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A Full Coupled Cluster Singles, Doubles and Triples Model 

for the Description of Electron Correlation 

Mark Reinhard Hoffmann 

Abstract 

Equations for the dete.rmination of the cluster coefficients in a 

full coupled cluster theory involving single, double and triple cluster 

operators with respect to an independent particle reference, expressible 

as a single determinant of spin-orbitals, are derived. The resulting 

wave operator is full, or untruncated, consistant with the choice of 

cluster operator truncation and the requirements of the connected 

cluster theorem. A time-independent diagrammatic approach, based on 

second quantization and the Wick theorem, is employed. Final equations 

are presented that avoid the construction of rank three intermediary 

tensors. The model is seen to be a computationally viable, size­

extensive, high-level description of electron correlation in small 

polyatomic molecules. 
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A Full Coupled Cluster Singles, Doubles and Triples Model 

for the Description of Electron Correlation 

1. Introduction 

The computationally viable description of electron correlation for 

stationary state molecular systems has been the subject of considerable 

research in the past two decades. A recent book by Schaefer l gives a 

good historical perspective on the developments in the field of quantum 

chemistry. The predominant methods for the description of electron 

correlation have been configuration interaction (CI) and perturbation 

theory (PT); more recently, the variant of CI involving reoptimization 

of the molecular orbitals ( i.e., multiconfiguration self-consistant 

1 
field (MCSCF» has received much attention. As is reasonable to expect, 

neither CI nor PT is wholly satisfactory; a possible alternative is the 

use of cluster operators, in the electron excitations, to describe the 

correlation. 

Two ongoing developments support the tenability of the coupled 

cluster method, an inherently complicated procedure. The first is the 

increasing understanding of the applicability of elegant methods from 

nuclear and particle physics to chemistry. The other development is the 

decreasing ratio of cost to operations/sec in modern high-speed 

computers, especially the advent of super-minicomputers. 

The present work details the derivation of a full coupled cluster 

model, including single, double, and triple excitation operators. Second 

quantization and time-independent diagrams are used to facilitate the 

derivation; the treatment of (diagram) degeneracy and permutational 

symmetry is adapted from time-dependent methods. Implicit formulas are 

1 



presented in terms of products of one- and two-electron integrals, over 

(molecular) spin-orbitals, and cluster coefficients. Final formulas are 

obtained which restrict random access requirements to rank 2 modified 

integrals, and sequential access requirements to the rank 3 cluster 

coefficients. 

The Coupled Cluster Method (CCM) is based on the ansatz that an 

exact many-particle wavefunction can be written as an exponential 

cluster operator acting on an independent-particle function, 

1'1'> .. exp(T) I~o> , (l.1 ) 

N 

where I~o> = II X+ I vac> , (2) 

i=1 
i 

T = Tl + T2 + T3 + ••• , (3) 

and T = \ t abc ••• + + + 
m L ijk ••• XaXiXbXjXcXk··· (4) 

i <j <k< ••• 
a<b<c< ••• 

and X; (Xi) is used to denote the creation (annihilation) of an electron 

in spin-orbital i. The exponential cluster expansion was introduced by 

Ursell and Mayer in the context of statistical mechanics; Coester and 

2 
KUmmel applied the method to problems in nuclear physics in 1958-1962; 

Cizek and Paldus were the first to use the method to address atomic and 

molecular problems.3 ,4 In the terminology of L~wdin, the cluster 

operator ( cf. Equation (3» is the logarithm of the wave operator. 5 

With the exponential matrix defined in the usual fashion, 

exp(T) = 1 + T + 
1 2 1 _1 
-T +-1+ 
2! 3! . 

(5) 

2 
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the exact wavefunction can be written, 

I~> = {(I) + (T I ) + (T 2 + ;! TI) + 

+ (T3 + T 2 T I + ~! r1) + 

I 2 I 2 1 4 
+ (T4 + T3 Tl + 2T T2Tl + 2T T2 + 4T TI ) + 

I 212 1 31 S 
+ (TS + T4TI + T3 T2 + 2T T3 Tl + 2T T2Tl + 3T T2TI + 5T TI ) + 

+ ••• } I ~ 0> • ( 6 ) 

The parentheses have been included to facilitate comparison with the 

method of configuration interaction (Cl). Defining Ci consecutively with 

the terms in parentheses, the exact wavefunction can be written, 

(7) 

Variational determination of the Ci coefficients in Equation (7) without 

truncation is referred to as "full-Cl", and is the exact wavefunction 

subject to approximations in the operator ( e.g., non-relativistic) and 

in the independent-particle reference ( e.g., basis set limit). 

Essentially all problems of chemical interest require, due to 

computational constraints, limiting the level of excitation used to 

correlate electrons. The necessary truncation is the key distinction 

between the coupled cluster method (CCM) and the method of configuration 

interaction (CI). In particular, truncations of Equation (6) are size-

6 
extensive, whereas approximations of Equation (7) are in general not. A 

method is said to be size-extensive if the energy of a "supermolecule" 

is linear in the number of non-interacting molecules included,6 

E(nM) = nE(M) (8) 

Size-extensivity can be seen to be of particular importance when a 

consistant description is needed over a large portion of a correlated 

potential energy surface. 

Various approximations of Equation (6), the exact wavefunction in 

3 



the coupled cluster formalism, have been discussed in the chemical 

literature. In particular, Cizek's coupled-pair many-electron theory 

(CPMET),3 also referred to as coupled-cluster doubles (CCD) by 

Bartlett,6 has received considerable attention. 4 ,7-11 In this approach, 

the wave operator is approximated by, 

exp(T) • 1 + T2 + _1_ T2 . 
2! 2' 

(9) 

the success of this rather abrupt truncation for closed-shell molecular 

systems is not too surprising when one considers that the dominant terms 

of a perturbation expansion have been included. 4 ,12 The next more 

complete approximation to attain recognition is the extended coupled­

pair many-electron theory (ECPMET) of Paldus, Cizek, and Shavitt,4,13,14' 

which includes connected single and triple excitations, 

1 2 
exp(T) • 1 + Tl + T2 + T3 + 2T T2 ; 

again the terms to be included were based on a perturbation order 

4 12 
argument.' The contribution of connected triples was shown 

(10) 

numerically to be not inconsequential in applications of perturbation 

theory. IS More recently, Purvis and Bartlett 12 reported the equations 

and initial implementation of a full coupled-cluster singles and doubles 

model (CCSD); this theory includes all terms in the first five 

parentheses, Co through C4 , of Equation (6) except for T3 , T4 , and T1T3 • 

The inclusion of disconnected terms is known to enhance the numerical 

16 17 stability of the coupled equations. ' 

In consideration of the complementary importances of connected 

triples and a full treatment of disconnected terms, it seems reasonable 

to investigate coupled cluster models which incorporate both features. 

This present work details the derivation of a computationally tractable 

full coupled-cluster singles, doubles, and triples model (CCSDT). Such a 

4 
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theory includes all terms in the six parentheses given in Equation (6), 

except for T4 , T
S

' and T4T1• It should be noted that Knmmel et. al.,18 

and Lee and Bartlett,19 have undertaken similar derivations; but with 

emphasis on the partial inclusion of the triples cluster operator. 

It is perhaps appropriate at this point to critically examine a 

few of the key words of coupled cluster theory. Some technical words 

used in discussing the coupled cluster theory have two quite different 

meanings, the appropriate one to be determined by the context of the 

occurance. Perhaps most insidious is the word "connected". A 

disconnected term is the product of two or more cluster operators, e.g., 

T2T
1

; a connected term is then a single cluster operator, e.g., T3 • 

However, a connected diagram is a diagram in which a line ( solid, 

dashed, or squiggly) can be found between any two vertices ( including 

external lines); then a disconnected diagram has an isolated part. It is 

this second meaning of connected which is used in Cizek's connected 

cluster theorem;3 but the first is which is used in the title of Purvis 

and Bartlett's paper,12 "A Full Coupled-Cluster Singles and Doubles 

Model: The Inclusion of Disconnected Triples". Another word used in two 

different ways is "complete", or "full". A complete reference is one in 

which all possible occupations, subject to conservation of particle 

number, correct description of spin statistics, and possibly spin and 

molecular point group symmetry restrictions, of a subset of the 

independent particle basis are subject to the action of the wave 

operator. Examples of this use of complete or full are: full CI or 

Complete Active Space Self-Consistant Field (CASSCF); the space of a 

singles and doubles excitation CI would be considered incomplete by this 

definition. The other usage of complete or full is to describe the 

5 



inclusion in the exponential cluster operator, or wave operator, all 

possible terms, connected and disconnected, subject to the restriction 

of connected diagrams, consistant with a given truncation of the cluster 

operator. This is the definition appropriate to the occurance of "full" 

in the title of Purvis and Bartlett's paper.
12 

A subtle, but 

illustrative, point: CPMET is complete, but ECPMET is not. A final word 

to be examined which is used in two different ways is "truncated". A 

cluster operator is said to be truncated when not all ranks of cluster 

operators up to and including TN' where N is the total number of 

electrons in the system, are included. With this first usage, ECPMET and 

CCSDT have the same truncation, CCSD is more truncated, and CPMET is 

more yet. The second usage is similar but not identical to the first: a 

wave operator is said to be truncated when terms are neglected. Notice 

that the second definition of truncate is the verb form of the second 

definition of incomplete. Under this definition, ECPMET is quite 

truncated in comparison to CCSDT. We hope that this lexicographic 

excercise will enhance the clarity of this writing. 

2. Renormalization 

Both the topology of resulting diagrams and the forms of the 

coupled cluster equations themselves are considerably simplified by the 

use of operators in normal product form. 3 ,8,20-22 The resulting diagrams 

are simplified in that certain connections, which would otherwise be 

legal, are eliminated, reducing the number of unique diagrams. This 

aspect will be discussed in Section 4, after the diagrams are 

introduced. The coupled cluster equations are simplified through the 

elimination of reference to the uncorrelated energy; this rather direct 

6. 
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manifestation of renormalization will be detailed in the following 

Section on the coupled cluster equations themselves. It is the purpose 

of this Section then to derive, following the general procedure of Cizek 

3 20 
and Paldus,' the normal product form of the Hamiltonian operator, to 

demonstrate how this suggests a particularly appropriate renormalized 

vacuum, and to examine the excitation operators with respect to normal 

ordering. The tensorial properties of the operators are discussed, 

especially the connection between rank and normal product form. 

Under the Born-oppenheimer approximation, the spin-independent, 

non-relativistic electronic Hamiltonian for molecular systems can be 

written as, 

H = Z + V ; (2. 1 ) 

where the first-quantized forms of the operators are, 

Z = L z(i) , (2) 

i 

and 

V :::: L v(i,j) , (3) 

i<j 

with 

z(i) = - .!. V2 - L 
-1 

(4) 
2 i Qaria 

a 

and 

v(i ,j) 
-1 

(5) r
ij 

In Equations (2) - (5), i and j refer to electrons, a to nuclei, r is 

2 the metric, V the Laplacian, and Q is the (nuclear) charge. ( N.B. 

Atomic units will be used throughout this work; e.g., me = ~ e = 1.) 

Then the second-quantized forms of the operators are given by,20,23-25 

7 



(6) 

and 

1 I I + + V = 2 I <pq v rs>X X XsXr 
pqrs p q 

(7) 

with, 

(8) 

and 

* * = J 4» (1)4» (2)vO,2)4» (l)cp (2) dT
1

dT
2 p q r s 

(9) 

where p, q, r, and s label spin-orbitals, 4» is the spatial represen-

tation of a spin-orbital, and integrations are over the spin and spatial 

coordinates of the subscripted particle. 

The normal product form of the Hamiltonian operator is obtained by 

the use of the time-independent Wick theorem3 ,20 ( also known as Wick's 

First Theorem22 ); i.e., 

(10) 

where Mi can represent either a creation or annihilation operator, and 

the summation extends over all possible contractions. N[ ••• ] is used to 

designate the normal product of the enclosed operators: the product of 

operators in which all the creation operators appear to the left of all 

the annihilation operators, multiplied by (-l)P, where p is the parity 

of the Fermi permutations. Similarly, 

a 
N [ • •• • •• ] 

is the normal product with pairings. 

Application of the time-independent Wick theorem to the rank 1 

8 



component of the Hamiltonian ( cf. Equation (6» gives, 

Z L <plzlq)N[X;XqJ 
pq 

Z = L <pIZlq)N[X;XqJ + L <pIZlq)h(p)Opq 
pq pq 

(11 ) 

(12) 

where h(p) is the hole function defined by Paldus and Cizek and Opq is 

the Kronecker delta. We have made implicit use of the orthonormality of 

the spin-orbitals in obtaining Equation (12) from Equation (11). The 

convention we will abide by throughout this Section is that p, q, r, and 

s extend over all spin-orbitals; i, j, k, and! refer to spin-orbitals 

occupied in I~a); and a, b, c, and d refer to spin-orbitals unoccupied 

in the reference. Then, 

Z = L <plzlq)N[X;XqJ + L <ilzli) 
pq i 

(13 ) 

so, 

Z = ZI + Za ' (14) 

where the subscripts refer now to the irreducible rank. 

Likewise, application of the Wick theorem to the rank 2 component 

gives, 

where, 

and, 

VI = L <plglq)N[X;XqJ 
pq 

Va = ~ L <ijl lij) , 
ij 

(15) 

(16) 

(17) 

(18) 

(19) 

9 



<pql Irs> = <pqlvlrs> - <pqlvlsr> • 

Now, gathering terms of the same rank, we can write, 

Defining 

HO = I <ilzli> + ~ I <ijl lij> , 
i ij 

HI a I {<plglq> + <plzlq>} N[X;Xq ] , 
pq 

Equation (22) may be written, 

HI = \ f N[X+X] 
L pq P q 
pq 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

Using Equation (20), the definition of the antisymmetrized two-electron 

integral, and the anticommutation relation of fermion annihilation 

operators, Equation (23) may be written, 

(26) 

Hence the Hamiltonian can be decomposed in terms of irreducible tensors, 

(27) 

i.e., written in normal product form. 

Careful examination of Equation (21) reveals that HO is identical 

to the energy matrix element of the reference determinant, 

(28) 

as given by the Slater-Condon rules. 23 ,24 Hence, we are motivated to 

choose the reference determinant as the renormalized, or Fermi, vacuum. 

10 
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The terminology of tensor operators is used extensively in this 

work and warrants further comment. Let us consider the action of the 

operator, 

on a creation operator, 

[ + J L s X X ,. = 
r s r 

+ + 
= (X X X 

r s u 

= X+(X X+ 
r s u 

+ 
= X 15 

r su 

- X+X+X ) 
u r s 

+ X+X ) 
~u s 

where use has been made of the fermion anticommutation relations, 

(29) 

(30) 

(31 ) 

(32) 

(33 ) 

(34 ) 

s 
The operator L acting on the vector field of the creation operators 

r 

satisfies the transformation law for covariant vectors ( e.g., tensor 

rank 1).26 The form of the transformation operator is reasonable in 

light of the following two observations, though it is to be emphasized 

that the legitimacy of referring to the creation operators as covariant 

vectors resides in Equation (32). As Moshinsky noted, annihilation 

operators can be thought of as differentiation operators with respect to 

creation operators,27 then similarly, 

a 
ax 

r 

(35) 

26 + 
Secondly, the commutator is the Lie product of the operators X X and 

r s 

+ Xu ; this choice of "multiplication" is particulrly appropriate when one 

+ realizes that the X X are the generators of the semisimple compact Lie 
r s 

Group, Un' which is associated with the infinitesmal unitary transfor-

mations of the Euclidean vector space, Rn ( e.g., the space of the 

11 



27 
creation operators). With the above comments, the action of the trans-

formation operator on the creation operators can formally be written in 

the usual form of the transformation law for covariant vectors,26 

x 
s 

where the indices on the annihilation operators have been written as 

(36 ) 

superscripts in anticipation of the results of the following paragraph. 

Next consider the action of the same operator, L
r

s
, on the 

annihilation operator, 

+ = -(X X 
r u 

-5 X 
ru s 

+ 
- X X X 

u r s 
(37) 

(38) 

(39) 

s 
So that the operator -L acting on the vector field of the annihilation 

r 

operators satisfies the transformation law for contravariant vectors.
26 

Making the analagous observations as before now for the annihilation op-

erators, the action of the transformation operator on the annihilation 

operators can formally be written in the usual form of the transforma­

tion law for contravariant vectors,26 

L ( 
s 

+ aX 
r 
+ ax 
s 

The index on the annihilation operator will usually continue to be 

written in the conventional subscript position, except where added 

(40) 

emphasis of the contravariant transformation property is deemed useful; 

in either case the same operator is intended. 

A useful test on the consistancy of the definition of the 

12 



transformation operator for creation operators and for annihilation 

operators is provided by considering the action of L s on a rank 1 ( in 
r 

both covariant and contravariant indices) operator, 

x+x X+X 
r s u v 

+ = 0 X X 
su r v 

- X+X X+X 
u v r s 

+ 
- 0 X X 

vr u s 

For spin-orbitals, the creation and annihilation operator pair is a 

(41) 

(42) 

generator of the unitary group, so that Equation (42) can be written, 

[ers,euvl = 0suerv - °vreus (43) 

and Equation (43) is the correct equation defining the structure 

constants of the Lie Algebra. 26 ,27 

Having established that creation and annihilation operators are 

rank 1 covariant and contravariant tensors, respectively, with respect 

to the operator (±)L s, we may define an ~ rank boson operator as 
r 

consisting of a like number of fermion creation and annihilation 

operators. Then the normal product of an ~ rank boson operator is a 

natural definition for the irreducible tensor. 

Tensors, from the same or different fields, can be combined by 

outer multiplication, denoted by juxtaposing indices with order preser­

ved on the resultant tensor. 26 It is possible that an index is present 

both in the covariant and contravariant index sets, then, with the 

repeated index summation convention, both are eliminated and a tensor of 

lower rank results. The elimination of pairs of indices is known as 

contraction; and outer multiplication followed by contraction is inner 

26 
multiplication. In multiplication between tensors, contractions cannot 

take place entirely within one normal product ( i.e., generalized time-

independent Wick theorem, see Section 4), hence such tensors are called 

irreducible. 

13 



Thus far we have .only considered one (boson) vector field, namely 

the direct product field, Rnxn' of creation and annihilation operators. 

The coefficients of the creation and annihilation operator pairs in fact 

also constitute vector fields; this can be shown rigorously by construc-

tion, but the result can also be inferred. Consider that the Hamiltonian 

and the cluster operators are index-free, or scalar operators; then the 

excitation operators, which form part of the said operators, must be 

contracted, in the sense of tensors, by the coefficients. But then we 

have the result that the coefficients themselves behave like tensors. 

This conclusion is not of immediate use, but will be important in the 

manipulating of the final equations ( i.e., after the diagrams have 

contracted the excitation operators). Also, the sense of the words rank, 

and irreducible rank, as they have been used to describe components of 

the Hamiltonian is now clear: they refer to the excitation operator ( or 

equivalently, the coefficient) part of the operator. 

Finally, it should be stressed that the position of an index in a 

sequence is significant, since all operators (and coefficients) will 

eventually be written in antisymmetrized form. We can shed some light on 

the sign change for the transformation operator for covariant and 

contravariant tensors by examining the following: 

L sX+ = (LX) s = 6 X+· 
r u r u su r ' 

(44) 

but, 

L sxu = (LX) su = 6 X s • 
r r ru • 

(45) 

In words, the transformation operator transforms a covariant vector into 

a covariant vector ( cf. Equation (44»; but the transformation operator 

transforms a contravariant vector into a contravariant rank 1 tensor 

which is not a traditional vector. Since L 5 is antisymmetric, the rank 
r 

14 
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1 contravariant tensor in Equation (45) can be converted into a vector 

by interchanging indices, which results in a minus sign. However, in 

cases where there is no ambiguity the covariant and contravariant 

indices will be collimated to make the notation more compact. 

Questions concerning possible modifications to the descriptions of 

excited determinants and cluster operators, Tm' due to the 

renormalization and/or the use of normal product operators must be 

addressed. Excited determinants with respect to the Fermi vacuum can be 

written straightforwardly using creation and annihilation operators; a 

singly-excited determinant is given by, 

(46) 

a doubly-excited determinant by, 

(47) 

and a triply-excited determinant by, 

·I abc> = X+X X+X x+x..I~ > • 
ijk a i b j CK 0 

(48) 

The cluster operators ( cf. Equation (1.4», like the Hamiltonian 

operator, are independent of the choice of vacuum level. 

Application of the time-independent Wick theorem to the single-

+ excitation operator, XaX
i

' present in both the description of singly-

excited determinants with respect to the Fermi vacuum and in the cluster 

operator T
1

, gives, 

(49) 

(50) 

so, 

(51) 

since a and i are members of disjoint sets, i.e., ie:{ FS}, ai{ FS}. 



16 

Similarly for the double-excitation operator, 

+ [+r-T+X] + [X+~] + N[X+X ~ ] + 
N Xa Xi ~ j N a i b j a i \ Xj 

Contractions between the creation operators or the annihilation 

operators vanish identically because of the Fermi-Dirac statistics 

obeyed by electrons ( cf. Equation (33»; and, as in the single-

excitation operator case, contractions between creation and annihilation 

operators are zero, because the indices belong to disjoint sets ( cf. 

Equation (34»; hence, Equation (52) becomes, 

+ + + + 
XaXiXbXj = N[XaXi~XjJ (53 ) 

Further use of the anticommutation relation of fermions for orthonormal 

orbitals gives, 

X:Xi~Xj = N[X:(- ~Xi)Xj] (54) 

+ + 
= -N[XaXiXbXjJ , (55) 

the Kronecker delta vanishes identically because the field operators are 

known to be uncontracted. Finally, 

+ + + + 
X a Xi Xb X j = N [ X a ~ Xj Xi] ; (56) 

and we are led to the interesting conclusion that the double-excitation 

operator, as the single excitation operator, is implicitly in normal .. 

product form. The same conclusion holds for the triple-excitation 

operator, with 

(57) 



3. Coupled Cluster Equations 

The truncated many-particle wavefunction in the coupled cluster 

method is required to satisfy the Schr~dinger equation, 

i.e .• , H exp(T) I ~O> E exp(T) I~ 0> 

(3.1 ) 

(2) 

The reference energy can be removed3 ,20 from the Schr~dinger equation by 

defining 

(3) 

then, since HI and H2 are normal product operators of greater than zero 

rank, 

(4 ) 

Recalling that HO is a scalar, 

<~OIHOI~o> = Ho<~ol~o> (5) 

so, with a normalized reference, 

E = tJ.E + HO ; (6) 

and the Schrndinger equation can be written, 

(7) 

where HN = HI + H2" 

Multiplying Equation (7) through from the left by exp(-T), 

we obtain, 

(8) 

The connected cluster theorem of Cizek3 states that, 

exp(-T) A exp(T) = {A exp(T)}C ' (9) 

where A is any operator of the same number of creation and annihilation 

operators in normal product form, and the subscript C means that only 

connected diagrams are to be included. l ) Then the Sch~Odinger equation, 

with no further approximation beyond the exponential ansatz, 

17 
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may be written, 

(10) 

Projection of Equation (10) onto the set of a-excited determinants 

(a = 1,2,3) yields a set of coupled equations in the cluster 

" coefficients, 

(11 ) 

Also, projection onto the reference determinant allows 6E, and hence the 

correlated energy, to be calculated once the cluster coefficients are 

known, 

(12) 

It is clear that the necessary and sufficient number of equations in the 

coupled set, Equation (11), is equal to the number of unique cluster 

coefficients, provided that a solution exists. Since the coupled cluster 

equations are non-Hermitian and nonlinear, the existence of solutions 

and the reality of eigenvalues corresponding' to solutions are not 

28 
guaranteed. However, Zivkovic and Monkhorst have recently shown, using 

analytic continuations of solutions to the CI problem, that for 

physically reasonable cases both the existence of solutions and the 

reality of eigenvalues is assured. 

The specific equations used to determine the cluster coefficients 

in the CCSDT model will now be given. Projection of the Sch~6dinger 

Equation ( cf. Equation (10» onto the singly-excited space gives, 

¥ ue{FS}, ¥ Bi{FS}; projection onto the doubly-excited space gives, 
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(14 ) 

¥ u<v, u,v£{FS}, ¥ S<y, S,yi{FS}; and projection onto the triply-excited 

space gives, 

.. 

o , (15) 

¥ u<v<w, u,v,w£{FS}, ¥ S<y<£, S,y,£i{FS}. The correlated energy can 

similarly be written as, 

(16) 

It should be emphasized that the absence of terms in the wave operators 

in the above equations does not reflect further truncation ( e.g., with 

respect to exp(T1 + T2 + T3 )), rather it is a consequence of the 

triangle inequalities involving the (irreducible) ranks of the 

Hamiltonian, the external space operators, and the cluster operators. 

More specifically, a matrix element vanishes identically unless it has 

an overall rank of 0; from elementary vector analysis, this can only 

occur if the component contributions obey a triangle inequality, 

Ir(HN) - L mil, a , r(HN) + L m
i 

' 
i i 

(17) 

where the mi refer to the ranks of the individual Tm operators in a 

term, and a is the rank of the external space operator. The generalized 

time-independent Wick theorem, which will be discussed in the following 

Section, justifies the strict addition of the mils in Equation (17). 



Equations (13)-(16) reflect the triangle inequality for max r(H
N) = 

r(HN) = 2; of course, the potent range of the wave operator is even 

smaller for matrix elements involving HIe 

As shown by Paldus, Cizek, and Shavitt,4 antisymmetrized ( e.g., 

degenerate) T matrix elements, 

tBye: ••• 
uvw ••• 

= <Bye: ••• IT/ P(u/v/wl···)uvw ••• > (18) 

are the most appropriate for use in the coupled cluster equations. The 

permutation operator used in Equation (18) is our adaption of the 

(symmetric) permutation operator of Bogoliubov and Shirkov
22 

used in the 

formal power series expansion of the scattering matrix; and will be 

discussed in greater detail in the following Section. The permutation 

operator, as used in Equation (18), represents the signed summation over 

all possible permutations of hole indices. With the T matrix elements as 

defined in Equation (18), the following specific relations hold, 

t
By 

= _tBy = _trB = t
yB 

(19) 
uv vu uv vu 

and 

tBrE: = _tBye: tBye: = _tBre: tBre: _tBre: _tyBe: , etc. (20) 
uvw vuw vwu wvu wuv uWV uvw 

We have implicitly used the permutational symmetry of the T matrix 

elements in writing Equations (1.4), (14), and (15). In particular, the 

restrictions on the external indices are a direct consequence of there 

being only one unique T matrix element for a given set of indices. 
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Perhaps it is appropriate in closing this section on the coupled 

cluster equations to comment on the relation between perturbation theory 

and the coupled cluster method. The iterative scheme used to solve the 

coupled cluster equations can be seen as a method to simultaneously 

generate and evaluate diagrams of arbitrarily high order in perturbation 

theory.8 Of course, diagrams corresponding to high order connected terms 

( e.g., T4 in CCSDT) will not be so generated. 8 It is this property, 

generating arbitrarily high order diagrams, that makes the coupled 

cluster method, in principle, less subject to the issue of the 

"smallness" of the perturbation than perturbation theory. If one wished 

to speculate, it is reasonable to suppose that the coupled cluster 

method will prove superior ·to perturbation theory especially in the 

calculation of excited electronic states. 

4. Diagrams and Rules 

As was first realized by Feynman, field operators and their 

interactions can be represented graphi~ally by lines and points, 

respectively. The evaluation of matrix elements proceeds in two steps: 

all topologically distinct diagrams capable of being formed from the 

given component diagrams are assembled and, then, the resulting diagrams 

are converted back to algebraic expressions using relatively 

straightforward rules. 

The original rules and diagrams, as formulated by Feynman for 

quantum electrodynamics (QED), are unnecessarily general for our 

intended application. Rather, the time-independent formulations of 

Hugenholtz 29 and Brandow,30 developed primarily for use in perturbation 

treatments of problems in nuclear physics, are more suitable for our 
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needs. Cizek and Paldus3 ,4,8,20 were the first to apply the time-

independent diagrammatic approach to atomic and molecular problems, and 

it is their notation which we will conform to most often. A key feature 

of our implementation of the diagrammatic technique is the use of formal 

concepts used in the functional expansion of the scattering matrix in 

quantum electrodynamics, in a time-independent approach. 

A formal similarity arises because both the scattering matrix in 

quantum electrodynamics and the wave operator in a full coupled cluster 

method ( cf. Equations (1.1) and (1.4» are exponential operators. In 

Bogoliubov's axiomatic formulation of the scattering matrix,22 

with 

S(g) ~ 1 + 
1 \ f S (xI'···'x )g(xI)···g(x )dxI···dx , 

L n! n n n n 
~I 

(1) 

(2) 

where the xi are coordinates of space-time and the g(xi ) are functions 

describing the intensity of switching on the interaction. The two 

specific features that we adapt from Bogoliubov and Shirkov's22 

formulation of Feynman's rules for use in the time-independent approach 

involve the use of formal permutation operators and the analysis of the 

symmetry factor. 

We turn now to the description of the requisite component diagrams 

for a CCSDT theory. The basic interaction in our application of spinor 

electrodynamics is the absorption of an electron (or hole) and the 

emission of an electron (or hole), together with the absorption or 

emission of a photon. Solid lines will be used to represent operators of 

the Dirac field; since both positive and negative energy single-particle 

22 



states are admissible,22,25,31 the diagrammatic representation of the 

spinors must be directed. A left-pointed arrow will designate an 

electron, and a right-pointed will then denote a hole. A solid dot will 

be used to designate an interaction; spinor lines emerging from the dot 

will then correspond to electron creation operators, and spinor lines 

converging upon the dot will represent electron annihilation operators. 

The four possible relations of one spinor line and an interaction dot 

are shown in Figure 1. 

-_ .. ..----4. (a) 

•• - ......... --(b) 

(c) •• --lI"'-­

(d) ----. .. ---4. 

Figure 1. Parts of diagrams representing the (a) creation of an 

electron, (b) annihilation of an electron, (c) annihilation of a hole, 

and (d) creation of a hole. 

It is clear then that under the constraint of requiring one incoming 

line and one outgoing line that there are four versions of the basic 

interaction, denoted pp, ph, hp, and hh. 

Different types of diagrams are used to represent non-degenerate 

and degenerate ( i.e., antisymmetrized) operators. The time-independent 

non-degenerate diagrams in common usage were first suggested by 

Goldstone. 32 In Goldstone diagrams, operators of the electromagnetic 

field ( e.g., photons) are represented by dashed lines; the background, 

or averaged, electromagnetic field of the other electrons and the nuclei 

is represented by a small triangle. The Goldstone diagram for the hh 
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version of an HI operator ( i.e., F-vertex) is given in Figure 2(a). 

Different versions of time-independent degenerate diagrams were 

suggested by Hugenholtz,29 and by Brandow. 30 In general, Brandow 

diagrams appear similar to Goldstone diagrams; Hugenholtz diagrams 

coalesce interaction vertices seperated by photons. The Brandow and 

Hugenholtz diagrams for F-vertices, however, are identical; the hh 

version is given in Figure 2(b). 

~ 
I , 
! 
(a) 

.. .. 
(b) 

Figure 2. (a) Goldstone and (b) Hugenholtz or Brandow diagrams for the 

hh version of an F-vertex. 

Since all o·f the operators required in the CCSDT model are, or can 

be made, degenerate ( cf. Sections 2 and 3), and there are most 

certainly fewer degenerate than non-degenerate resulting diagrams, it 

behooves us to use degenerate diagrams. We use Brandow's version of 

degenerate diagrams, mainly because the absolute phase of a degenerate 

diagram is indeterminate, and a (partially) non-degenerate diagram 

contained within the original degenerate diagram must be examined8 ( cf. 

Rules 2 and 3, this Section). The direct mixed Goldstone-Brandow quasi-

degenerate diagram Is easily obtained from the parent Brandow diagram by 

replacing the squiggly line by a dashed line. Figure 3 shows the 

different topological representations of a hh-hh version H2 operator (V-

vertex) • 
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• , 
• , 

A 
(a) 

x 
(b) (e) 

Figure 3. (a) Goldstone, (b) Hugenholtz, and (c) Brandow diagrams for 

hh-hh V-vertices. 

Symbols for non-degenerate T operators are not needed, and no 

further discussion afforded them. Brandow version antisymmetrized T 

operators, for (irreducible) ranks one, two, and three, are shown in 

Figure 4. 

(a) (b) (e) 

Figure 4. Brandow diagrams for (a) single, (b) double, and (c) triple 

antisymmetrized cluster operators. 

As usual in degenerate time-independent diagrammatic 

methods,3,8,20,29,30 excited determinants are represented by external 

space operators rather than by pair creation/annihilation operators. 

Diagrammatically, an external line is a ray, whereas an internal line is 
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a line segmente The four possible types of rays and line segments which 

arise in a CCSDT method are shown in Figure 5. 

U ---11_---.. (a) 

i 
•• -~--- ... (c) 

fJ 
(b) --__ __._--.. 

a 
(d) •• -_"'1---4. 

Figure 5. (a) external hole line, (b) external particle line, (c) 

internal hole line, and (d) internal particle line. 

The indexing convention we will use for the rest of the chapter is that 

u, v, and w will denote external holes, i and j internal holes, a, y, 

and € external particles ( i.e_, electrons), and a and b internal 

particles. 

The component diagrams necessary for a CCSDT model have now been 

introduced and briefly described. We continue with a short exposition on 

the rules for the construction and subsequent evaluation of the 

resulting, or final, diagrams. 

Rule 1: Juxtapose Brandow versions of all component diagrams, 

representing operators of the matrix element in question, to 

form all possible time-ordered, topologically distinct, non-

vanishing, connected, canonical resulting diagrams. 

The relative positions of the component diagrams can be 

established by considering the time-order of the operators that they 

represent. Hugenholtz 29 and Brandow30 have shown the correspondence of 
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the order of appearance, read right to left, of operators in 

perturbation theory matrix elements and their time-order. Cizek and 

Paldus3 ,20 have extended this idea to truncated versions of coupled 

cluster theory. The questions which remain in our minds are whether all 

T operators are always "simultaneous", and whether the Hamiltonian 

vertex is always at a "later" time. Rather direct answers to these 

questions are obtained by considering the relation between commutation 

and time-ordering, as discussed in Bogoliubov and Shirkov's text. 22 In 

particular, local Bose operators ( i.e., field operators having the same 

number of fermion creation and annihilation operators) that commute have 

a spacelike relation ( e.g., they are "simultaneous"); conversely, local 

Bose operators that do not commute are separated in time. It is not 

difficult to verify that, 

o , 1<:m,n<:3 , (3) 

and 

1<:!DI03 • (4 ) 

So the cluster operators are seen to have a spacelike relation with each 

other and a timelike relation with the Hamiltonian. Then, in keeping 

with the choice of directions for the Dirac spinors shown in Figure 1, 

the topological arrangement of component diagrams is a column of cluster 

operators to the far right, followed by a Hamiltonian diagram to the 

left, followed by the external space operators on the extreme left. In 

agreement with the convention of Hugenholtz 29 ( and Cizek and 

Paldus3 ,20), "time flows from right to left" in our diagrams. 

Component diagrams are assembled into resulting diagrams by 
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attaching the free ends of spinor lines. A resulting diagram with the 

property that a continuous line exists between each pair of interaction 

vertices is said to be connected. ( N.B. The aforementioned line may 

consist of a set of Dirac spinor line segments, electromagnetic line 

segments, or a combination of the two.) 

A large number of connected, time-ordered resulting diagrams can 

be eliminated from further consideration by recognizing that two of four 

possible types of contractions of Dirac spinor lines are vanishing. 20 

~----~' 

Figure 6. Vanishing contractions of Dirac spinor lines. 

The values of the two potentially non-zero joinings are given,by 

Kronecker delta functions ( i.e., for orthonormal orbitals).20 

p q p q 
---------~ ~---------

Figure 7. Possibly non-vanishing contractions of Dirac spinor lines. 

Additionally, consideration of connections between different T operators 

( cf. Figure 8(d» can now be categorically eliminated. Of the four 

possible single connections between different T operators, two are 

identically zero "because the arrows don't match up" ( cf. Figure 6). 

The other two possibilities, representing an annihilation operator of 

one T operator being contracted with a creation operator of the other T 

operator, give Kronecker delta contributions to the matrix element ( cf. 
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.. 

Figure 7). However, the last two possibilities are also zero in this 

case, because the particle and hole index sets are disjoint. Hence, no 

diagrams containing connections between different T operators need be 

considered. 

(a) · • • 

0 (c) 

(b) 

Figure 8. a) V-V, b) F-F, c) T-T, d) T-T' diagrams. 

• · · 

· · · 

(d) 

The topology of contractions is determined by the generalized 

20 22 
time-independent Wick theorem ' and the fact that matrix elements of 

uncontracted operators are identically zer020
• The generalized time-

independent Wick theorem can be written in the form, 

, 
- N[H l ••• Hi J + L N[H l 

k 
(5) 
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where Mi can represent either a creation or an annihilation operator, 

and the prime indicates that contractions between operators originating 

in the same normal product are to be neglected. Since F-, V-, and T-

vertices represent normal product operators ( cf. Equations (2.25), 

(2.26), (2.51), (2.56), and (2.57)), it is clear that the diagrams shown 

in Figure 8(a)-(c) do not occur in the coupled cluster method. 

A canonical diagram is a result!ng, or final, diagram in which the 

8 
external line labels conform to a specific pattern or ordering. The 

pattern which will be designated canonical in our diagrams has both the 

electron (a, y, £) and hole (u, v, w) indices progressing from top to 

bottom. Note that the position of an electron index relative to a hole 

index is in no way specified in a canonical diagram. A consequence of 

considering only canonical diagrams is that external lines from a common 

set ( i.e., electron or hole) may not cross. Canonical diagrams with 

crossed lines from a common set are in fact topologically equivalent to 

a related noncanonical diagram. The noncanonical, but otherwise valid, 

diagrams related to a given canonical diagram by the interchange of 

external line indices can be generated by the action of the permutation 

operator on the canonical diagram, and hence will be considered at a 

later stage. 

The final requirement for an otherwise valid resulting diagram is 

that it is topologically distinct from all permutations ( including the 

identity) of all previous resulting canonical diagrams. Two diagrams are 

topologically distinct if there does not exist any continuous 

transformation ( e.g., stretching, bending) converting one into the 

other. Heuristically, one needs to "cut and paste" in order to convert 

one topologically distinct diagram into another. 
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Rule 2: Determine the algebraic expression, up to phase and 

degeneracy, corresponding to each resulting canonical diagram 

using the following rules: 

a: A i f < I I > and t
rs ••• 

ss gn pq'. pq rs, pq ••• 
to each F-, V-, and T-

vertex, respectively, consistant with extant line indexing. 

b: Sum over each internal line. 

Note that p exits an F-vertex ( i.e., p represents electron 

creation or hole annihilation), and q enters an F-vertex ( i.e., q 

represents electron annihilation or hole creation). Also, p and q exit 

V-vertices, rand s enter; but, p and q enter T-vertices, while rand s 

exit. Since V- and T-vertices are degenerate, the assignment of values 

to these vertices is determined only up to phase ( cf. Equations (3.18) 

- (3.20». It will expedite the establishing of the overall phase factor 

of the matrix element ( cf. Rule 3), if antisymmetrized component'matrix 

elements with the same ordering of indices as the corresponding direct 

matrix elements are used. Hence, p and r, q and s,etc., are associated, 

or considered participants in the same basic interaction. 

The summation over internal lines is done without regard for the 

Pauli exclusion principle. The so-called exclusion violating 
30 

( e.-v. 

or EPV
20 ) terms cancel each other exactly, provided all such terms are 

included. The alternative, using restricted summations, would also be 

30 
correct, but is unwieldy. 

Rule 3: Determine the prefactor for each resulting diagram by 

multiplying the phase factor and the weight of the diagram: 

cj> = nw • (6) 
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The overall phase can be established by considering anyone of the 

mixed Goldstone-Brandow diagrams included in a given resulting diagram. 

It is simplest to work with the direct mixed Goldstone-Brandow diagram, 

since that diagram looks like the corresponding Brandow diagram except 

that the degenerate V-vertex is replaced by a non-degenerate V-vertex, 

but with index labels intact. The phase, or sign, factor of the 

degenerate diagram is then equal to the phase factor of the non-

d di i 
8,20,22,30 

egenerate agram; .e., 

(7) 

where 1 is the number of closed loops, h is the number of internal hole 

lines, and p is the parity of the permutation yielding the canonical 

labeling of external lines. 8 Of course, p = 0 for all canonical 

diagrams, but this contribution to the phase must be considered in the 

permutation operators used to generate the noncanonical diagrams related 

to a given canonical resulting diagram ( cf. Rule 4). 

The symmetry factor, and hence the weight, is determined by an 

22 
adaption of Bogoliubov and Shirkov's prescription for obtaining the 

symmetry factor in (time-dependent) quantum electrodynamics. The three 

contributions to the symmetry factor are: 

(1) th 
The ni ••• nS-- term of the expansion of the wave operator 

-1 -1 
contains the factor (n

i
!) ••• (n

j
!) • This is always 

compensated by the factor (ni!) ••• (n
j
!), which takes into 

account permutation of the vertices. 

(2) The rank two Hamiltonian contains two identical creation 

operators and two identical annihilation operators, which 

introduces the factor (2!)(2!) = 4. This compensates the 

numerical factor V4associated with a V-vertex. 
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(3) In case there exist c topologically equivalent variants of 

pairings of internal lines, they must be taken into account 

only once. This corresponds to the introduction of the factor 

-1 
(c! ) • 

For Hamiltonians with no greater than rank 2 components, the third rule 

simplifies to: 

(1) Unless altered by the following rules, c p = ch = cph = 1. 

(2) If two hole lines begin at the same vertex and end at the same 

vertex, ch = 2. 

(3) If two particle lines begin at the same vertex and end at the 

same vertex, c p = 2. 

(4) If simultaneous interchange of the particle lines and the hole 

lines yields a topologically equivalent diagram and the hole 

and particle lines are not independently interchangeable, 

cph = 2. 

(5) The weight of the diagram is given by, 

1 
w = (8) 

cp'itcph 

There are two points we would like to emphasize at this time. The 

first is that the weight factor detailed above is in accord with the 

usual "1~ rule" for weights in perturbation theory,20,29,30 and 

3 4 8 14 
truncated coupled cluster expansions. ' " The value then of the 

somewhat extended treatment of weight factors given in the present work 

is that the straightforward " 1/2 rule" can justifiably be used in a full 

coupled cluster method. In particular, it was not transparent to us that 

-1 
the presence of the numerical factors, (n!) , 0>3, in the wave operator 

would be exactly offset in every matrix element. It should be noted that 

the star product treatment developed by Cizek
3 

is correct and justified 
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for the determination of the weight factor in a full coupled cluster 

method; however, the procedure is a bit cumbersome when there are more 

than about two cluster operators. 

The second point is that the use of rules originally developed for 

a time-dependent formalism in a time-independent diagrammatic approach 

is appropriate, provided that the diagrams are topologically similar, 

and that the rules consider only topological ( e.g., not physical) 

aspects of the theory. The structural similarities of the (exponential) 

scattering matrix and the wave operator ( cf. Equations (1), (2), (1.1), 

and (1.4», and the physical particles and the excited (bra) determi­

nant, have already been discussed. A subtlety is that the interaction 

vertices in a time-dependent formalism represent components of the 

Lagrangian, while the interaction vertices in a time-independent 

formalism represent components of the Hamiltonian. The topological 

equivalence is assured with the realization that the basic interaction 

in both versions is the entering and exiting of a spinor line together 

with the emission or absorption of a photon. Hence, the efficient 

symmetry rules set out by Bogoliubov and Shirkov
22 

can straightforwardly 

be used in a time-independent formalism. 

Rule 4: Generate the algebraic expressions corresponding to the 

noncanonical diagrams directly from the algebraic expressions 

for the canonical diagrams by applying permutation operators. 

The generalized time-independent Wick theorem ( cf. Equation (5» 

requires that all sets of contractions between operators ( from 

different N-products) be included in the summation. The inclusion of 
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only canonical diagrams, as defined earlier, can be seen to represent 

all possible contractions between the Hamiltonian and the wave operator, 

but restricted contraction between the bra configuration and these 

combined operator products. The noncanonical diagrams then complete the 

set of all possible contractions between operator expressions. A 

noncanonical diagram is characterized by crisscrossing external lines, 

or equivalently ( i.e., fermion operators anticommute), noncrossing 

external lines with permuted indices with respect to the canonical 

ordering. 

Consider a permutation operator which generates all topologically 

distinct noncanonical diagrams from a given canonical diagram; 

essentially, this operator just relabels external lines. Since the 

noncanonical diagrams are structurally the same as their parent 

resulting diagram, the algebraic expressions for the noncanonical 

diagrams must be the same as the algebraic expression for the parent 

diagram, up to -a reordering of external indices. It can be seen then 

that the permutation operator acting on the algebraic expression for a 

canonical diagram will produce algebraic expressions corresponding to 

noncanonical diagrams permutationally related to the parent resulting 

diagram. 

Two properties of the permutation operator, spin statistics and 

topological distinctness, warrant further discussion. As pointed out by 

8 
Paldus, the phase factor of a noncanonical diagram must include the 

contribution (-l)P, where p is here the parity of the permutation 

yielding the canonical labeling of external lines. The origin of this 

term is the anticommutation of fermion field operators ( cf. Equation 

(2.33». So, in order for the permutation operator to generate algebraic 
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expressions for noncanonical diagrams with the correct overall phase, 

the contribution to the phase factor from the ordering of external 

indices must be included in the permutation operator. A second major 

concern is that the sum over resulting diagrams include only 

topologically distinct diagrams. Hence, we require that the algebraic 

expressions generated by the permutation operator correspond to 

topologically distinct noncanonical diagrams. 

Since both the particle and hole labels are in general permuted, 

and it is often the case that the permutations are independent, it is 

efficacious to (always) write the permutation operator as the binary 

product of operators acting on the disjoint sets, 

, 
P(u

i
,8

i
) = P(ui)P (8

i
) 

i 1,3 • (9) 

In Equation (9), the u
i 

and 8
i 

represent hole and particle labels, 

respectively, and P and P' denote single index set permutation oper-

ators. In the cases that the particle and hole permutations are de pen-

dent, the decomposition of the permutation operator into single index 

set permutation operators is ambiguous, i.e., two correct descriptions 

exist, 
(10) 

It is found that for such permutations, any correct description is 

adequate. 

The particular form of the single index permutation operators we 

will use is an antisymmetrized generalization of Bogoliubov and 



Shirkov's22 (symmetric) permutation operators used in the power series 

expansion of the scattering matrix. Vertical lines demarcate 

topologically distinct environments, and hence define the permutation 

patterns. It should be noted that a null intersection between external 

lines of a given index set and a topologically distinct environment is 

suppressed in the notation. Under the action of the permutation operator 

the labels in the algebraic expression lose their original significance 

( e.g., they become placeholders or "dummy variables"), but the ordering 

in the parent resulting diagram is preserved by the list of labels in 

the permutation operator. Hence it can be seen that the list of labels, 

which specifies the identity permutation, together with the placement of 

vertical lines completely specifies the single index set permutation 

operators. 

There are four types of non-trivial single index set permutation 

operators required in a CCSDT model; i.e., 

and 

or 

(11) 

(12) 

(13) 

p(xllx21~) ~ I - (xl x2 ) - (xl x3 ) - (x2 ~) + 

+ (xl x
2
)(x

2 
x

3
) + (xl x

3
)(x

2 
x

3
) , (14) 

m I - (xl x
2

) - (xl x
3

) - (x2 ~) + 

+ (xl x2 x
3

) + (xl x3 x 2) • (15) 
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In Equations (11) - (15), cyclic notation was used, with I denoting the 

identity permutation; and xi representing either particles, 8
i

, or 

holes, uio The trivial permutation operator, P = I, will not be 

explicitly used. It should be noted that the signs are in agreement with 

the parities of the permutation cycles, so that the criterion of correct 

phase for noncanonical diagrams is implemented on the single index set 

permutation operator level. 

Application of an appropriate single index set permutation oper­

ator on the algebraic expression corresponding to a canonical resulting 

diagram produces only algebraic expressions corresponding to topo­

logically distinct noncanonical diagrams, since indices are switched 

between topologically nonequivalent environments. However, subsequent 

application of the complementary ( e.g., particle/hole) single index set 

permutation operator may produce algebraic expressions corresponding to 

topologically indistinct resulting diagrams, because the action of the 

first operator rendered two distinct topological environments equiva­

lent. Effectively, a specious vertical line exists in the second oper­

ator, the removal of which correctly reflects the physical situation and 

leads to the correct number of topologically di~tinct noncanonical 

diagrams. It is to be emphasized that the recognition of topologically 

distinct environments is relatively straightforward diagrammatically, 

and is actually a strong recommendation for a diagrammatic approach. 

In summary, the rules for the construction and subsequent 

evaluation of diagrams corresponding to matrix elements in the CCSDT 

model have been given. The adaption of certain features from time­

dependent diagrams, not usually found in time-independent approaches, 

have been seen to clarify and/or expedite time-independent diagrams. 
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s. Matrix Elements 

The equations for the cluster coefficients and the correlated 

energy in a CCSDT model were given in operator form in Section 3 ( cf. 

Equations (3.13) - (3.16»; this form is, of course, not amenable to 

calculations. In the present Section the time-independent techniques 

discussed in Section 4 are applied to evaluate the requisite matrix 

elements in terms of cluster coefficients and one- and two-electron 

integrals over the spin-orbital basis. 

Table I lists all possibly non-vanishing matrix elements arising 

from the projection of the Schrndinger Equation onto the reference, 

sing1y-, doub1y-, and triply-excited spaces. The matrix elements are 

assigned an ordinal number. The diagrams generated in the application of 

Rule 1 from the preceding Section to a given matrix element are listed 

on the right-hand side of the Table, below the particular matrix ele­

ment. Multiple diagrams from a given matrix element are distinguished by 

lower case roman letters. Algebraic expressions, up to phase and sym­

metry, corresponding to a given diagram are evaluated using Rule 2; and 

designated with the letter d, and the subscript associated with the dia­

gram. Contributions to the symmetry and phase factors are also listed, 

if differing from the following default values: 1 = 0, h = 0, cp = 1, 

c h - 1, c ph - 1. The prefactor corresponding to a given diagram is then 

evaluated using Rule 3; it is symbolized by the greek letter ~, and the 

subscript of the diagram. The permutation operator generating all non­

canonical diagrams related to a given diagram ( cf. Rule 4) is listed, 

provided that either the hole or the particle permutation operator is 

different than the identity. The permutation operator is symbolized by 

the letter p, and the subscript of the diagram. Hence each diagram has 
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between two and four lines of text written opposite to it ( e.g., left-

hand side) in Table I. 

The expression for a given matrix element, m, without reference to 

field operators is then given by, 

(5.1) 

where the summation runs over all valid (canonical) diagrams derivable 

from m. 



.. 

Table I. Diagrammatic evaluation of all non-vanishing matrix elements 
occurring in the CCSDT model. See text for explanation of symbols • 

1 - 1, h = 1 

<P 1 ,.. 1 

d2 = L <ijl lab>t~~ 
ijab J 

1 = 2, h = 2, ch 

<P 2 = 1/4 

2 c = 2 , P 

1 = 2, h - 2, cph = 2 

<P3 .. 1/2 

~T, 

a 

b 

T, 

a 

T, 

b 
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h = 1 

,j, ""-1 
'+'5a 

d
5b = L 

a 

q, 5b = 1 

42 

Table I ( continued from previous page) 

u 

u .. ~ ..... ' ~T, 

f t
a 

f3 

a ~T' as u .. • .. 
.. . 

u 



Table I ( cont1nued from prev10us page) 

\' Ba 
d6 " L f1 t 1 

1a a u 

t .. 1, h = 1 

4»6 .. 1 

\' a B 
d 7 = L f1 t t1 

1a a u 

h = 1 

d8 = L <B11 lau>t~ 
1a 

h = 1 

4»8 = -1 

43 

u 

a 

u 

T, 

f3 T, 



Table I ( continued from previous page) 

d9a a I <ijl lua>t~; 
ija 

t ~ 1, h a 2, Ch = 2 

t = 1, h = 1, Cp = 2 

4I9b zo 1/2 

t = 1, h = 2 

4IlOa - -1 

u 

{3 

{3 

u 

u 

{3 

44 

T, 

T, 



Table I ( continued from previous page) 

d lOb - L <1sl lab>t~tb 
iab u 

t - 1, h - 1 

~10b ... 1 

t = 2, h = 2, ch = 2, cp 2 

~ 11 = 1/4 

t ::r 2, h = 2 

<jl = 1 

{3 

u 

u 

{3 

45 

T, 
a 

T, 

a 

T, 

b 
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Table I ( continued from previous page) 

L <jillab>ta~t~ 
u 

d 12b -
ijab u .. 

T2 

h :a 2, c p 
.. 2 

4> 12b .. 1/2 

f3 Tl 

L <ijllba>t~?ta 
f3 

d 12c = 
ijab J u 

T2 

h .. 2, c
h 

= 2 

cp 12c' = 1/2 

u Tl 

[13] = <~IIH2 ;!~}cl~o> 

u 

d13 = L <ijl Iba>tbt~t~ 
1jab u 

Tl 

h .. 2 
Tl 

4>13 
.. 1 

i3 Tl 



Table I ( continued from previous page) 

d
14a 

.a \' f tar t ui iv 

h - 1 

~ 14a ... -1 

P14a 0:: p(ulv) 

d \' f tar 
14b = L as uv 

a 

~14b s 1 

P14b:: p(ah) 

dIS = L f tara 
ia 1a uvi 

1 = 1, h 

~IS = 1 
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Table I ( continued from previous page) 

h .. 1 

'16a .. -1 

P16a ... P(sjy) 

d16b = L f tBrt a 

ia 
ai ui v 

h = 1 

'16b = -1 

P16b = P(u/v) 

d17 .. <srll uv> 

'17 ,. 

48 

T2 

T, 
v 



Table I ( continued from previous page) 

h - 1 

~18a = -1 

P18a II: P(S/y) 

d18b = I <Sy II ua>t: 
a 

~18b = 1 

P18b .. p(ulv) 

d 19a = I <sil /au>t:Y 

ia v 

h - 1 

~19a .. -1 

P19a '"' P(S/y)p(ulv) 

u 

{3 

v 

l' 

49 

T, 

a 

T, 

v 

i~ 

~a_ 
~ 

T2 
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Table I ( continued from previous page) 

d 19b .. I <ij II uv>t
SY u 

ij ij Ij ... 
v 

T2 
h - 2, ch .. 2 

f3 

~ 19b ... 1/2 'Y 

d 19c .. I <SY II ab>t
ab 

f3 a ab uv 

2 
'Y ~b 

c p 
z 

T2 

... 1/2 
u 

~19c v 

d20a = I <sil lav>tatI u 
1a u 

T, 

h .. 1 

~20a ... -1 T, 

P(S h)p(v I u) 
'Y 

P20a 
... 



Table I ( continued from previous page) 

d20b - L <8y I I ab>tat b 
ab u v 

4»20b "" 1 

d20c = L <ijl luv>t~t; 
ij 

h = 2 

4»20c .. 1 

t = 1, h D 1 c ~ 2 , p 

4»21a = 1/2 

P21a .. P(yI8) 

u 

v 

(3 

'Y 

v 
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T, 

T, 

T, 

T, 



Table I ( continued from previous page) 

d2Ib - I <ij/ Iva>tBiYja 
ija u 

tal, h - 2, c h ~ 2 

~2Ib - - 1/2 

P2Ib ... p(vlu) 

t = 1, h ... 1 

~22a = 1 

P22a'" p(y/a) 

d22b = I <ij II va>tBr t; 
ija U 

t - 1, h = 2 

~22b = -1 

P22b - p(vlu) 

)-

v 

52 

., 

a 

T, 

b 

T2 

T, 
a 



Table I ( continued from previous page) 

R. - 1, h = 2 

... '" -1 
"'22c 

P22c a p(aly)p(v/u) 

d22d = L <iy II ab>ta~t b 
iab u v 

R. '" 1, h 1 

~22d ... 1 

~22d .. p("t/a)p(ulv) 

h .. 1, c .. 2 
P 

~22e co _1/2 

P22e - p(aly) 

" 

" 

u 

v 

53 

8 

T, 

T2 

a 

T, 
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Table I ( continued from previous page) 

d
22f 

.. L <ij II ua>t~I t
a IJ 

ija v 
l' 

h - 2, c h 
.. 2 T2 

cp 22f - 1/2 u 

CP22f - p(ulv) 
T, 

v 

u 

Tl 

h = 2 

.+. = 1 'i'23a v 

P23a .. P(v I u) T, 

d
23b

" L <iYllab>tat~tb u 
iab U v 

T, 

h .. 1 

IJ 
T, 

CP23b -
-1 

")' 

p(yls) P23b 
.. 

v T, 
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Table I ( continued from previous page) 

1 - 2, h - 2 

4>24a ". 1 

h .. 2, c
p 

... 2 

4> 24b .. 1/2 

P24b - P(sjy) 

d
24c 

.. L <ij/ /ab>tSr;tb 
1jab u v 

h - 2, ch .. 2 

4> 24c - 1/2 

P24c - p(ulv) 

--------------------

v 

T, 
b 

l' 
T3 

v T, 
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Table I ( 'continued from previous page) 

R. - 2, h .. 2 

~ 25a ... 1 

P25a - p(e/y) 

u 

d25b = L <ijl lab>tabt~; v 
ijab uv T2 

h .. 2 c , p "" 2, ch 2 

~25b = 1/4 

f3 T2 

l' 

.' 



Table 1 ( continued from previous page) 

h - 2, c p - 2 

~ 25c ... 1/2 

P25c - p(ulv) 

d25d = L <ijl lab>t~;tbY 
ijab uv 

h '"' 2, ch 2 

~ 25d ... 1/2 

P25d'" P(sjr) 
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f3 

T2 

u 

v 
T2 
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Table I ( continued from previous page) 

\ I I aa b y d26a - L (ij ab>t titj 
ijab uv 

h .. 2 

~ 26a '"' 1 

P26a - p(a/r) 

\ I I ay a b d26b '" L (ij ab>t itjt 
ijab u v 

h '" 2 

~26b a 1 

P26b ... p(ulv) 
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Table I ( continued from previous page) 

d
26c 

.. L <ijl lab>tS;tbt} 
ijab u v 

a T2 

1. - 1, h a 2 

~26c ... -1 
b 

P26c "" p(slr)p(ulv) V Tl 

Tl 

u 

V 

Tl 

A 



Table I ( continued from previous page) 

h - 2, ch .. 2 

4126e = 1/2 

h - 2 

41 27 .. 1 

{3 

u 

v 

u 

60 

Tl 

Tl 

Tl 

T, 

,A 



Table I ( continued from previous page) 

d
28a 

- \ f tSre r u1 1vw 

h - 1 

... = -1 
'l'28a 

P28a .. p(ulvw) 

d \ f tare 
28b .. L as uvw 

a 

928b - 1 

P28b .. p(a Ire> 

h - 1 

... .. -1 
'l'29a 

P29a - p(erle> 

61 

v 

w 

v 

w 

v 

w 

T, 
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Table I ( continued from previous page) 

h .. 1 

~29b .. -1 

P29b - p(uvlw) 

[30] = <Bye: I {H lT2} I ~ > 
uvw 1 2 2 C 0 

d30 
- L f tBatye: 

ia la uv lw 

h = 1 v T2 

~30 - -1 

P30 - PCB he:)p(uvlw) 
'Y 

T2 
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Table I ( continued.from previous page) 

d31a - L <yel law>t~: 
a 

~31a - 1 

P31a .. P(ye/s)P(w/uv) 

h .. 1 

~31b = -1 

P31b = P(e/sy)P(vwlu) 

[32] ~ <~~/{H2T3}C/~O> 
, 

d32a - L <e11 /aw>t
SY

: 
ia uv v 

.~ 

...,. 
T3 

h - 1 
w 

4132a - -1 

P32a 
.. P(e:/SY)P(w/uv) 
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Table I ( continued from previous page) 

h - 2, c h .. 2 

~32b - 1/2 

P32b .. p(vwl u) 

d32c ... L <YEI lab>t
sab 

ab uvw 

c p 
... 2 T3 

~32c 
= 1/2 . 

P32c = p(YEIS) 

v 

h - 1 

~33a - -1 T, 

P33a - p(yISIE)P(wluv) 
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Table I ( continued from previous page) 

h c 1 

4I33b - -1 

P33b" P(elSy)P(v/ulw) 

T, 
w 

h .. 2 

4I33c == 1 

P33c == p(syle)P(vwlu) 

d33d = L (yellab>tsat
b 

ab uv w 

1 
v T2 

4I33d .. 

,; P33d ... P(yeIS)P(uvlw) 

T, 
w 
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Table I ( continued from previous page) 

\ I I Bra g d34a a L <ij wa>t itj 
ija uv 

h - 2 

~34a - 1 

P34a - P(Brjg)P(wjuv) 

d34b =- L <rillab>tBabt~ 
iab uVW 

h = 1, cp 
,.. 2 

T3 

~34b - - 1/2 

P34b ,. P(riBld 

T, 

u 

d
34c 

- L <gil lab>tBr:t
b 

f3 
iab uv w 

V .' 
h - 1 

)- T3 

~34c -
-1 

P34c -P(gIBr)P(uvlw) 

w T, 
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Table I ( continued from previous page) 

h - 2, ch .. 2 

. 1/ 
<P34d" 2 

P34d - P(v/u/w) 

w 

d
34e 

.. I <e:il /ab>tByat~ 
iab uvw 

v 

R. - 1, h = 1 "Y T3 

w 

<P34e .. 1 

P34e = P (e: I By) 

Tl 

b 

d34f - I <ijl Iwa>tBY~t; 
i. uv 
Ja v 

0 ..,. T3 
R. .. 1, h .. 2 

<P34f 
.. -1 

P34f .. P(w/uv) 

Tl 

a 
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Table I ( continued from previous page) 

v 

R. - 1, h .. 1 

~3Sa - 1 

P3Sa - p(yISlc)p(uvlw) 
b T2 

w 

d
3Sc 

.. L <£il Iba>tSlt
ab (3 

iab u VW T2 ')' 

h - 1, c p 
... 2 

~3Sc ~ - 1/2 

P3Sc -p(cISy)p(ulvw) T2 

w 
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Table I ( continued from previous page) 

d3Sd = L <ijl law>tsatI; 
ija uv u 

v T2 

h ~ 2, ch .. 2 

~3Sd - 1/2 
w 

P3Sd - p(sly€)p(wluv) 

'Y T2 

\ II Sa y € d36a a L <ij aw>t titj 
ija uv 

h .. 2 

~36a - 1 

P36a - p(Sly€)p(wluv) 
T, 

w 

T, 

d36b - I <ij II aw> tSYtat€ 
T2 ija 

ui v j 
'Y 

h - 2 

~36b a 1 
V T, 

P36b - p(SyldP(wlulv) w 

T, 



Table I ( continued from previous page) 

d36c - L <iEI lab>tsatIt
b 

iab uv w 

h - 1 

~36c - -1 

P36c -p(Elsh)p(uvlw) 

h .. 1 

~36d = -1 

P36d ~ p(EISy)p(ulvw) 

h - 2 c .. 2 , p 

~37a - 1/2 

P37a - P(SIYE)P(uvlw) 
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v 
Tz 

')' T, 

w T, 

v T, 

w T, 
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Table I ( continued from previous page) 

d37b - L <ijl lab>tS;;t
bE 

ijab u vw 
.. 

h - 2, - 2 
l' 

T3 ch 

q,37b - liz 

P37b - p(srIE)p(ulvw) 

v 

w 
T2 

d3 7 c ,. L <ijl lab>tSY;t~E 
ijab uv w 

v 

t = 1, h = 2 T3 

q,37c .. -1 

P37c 
... P(SrldP(uvlw) 

w 
T2 

d
37d 

.. L <ijl lab>tSI;t
ab 

l' 
ijab u vw 

T3 

Q h a 2, cp ... 2, ch ... 2 

q,37d - 1/4 

~ 

p) 7 d - P ( u I VW ) 

T2 
v 

w 
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Table I ( continued from previous page) 

'. 
t3 

L <1jl lab>teabtl~ d3 7e ... u 
1jab uvw v 

w T3 
h - 2, cp ... 2, ch - 2 

4>37e - 1/4 

P3 7 e - P( e I yd 

l' 
T2 

v 

h ... 2, c
h 

= 2 w 

4>37f - 1/2 

P37f - p(eyle:> 
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Table I ( continued from previous page) 

d37g - I <ijj /ab>tBY~t;b 
Ijab uv W 

h - 2, cp 
.. 2 

~37g _1/2 

P37g -P(uv/w) 

\' .11 Bya b e: d38a - L <iJ ab>t titj 
Ijab uvw 

h .. 2 

~38a .. 1 

P38a'" P(By/e:> 

73 

v 

'Y 

T3 

T2 

w 

v 

w 

T, 

T, 
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Table I ( continued from previous page) 

" 

\ I I aYE a b d38b • L. (ij ab>t itjt 
ijab uv W 

h .. 2 'Y 

4»38b - 1 

P38b • p(uvlw) 
T, 

w T, 

h .. 2 

4»38c ... 1 

P38c - P(SY/E)p(uvlw) 

w T, 
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Table I ( continued from previous page) 

h .. 2, c
p 

-~2 

~38d .. 1/2 

P38d - P(S/rd 

d
38e 

.. I <ijl /ab>tsr;tat
b 

"Y ijab u v w 
T3 

h -= 2, ch 
.. 2 

~38e - 1/2 

P38e .. P(u/vw) 
v T, 

w 
T, 
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Table I ( continued from previous page) 

h - 2 

~39a - 1 

P39a - p(Sly£)p(uvlw) 

u 

v 

d
39b 

... L <ijl lab>tabt~tl£ 
ijab uv w 

T2 

h ... 2, c p 
= 2 

~39b - 1/2 T, 

P39b - p(Sly£)p(uvlw) 

.., 

T2 
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Table I ( continued from previous page) 

\ II aa b ye: d39c - L <ij ab>t it tj 
ijab u v w 

R. - 1, h - 2 

~39c .. -1 

P39c - p(alye:)p(ulvlw) 

\ II aa y be: d39d a L <ij ab>t Itjt 
ijab u vw 

R. ,. 1, h .. 2 

~39d .. -1 

P39d a p(a/yle:)p(u/vw) 

v 

w 

-. 



Table I ( continued from previous page) 

h - 2, ch .. 2 

~3ge - 1/2 

P3ge - P(Sy/€)P(u/vw) 

\ II Sa y b € d40a " L <ij ab>t tit tj 
ijab uv w 

h - 2 

~40a .. 1 

P40a .. p(Sly€)p(uvlw) 

78 

(3 

T, 
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Table I ( continued from previous page) 

\ II By abe: d40b " L <ij ab>t it t tj 
ijab u v w 

h - 2 

4»40b .. 1 

P40b - p(Byle:)p(ulvw) 

T1 

.. 
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6.,Final Equations 

The expressions for the matrix elements obtained in the preceding 

Section, together with Equations (3.13) - (3.16), enable us to write 

implicit equations determining the cluster coefficients and the 

correlated energy in terms of the cluster coefficients and the one- and 

two-electron integrals over the spin-orbital basis. We may write 

Equation (3.13), the projection of the Sch~Odinger Equation for the 

CCSDT wavefunction on the singly-excited space, as, 

13 

o - L [m} (6.1) 

likewise Equation (3.14), the projection on the doubly-excited space, 

can be written, 

27 

0.. L [mJ (2) 

ma 14 

and Equation (3.15), the projection on the triply-excited space as, 

40 

o - L [m}. (3) 

m-28 

The equation for the correlated energy, Equation (3.16), may similarly 

be written as, 

3 

liE - L [m] (4 ) 

mal 

where [m], the symbol for a possibly non-vanishing matrix element, is 

related to entries in Table I by Equation (5.1). The above equations are 



however of dubious computational value: Practical random access is 

restricted by the size of core memory, and sequential access is limited 

by the size of disc storage; for small polyatomic molecules, these 

limits translate to 0(n2) and 0(n3 ) matrices, respectively, where n is 

the dimension of the binary direct product space of spin-orbitals, i.e., 

n - (no. of spin-orbitals)2. We will show that the judicious choice of 

the order in which cluster coefficients and integrals are combined in a 

multiple product results in a procedure which satisfies the above 

computational constraints at all stages. 

Individual cluster coefficients, as well as integrals, cannot in 

general be freely reordered in expressions for matrix elements. In 

particular, the rearrangement of coefficients can be seen to correspond 

to a topological deformation of a diagram which alters the sequence of 

topologically distinct environments ( cf. Rule 4); it is hardly 

surprising that the permutation operator, which is partially defined by 

the sequence, must reflect the change. To examine the specific effect of 

rearrangement, let f(xi) and g(xi) be arbitrary single index functions, 

which may however depend parametrically on other variables, and let 

p(x1Ix2) be the single index set permutation operator defined in 

Equation (4.11); then, 

p(xllx2)f(x1)g(x2) - f(x
1
)g(x

2
) - f(x

2
)g(x

1
) (5) 

(7) 

(8) 
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Equation (8) being obtained from Equation (7) -because the action of the 

permutation operator renders the argument index set dummy. Consider next 

the permutation operator P(x1x2/x3)' defined in Equation (4.12), and let 

h(x1,x2) be an arbitrary, antisymmetrized two index function; then, 

P(x1x2/x3)h(X1,x2)g(X3) -

- h(x
1

,x
2

)g(x
3

) - h(x
3

,x
2

)g(x
1

) - h(x
1

,x
3

)g(x
2

) (9) 

Note that p(x3Ix1x2) is the single index set permutation operator 

defined in Equation (4.13). 

A complIcation arising through the switching of coefficients and 

the necessary corresponding switching of permutation operators is the 

generation of permutation operators with noncanonical index lists 

( e.g., if xl' x2' x3 in Equation (9) represents a canonical list, then 

x3' xl' x2 in Equation (11) certainly cannot). Hence, we must examine 

the symmetry properties of the permutation operators. As before let us 

first consider the simplest single index set permutation operator, 

p(x1 1 x2); 
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~ . 

P(x
2

/X
1
)f(x

1
)g(x

2
) a -P(x

1
/x

2
)f(x

1
)g(x

2
) 

i.e., functionally, 

(14) 

(15) 

Next, consider the permutation operator P(xlx2/x3). One can imagine two 

kinds of permutations: within a topologically distinct region, and 

between topologically distinct regions; we now examine the first kind, 

P(x2xl/~)h(xl,x2)g(x3) -

- h(x
2

,x
1
)g(x

3
) - h(x

3
,x

1
)g(x

2
) - h(x

2
,x

3
)g(x

1
) (16) 

m -P(xlx2/x3)h(xl,x2)g(x3) (19) 

i.e., functionally, 

(20) 

Equation (18) was obtained from Equation (17) by use of the antisymmetry 

of the test function, h. Now let us consider the permutation of indices 

between topologically distinct regions, 

P(xl~/X2)h(xl,x2)g(~) -

- h(x
1

,x
3

)g(x
2

) - h(x
2

,x
3

)g(x
1
) - h(x

1
,x

2
)g(x

3
) (21) 
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- -P(xlx2Ix3)h(xl,x2)g(x3) (24) 

i.e., functionally, 

(25) 

The symmetry properties of the permutation operator, p(x1Ix2x3)' 

need not be separately considered in light of the relation between 

p(xllx2x3) and P(x1x2Ix3) ( cf. Equation (11». The remaining 

permutation operator used in Table I but thus far not discussed in this 

Section is p(xllx2Ix3)' defined in Equation (4.15). We now show that 

p(xllx2Ix3) is the composite of two single index set permutation 

operators already examined. In addition to f and g, let k(x i ) also be an 

arbitrary single index function, which may depend parametrically on 

other variables; then, 

p(xlxzlx3)P(xll x2)f(xl)g(X2)k(X3) = 

- P(xlx2Ix3){f(xl)g(x2) - f(x 2)g(x 1)}k(x3) (26) 

- {f(x
1
)g(x

2
) - f(x

2
)g(x

1
)}k(x

3
) + 

- {f(x
3

)g(x
2

) - f(x
2

)g(x
3

)}k(x
1
) + 

- {f(x
1
)g(x

3
) - f(x

3
)g(x

1
)}k(x

Z
) ( 27) 

- f(x
1

)g(x
Z
)k(x

3
) - f(x

2
)g(x

1
)k(x

3
) + 

- f(x
3

)g(x
2

)k(x
1

) - f(x
1

)g(x
3

)k(x
2

) + 

+ f(x
2

)g(x
3

)k(x
1
) + f(x

3
)g(x

1
)k(x

2
) ( 28) 
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- P(x1/x2/x3)f(x1)g(x2)k(x3) 

i.e., functionally, 

(29) 

(30) 

Hence the symmetry and argument exchange properties of p(x1Ix2Ix3) can 

be understood in terms of the already examined permutation operators 

P(x1 x2/ x3) and P(x1/x2). 

We have shown that though the cluster coefficients and the 

integrals do not in general commute, the commutation relations can be 

understood in terms of changes in the permutation operator. Furthermore, 

the symmetry properties of the permutation operators found in a CCSDT 

model have been characterized. The symmetry properties enable a 

canonical ordering of (external) indices regardless of the ordering of 

the cluster coefficients and integrals. 

We now show that the projection of the Sch~dinger Equation for 

the CCSDT wavefunction on the triply-excited space ( cf. Equation (3» 

can be written in terms of (at worst) products of unmodified rank 3 

cluster coefficients and modified rank 2 integrals. Tensor notation with 

repeated index summation convention will be used, except of course for 

the permutation operator. 

Consider breaking the sum in Equation (3) into eight parts, 

designated by Roman numerals, 

[I] - [28a] + [29b] + [34f] + [37g] + [38b] , 

[II] - [28b] + [29a] + [34e] + [37f] + [38a] , 

(31 ) 

(32) 
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[Ill] .. [32a] + [34a] + [34c] + [37c] + [38c] , 

[IV] - [32b] + [34d] + [37d] + [38e] , 

[V] - [32c] + [34b] + [37e] + [38d] , 

[VI] - [30] + [39a] , 

[VII] - [31b] + (33b] + [33c] + [35b] + (36b] + (35c] + 

+ [36d] + (37a] + [39c] + [39b] + [40b] , 

[VIII] - [31a] + [33a] + [33d] + [35a] + [36c] + [35d] + 

+ [36a] + (37b] + [39d] + [3ge] + [40a] • 

Let us examine each of these partial sums in turn. 

where v~~ - <ijl lab) • 

Equation (39) can be rewritten, 
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(33 ) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

.. 



The ambiguity in removing paired indices, when multiple pairs exist, can 

be eliminated if we adopt the convention that the first covariant 

summation index is implicitly paired with the first possible contra-

variant summation index, etc. ( N.B. The cluster coefficients and the 

integrals are irreducible tensors of the appropriate rank ( cf. Section 

2) and contractions between different cluster operators also cannot 

occur ( cf. Section 4).) It should also be noted that the ranges of the 

contractions are preserved by the tensor notation since covariant 

indices of cluster coefficients must be elements of the Fermi sea and 

contravariant indices cannot be elements of the Fermi sea. Then, 

where the modified one-electron integral (f(3»i is defined, 
w 

Similarly the second partial sum, 

becomes, 

where, 

(43 ) 

(44) 

(45) 

(46) 

(47) 
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The third partial sum is, 

(48) 

and can be wri t ten, 

(49) 

with the modified two-electron integral, 

(50) 

Note that the required inner multiplication of the three tensor product 

(vt1t
1

) is rank 2 at all stages; 

i.e., 

(51) 

The fourth partial sum is, 

.. 

(52) 
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which gives, 

(53 ) 

with the modified two-electron integral, 

• (54) 

Similarly the fifth partial sum, 

(55) 

can be written as, 

(56) 

with, 

(57) 

The sixth partial sum is, 

" (58) 

Though a more symmetric formulation is possible, the following suffices, 

(59) 



with, 

(60) 

The required inner multiplication of the three tensor product (vt 1t 2) is 

rank 2 or less at all stages; iee., 

The seventh partial sum is, 

which can be written as, 

Ie: 
- -v 

vw 

(61) 

(63 ) 
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.. 

... 

(64 ) 

The required inner multiplications of the three tensor products (vt2tl) 

and (vtitl) are rank 2 at all stages; 

i.e., 

.ie: 
(vt

2
t

l
) 

v·w 

and construction of (vt 1t l ) was discussed in Equation (51). 

Similarly the eighth partial sum, 

can be written as, 

with, 

(65) 

(66) 

(68) 
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- P(yle:)(vt1t1)Y e: - (vt
2
') ye: - ~21 vt

3
) ye: + 

a-w wa -aw 

+ P(yle:)(vt
2

t
1

) y-e: - (vt
2
't

1
) ye: 

-aw - a w 
(69) 

The required inner multiplications of the three tensor products (vt2tl) 

and (vtitl) are rank 2 at all stages; 

i_e_, 

Vee: jv e: 
(vt t) I c (vt) I t 

2 1 -aw 2 - aw j 
(70) 

(vt't) ye: _ (vt') ye: t b 
2 1 -a w 2 ba w 

(71) 

We next show that the projection of the Schrndinger Equation for 

the CCSDT wavefunction on the doubly-excited space can be written in 

terms of (at worst) products of unmodified rank 3 cluster coefficients 

and modified rank 2 integrals_ Consider breaking the sum in Equation (2) 

into eight parts; the first six being, 

[IX] - [14a] + [16b] + [22b] + [25c] + [26b] , (72) 

[X] - [14b] + [16a] + [22a] + [25d] + [26a] , (73 ) 

[ XI] - [15] + [24a] , (74) 
.. 

[XII] - [25a] + [26c] , (75) 

[XIII] - [25b] + [26d] + [26e] + [27] , (76) 



.. 

[XIV] = [17] + [18a] + [18b] + [19a} + [19b] + [20c] + 

+ [20a] + [19c] + [20b] + [21a] + [21b] + [22c] + 

+ [22d] + [22e] + [23b] + [22f] + [23a] ( 77) 

the remaining two partial sums are the single diagrams [24b] and [24c]. 

Aside from satisfying the computational constraints, the partial sum-

mations were chosen to: 1) expose (double) cluster coefficients one 

index removed from the <SYI component of the external space ( cf. 
uv 

Equation (3.14», and 2) utilize tensors already required for the 

triply-excited space. The first consideration facilitates the solution 

of the coupled cluster equations by the method of iteration ( i.e., 

successive substitution).12,13 The second obviously reduces the compu-

tational effort. The appropriate forms of the above two considerations 

were used in the choice of partial summations for the triply-excited 

space, and will be used for the singly-excited space; though it should 

be noted that the constraints imposed by rank seriously restricted the 

options in the triples case. 

As before, let us examine each of the partial sums in turn. 

[IX] 

(78) 

which can be written, 

(79) 
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where, 

(80) 

Observe that the modified one-electron integral, with both indices from 

(2) i 
the Fermi sea, for the projection on the doubly-excited space, (f ) 

v 

is identical with the corresponding integral for the triply-excited 

(3) i 
space, (f ) (cf. Equation (44». 

v 

Now let us consider the second partial sum, 

[xl 

which gives, 

with, 

( f(2»y = fY - (ft ) Y + (vt )Y + (vt') Y 
a a 1 a 1 a 2 a·· 

As before, note that 

The third partial sum is, 

and can be written, 

where, 

The fourth partial sum is, 

(81) 

(82) 

(83 ) 

(84) 

(85) 

(86) 
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(87) 

or, 

(88) 

where, 

(vt
2

) iy 
-av 

(89) 

Similarly, the fifth partial sum, 

can be written as, 

(91) 

where, 

(92) 

The fourth and fifth terms, [XII] and [XIII], are anomalous in that 

modified cluster coefficients ( e.g., rank 2) are used in the final 

tensor products_ The particular modified cluster coefficients involved, 

ti, have already been used in several intermediate tensor products 

( cf. Equations (42), (54), (57), (66), and (71». 

The sixth partial sum is, 
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(93) 

which ~an be rewritten as, 

[XIV] (94) 

(95) 

Three tensor products were previously considered in Equations (51), 

(65), (66), (70), and (71). 

The seventh partial sum consists of only one term which may be 

written, 

(96) 

with, 

(97) 



Likewise, the eighth partial sum may be written as, 

with, 

(vt) By 
3 a- v 

(98) 

(99) 

We next show that the projection on the singly-excited space can 

be written in terms of (at worst) products of unmodified rank 3 cluster 

coefficients and modified rank 2 integrals_ Consider breaking the sum in 

Equation (1) into four parts, 

[XV] - [Sa] + [7] + [lOa] + [12b] + [13] , (100) 

[XVI] .. [5 b] + [7] + [lOb] + [12c] + [13] , (101 ) 

[XVII] - [4] + [6] + [8] + [9a] + [9b] + [11] + [12a1 , (102) 

[XVIII] - -[7] - [13] _ (103 ) 

We have added to and subtracted from the sum in order to use the same 

modified one-electron integrals for the projection on the singly-excited 

space, as for the doubly- and triply-excited spaces ( cf. text following 

Equations (80) and (83». Let us consider each of the partial sums in 

turn. 

(104) 
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which can be written, 

[XV] (105) 

where, 

(106) 

Comparison with Equations (44) and (80) shows that the same modified 

one-electron integrals, with both indices from the Fermi sea, can be 

used for all projections; 

i.e., 

(107) 

Similarly for the second partial sum, 

(108) 

or, 

(109) 

where, 

(110) 

As before, comparison with the modified one-electron integrals for the 

doubly- and triply-excited spaces, Equations (47) and (83), gives, 

(111 ) 

The third partial sum, 



-\,I 

.. 

(112)· 

can be written as, 

(113 ) 

(114) 

The fourth partial sum, which compensates for the added terms, is 

( 115) 

which we can rewrite as, 

( 116) 

where, 

( 117) 

Finally, the projection of the Schrndinger Equation for the CCSnT 

wavefunction on the reference determinant, Equation (4), may be written 

as, 

AE _ fi t a + 1 ij tab + 1 ij a b 
U a i ~ab ij ZVabtitj 

(118) 

Hence the correlated energy can be expressed in terms of contractions of 

modified one- and two-electron integrals, 

( 119) 
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7. Discussion and Conclusions 

The algebraic expressions obtained from a diagrammatic evaluation 

of the coupled cluster equations for a CCSDT model are resolvable into 

products of unmodified cluster coefficients ( or trivially modified, in 

the case of ti) and modified one- and two-electron integrals. At no 

stage of the calculation are tensors of rank greater than two required, 

except for the initial contraction and final expansion of the rank 3 

triples cluster coefficients. 

The coupled cluster equations for a CCSDT model are linear in the 

triples coefficients, even though the wave operator is full with respect 

to the logarithmic wave operator truncated at rank 3. This suggests that 

a single sequential pass of the triples cluster coefficients suffices 

for each iterationD The algorithm for the determination of the cluster 

coefficients would appear to be divisible into three parts: construction 

of the modified integrals ( except (vt3»; list-directed multiplication 

of the triples coefficients and the modified integrals; and, final 

contraction with t l , t 2 , and tie The final forms of the coupled cluster 

equations derived in the preceding Section are eminently compatible with 

this algorithm. 

A key aspect in the implementation of a full coupled cluster 

method is the rearrangement of the cluster equations to enable a 

solution by the method of iteration, or successive substitution. As 

discussed by Purvis and Bartlett in their paper 12 on a full coupled 

cluster method including single and double excitations (CCSD), a conver­

gent solution can usually be obtained by casting the equations in a form 

reminiscent of perturbation theory ( i.e., factor the appropriate 

diagonal elements of the Fock matrix). The analogous rearrangement from 
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implicit to iterative forms can be done for the cluster equations in the 

CCSDT model presented in the preceding Section. 

An interesting variant iterative scheme is motivated by the near 

invariance of the intra-set modified one-electron integrals to external 

r 

space excitation level in the cluster equations. Consider that the 

cluster equations for arbitrary external space rank r ()O), may be 

written as, 

Sl······· S i 
o - P(u1 ••• u 1lu)t ir(f') + 

r- r u1• •• u 1 u r- r 

s ···S l a S 
+ P(Sl ••• sr_

1
IS

r
)t 1 r- (f') r + R 

u
1 
••••••• u

r 
a r 

(7.1) 

where P is the single index set permutation operator, Rr represents 

terms which are currently not of interest, f' is an intra-set modified 

one-electron integral; and the repeated index summation convention is 

used, with the appropriate modification ( cf. Section 4) when an 

argument of the permutation operator is involved. Equation (1) may be 

rewritten, 

SI·······S i 
- P(uI.··u Ilu ){t ir(f') 

r- r uI···u I u r- r 

Then consideration of the action of a permutation operator on an already 

antisymmetric tensor allows us to obtain, 



+ 

13 1 ••• 13 la' a 
I 

r- r 
+ p(a

1
···a 1 a )t (f') , + R

r
} 

r- r u
1 
••••••• u

r 
a 

(3 ) 

as iterative forms of the coupled cluster equations. In Equation (3), 

the index sets are given by, p E {ul' ••• ,ur,al' ••• ,a
r
}, i' E {Uj}A{FS}, 

and a' E {ej}A{FS}. We have just shown that a modification to the final. 

(implicit) ,equations to obtain iterative equations in a CCSDT model can 

be found which localizes changes to the contractions of the intra-set 

modified one-electron integrals and the appropriate cluster coeffi-

cients. Specifically, unrestricted sums in Equations (6.43), (6.46), 

(6.79), (6.82), (6.105), and (6.109), are replaced by the appropriate 

restricted sums. It must be emphasized that the conclusions concerning 

algorithm structure and required tensor ranks are equally valid for the 

iterative and implicit forms of the final coupled cluster equations. 

The CCSDT model has been shown not to make excessive demands on 

either the core memory or the disc memory of modern computers, when 

applied to small polyatomic molecules. A complementary concern in 

assesssing the potential usefulness of the method is the central 

processing unit (CPU) requirement relative to other techniques in 

computational chemistry. The bulwark methods, configuration interaction 

including all single and double excitations (CISD) and fourth order 

perturbation theory (PT4), have computational complexities of O(m
6

) and 

O(m7 ), respectively, where m is the number of orbitals. Including 

triples in the CI wavefunction increases the algorithm to O(m
8
), 

quadruples to O(m
10

), etc. The portions of MCSCF calculations dealing 
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with the orbital rotations are O(m6); hence, the overall order of an 

MCSCF procedure is the same as the order of the corresponding 

configuration interaction calculation. The computational complexity of 

the CCSDT model, as presented in this work, is easily found to be O(m8); 

the CCSD model is O(m6). Since the CCSDT model includes all (connected) 

single, double, and triple excitations, and the dominant (connected) 

quadruple and quintuple excitations, it ought to be compared in 

reliability with CISDTQQ. Hence, the CCSDT model appears to be a 

computationally viable, size-extensive method for the very high-level 

description of electron correlation, at an only moderately high cost. 
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