maps her f -input to a g-input, calls g once with that input and, based on
her local view (i.e. her given f -input, the output of g, and possibly local randomness), computes her final
output, without any further communication between the parties.

Definition 2 ((Weak) Isomorphism [MPR12]). We say that f and g are isomorphic to each other if there
exist two local protocols π1 and π2 such that:

1. πg1 UC-securely realizes f and πf2 UC-securely realizes g;
2. πg1 passive-securely realizes f and πf2 passive-securely realizes g.

f and g are said to be weakly isomorphic to each other if condition 1 is satisfied.

Note that isomorphism and weak isomorphism are equivalence relations. Also note that if two functions
are weakly isomorphic to each other then one is UC-complete if and only if the other is. Further, this holds
for standalone-completeness as well, since a local protocol that is standalone-secure must be UC-secure as
well.

A core of a 2-party function f is a redundancy free function f̂ which is weakly isomorphic to f . From
Lemma 10, it follows that every finite 2-party function f has a core. By the above observation about
weak isomorphism, to characterize standalone or UC completeness of finite 2-party functions, it is enough
to characterize it for redundnacy free functions. Note that Appendix A.2 gives an explicit procedure for
finding a core of a given function. While the core is not unique, all the cores of a function are weakly
isomorphic with each other.

6This suffices for our main result, since we shall invoke this compiler with a protocol πSH-OT that satisfies this requirement.
However, we remark that a more tedious analysis could be used to remove this restriction.
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Functionality F (δ)

ÕT
. Parametrized by a function δ(κ).

– Set b = 1 with probability p = δ(κ); otherwise b = 0.

– Provide the parties access to a (2-choose-1 bit) OT functionality. But if b = 1, let the adversary
control this functionality.

Protocol ρ
ÕT

. Alice’s inputs are a pair of bit (x0, x1) and Bob’s input is a choice bit b. In the following
protocol, they will invoke several instances of πSH-OT with security parameter κπSH-OT = κc for some con-
stant c > 0; c chosen to be sufficiently small so that the total number of f invocations (in either direction)
in one session of πSH-OT is upperbounded by κ1/8.

PHASE I: Coin tossing in the well. Alice and Bob commit to 2κ strings each (of poly(κ) length, cor-
responding to the length of the random tape and input (two bits) required in πSH-OT with se-
curity parameter κπSH-OT ). Let Alice’s strings be {ρAi }2κi=1, and Bob’s strings be be {ρBi }2κi=1.
Then Alice sends 2κ strings {σAi }2κi=1 to Bob and Bob sends {σBi }2κi=1 to Alice. Alice defines
input/random-tapes {τAi }2κi=1 where τAi = ρAi ⊕σBi . Similarly Bob defines input/random-tapes
{τBi }2κi=1 where τBi = ρBi ⊕ σAi .

PHASE II: Execution. Alice and Bob engage in 2κ executions of protocol πSH-OT in the f -hybrid model.
The security parameter of these executions is set to κπSH-OT = κc for a sufficiently small con-
stant c > 0 so that the total number of f invocations (in either direction) in one session of
πSH-OT is upperbounded by κ1/8.

In the ith instance, Alice and Bob use τAi and τBi respectively as their input/random tape.

PHASE III: Cut and Choose. Alice and Bob use a protocol in the FCOM-hybrid to UC-securely generate
random coins to randomly choose a subset L ⊆ [2κ] with |L| = κ. For each i ∈ L, Alice
and Bob must “open” their views in the ith execution of πSH-OT: that is, Alice and Bob should
reveal {ρAi }i∈L and {ρBi }i∈L respectively. Further each party should also report the outputs it
received from f in each invocation of f .

Then each party checks (a) if the messages received in the protocol are consistent with (i.e.,
has non-zero probability) the views opened/reported by the other party, and (b) if, for the
sequence of invocations of f over all the executions of πSH-OT that are opened, the consistency
condition in the Statistical-Test (see Section 3.2) holds. If either of the checks fail, then the
party should abort.

PHASE IV: Random Selection. Alice and Bob use a coin-tossing protocol in the FCOM-hybrid, to ran-
domly select an index in L = [2κ] \ L.

PHASE V: Finalizing. Alice and Bob now perform a standard procedure for carrying out a fresh OT
given the pre-computed OT instance selected in the previous step. (If (s0, s1) and u denote
the inputs for Alice and Bob in the selected instance of πSH-OT and v denotes the output that
Bob received from it, then Bob sends c := b⊕ u to Alice and Alice responds with (r0, r1) :=
(x0 ⊕ sc, x1 ⊕ s1−c) to Bob. Bob outputs rb ⊕ v.)

Figure 2 The functionality F (δ)

ÕT
and the protocol ρÕT
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The kernel of a 2-party function f is a function which outputs to the two parties only the “common
information” that f makes available to them. To formalize this, we define a weighted bipartite graph G(f)
with partite sets areX×W and Y ×Z, and for every (x,w) ∈ X×W and (y, z) ∈ Y ×Z, the edge joining
these two vertices is assigned weight wt

(
(x,w), (y, z)

)
:= pf [w,z|x,y]

|X×Y | . The kernel of f is a randomized

function which takes inputs x ∈ X and y ∈ Y from the parties, samples (w, z)
$← f(x, y), and outputs to

both parties the connected component of G(f) which contains the edge
(

(x,w), (y, z)
)

.

Definition 3 (Simple Function [MPR12]). A (possibly randomized) 2-party function f is said to be simple
if it is isomorphic to its kernel.

The combinatorial characterization of simple functions mentioned in Section 1.2 was shown in [MPR12].
Also, relying on the construction of [Kil00], the following was shown in [MPR12].

Lemma 7. [MPR12] A finite 2-party function is passive-complete if and only if it is not simple.

Now we can state our characterization as follows:

Theorem 3. Suppose f is a (possibly randomized) finite 2-party function. Then the following are equivalent.

1. f is UC-complete.
2. f is standalone-complete.
3. every core of f is passive-complete.
4. f has a core that is passive-complete.

Proof. (1)⇒ (2) because UC-completeness implies standalone-completeness. If f is standalone complete,
every core of f is also standalone complete (by weak isomorphism), and by Lemma 16, it is passive-
complete. So (2) ⇒ (3), which in turn implies (4). Our main work is in showing (4) ⇒ (1): i.e., if f
has a core that is passive-complete then f is UC-complete. Since f is weakly isomorphic to its core, it is
enough to show that any redundancy free function that is passive-complete is also UC-complete. To show
that such a function is UC-complete, it is enough to show that OT can be UC-securely reduced to f , since
OT is known to be UC-complete [Kil88, IPS08]. This is precisely what Theorem 2 proves.

Finally, Theorem 1 follows easily from these results. The first part of Theorem 1 is a corollary to
Theorem 3, since a function is passive-complete if and only if it is not simple (Lemma 7). The second part,
regarding constant-rate reduction, follows from the fact that it holds for the case when f is OT and g is
arbitrary (by a result in [IPS08]) and it holds for the case when f is an arbitrary complete function and g is
OT (by Theorem 2).

5.1 A Special Case

In particular, for the class for asymmetric function evaluations, i.e. where only one of the parties receives
outputs, we obtain the following dichotomy:

Theorem 4 (Special Case: Dichotomy for Asymmetric 2-party SFE). Any asymmetric 2-party SFE is either
standalone/UC-trivial or standalone/UC-complete.
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Input: A 2-party randomized SFE f , given as a matrix Pf of conditional probabilities pf [w, z|x, y].
Output: A UC-secure protocol for FOT in f -hybrid.

1. Compute a core f̂ of f using the algorithm in Figure 4 inAppendix A.2.
2. Check if f̂ is simple or not (using combinatorial characterization in [MPR12], given in Section 1.2).
3. If f̂ is simple, declare that f is not complete. (By Lemma 16 and Lemma 7.)
4. Else (i.e., f̂ is not simple):

(a) Construct a passive-secure protocol πSH-OT for FOT in f̂ -hybrid (using the construction in
[MPR12]).

(b) Construct a UC-secure protocol πCOM for FCOM in f̂ -hybrid (using protocol in Section 4.1).
(c) Compile πSH-OT into a UC-secure protocol ρ

ÕT
for F (δ)

ÕT
in (f̂ ,FCOM)-hybrid (applying

Lemma 6 to f̂ ). Compose ρ
ÕT

with πCOM to obtain a UC-secure protocol forF (δ)

ÕT
in f̂ -hybrid.

(d) Instantiate πCOM with a large enough constant security parameter; using statistical to perfect
lemma of [IKO+11], interpret this as a (perfectly) UC-secure constant rate protocol πc-OT for
F (c)

ÕT
in f̂ -hybrid (using Lemma 18).

(e) Construct a UC-secure constant rate protocol πSTRING-OT for FSTRING-OT[`] in F (c)

ÕT
-hyrbid (us-

ing protocol in [IKO+11]).
(f) Construct a UC-secure constant rate protocol πOT for FOT in (F (c)

ÕT
,FSTRING-OT[`])-hybrid (us-

ing the extension of the IPS-compiler given in Lemma 21).
(g) Compose πOT with πc-OT and πSTRING-OT to obtain the final OT protocol in f̂ -hybrid. Finally,

compose with a UC-secure protocol for f̂ in f -hybrida to obtain a UC-secure constant rate OT
protocol in f -hybrid.

aSuch a protocol exists as f̂ is weakly isomorphic to f . In fact, the natural protocol for this is not only UC-secure, but
passive-secure as well. This ensures that our final protocol for OT in f -hybrid model also enjoys both levels of security.

Figure 3 This algorithm summarizes our results. It tests whether a function f is UC-complete or not. If f is complete then it
constructs FOT in Ff -hybrid at constant rate.

This theorem was proven for the deterministic case in [BMM99]. Note that in the randomized case, if
there exists an input for the receiver such that it can determine the sender’s input with certainty, then the
SFE is standalone-/UC-trivial; because the protocol where the sender sends her input to the receiver is a
standalone-/UC-secure protocol. On the other hand, if all receiver inputs are such that the receiver input
cannot be predicted with certainty then our construction provides a standalone-/UC-secure construction of
OT from this SFE.

6 Conclusion

While we have closed a line of work on cryptographic complexity theory that has sought to characterize
complete functionalities for 2-party SFE, we conclude with a new line of investigation this points to. The
focus so far has mostly been on qualitative aspects of cryptographic complexity. However, as mentioned
in the introduction, quantitative questions of cryptographic complexity are closely related to questions of
circuit complexity of functions. Our constant-rate protocols establish a unified measure of cryptographic
complexity (up to constant factors): given a (2-party) function g, asymptotically, how many copies of any

20



complete finite 2-party function are needed for securely7 evaluating g, per instance of g? While one could
have defined this with respect to a specific complete function like OT, the fact that it is invariant (up to
constants) of the choice of this function makes it a more fundamental measure of complexity.

As mentioned in the introduction, finding explicit functions with super-linear lowerbounds for crypto-
graphic complexity is no easier than doing the same for circuit complexity. However, even the presumably
easier problem of showing super-linear lowerbounds for random functions remains open for cryptographic
complexity. We leave it a wide-open problem to study cryptographic complexity lower-bounds, and possibly
discover techniques that are applicable to other complexity notions as well.

Acknowledgments. We thank Vinod Prabhakaran for helpful discussions on the converse of the Channel
Coding Theorem.

7One could use passive or active security in this definition, but clearly the latter admits the possibility of stronger lower-bound
techniques.
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A Results on Redundancy

A.1 Strict and Self Redundancy

Claim 2 (Restated.) Suppose M is a q × q stochastic matrix such that max(M − I) ≥ δ > 0. Also,
suppose P is an s × q matrix such that for any two columns ci and cj of P , infγ ‖ci − γcj‖∞ ≥ ε > 0.
Then ‖PM − P‖∞ ≥ δε.

Proof. Firstly, since we require that infγ ‖ci − γcj‖∞ ≥ ε, ‖ci‖∞ ≥ ε, for any column ci in P . Also note
that M 6= I since max(M − I) > 0. We need to establish a lowerbound on ‖PN‖∞, where N = M − I .

For this, we prove the following by induction, for all integers t ≥ 1. Suppose N is a q × q matrix with
t non-zero rows, such that all diagonal entries of N are at most 0 and all non-diagonal entries of N are at
least 0; also every row of N sums up to 0. Then ‖PN‖∞ ≥ δε (where P is as given).

Base case: t = 1. Consider (i, j) such that Nij = max(N). Since there is only one non-zero row, the jth

column in N has this as the only non-zero entry. Hence the jth column in PN is max(N) · ci. Since
max(N) ≥ δ, ‖max(N) · ci‖∞ ≥ δ‖ci‖∞ ≥ δε. Hence, ‖PN‖∞ ≥ δε.
Base case: t = 2. Again, consider (i, j) such thatNij = max(N). If this is the only non-zero entry in the jth

column in N , then the same analysis as before holds. Otherwise, there is one more non-zero entry, say Ni′j

in that column. Then the jth column in PN equals Nijci + Ni′jcj = Nij(ci + γcj) where γ = Ni′j/Nij .
Hence, ‖PN‖∞ ≥ Nij‖ci + γcj‖∞ ≥ δε.
Induction step. Suppose N has t ≥ 3 non-zero rows. We shall construct N ′ with non-negative non-dagonal
entries, with each row summing up to 0, with t′ < t non-zero rows and with max(N ′) ≥ max(N), such
that ‖PN‖∞ ≥ ‖PN ′‖∞. Then by the induction hypothesis, it follows that ‖PN ′‖∞ ≥ δε.

To construct N ′ from N , consider (i, j) such that Nij = max(N). Let k be a non-zero row in N such

that k 6= i and k 6= j. (This is possible since t′ > 2.) For j′ 6= k and all i′, we set N ′i′j′ = Ni′j′ −
Nkj′
Nkk

Ni′k.
Also we set N ′i′k = 0 for all i′. This zeroes out the kth row and kth column of N ′. Note that Nkk < 0 and
for i′ 6= k and j′ 6= k we have Nkj′ , Ni′k ≥ 0; so N ′i′j′ ≥ Ni′j′ for all elements except those in the kth row
or column (which are 0 in N ′). In particular, N ′ij ≥ Nij . So max(N ′) ≥ max(N).

We can write N ′ = NT , where T is a q × q matrix defined as follows:

Ti′j′ =


1 if i′ = j′ 6= k.

−Nkj′
Nkk

if i′ = k 6= j′.

0 otherwise.

Hence ‖PN ′‖∞ = ‖PNT‖∞ ≤ ‖PN‖∞‖T‖∞ by the sub-multiplicativity of the ‖·‖∞ norm. But
‖T‖∞ = 1 (since the kth row has positive numbers that sum up to 1, and the other rows have a single
non-zero entry equal to 1). Thus, ‖PN ′‖∞ ≤ ‖PN‖∞ as required.

Lemma 3 (Restated.) Suppose a 2-party function f : X × Y → W × Z is left redundancy free. Let
pY be a probability distribution over Y . Let the probability matrices {P x}x∈X , be defined by P x(y,z),w =

pf [w, z|x, y]pY [y]. Then there is a constant εf > 0 (depending only on f ) such that D(P 1, · · · , Pm) ≥
εfmin(pY ).
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Proof. Consider any tuple (x̂, {Mi, αi}ni=1) as in the definition of irredundancy such that it is not the case
that αx̂ = 1 and Mx̂ = I (so that the denominator in the irredundancy parameter is non-zero). Let the
denominator (i.e., the probability of deviation) be 1−αx̂‖P x̂ · 〈Mx̂〉I‖sum = δ0 > 0. We need to show that
such tuples cannot achieve arbitrarily low values of the irredundancy parameter.

We consider two cases (in terms of a constant 1
2 ≥ ε0 > 0 to be specified):

• if αx̂ ≥ 1− ε0δ0, we derive the lower-bound using the fact that x̂ is not self-redundant, and

• if αx̂ < 1− ε0δ0, we derive the lower-bound using the fact that x̂ is not strictly redundant.

Below, we define the matrices Qx to be similar to P x but with using the uniform distribution over y rather
than the distribution pY . That is, Qx(y,z),w = pf [w, z|x, y] · 1

n .

Case αx̂ ≥ 1− ε0δ0: Firstly note that there must be w ∈ W such that αx̂(Mx̂)ww ≤ (1 − δ0), because
otherwise αx̂‖P x̂ · 〈Mx̂〉I‖sum will be strictly greater than 1− δ0. Then, (Mx̂)ww ≤ 1−δ0

αx̂
≤ 1−δ0

1−ε0δ0 . Since
Mx̂ is a stochastic matrix, there must be w′ 6= w such that (Mx̂)ww′ ≥ 1

q (1 − 1−δ0
1−ε0δ0 ) = δ0

q ( 1−ε0
1−ε0δ0 ) ≥

δ0(1−ε0)
q . Since we have required ε0 ≤ 1

2 , this implies (Mx̂)ww′ ≥ δ0
2q . Thus max(Mx̂ − I) ≥ δ0

2q .

Now, since x̂ is not a self left-redundant input, for any two non-zero columns ci and cj ofQx̂, it is not the
case that ci is proportional to cj . That is, the point ci ∈ Rq lies outside the line through origin and cj . Note
that the matrix Qx̂ depends only on f (and one of a finite number of possibilities for x̂); so the infimum,
infi,j,γ ‖ci − γcj‖∞ is lowerbounded by some constant ε > 0 that depends only on f . Then by considering
P in Claim 2 to be Qx̂ without the zero columns, we have ‖Qx̂M −Qx̂‖∞ ≥ δ0

2q ε. Since each row of P x̂ is
obtained by multiplying a row of Qx̂ by npY [y] for some y, ‖P x̂M − P x̂‖∞ ≥ n ·min(pY ) · δ02q ε. We use
this in the last step below.

‖(
∑

x αxP
xMx)− P x̂‖∞

1− αx̂‖P x̂ · 〈Mx̂〉I‖sum
=
‖αx̂P x̂Mx̂ − P x̂ +

∑
x 6=x̂ αxP

xMx‖∞
δ0

≥ ‖αx̂P
x̂Mx̂ − P x̂‖∞ − (1− αx̂)

δ0

=
‖(P x̂M − P x̂) + (1− αx̂)P x̂M‖∞ − (1− αx̂)

δ0

≥ ‖(P
x̂M − P x̂)‖∞ − 2(1− αx̂)

δ0
≥ ‖(P

x̂M − P x̂)‖∞ − 2δ0ε0
δ0

≥ ε

2q
· n ·min(pY )− 2ε0.

We set ε0 = ε
8q · n ·min(pY ). Then, ‖(

∑
x αxP

xMx)−P x̂‖∞
1−αx̂‖P x̂·〈Mx̂〉I‖sum

≥ 2ε0.

Case αx̂ < 1− δ0ε0. Let K :=
∑

x αxP
xMx − P x̂ = (

∑
x 6=x̂ αxP

xMx) − P x(I − αx̂Mx̂). Using
Claim 1, we can write (I − αx̂Mx̂)−1 = 1

1−αx̂M for a stochastic matrix M . Then K(I − αx̂Mx̂)−1 =

(
∑

x 6=x̂ α
′
xP

xM ′x) − P x̂, where
∑

x 6=x̂ α
′
x = 1 and M ′x are stochastic. Now, we note that the set of points

Rx̂ := { (
∑

x 6=x̂ α
′
xP

xM ′x) | α′x ≥ 0,
∑

x6=x̂ α
′
x = 1 and M ′x stochastic } is a closed region (with nr × q

matrices treated as points in Rnrq). Since x̂ is not a redundant input, P x̂ is not in Rx̂. Then, there is a pos-
itive distance between P x̂ and Rx̂ (under various norms, including the ‖·‖∞ norm we use in the numerator
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of the irredundancy parameter). In fact, we can analogously define Rx for all x ∈ [m] and for all such x,
P x 6∈ Rx. So we can define a positive constant ε1 := minx∈[m] ‖Rx − P x‖∞, where ε1 > 0 depends only
on f .

Then ‖K(I − αx̂Mx̂)−1‖∞ ≥ ε1. But ‖(I − αx̂Mx̂)−1‖∞ ≤ 1
1−αx̂ and by the sub-multiplicativity of

the norm, ‖K‖∞ ≥ ε1(1− αx̂) ≥ ε1δ0ε0. Thus, we have ‖(
∑
x αxP

xM)−P x̂‖∞
1−αx̂‖P x̂·〈Mx̂〉I‖sum

= ‖K‖∞
δ0
≥ ε1ε0.

Thus in either case, the expression in the irredundancy parameter is lowerbounded by a positive constant
that depends only on f , irrespective of the choice of the tuple (x̂, {Mi, αi}ni=1).

A.2 An Algorithm to Find a Core

In this section we show that every function has a core and we give an explicit algorithm to find one. We
begin by proving two results.

Lemma 8. Suppose x∗ ∈ X is a strictly left-redundant input of a function f : X × Y → W × Z. Let g be
the function obtained by restricting f to the domain (X \ {x∗})×Y . Then, f and g are weakly isomorphic.

Proof. Since x∗ is strictly redundant, there exists {(αx, P x,Mx)|x ∈ X} and x∗ such thatP x
∗

=
∑

x∈X αxP
xMx,∑

x∈X αx = 1, αx ≥ 0 (for all x ∈ X) and αx∗ = 0.

First, we show that there exists standalone/UC secure local protocol for f in the g-hybrid. Bob always
feeds his input y to g. If Alice’s input is x 6= x∗, simply feed x to g and both parties obtain the correct output
distribution. If Alice’s input is x = x∗, then sample sample x′ from X \ {x∗} according the the probability
distribution {αx|x ∈ X \ {x}}. Alice invokes g with input x′. It receives outcome w′ from the function.
Sample an output w according to the distribution in Mx′ corresponding to output w′ (i.e. the distribution
represented by the row corresponding to output symbol w′). By definition of strict row redundancy, the
protocol is correct. Simulation is trivial for both malicious Alice and Bob cases (the simulators just forward
the input provided to the g-hybrid to the external ideal functionality and forward the output back to the
party).

For the other direction, i.e. a secure protocol for g in f hybrid, the protocol is trivial. Both parties invoke
f with their respective inputs and report their outputs. The simulator for malicious Bob is trivial (simply
forward the input to f -hybrid to the external ideal functionality and report back the received outcome). The
simulator for malicious Alice is as follows. If the f -hybrid is invoked with x 6= x∗, then simply forward that
input to the ideal functionality g and report back the received output. If the f -hybrid is invoked with x = x∗,
then sample x′ according to the distribution {αx|x ∈ X \ {x}}. Invoke the ideal functionality g with input
x′ and receive the outcome w′. Translate w′ into w by sampling according to the distribution in the row of
Mx′ corresponding to the output symbol w′. The simulation is perfect due to strict left redundancy.

Lemma 9. Suppose x ∈ X is a self left redundant input for f , and the two columns corresponding to w and
w′ in P x are scalar multiples of each other. Suppose g is a function obtained by transferring all probability
mass of w′-th column of P x to w-th column: i.e., for all y ∈ Y, z ∈ Z, pg[w, z|x, y] = pf [w, z|x, y] +
pf [w′, z|x, y] and pg[w′, z|z, y] = 0. Then, f and g are weakly isomorphic.

Proof. Protocol for f in g-hybrid is constructed as follows. Alice and Bob forwards their inputs to g.
Alice, on input x, if she receives w as the output translates it into w′ with probability µ/(1 + µ), where the
column corresponding to w′ was µ times the column corresponding to w. Correctness is trivial. Simulator
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for malicious Bob simply forwards the input to g hybrid to the external ideal functionality and forwards the
received output. Simulator for malicious Alice forwards the input g hybrid to the external ideal functionality.
If the input was x and the received outcome was w′ then it forwards w to the adversary; otherwise it simply
forwards the received outcome.

Protocol for g in the f hybrid is constructed as follows. Both parties forwards their inputs to f . If
Alice receives output w′ then it outputs w; otherwise she honestly reports the received output. Simulation
for malicious Bob is trivial. Simulation for malicious Alice does the following: It forwards the input for f
hybrid to the external ideal functionality and receives the output. If the input was x and the output was w,
then it reports w′ with probability µ/(µ+ 1); otherwise it honestly reports w.

Similar results also hold for strict right redundancy and self right redundancy. Using these we obtain an
algorithm that given a function f finds a core f̂ . The algorithm is shown in Figure 4. If f is redundancy
free, then it is a core of itself. Otherwise, by Lemma 1, f is either strictly redundant or self redundant. In
the former case, obtain g as in Lemma 8, and in the latter case obtain g as in Lemma 9. Note that in either
case g is guaranteed to be well-defined (and in particular does not have an empty input or output domain).
Then recursively apply this algorithm to g. Note that at every step the number of pairs (x,w) ∈ X ×W or
the number of pairs (y, z) ∈ Y ×Z such that pf [w, z|x, y] > 0 strictly reduces. Since we will never reach a
situation where one of these sets become empty, the procedure must terminate with a well-defined function
f̂ that is redundancy free. Since the function we chose at every step is weakly isomorphic to the previous
function, f̂ is weakly isomorphic to f . Thus it is a core of f .

Input: A 2-party randomized SFE f .
Output: A core of f , f̂ .

1. Repeat:
(a) Comment: f is redundant if and only if f is either strictly redundant or self redundant

(By Lemma 1).
(b) For each x ∈ X , let P x be the nr × q matrix with P x(y,z),w = 1

np
f [w, z|x, y]

(c) Check whether Alice has a strictly redundant input or not and if so update f as follows:
i. For every input of Alice x∗ ∈ X:

A. Use linear programming to find if there exists a distribution {αx}x∈X with αx∗ = 0,
and a set of q × q stochastic matrices {Mx}x∈X such that:

∑
x∈X αxP

xMx = P x
∗
.

B. If a feasible solution exists, then update f by removing x∗ from the domain X .
(d) Check whether Alice has a self redundant input or not and if so update f as follows:

i. Check whether there exists x ∈ X such that for outputs w,w′ ∈ W the columns corre-
sponding to w and w′ are scalar multiples of each other in P x.

ii. If such (x,w,w′) exists then:
A. Update f so that whenever w′ used to be output to Alice when her input is x, now w

is output.
(e) Analogous to the above two steps, check whether Bob has a strictly redundant or a self redun-

dant input, and in either case carry out the analogous updates.
2. Until f has not been modified in an iteration
3. Output current f as f̂ .

Figure 4 Algorithm to find the core of a 2-party SFE f .

In particular, we have the following:
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Lemma 10. Every finite 2-party function has a core.

B Statistically Testable Function Evaluation

Lemma 4 (Restated.) If f is redundancy free, and pXand pY are constant distribution which have full sup-
port overX and Y respectively, then the probability that any adversary wins in Statistical-Test(f, pY , pX ;N)
is negl(N).8

Proof. We shall only argue that if f is left-redundancy free, then the probability of any adversary winning
the Left-Statistical-Test(f, pY ;N) is negligible in N . The argument for the Right-Statistical-Test is similar.
Then the result follows by union bound.

The experiment involves the adversary adaptively choosing xi. To facilitate the analysis, instead we
shall analyze all choices of (x̃,x,w, w̃), but restricted to w being “typical” for a randomly chosen y (for
the given vector x). Since this would hold except with negligible probability (over random choice of y
and the randomness of f ), this restriction will not affect the conclusion. Then, assuming that the adversary
satisfies the sufficient-distance condition, we analyze the probability of the consistency condition holding.
We shall argue that this probability is negligible if f is redundancy free.

We shall consider the expectation of the quantity µw̃,x̃,y,z − pf [w̃, z|x̃, y]µx̃,y and argue that for some
value of x, ỹ, z̃, the absolute value of this expectation should be large, say, Ω(N7/8). Note that, once we fix
(x̃,x,w, w̃), then for any quadruple (x̃, x, w, w̃), µw̃,x̃,y,z and µx̃,y can both be written as the sum of i.i.d
indicator random variables. This is because the random experiment we consider consists only of picking
yi, zi, for each i independently: if xi = x and wi = w, then Pr[yi = y, zi = z] = pf,Y [y, z|x,w] :=

pY [y]·pf [w,z|x,y]∑
z′,y′ p

Y [y′]·pf [w,z′|x,y′] . Then by Chernoff bounds, we obtain that except with negligible probability, the
consistency condition will be violated.

We shall define the set Good of “good” (x̃,x,w) in which, for each x̃, x, w, the number of positions
i with wi = w among the positions i with x̃i = x̃, xi = x is as expected (over uniformly random i.i.d
yi and randomness of f ) up to an additive error of N2/3. (Note that this assumption is non-trivial only
when there are at least N2/3 positions with x̃i = x̃, xi = x.) The analysis below would be for every tuple
(x̃,x,w) ∈ Good. W.l.o.g we assume that for each (x̃,x,w) the adversary chooses w̃ deterministically.

Fix (x̃,x,w) ∈ Good and an arbitrary w̃. Let Ĩx̃w̃ denote the subset of indices i ∈ [N ] such that
(x̃i, w̃i) = (x̃, w̃), and Iy,z denote the set of i such that (yi, zi) = (y, z). We also write Ĩx̃ to denote the set
of all indices i with x̃i = x̃.

Let J̃x̃ = Ĩx̃ \ ∪w∈W (Ĩx̃,w ∩ Ix̃,w). That is, J̃x̃ is the set of indices i such that x̃i = x̃ and there is some
“deviation”: either xi 6= x̃i or wi 6= w̃i. By the separation condition of the test, we know that there is some
value x̂ ∈ X such that |J̃x̂| ≥ 1

mN
7/8. Henceforth, we restrict our attention to Ĩx̂.

The probabilities in the expressions below are conditioned on (x̃,x,w), where the random choices made
are of y and (w, z). (We do not assume any distribution over x̃ and x which are chosen by the adversary.)

8 The distributions pXand pY are constant while N is a growing parameter.
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For any y ∈ Y , we have:

E
[
µw̃,x̂,y,z

]
= E

[
|Ĩx̂,w̃ ∩ Iy,z|

]
=

∑
x∈X,w∈W
pf,Y [w|x]>0

E
[
|Ĩx̂w̃ ∩ Iw,x,y,z|

]

=
∑
x,w

|Ĩx̂w̃ ∩ Ixw| · pf,Y [y, z|x,w] =
∑
x,w

|Ĩx̂w̃ ∩ Ixw| ·
pf,Y [w, y, z|x]

pf,Y [w|x]

Here, pf,Y [w, y, z|x] , pY [y]pf [w, z|x, y] (since we pick y independent of x, with probability pY [y|x] =
pY [y]) and pf,Y [w|x] =

∑
y,z p

f,Y [w, y, z|x]. Also, we define βxww̃ to be the fraction among the indices i
(within Ĩx̂) in which the adversary sent xi = x to f and obtained wi = w, for which it reported w̃i = w̃.9

βxww̃ =

{ |Ĩx̂w̃∩Ixw|
|Ĩx̂∩Ixw|

if |Ĩx̂ ∩ Ixw| 6= 0

0 otherwise.

|Ĩx̂w̃ ∩ Ixw| = |Ĩx̂ ∩ Ixw| · βxww̃ by definition of βxww̃ (2)

=
(
|Ĩx̂ ∩ Ix| · pf,Y [w|x]±N2/3

)
· βxww̃ since (x̃,x,w) ∈ Good. (3)

We substitute this into the above expression for E
[
µw̃,x̂,y,z

]
. Note that pf,Y [w|x] > 0 implies that it is

lower-bounded by a positive constant (depending on f , independent of N ), and so N2/3

pf,Y [w|x]
= O(N2/3).

Thus,

E
[
µw̃,x̂,y,z

]
=
∑
x,w

|Ĩx̂w̃ ∩ Ixw| · pf,Y [w, y, z|x] · βxww̃ ±O(N2/3)

= |Ĩx̂| ·
∑
x

αx (P x ·Bx)(y,z),w̃ ±O(N2/3)

where αx = |Ĩx̂∩Ix|
|Ĩx̂|

, P x is an nr × q matrix with P x(y,z),w = pf,Y [w, y, z|x] and Bx is a q × q matrix with

Bx
ww̃ = βxww̃. Note that the sum of all the entries in P x is 1; also,

∑
x α

x = 1 and for each x, Bx is a
stochastic matrix.

Next we consider the following:

E
[
µx̂,y

]
=
∑
x,w

pf,Y [y|x,w]|Ĩx̂ ∩ Ixw|

=
∑
x,w

pf,Y [y|x,w]pf,Y [w|x]|Ĩx̂ ∩ Ix| ±O(N2/3) since (x̃,x,w) ∈ Good

= |Ĩx̂|
∑
x,w

αxpf,Y [w, y|x]±O(N2/3)

= |Ĩx̂|pY [y]
∑
x

αx ±O(N2/3) since pf,Y [y|x] = pY [y]

= |Ĩx̂|pY [y]±O(N2/3).

9Note that we omit x̂ from the notation of βxww̃ (and below, αx), since we are restricting our attention to Ĩx̂.
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So, pf [w̃, z|x̂, y]·E
[
µx̂,y

]
= |Ĩx̂|P x̂(y,z),w̃±O(N2/3) sinceP x̂(y,z),w̃ = pf,Y [w̃, y, z|x̂] = pf [w̃, z|x̂, y]pf,Y [y|x̂] =

pf [w̃, z|x̂, y]pY [y]. Thus,

E
[
µw̃,x̂,y,z − pf [w̃, z|x̂, y] · µx̂,y

]
= |Ĩx̂|

(
(
∑
x

αxP x ·Bx)− P x̂
)

(y,z),w̃

±O(N2/3)

Finally, we can rewrite |Ĩx̂| in terms of |J̃x̂| as follows:

|J̃x̂| = |Ĩx̂| −
∑
w

|Ĩx̂w ∩ Ix̂w|

= |Ĩx̂| −

(
|Ĩx̂ ∩ Ix̂|

∑
w

pf,Y [w|x̂] · βx̂ww

)
±N2/3 by Equation 3

= |Ĩx̂|

(
1− αx̂ ·

∑
w,y,z

pf,Y [w, y, z|x̂] · βx̂ww

)
±N2/3

Since |J̃x̂| = Ω(N7/8) and |Ĩx̂| ≤ N , this implies
(

1− αx̂ ·
∑

w,y,z p
f,Y [w, y, z|x̂] · βx̂ww

)
= Ω(N−1/8).

Then,

E
[
µw̃,x̂,y,z − pf [w̃, z|x̂, y] · µx̂,y

]
=
(
|J̃x̂| ±O(N2/3)

)( (
(
∑

x α
xP x ·Bx)− P x̂

)
(y,z),w̃

1− αx̂ ·
∑

w,y,z p
f,Y [w, y, z|x̂] · βx̂ww

)
±O(N2/3)

= |J̃x̂|

( (
(
∑

x α
xP x ·Bx)− P x̂

)
(y,z),w̃

1− αx̂ ·
∑

w,y,z p
f,Y [w, y, z|x̂] · βx̂ww

)
± o(N7/8)

where in the last step we used that fact that 1/
(

1− αx̂ ·
∑

w,y,z p
f,Y [w, y, z|x̂] · βx̂ww

)
= O(N1/8), and

N2/3 ·N1/8 = o(N7/8).

Finally, by Lemma 3, since f is redundancy free, D(P 1, . . . , Pm) ≥ εf ·min(pY ), where εf > 0 is a
constant. Since pY has full support (and is independent of N ), min(pY ) > 0 is also a constant. Thus,

max
(w̃,y,z)

|E
[
µw̃,x̂,y,z − pf [w̃, z|x̂, y] · µx̂,y

]
| ≥ |J̃x̂|

(
‖(
∑

x α
xP x ·Bx)− P x̂‖max

1− αx̂ ·
∑

w,y,z p
f,Y [w, y, z|x̂] · βx̂ww

)
± o(N7/8)

≥ |J̃x̂|
q

(
‖(
∑

x α
xP x ·Bx)− P x̂‖∞

1− αx̂ ·
∑

w,y,z p
f,Y [w, y, z|x̂] · βx̂ww

)
± o(N7/8)

≥ |J̃x̂|
q

D(P 1, . . . , Pm)± o(N7/8) = Ω(N7/8).

To complete the proof we use Chernoff bounds to argue that with all but negligible probability, for (w̃, y, z)
which maximizes the above expectation, |µw̃,x̂,y,z − pf [w̃, z|x̂, y] · µx̂,y| > N2/3 (when N is sufficiently
large).
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C Converse of The Channel Coding Theorem: Proof

Lemma 5 (Restated.) [Weak Converse of Channel Coding Theorem, Generalization] LetF = {F1, . . . ,FK}
be a set of K channels which take as input alphabets from a set Λ, with |Λ| = 2λ. Let G ⊆ [K] be such that
for all i ∈ G, the capacity of the channel Fi is at most λ− c, for a constant c > 0.

Let C ⊆ ΛN be a rate R ∈ [0, 1] code. Consider the following experiment: a random codeword
c1 . . . cN ≡ c

$← C is drawn and each symbol c1 . . . cN is transmitted sequentially; the channel used for
transmitting each symbol is chosen (possibly adaptively) from the set F by the receiver.

Let S denote the set of indices j ∈ [N ] for which the receiver chose a channel in G for receiving cj . If
the receiver always chooses the channels such that |S|/N ≥ µ, then the probability of error of the receiver
in predicting c is

Pe ≥ 1− 1

NRλ
− 1− cµ/λ

R
.

Proof. Let the codeword c be chosen uniformly from the code; and d = (d1, . . . , dN ) represent the symbols
received by the receiver, and y = (y1, . . . , yN ) represent the sequence of channels chosen adaptively by the
receiver. Note that each yj ∈ [K] and it can depend on (d1, . . . , dj−1) and (y1, . . . , yj−1) First note that:

NRλ = H(c) = H(c|y,d) + I(c;y,d)

≤ 1 + PeNRλ+ I(c;y,d) By Fano’s Inequality

Now, we shall upper bound the mutual information I(c;y,d). We use c(j) to denote (c1, . . . , cj); and
similarly define y(j) and d(j). We can write:

I(c;y,d) =
∑
j∈[N ]

I(c; yj , dj |y(j−1),d(j−1))

=
∑
j∈[N ]

I(c; yj |y(j−1),d(j−1)) + I(c; dj |y(j),d(j−1))

Note that c→ (y(j−1),d(j−1))→ yj , so we have I(c; yj |y(j−1),d(j−1)) = 0. Therefore, we get:

I(c;y,d) =
∑
j∈[N ]

I(c; dj |y(j),d(j−1))

=
∑
j∈[N ]

H(dj |y(j),d(j−1))−H(dj |y(j),d(j−1), c)

≤
∑
j∈[N ]

H(dj |yj)−H(dj |y(j),d(j−1), c)

=
∑
j∈[N ]

H(dj |yj)−H(dj |yj , cj)

=
∑
j∈[N ]

I(dj ; cj |yj)
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Let Ej be the indicator variable for the event that the j-th index ij ∈ G, i.e. the adversary chooses a
channel with capacity ≤ λ − c. Define pj as the probability of Ej = 1. We know that

∑
j∈[N ] pj ≥ µN .

Now, we know that I(dj ; cj |yj) ≤ pj(λ− c) + (1− pj)λ = λ− cpj Therefore, I(c;y,d) ≤ N(λ− cµ).

Combining this with the previous result, we get:

NRλ ≤ 1 + PeNRλ+N(1− cµ/λ)λ

⇒ Pe ≥ 1− 1

NRλ
− 1− cµ/λ

R

This completes the proof of the lemma.

D A UC Secure Commitment Protocol

In this section we present the details of the UC-secure commitment protocol that was outlined in Section 4.1.
The protocol is in the f -hybrid model, for any 2-party randomized function f that is redundancy free (Defi-
nition 1) and is not simple (see Section 1.2).

Before presenting the protocol, we define some terminology associated with a function f . We define the
nr×mq matrix Pf , with rows indexed by (y, z) ∈ Y ×Z and columns indexed by (x,w) ∈ X ×W , such
that Pf

(y,z),(x,w) = pf [w, z|x, y].

The Maps φA and φB . For each (x,w) ∈ X ×W let the vector dB(x,w) ∈ Rnr be the column indexed
by (x,w) in the matrix Pf . Let φA : [m] × [q] → [`] (for a sufficiently large ` ≤ mq) be such that
φA(x,w) = φA(x′, w′) iff dB(x,w) = cdB(x′,w′) for some positive scalar c.

Similarly define dAy,z ∈ Rmq to be the row of Pf indexed (y, z); then, let φB : [n] × [r] → [`] be such
that φB(y, z) = φB(y′, z′) iff dAy,z = cdAy′,z′ for c > 0.

Extreme Views. We say that (x,w) ∈ X ×W is an extreme view if the point dB(x,w) is not in the linear
span of {dB(x′,w′) | x

′ ∈ X,w′ ∈W,φA(x′, w′) 6= φA(x,w)}. We denote the set of extreme views inX×W
by af . Note that for any (x,w) ∈ X ×W , we can write

dB(x,w) =
∑

(x̂,ŵ)∈af
γ

(x,w)
(x̂,ŵ)d

B
(x̂,ŵ)

If we consider an experiment in which x ∈ X is picked uniformly at random,10 we can write that for each
(y, z) ∈ Y × Z,

p(xwz|y) =
∑

(x̂,ŵ)∈af
γ

(x,w)
(x̂,ŵ)p(x̂ŵz|y). (4)

10We could use any distribution over X with full support, by appropriately scaling the quantities γ(x,w)

(x̂,ŵ) . In the following, it will
suffice to consider the uniform distribution.

33



Similarly, we say that (y, z) ∈ y × z is an extreme view if the point dAy,z is not in the linear span of
{dAy′,z′ | φB(y′, z′) 6= φB(y, z)}. We denote the extreme views in Y × Z by bf .

We shall restrict to extreme views for the sender, for use in the commitment protocol. The motivation
for this is that the extreme views cannot be equivocated.

Also, for each (y, z) we define the set af |(y,z) to be the set of extreme views (x,w) such that the row in
Pf indexed by (y, z) has a positive entry in the column indexed by (x,w). bf |(x,w) is defined analogously.
That is,

af |(y,z) = {(x,w) ∈ af | pf [w, z|x, y] > 0}
bf |(x,w) = {(y, z) ∈ bf | pf [w, z|x, y] > 0}.

Confusable Views. We say that af is confusable if there exists (y, z) ∈ Y × Z and two elements
(x,w), (x′, w′) ∈ af |(y,z) such that φA(x,w) 6= φA(x′, w′).

Similarly, we say that bf is confusable if there exists (x,w) ∈ X×W and two elements (y, z), (y′, z′) ∈
bf |(x,w) such that φB(y, z) 6= φB(y′, z′).

Lemma 11. If af is not confusable and bf is not confusable, then f is simple.

Proof. For convenience, below we shall say that a row and a column of Pf intersect each other if the com-
mon entry in the row and the column is non-zero.

We shall show that if af is not confusable, then every non-zero row of Pf is in bf . Then, since bf is
not confusable, two non-zero rows of Pf intersect the same column only if they are parallel to each other.
Thus if we partition the non-zero rows of Pf into equivalence classes of parallel rows, then the sets of
columns which intersect the rows in each equivalence class form a partition of the columns of Pf . Thus
each equivalence class of parallel rows defines a minor (consisting of those rows and the columns they
intersect), such that (a) every non-zero entry of Pf falls into one such minor, (b) in each minor the rows are
parallel to each other (i.e., rank 1) and (c) no two minors share the same row or column. This corresponds
to a simple function.

It remains to show that if af is not confusable, then every non-zero row of Pf is in bf .

For each (x,w) ∈ af , let Bx,w = {(y, z) | (x,w) ∈ af |(y,z)}. That is, for (x,w) ∈ af , Bx,w consists
of all rows of Pf indexed by (y, z) such that pf [w, z|x, y] > 0. Note that if φA(x,w) = φA(x′, w′) then
Bx,w = Bx′,w′ . Also, if φA(x,w) 6= φA(x′, w′) then, since af is not confusable, Bx,w ∩ Bx′,w′ = ∅.
Another consequence of af being not confusable, combined with the fact that any column of Pf can be
written as a linear combination of the columns corresponding to af , is that, if for some (x,w) ∈ af , we
have (y, z) ∈ Bx,w and (y′, z′) ∈ Bx,w, then the rows corresponding to (y, z) and (y′, z′) must be parallel:
i.e., there must be a positive constant c such that dB(y,z) = cdB(y′,z′).

Now, at least one row in Bx,w should be in bf . This is because, if all the rows in bf have the (x,w)-th
coordinate 0, then as every row in Pf is in the linear span of the rows in bf , all the rows will have the
(x,w)-th coordinate 0, and Bx,w will be empty. Since we argued that all rows in Bx,w are parallel to each
other, this implies that all rows in Bx,w are in bf .

Further, every (y, z) ∈ Y × Z belongs to some Bx,w, unless the row dB(y,z) = 0. Hence, every non-zero
row of Pf is in bf , as was required.
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Extremity Revealing Input. We say that y ∈ Y is an extremity revealing input if for all z ∈ Z, and all
(x,w), (x′, w′) ∈ af |(y,z), φA(x,w) = φA(x′, w′).

Extremity revealing inputs in X are defined symmetrically.

Mimicing an Input. We say that y∗ ∈ Y can be mimiced by a set of inputs Y0 ⊆ Y if there exists a
probability distribution η over Y0 such that for all (x,w) ∈ X ×W , it holds that∑

z∈Z
pf [z, w|x, y∗] =

∑
z∈Z

∑
y∈Y0

η(y)pf [z, w|x, y]. (5)

Note that if y∗ 6∈ Y0 can be mimiced by Y0, it does not necessarily mean that y∗ is redundant, because for
redundancy there must exist a probabilistic mapping from Y0 × Z to {y∗} × Z. However the following
lemma shows that if each element of Y0 is extremity revealing, then y∗ would be redundant if it can be
mimiced by Y0.

Lemma 12. Suppose Y0 ⊆ Y is a set of extremity revealing inputs. If y∗ ∈ Y \Y0 can be mimiced by Y0

then y∗ is a strictly redundant input.

Proof. To show that y∗ is a strictly redundant input, we consider two experiments: in the first experiment
Bob chooses an input ŷ ∈ Y0 with probability p̂[ŷ] and then on obtaining an output ẑ from f (Alice picks
an input uniformly at random), maps it to an output z with probability p̂[z|ẑŷ] and reports z to Alice. In the
other experiment, Bob picks his input to be y∗ and obtains an output z from f which he reports to Alice. (We
denote the probabilities in the first experiment using p̂ and in the second experiment using p.) To show that
y∗ is strictly redundant, we show that the views of Alice in the two experiments (given by the probabilities
p̂[xwz] and p[xwz|y∗]) are identical.

p̂[xwz] =
∑
ŷ

p̂[wxŷz] =
∑
ŷ

p̂[ŷ] · p̂[xwz|ŷ]

=
∑
ŷ,ẑ

p̂[ŷ] · p̂[xwzẑ|ŷ]

=
∑
ŷ,ẑ

p̂[ŷ] · p̂[xwẑ|ŷ] · p̂[z|ẑŷ] because p̂[z|xwẑŷ] = p̂[z|ẑŷ]

=
∑
ŷ,ẑ

p̂[ŷ] · p[xwẑ|ŷ] · p̂[z|ẑŷ] because p̂[xwẑ|ŷ] = p[xwẑ|ŷ]
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p[xwz|y∗] =
∑

(x̂,ŵ)∈af
γ

(x,w)
(x̂,ŵ)p[x̂ŵz|y

∗] by Equation 4

=
∑

(x̂,ŵ)∈af
γ

(x,w)
(x̂,ŵ) · p[z|x̂ŵy

∗] · p[x̂ŵ|y∗]

=
∑

(x̂,ŵ)∈af
γ

(x,w)
(x̂,ŵ) · p[z|x̂ŵy

∗] ·
∑
z∈Z

p[x̂ŵz|y∗]

=
∑

(x̂,ŵ)∈af
γ

(x,w)
(x̂,ŵ) · p[z|x̂ŵy

∗]
∑
(ŷ,ẑ):
ŷ∈Y0

η(ŷ)p[x̂ŵẑ|ŷ] by Equation 5

=
∑
(ŷ,ẑ):
ŷ∈Y0

∑
(x̂,ŵ)∈af

γ
(x,w)
(x̂,ŵ) · η(ŷ) · p[z|x̂ŵy∗] · p[x̂ŵẑ|ŷ]

Note that for ŷ ∈ Y0 and any ẑ ∈ Z, and (x̂, ŵ) ∈ af |(ŷ,ẑ), the quantity p[z|x̂ŵy∗] depends only on (ŷ, ẑ);
this is because ŷ ∈ Y0 is an extremity revealing input, and p[z|x̂ŵy∗] is identical for all (x̂, ŵ) ∈ af |(ŷ,ẑ).
So, for ŷ ∈ Y0, ẑ ∈ Z, and (x̂, ŵ) ∈ af |(ŷ,ẑ), we define p∗ŷ,ẑ = p[z|x̂ŵy∗] as a function of (ŷ, ẑ) alone. Now,

p[xwz|y∗] =
∑
(ŷ,ẑ):
ŷ∈Y0

η(ŷ) · p∗ŷ,ẑ ·
∑

(x̂,ŵ)∈af
γ

(x,w)
(x̂,ŵ)p[x̂ŵẑ|ŷ]

=
∑
(ŷ,ẑ):
ŷ∈Y0

η(ŷ) · p∗ŷ,ẑ · p[xwẑ|ŷ] by Equation 4

These two expressions can be made equal by setting p̂[ŷ] = η(ŷ) for ŷ ∈ Y0 (and 0 outside Y0), and
p̂[z|ẑŷ] = p∗ŷ,ẑ .

Unrevealing Distribution. An unrevealing distribution over Y is a distribution with its support being all
of Y , such that the resulting distribution over X×W is outside the convex hull of the distributions resulting
from extremity revealing inputs in Y . That is, if Y0 is the set of extremity revealing inputs in Y , then pY is
an unrevealing distribution if the support of pY is Y and there is a constant ε such that for all distributions η
over Y0, for some (x,w) it holds that

|
∑
z∈Z

∑
y∈Y

pY [y] · pf [z, w|x, y]−
∑
z∈Z

∑
y∈Y0

η(y) · pf [z, w|x, y]| > ε. (6)

An unrevealing distribution is defined as one that can be used by the receiver in the commitment protocol.
This is why we have included the requirement that it has all of Y in its support: this ensures that the columns
of Pf corresponding to af still remain extreme views, even if the rows of Pf corresponding to y ∈ Y are
scaled by pY [y].

Lemma 13. Suppose f is redundancy free. If af is confusable, then there exists an unrevealing distribution
over Y .
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Proof. By definition of confusability, Y0 ( Y , where Y0 is the set of extremity revealing inputs. So there
exists an input y∗ ∈ Y \ Y0. Then, since f is redundancy free, by Lemma 12, y∗ is not mimicable by Y0.
Hence there must be an unrevealing distribution over Y (which puts sufficient amount of probability mass
on y∗, and puts, say uniform weight on all other elements in Y ).

The Commitment Protocol. Suppose f is not simple. Then by Lemma 11, either af is confusable or
bf is confusable. W.l.o.g we assume that af is confusable. Further, suppose f is redundancy free; then by
Lemma 13 there is an unrevealing distribution pY over Y . In Figure 5 we present our commitment protocol
assuming af is confusable and that there is an unrevealing distribution over Y . (Instead if bf is confusable,
then the function f will be used in the reverse direction.)

We sketch the proof of security for this commitment protocol (with say N0 = M = κ). Since we are
in the information-theoretic setting, with computationally unbounded adversaries and simulators, we focus
on showing the statistical hiding property and statistical binding property separately. These can be easily
turned into a simulation argument.11

Binding. Binding relies on the fact that the protocol requires the sender to use extreme views and on
the distance of the code used. Consider an opening made by the sender. For any block ci, for each ϕ ∈ Λ,
consider the positions where the sender claimed its view to be (x,w) ∈ af such that φA(x,w) = ϕ. Consider
the fraction of positions where the actual view of the sender was (x′, w′) such that φA(x′, w′) 6= ϕ. In this
case, the expected view of Bob in those positions is given by a linear combination of the columns dAx′,w′

(with co-ordinates for each y scaled by pY [y]). If this linear combination is not close to the vector dAx,w
(scaled by pY ) then with all but negligible probability, the opening will not be accepted by the receiver.
On the other hand, if the linear combination is close to dAx,w, since dAx,w is outside the linear span of other
dAx′,w′ with φAx′, w′ 6= φAx,w, only at a small number (sub-linear fraction) of places can the sender open
to (x,w) but have had an actual view (x′, w′) such that φA(x′, w′) 6= φA(x,w). By using a code such that
the distance of the code (while still sublinear) is much larger than the number of positions where the sender
can cheat as above, we guarantee binding.

Note that the simulator, which sees all (xi,j , wi,j) and ri,j , can find ci,j = φA(xi,j , wi,j) ⊕ ri,j for all
(i, j). Then, for each i it can find the closest codeword ci to (ci,1, . . . , ci,N ) and use these ci to extract
a bit b which it sends to the commitment functionality. If for any of the blocks transmitted, if the closest
codeword is not unique, then the simulator commits to an arbitrary bit. In this case, the distance between
the transmitted word and the codeword is large (linear in N ), and so in a real execution, any decommitment
will be rejected with all but negligible probability and thus the simulation can be finished without opening
the bit the simulator committed to.

Hiding. We outline the proof of statistical hiding below. The detailed argument is in Appendix D.1.

To see the hiding property, consider the use of the function f as a “channel,” which accepts ci,j from
Alice, yi,j from Bob and samples (xi,j , wi,j , zi,j) and outputs wi,j to Alice and ai,j + ci,j to Bob, where
ai,j = φA(xi,j , wi,j). The hiding property relies on the fact that Bob is forced to use f as channel with

11If the code used admits efficient equivocation (sampling a codeword within a small radius) and efficient extraction (decoding
within a smaller radius), we obtain a slightly stronger security property in which the simulator is efficient except for the black-box
invocations of the adversary. Since, in our final protocol, we will be invoking this construction with the security parameter set to a
constant, this will not be relevant to us.
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Bit-Commitment(b, f,M,N0):
Suppose f is such that af is confusable and there is an unrevealing distribution pY over Y .
Let αx,w =

∑
y∈Y pY [y]pf [x,w|y] (this is the probability of (x,w) being the Alice’s view in an in-

vocation of f when x is chosen uniformly at random and y is chosen according to pY ). Let N =
1
2 ·N0 ·

∑
(x,w)∈af αx,w.

The protocol is presented in terms of a code C over the alphabet Λ = φA(af ) ⊆ [`] (i.e., the image of af

under the map φA) with block-length N , rate 1 (or more precisely, rate 1 − o(1) as a function of N ), and
distance ω(N7/8). (An explicit code is not necessary: the receiver can pick at random ω(N7/8) “parity
checks” to construct the code and announce it to the sender.)

1. Commit Phase:

(a) The sender picks {xi,j}i∈[M ],j∈[N0]
$←XMN0 . The receiver picks {yi,j}i∈[M ],j∈[N0] ∈ YMN0 ,

where each yi,j is i.i.d., according to the unrevealing distribution pY . Both parties invoke f
with respective inputs xi,j and yi,j ; the function computes (wi,j , zi,j)

$←f(xi,j , yi,j), and sends
wi,j to the sender and zi,j to the receiver.

(b) For each i ∈ [M ], the sender carries out a consistency check on {(xi,j , wi,j)}N0
j=1: it checks

that for each value of (x,w) ∈ X ×W the number of indices j with (xi,j , wi,j) = (x,w) is
N0 · αx,w ±N2/3

0 . If not, it aborts the protocol.

(c) Next, for each i ∈ [M ] the sender announces a subset of N (arbitrarily chosen) indices j, such
that (xi,j , wi,j) ∈ af . (If no such set exists, then the sender would have aborted the protocol
in the previous step.) In the following, we renumber the indices so that for each i, these N
indices are considered j = 1, . . . , j = N .

(d) For each i ∈ [M ], the sender picks a codeword ci = (ci,1, . . . , ci,N )
$← C ⊆ ΛN . Let ri,j =

ci,j + φA(xi,j , wi,j). The sender sends {ri,j}i∈[M ],j∈[N ] to the receiver.

(e) The sender picks h← H, a universal hash function family mapping ΛMN to {0, 1} and sends
(h, ζ) to the receiver, where ζ = b⊕ h(c1,1 . . . cMN ).

2. Reveal Phase: Sender sends {(xi,j , wi,j)}i∈[M ],j∈[N0] to the receiver, who proceeds as follows:

Recover ci = (ci,1, . . . , ci,N ), for each i where as ci,j = ri,j − φA(xi,j , wi,j). Then accept b =
ζ ⊕ h(c1,1 . . . cMN ) as the opening if and only if the following assertions hold:

(i) (xi,j , yi,j) ∈ af when j ≤ N ; (ii) ci ∈ C for each i ∈ [M ]; (iii) (x1,1, w1,1), . . . (xM,N0 , wM,N0)
and (y1,1, z1,1), . . . (yM,N0 , zM,N0) satisfy the consistency checks in the Left-Statistical-Test.a

aIt would be enough for the sender to reveal (xi,j , wi,j) only for j ∈ {1, . . . , N} and for the receiver to do consistency tests
restricted to these indices; but for convenience we describe the tests in terms of the Left-Statistical-Test.

Figure 5 Commitment protocol in f -hybrid model, assuming af is not confusable and there is an unrevealing distribution pY over
Y . If f is redundancy free and not simple, then this assumption holds, possibly with Alice’s and Bob’s roles (i.e., (X,W ) and
(Y,Z)) reversed.

capacity strictly less than log nq: as we shall see below, this is enforced by the sender’s check in step (b).
Then we appeal to our extension of the weak converse of Shannon’s Channel Coding Theorem (Lemma 5) to
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argue that since the code has rate 1, some information about the codeword remains hidden from the receiver.
We need an extension of the (weak) converse of the channel coding theorem to handle that facts that (a)
the receiver can adaptively choose the channel characteristic, by picking yi,j adaptively, and (b) some of
the channel characteristics that can be chosen include a noiseless channel, but the number of times such a
characteristic can be used cannot be large (except with negligible probability). The reason this restriction
can be enforced is because the pY is an unrevealing distribution. The check carried out by the sender is
simple and cannot completelt bind the receiver to using pY , but it ensures that the receiver cannot (almost)
always use only extremity revealing ys.

Finally, the commitment is made hiding by masking the bit to be committed by a bit extracted from the
codewords ci.

D.1 Hiding of the Commitment Protocol

In this section, we show that the commitment protocol in Figure 5 is statistically hiding. For this we use the
converse of the channel coding theorem and the irredundancy of the function f .

First Game: Error in predicting each codeword. Note that if λ = Θ(1), N = ω(1), R = 1 − o(1),
c = Θ(1) and µ = Θ(1) in Lemma 5, then Pe = Θ(1). As a direct application of this result, we get the
following result:

Let Λ = {φA(x,w) | (x,w) ∈ af}. Define λ = log |Λ|; and note that |Λ| is at least 2. Consider the
following game between an honest challenger and an adversary:

1. The challenger picks a codeword c1 . . . cN ≡ c
$←C, where C ⊆ ΛN , log |C| = NRλ andR = 1−o(1).

2. For each i ∈ [N ], sequentially repeat these steps:

(a) The challenger picks xi
$←X , for i ∈ [N ] and feeds into f .

(b) The adversary feeds yi ∈ Y .

(c) The output (wi, zi)
$← f(xi, yi) is computed; and wi is given to the challenger and zi is given to

the adversary.

(d) If (xi, wi) 6∈ af then repeat this step.

(e) The challenger sends ri = φA(xi, wi) + ci to the adversary.

3. The adversary outputs c̃ ∈ ΛN .

The adversary wins the game if c̃ = c, i.e. it is able to correctly guess the codeword. We shall show that the
probability that the adversary loses this game is at least a constant, if the adversary feeds yi ∈ Y which are
not completely revealing for at least µN rounds, where µ is a constant.

To directly apply Lemma 5 consider the following alternate, but equivalent, game:

1. The challenger picks a codeword c1 . . . cN ≡ c
$←C, where C ⊆ ΛN , log |C| = NRλ andR = 1−o(1).

2. For each i ∈ [N ], sequentially repeat these steps:
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(a) The adversary feeds yi ∈ Y to the channel.

(b) The challenger sends ci ∈ Λ to the channel.

(c) The channel samples (xi, wi, zi) according to the following distribution Dyi and sends ri =
ci + φA(xi, wi) and zi to Bob: Consider a matrix Myi with rows indexed by Z and columns
indexed by X × W . If (x,w) 6∈ af then Myi( z, (x,w) ) = 0 for all z ∈ Z. Otherwise
Myi( z, (x,w) ) = pf [w, z|x, yi] for every z ∈ Z. The probability of (x,w, z) according to the
distribution Dyi is proportional to the entry Myi( z, (x,w) ).

3. The adversary outputs c̃ ∈ ΛN .

The adversary wins the game if c̃ = c.

Recall Y0 ⊆ Y is the set of inputs which are extremity revealing. We know that for every y ∈ Y \ Y0,
there exists z ∈ Z, (x0, w0), (x1, w1) ∈ X ×W such that: pf [w0, z|x0, y] > 0, pf [w1, z|x1, y] > 0 but
φA(x0, w0) 6= φA(x1, w1). Further, |Y \ Y0| ≥ 1 if f is redundancy free. If the challenger uses some
y ∈ Y \ Y0 with Θ(1) probability, then at least µ = Θ(1) fraction of the channels are not fully revealing.

Now, this is formulated as a game where the adversary can pick the channel, at least µ = Θ(1) fraction
of whom are not fully revealing. Applying Lemma 5, we directly get that the adversary loses the game with
probability Pe = Θ(1), if N = ω(1), R = 1− o(1) and µ = Θ(1).

Second Game: Negligible advantage in predicting the bit. Consider the following game between an
honest challenger and an adversary:

1. The challenger chooses c1 . . . cM
$←CM .

2. The challenger and adversary perform M copies of the previous game and in the k-th game, the
challenger uses ck.

3. Interpret c1 . . . cM ≡ (u1,1 . . . u1,N ) . . . (uM,1 . . . uM,N ), where ui,j ∈ Λ for all (i, j) ∈ [M ] × [N ].
The challenger draws h $← H, where H is a family of universal hash functions mapping ΛMN to
{0, 1}. The challenger computes b = h(u1,1 . . . uM,N ) and sends h to the adversary.

4. The adversary output b̃ ∈ {0, 1}.

The adversary wins the game if b = b̃.

The following analysis is conditioned on the fact that among the inputs {yk,1, . . . , yk,N} used by the
adversary, at least µ = Θ(1) fraction of them are not fully revealing, for every k ∈ [M ]. We shall be using
the notion of average min-entropy (denoted by H̃∞) as introduced by [DORS08]. Let us denote the complete
view of the adversary by V and u denote the random variable u1,1 . . . uM,N . Note that for each k ∈ [M ],
the codeword ck is incorrectly predicted by the adversary with probability at least Pe = Θ(1). Therefore,
H̃∞(u|V ) ≥ Θ(M). Finally, using the result that universal hash functions are good strong extractors for
sources with high average min-entropy [DORS08], we get that b is statistically hidden from the adversary,
if M = ω(1). Formally, let U be the uniform bit. Then SD ((b, V ), (U, V )) ≤ 1√

2
2−H̃∞(u|V )/2 = 2−Θ(M).

Combining these two results, we get the following lemma:
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Lemma 14. Let N = ω(1), R = 1 − o(1) and C ⊆ ΛN be a rate R code. If the adversary uses Θ(N)
inputs among {yk,1, . . . , yk,N} which are not fully revealing, for every k ∈ [M ], then the advantage of the
adversary in the following game is at most 2−Θ(M).

Hiding-Game(N,M, C):

1. For k ∈ [M ] Repeat the following steps:

(a) The challenge picks a codeword ck,1 . . . ck,N
$←C ⊆ ΛN .

(b) For i ∈ [N ] repeat the following steps:

i. The challenger picks xk,i
$←X .

ii. The adversary picks yk,i ∈ Y .
iii. They invoke f with these inputs and receive respective outcomes wk,i and zk,i from the

functionality.
iv. If (xk,i, wk,i) 6∈ af then repeat the above steps again.
v. Otherwise, the challenge sends rk,i = ck,i + φA(xk,i, wk,i) to the adversary.

2. The challenger samples h← H and sends h to the adversary. Define b = h(c1,1 . . . cM,N ).

3. The adversary finally outputs b̃.

The adversary wins the game if b = b̃.

Final Argument. Finally, for a non-redundant f , we need to show that any (malicious) receiver for the
protocol in Figure 5 uses y ∈ Y \ Y0 with constant probability if the commitment-phase of the bit commit-
ment protocol succeeds.

Let V (y) be the distribution over af ⊆ X ×W conditioned on the event that the receiver uses input y
and the view of Alice lies in the set af . Define P as the convex hull of the points {V (y) | y ∈ Y0}. LetQ be
the convex hull of the points {V (y) | y ∈ Y }. Since f is not redundant, Lemma 12 implies that there exists
y∗ ∈ Y \ Y0 such that V (y∗) is outside P . Thus, there exists a point in Q such that its statistical distance
from every point in P is at least a constant and has full support over Y .

Formally, there exists a distribution pY over Y such that the following conditions hold: Define V (pY ) =∑
y∈Y pY [y] · V (y).

1. SD
(
V (pY ),P

)
≥ τ = Θ(1), and

2. pY [y] ≥ γ = Θ(1) > 0, for all y ∈ Y .

First consider the case that the sender only wants to send one codeword c1 ∈ C to the receiver. Fix a
view of the receiver. For this view, let p̂(y) represent the fraction of indices of [N ] where the receiver uses
y as input. Conditioned on this fixed view of the receiver, we shall consider the probabilistic event that the
sender completes the commitment-phase of the protocol in Figure 5. There are two cases to consider:

1. Suppose the receiver uses inputs from Y \ Y0 in at least (τ/2)×N invocations of f , i.e. p̂(Y \ Y0) ≥
τ/2. In this case we are done, because (τ/2) = Θ(1); and feeding any input from Y \ Y0 results in a
hiding channel.

41



2. If the receiver uses inputs from Y0 in at least (1−τ/2)×N invocations of f , i.e. p̂(Y \Y0) ≤ τ/2, then
SD
(
V (p̂), V (pY )

)
≥ τ − τ/2 = τ/2.12 In this case, the sender will detect that the distribution over

af is not close to the honest distribution V (pY ) with (1− negl) probability (by Chernoff bound). So,
the sender will not complete the commitment-phase of the protocol, except with negligible probability.

Averaging over the views of the receiver, if the commitment-phase of the protocol completes with (1−
negl) probability, then p̂(Y \ Y0) ≥ τ/2 with (1− negl) probability.

Finally, using union bound, the receiver uses p̂(Y \ Y0) ≥ τ/2 while receiving the k-th codeword ck,
for every k ∈ [M ]. This complete the argument that the bit commitment protocol in Figure 5 statistically
hides the bit b.

E Passive-to-Active Security Compiler: Proof

Here we prove that the protocol ρ
ÕT

in Section 4.2 UC-securely realizes F (δ)

ÕT
with parameter δ(κ) =

κ−1/16 (or more precisely, δ(κ) = dκ15/16e/κ, so that κ · δ(κ) is an integer).

Firstly, we note that if both parties are honest, then by the completeness of the statistical test, the prob-
ability that the protocol is aborted is negligible in κ. Combined with the correctness of πSH-OT, this ensures
that a trivial simulation is good for this case.

When at least one party is corrupt, we need to build a simulator interacting with the ideal functionality
F (δ)

ÕT
playing the role of the corrupt party. It simulates to the adversary an interaction of the protocol ρ

ÕT

in the f -hybrid as follows. Till Phase III it plays the part of the honest party faithfully. Note that the inputs
to the protocol are not used until Phase V, so this can be carried out faithfully. If the simulated honest party
aborts its execution before entering Phase IV, the simulator completes the simulation. Otherwise it proceeds
as follows. (Below we abbreviate δ(κ) as δ.)

– If the simulated honest party does not abort its execution, but the adversary has deviated from the
execution it has been committed to in more than δ · κ of the executions of πSH-OT indexed by L, the
simulator bails out. We shall use the binding property of f to argue that this happens with negligible
probability.

– Else, let C ⊆ L be a set with |C| = δ · κ such that indices of all the executions of πSH-OT in which the
adversariary deviated are included in C.

The simulator checks if F (δ)

ÕT
yields control to it. If so, it simulates the random selection in Phase IV

to pick a random index i∗ ∈ C. Else, it picks a random index i∗ 6∈ C.

In the former case, it will carry out Phase V execution faithfully using the correct input of the honest
player, and (if Bob is the honest player) takes its output from that execution and makes F (δ)

ÕT
provide

that output to the honest player.

In the latter case (when F (δ)

ÕT
does not yield control), the simulator extracts the adversary’s input(s),

uses an arbitrary bit for the (part of) honest player’s input that it does not obtain from the functionality,
12 The lower bound follows from the following result: Let S be the space of vectors in [−1, 1]N such that the components of the

vectors sum up to 0. For vectors a, b ∈ S, SD (a,0) ≥ τ implies SD (a, ρb) ≥ (τ − ρ).
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and completes the simulation of Phase V. That is, if Alice is the honest player, then the simulator
will first extract the choice bit b from the adversary’s last message and the output it received in the
execution of πSH-OT indexed by i∗ (in which the adversary did not deviate); then it will send this bit
to the functionality and receive xb. It will complete the simulation of Phase V by sending a random
bit instead of r1−b = x1−b ⊕ s1−u as Alice’s last message. On the other hand, if Bob is the honest
player, the simulator will extract (x0, x1) from the adversary and send them to the functionality; it
will complete the simulation using a random bit instead of c = b⊕ u as Bob’s last message.

We point out that the simulator does not ever employ the simulation for πSH-OT, but rather runs the
protocol πSH-OT itself. The security guarantee for πSH-OT is only used in arguing that the simulation is good.
This allows us to not rely on adaptive security for πSH-OT.

We argue that this is a good simulation with only a negligible statistical difference with the real execu-
tion. Note that we can couple the real and ideal executions upto the end of Phase III. To prove that the entire
simulation is good, we show:

(a) probability of the event bail-out is negligible in the coupled execution, and

(b) conditioned on the event bail-out not occuring in the coupled execution, the two executions have
negligible statistical difference.

The first part follows from Lemma 4. Suppose the adversary deviates in t0 instances of πSH-OT, and t1 of
those instances were indexed in L during the cut-and-choose phase. With high probability t1 is close to
t0/2. For the honest party to not abort, in all the t1 instances in L, the adversary should pass parts (a) and
(b) of the checks. Note that the only part not determined by the protocol, given the view of the honest party
and the committed values, are the views of the adversary from f invocations: so for a deviation to be not
caught by part (a) of the check, either the deviation should be that the adversary actually fed a different value
as input to an instance of f than it was supposed to, or it altered the output it received from f and continued
the execution faithfully with this altered output (and reported the altered output). Thus there are at least t1
executions of f from the t1 executions of πSH-OT in which the adversary deviated as above. Of these at least
t1/2 have f invoked in the same direction (with the adversary playing the role of the first party (with input
domain X) or of the second party: w.l.o.g., assume that the adversary plays the role of the first party in t1/2
instances of f in which it deviated. Let N denote the total number of instances of f invoked in this direction
out of all the κ instances of πSH-OT indexed by L. Recall that πSH-OT is invoked with a security parameter
κπSH-OT = κc for a small enough constant c > 0 so that the number of invocations of f in each instance of
πSH-OT is at most κ1/8; then N ≤ κ9/8. By the binding lemma, we know that if the consistency check is
cleared then t1 ≤ N7/8 ≤ κ54/64 < 2t(κ) with all but negligible probability (since t(κ) = κ15/16). Thus
the probability of t0 ≥ t(κ), which is the probability of the event bail-out, is negligible.

To prove the second part we shall show that if an environment can distinguish between the two execu-
tions, then we can break the statistical (semi-honest) security of πSH-OT.

Firstly, note that the random selection is perfectly simulated, conditioned on bail-out not occurring:
indices in C are chosen with probability exactly δ = |C|/κ. Indeed, we can define the set C in the real exe-
cution as well, and couple the executions till end of Phase IV, so that if the functionality yields control to the
adversary, i∗ is chosen to be an index inC (in both executions). Also, conditioned on the functionality yield-
ing control to the simulator, the simulation is perfect. So consider conditioning on the event (in simulation)
that the functionality does not yield control to the simulator, and an index i∗ 6∈ C is chosen, corresponding
to an execution of πSH-OT in which the adversary does not deviate. To argue that the simulation is good in
this case we consider the advantage of the adversary in the following experiment: a fail-stop adversary takes
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part in κ executions of πSH-OT with randomly chosen inputs (for both players). The adversary follows the
protocol honestly but it can adaptively choose to abort any number of these executions, and whenever it
aborts an execution, it will be given the state of the honest party in that execution. When all the executions
finish, for each execution that was not aborted, define the “hidden bit” to be (the part of) the input of the
honest party that is not revealed to the adversary by the ideal OT functionality (for the inputs). Then the
adversary is given either the actual hidden bits in all the unaborted executions, or independently randomly
chosen bits. The adversary’s advantage is the difference in its probability of outputting 1 in these two cases.
By a hybrid argument it is enough to consider a single execution. Then firstly, the adversary can be assumed
to not abort the execution (its advantage remains the same by not aborting and instead making a random
guess); that is, we can consider only semi-honest adversaries in this experiment. By the security guarantee
of πSH-OT, the advantage of semi-honest adversary in distinguishing the actual hidden bit from a random bit
is negligible (in κπSH-OT and hence in κ).

F Active-Completeness Implies Passive-Completeness

Lemma 15. Let f be a redundancy free 2-party function. If f has a standalone (or UC) secure protocol in
g-hybrid, then f also has a passive-secure protocol in g-hybrid.

Proof. We will show that the same protocol that is a standalone secure realization of f in g-hybrid is also a
passive-secure protocol for f in g-hybrid.

Consider the case when Alice is corrupt. We are given that there exists a simulator for corrupt Alice in
the standalone or UC setting. We need to show that, conditioned on the existence of such a simulator, we
get a semi-honest simulator for f . In fact, we shall leverage the left-redundancy of f to show this result.

For any input x, letNx be the event that the simulator invokes the ideal functionality on inputs other than
x or malicious Alice gets an output which was not the output sent by the ideal functionality to the simulator.
If probability of Nx is negligible, then we consider a semi-honest simulator which faithfully simulates the
standalone/UC simulator. If the input sent to the ideal functionality is different from x or the output obtained
by malicious Alice is different from the output obtained from the ideal functionality then it aborts. For an
external environment, interactions with these two simulator are statistically indistinguishable because the
semi-honest simulation is statistically close to the original simulation. Hence, we can conclude that there
exists a semi-honest simulator.

If the probability of the event Nx is non-negligible for some x ∈ X , then there exists an infinite set of
security parameters κ where probability of Nx (represented by px(κ)) is significant, i.e. 1/poly(κ), but the
statistical distance between the real and simulated view of the environment is δx(κ) = negl(κ) close to its
real view. Now consider the set V of simulator views such that, on input x, the event Nx takes place. Define
the following adversarial algorithm A: Randomly pick a view from V and follow its simulation strategy.
Consider interaction of A in the Left-Statistical-Test. The separation condition is trivially satisfied, because
the input fed to the simulator or the output received from the simulator does not match the input or the output
given to the external environment.

Note that px(κ) is significant, while the probability δx(κ) is negligible. Thus, restricted to the views V ,
the statistical distance between environment views can be at most δx(κ)/px(κ) = negl(κ). This ensures
that consistency check is also satisfied. So, we arrive at a contradiction (because for left redundancy free
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functionalities, it is impossible to win the binding experiment, except with negligible probability); thus, it is
not possible that there exists x ∈ X such that Nx is non-negligible.

Note that the whole argument is independent of the hybrid g being used. Further, considering the
simulator for Bob and leveraging that f is right redundancy free, we can similarly conclude that there
exists a semi-honest simulator for Bob. This concludes the proof.

We can use this result to claim the following:

Lemma 16. If a 2-party function g is standalone-complete (or UC-complete) then it is also passive-complete.

Proof. Suppose g is standalone-complete (or UC-complete). Then there is a standalone-secure protocol for
OT in g-hybrid. Since OT is redundancy free, by Lemma 15, this protocol is passive-secure as well. Since
OT is passive-complete and passive-security admits secure composition, we conclude that g is passive-
complete as well.

G Constant Rate Reduction of FOT to F (δ)

ÕT

Let f : X × Y 7→ W × Z be a 2-party function evaluation such that one of its cores is passive complete.
We represent the secure function evaluation functionality of f by Ff . For brevity, we shall use F instead.

In this section we show how to realize the Oblivious Transfer (OT) functionality at constant rate in the
F-hybrid, where f has a core which is passive-complete. The constant rate achieved by our protocols is
in amortized sense, i.e. we shall show how to securely implement κ independent copies of (2-choose-1 bit)
OTs by performing at most Θ(κ) calls to F in the F-hybrid.

This section crucially relies on the techniques introduced in [IKO+11, IPS08].

Part One: Getting F (c)

ÕT
from F (δ)

ÕT
at Constant Rate

Our starting point is the protocol for the functionality F (δ)

ÕT
in F-hybrid. Recall the following definition of

the functionality F (δ)

ÕT
:

Functionality F (δ)

ÕT
. Parametrized by a function δ(κ).

– Set b = 1 with probability p = δ(κ); otherwise b = 0.

– Provide the parties access to a (2-choose-1 bit) OT functionality. If b = 1, let the adversary control
the functionality.

We know that there exists a function δ such that F (δ)

ÕT
can be realized in the F-hybrid with statistically

small simulation error, say ε(κ) (Lemma 6).

Now, we shall use the “Statistical to Perfect Lemma” introduced by [IKO+11]:

Lemma 17 (Statistical to Perfect Lemma [IKO+11]). Let f : X × Y 7→ W × Z be a two-party func-
tion evaluation, and Ff the secure function evaluation functionality for f . The functionality F (δ(κ))

f̃
is the
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functionality which implements Ff but yields the control to the adversary with probability δ(κ). Suppose G
is a 2-party functionality and π is a D-round protocol such that π UC (resp., standalone) securely realizes
F (q(κ))

f̃
in the G-hybrid model, with statistical security error of ε(κ). Then π UC (resp., standalone) securely

realizes F (p(κ))

f̃
in the G-hybrid with perfect security, where p(κ) = D|X||Y | · (q(κ) + ε(κ)).

The lemma as stated is slightly different from the statement of this theorem in [IKO+11]. The statement
of the theorem in [IKO+11] has q(κ) = 0. But this generalization is immediate from the observation that a
protocol which securely implements F (q(κ))

f̃
with ε(κ) simulation error is also a secure implementation of

Ff with simulation error q(κ) + ε(κ).

As a direct application of this result on the protocol which securely implements F (δ)

ÕT
in the F-hybrid

with ε(κ) = negl(κ) simulation error, we get the following result:

Lemma 18. There exists δ′(κ) = Θ(δ(κ) + ε(κ)) = o(1) such that F (δ′)

ÕT
has a perfectly secure protocol in

the F-hybrid.

In fact, for every constant c∗ > 0, there exists a constant c ≤ c∗ and a perfectly secure protocol πc for
F (c)

ÕT
in the F-hybrid with constant communication complexity. In particular, πc performs only a constant

number of calls to F .

The second part of the result follows from the following argument: Since δ′(κ) = o(1), pick the smallest
κc such that δ′(κc) ≤ c∗. Set c = δ′(κc) and define πc as the perfectly secure protocol forF (δ′)

ÕT
with security

parameter fixed to κ = κc.

Part Two: Getting FOT from F (c)

ÕT
at Constant Rate

In this section we shall show the following result:

Lemma 19. There exists a constant c∗ > 0 such that, for every c ≤ c∗, FOT UC-securely reduces to F (c)

ÕT
at constant rate.

It is easy to see that this result along with Lemma 18 yields our main result Theorem 1.

First, we reduceFSTRING-OT[`] toF (c)

ÕT
, for sufficiently small constant c, at constant rate. InFSTRING-OT[`],

the sender sends two ` bit strings and the receiver, oblivious the the sender, chooses to receive one of the
strings. The constant rate in this scenario refers to the fact that FSTRING-OT[`] can be securely realized in
F (c)

ÕT
-hybrid by performing at most Θ(`) calls to F (c)

ÕT
. Such a reduction was explicitly provided by Ishai

et al. [IKO+11].

Lemma 20 (Reduction ofFSTRING-OT[`] toF (c)

ÕT
at constant rate [IKO+11]). . There exists a constant c∗1 > 0

such that, for all c < c∗1, there exists a UC-secure constant rate reduction of FSTRING-OT[`] to F (c)

ÕT
-hybrid.

Henceforth, we shall assume that c∗ < c∗1. To complete the proof, we extend the IPS compiler to F (c)

ÕT
-hybrid.
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Extension of IPS compiler [IPS08] from FOT-hybrid to (F (c)

ÕT
,FSTRING-OT[`])-hybrid. We shall show

the following result:

Lemma 21 (Generalization of IPS). Suppose Π is a protocol among n = Θ(κ) servers and 2 clients, for a
2-party functionality F∗ between clients with UC-security against adaptive, active corruption of t = Ω(n)

servers and adaptive, active corruption of (any number of) clients. Suppose ρF
(c)

ÕT is a 2-party protocol
in the F (c)

ÕT
-hybrid model, that semi-honest securely realizes the functionality of each server in the pro-

tocol Π, with error tolerance. Then there is a 2-party (compiled) protocol for the functionality F∗ in the
(F (c)

ÕT
,FSTRING-OT[`])-hybrid model, with UC-security against adaptive, active adversaries. Further, if the

(insecure) protocol Π̃ obtained by directly implementing each servers of Π using ρF
(c)

ÕT has constant rate,
then the compiled protocol has constant rate too.

Definition of Constant Rate. The term constant rate needs some explanation. The overall complexity
of a protocol is defined as the sum of total communication complexity and total randomness complexity
of the protocol. Suppose F∗ implements α independent instances of a functionality. For example, say
F∗ ≡ FOTα , i.e. F∗ computes α independent instances of FOT. If the overall complexity of a protocol is
Θ(α), then it is said to be constant rate.

Most of the IPS compiler analysis remains identical. We only highlight the main differences in this
section. There are two cases to take care of:

1. A modification of the watchlist infrastructure setup, and

2. Modifications of the consistency checks performed by parties for server communications which are
on its watchlist.

Watchlist Initialization Modification. In original IPS compiler parties choose the set of Θ(t) servers
to put on their watchlist. In the 2 party setting, we can allow parties to have random κ servers on their
watchlist. Suppose the overall complexity of the j-th server, for j ∈ [n], is σj (we assume, without loss of
generality, that σj = Ω(κ)). To establish a watchlist for this server, we need Θ(n/t) = Θ(1) instances of
FSTRING-OT[` = σj ].

Consistency Checks. Suppose Alice has the j-th server on her watchlist which is being simulated by the

j-th session of the inner protocol (represented by ρ
F(c)

ÕT
j ). Then she, first, gets to see the outcome of the “coin-

tossing-in-the-well” phase of ρ
F(c)

ÕT
j . So, she knows the exact random tape to be used by Bob in the execution

of ρ
F(c)

ÕT
j . Next, all messages which are sent over the communication channel are checked for consistency

when revealed over the watchlist. Finally, calls to OT instances are also checked for consistency. Suppose

ρ
F(c)

ÕT
j performs µj calls to F (c)

ÕT
. If the number of inconsistencies ≥ 2cµj then Alice declares that Bob is

cheating.

Semi-honest setting. Note that when both parties are honest, F (c)

ÕT
yields control to the adversary with

probability c. Thus, it is possible that there are inconsistencies in the reported Bob views; but the number
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of such inconsistencies is < 2cµj , except with probability negligible in µj . The simulation for an semi-
honest party (say, Bob) is simple. The simulator internally simulates a F (c)

ÕT
instance. If it yields control to

the adversary, then the simulator corrupts the external FOT instance and grants adversary control to it. The
maximum number of external corruptions performed is < 2cµj , except with probability negligible in µj .

One-party malicious setting. When Bob is malicious, F (c)

ÕT
yields control to the adversary (i.e. Bob)

at < 2cµj instances and in these instances Bob could lie without being detected. For every other instance
where malicious Bob lies, it is caught with probability 1/2, because OT instances are always invoked with
random inputs. So, if Bob lies in ≥ 6cµj instances, then Alice catches ≥ 2cµj inconsistencies. So, Bob
could lie in < 8cµj instances without getting caught.

The simulation in this case proceeds as follows: The simulator honestly simulates a run of F (c)

ÕT
inter-

nally. If F (c)

ÕT
yields control to the adversary, then the simulator corrupts the external FOT instance and gives

the adversary control to thatFOT instance. IfF (c)

ÕT
implements a secureFOT instance then the simulator does

the following: The simulator simply forwards messages between the external FOT instance and malicious
Bob. If Bob lies in the watchlist, then the simulator corrupts the external FOT instance and performs the
consistency check with respect to the external FOT view.

Rest of the analysis remains similar to the original IPS analysis.

Choice of the parameter c. Suppose the error-tolerant nature of ρF
(c)

ÕT ensures that if < c∗2µj instances of

FOT are (semi-honest) corrupted then ρF
(c)

ÕT remains secure. If c < c∗2/8, then we can ensure that corruption

of 8cµj external FOT instances would not violate the security of ρ
F(c)

ÕT
j protocol.

Constant Rate. Assume that the overall complexity of the protocol Π̃ is Θ(α). Note that the total number
of calls to F (c)

ÕT
performed in the compiled protocol is:

∑
j∈[n] µj ≤

∑
j∈[n] σj = Θ(α). Recall that, if

c is sufficiently small, then FSTRING-OT[`] reduces to F (c)

ÕT
at constant rate. So, to implement the watchlist

infrastructure, we need Θ(σj) instance of F (c)

ÕT
for the j-th server’s watchlist. Thus, we need a total of:∑

j∈[n] Θ(σj) = Θ(α) instances ofF (c)

ÕT
for watchlist infrastructure setup. This shows that the IPS compiler

is constant rate if Π̃ is constant rate.

Particular Instantiation. For the inner protocol we use: GMW [GMW87] semi-honest secure protocol in
FOT-hybrid. And the FOT instances are in turn obtained by using the constant-rate semi-honest OT combiner
of Harnik et al. [HIKN08].

For the outer protocol we use the optimized version of Dämgard-Ishai [DI06, CC06] protocol.

We set F∗ ≡ FOTα . It is easy to verify that for such a choice of protocols, the overall complexity of Π̃
is Θ(α) + poly(κ). By using α as a sufficiently large polynomial in κ, we get a constant rate protocol for
FOT in F (c)

ÕT
-hybrid.
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