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SUMMARY

In this research, Fresnel zone plates were studied using an accurate, full-electromagnetic

simulator based on the body-of-revolution finite-difference time-domain (BOR-FDTD) method.

This method offers an advantage over many of the simpler methods that are used to analyze

zone plates. These simpler methods cannot correctly account for many of the factors that

influence the focusing ability of a zone plate, particularly for microwave and millimeter-

wave applications. The BOR-FDTD simulator overcomes this deficiency and allows a more

complete analysis of the focusing by zone plates. This tool was used to investigate zone

plates for two different applications: zone plates used as antennas in communications sys-

tems and zone plates used as focusing elements in free-space, focused-beam measurement

systems. Through detailed studies of zone plates for these applications, a number of general

characteristics of the zone plate were given a more in-depth look than they have been given

in the past. Some of the conclusions from these studies are applicable for the design of any

zone plate, especially for use in microwave and millimeter-wave applications.

For the first application, parametric design studies were performed for Soret, folded,

and grooved-dielectric, phase-correcting zone plates for antenna applications. These studies

were used to generate new design graphs. From the design graphs, general observations

are made about the effect of varying different physical parameters on the focusing ability

of a zone plate. For the grooved-dielectric, phase-correcting zone plate, these studies show

that focal length, the base thickness, and the number of phase corrections per zone affect

the focusing ability in ways that are unexpected, based on many of the simple techniques

typically used to analyze zone plates. The effect of each of these parameters on the focusing

ability of a zone plate is evaluated individually.

For the second application, a zone plate was designed to be used as a focusing element

in a free-space, focused-beam measurement system, which is used to measure the electrical
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properties of sheets of material. The design was based on new equations and BOR-FDTD

simulations. Using simulation results, the performance of this zone plate is compared to

the performance of a doubly-hyperbolic lens in an existing focused-beam system. In order

for the zone plate to be used in this system, the field focused by the zone plate must have

certain characteristics. These include a specific amplitude taper, phase uniformity, and

linear polarization. These characteristics are compared to the corresponding characteristics

of the lens. Additionally, the bandwidth of the zone plate was studied, and a technique for

increasing the usable bandwidth of a zone plate in a focused-beam system was proposed

and evaluated.

This zone plate was built and its focusing ability compared to that of the doubly-

hyperbolic lens by measuring all three components of the electric field in a volume sur-

rounding the focal point of both devices. Next, a complete focused-beam system, using two

zone plates as focusing elements, was used to measure the permittivity of three materials.

These measurements are compared to results for a system that uses the lenses as focusing

elements and to published values. The proposed technique for expanding the bandwidth

of the zone plate was tested and is shown to have promise to improve the permittivity

measurements.

As a natural follow-up to this work (a topic for future research), it would be interesting

to know if the design of the zone plate could be improved by using a non-traditional design

methodology: something other than the traditional optical (ray-tracing) methods. The

question is posed: Using the BOR-FDTD method, can a roughly similar volume of material

be shaped in a way that results in improved focusing performance compared to a traditional

zone plate? Of course, this is a rather open-ended question. However, some insight can

be gained by examining the following approach. A genetic algorithm was used to optimize

a zone plate. This concept was tested by optimizing two zone plates: one for antenna

applications and the other for use in the focused-beam system. This study shows that an

optimization routine can improve the performance of a zone plate incrementally. The value

of this improvement, however, depends on the particular application for which it will be

used.
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CHAPTER I

INTRODUCTION

In this work, Fresnel zone plates are investigated using the body-of-revolution finite-difference

time-domain method. Detailed design graphs are presented for microwave and millimeter-

wave antennas that use Soret zone plates, folded zone plates, and grooved-dielectric, phase-

correcting zone plates as focusing elements. The focusing mechanism of these zone plates is

studied and factors influencing their focusing ability are examined in detail. The feasibility

of using a zone plate as a focusing element in a free-space, focused-beam system for measur-

ing the electromagnetic properties of dielectrics is evaluated both with simulations and with

measurements, and the tradeoffs of using a zone plate for this application are discussed. A

topic for future research, non-traditional zone plate design, is introduced, and a preliminary

analysis of the optimization of zone plates with a genetic algorithm is presented.

1.1 Historical Overview

The origin of the zone plate can be traced to Augustin-Jean Fresnel. Pictured in Fig. 1.1,

Fresnel (1788-1827) made significant contributions to the wave theory of light, including

the experimental proof that light is a transverse wave. Fresnel, as part of his pioneering

work in the field of optics, introduced the zone method: By segmenting an aperture into

a number of zones and accounting for the effects of each zone at the point of observation,

many diffractive phenomena can be explained [1].

This idea is illustrated in Fig. 1.2. In this figure, a plane wave is propagating in

free space. Huygens’ principle states that the field at a point F can be described by the

superposition of an infinite number of spherically-radiating point sources in the plane α

[2]. For example, there is a specific contribution at F from a source at point A. For any

other point along the plane, the distance to F is longer than the distance AF , which

means that the phase of the contribution is different. The phase of the contribution from

point B, for example, is shifted by some amount from the contribution from point A. The
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Figure 1.1: Augustin-Jean Fresnel. Image credit: Wikipedia.org
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Figure 1.2: Geometry used to illustrate Fresnel’s zoning concept.
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distance between A and B can chosen such that, at a particular frequency, the phase of the

contributions from the two points differs by π radians. The contributions to the field at F

from A and B are then exactly out of phase and destructively interfere. Likewise, a point C

can be chosen such that the contributions from A and C are in phase (differ by 2π radians)

and add constructively at F . This feature repeats: There are points on the plane α, further

from A, which have contributions that have phase shifts that are integer multiples of 2π

radians. Each of these points marks the boundary of a full-wave Fresnel zone. This means

that, in Fig. 1.2, every point between A and C is in the same full-wave zone. The loci of

points that mark the boundaries of each full-wave zone are, of course, circles on the plane

α.

Every point on the plane α has a corresponding point within the same full-wave zone at

which the contribution is exactly out of phase. For instance, each point between A and B

has a corresponding, out-of-phase point between B and C. Jacques-Louis Soret noted that

if these out-of-phase contributions could be eliminated, the remaining contributions would

add constructively at the point F . By making alternating sections of each zone on the plane

α opaque and transparent to electromagnetic radiation, a zone plate could be constructed

that had lens-like focusing properties [3]. These regions are called half-wave zones, because

their boundaries mark the points at which the phase of the contribution to the field at F is

shifted by π radians (a half-wavelength in length). Therefore, there are two half-wave zones

in every full-wave zone. It is interesting that entries in Lord Rayleigh’s notebook indicate

that he had developed this idea four years earlier than Soret [4]. Rayleigh never published

the idea, however, so it is Soret who gets historical credit for the original zone plate.

Lord Rayleigh does get credit, however, for the introduction of the phase-correcting

zone plate, which is a method that improves the focusing ability of a Soret zone plate [5].

Instead of blocking the incident field in alternating half-wave zones as Soret did, Rayleigh

suggested reversing the phase of the incident field in these half-wave zones. For example, if

the phase of the contribution from every point between B and C in Fig. 1.2 could be shifted

by π radians, these contributions would add constructively with those from points between

A and B. The phase-correcting technique allows the entirety of each full-wave Fresnel zone

3
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Figure 1.3: Geometry of the Soret zone plate.

to contribute to the focusing, rather than only half of each zone, as is the case for the Soret

zone plate. Extending this idea, the focusing ability of a zone plate should be improved by

subdividing the Fresnel zones to correct the phase in finer increments [6]. Zones smaller

than half-wave zones can be defined, and the phase of their contributions can be made to

add constructively by shifting the phase by the appropriate amount (less than π radians).

Using these relatively simple concepts, a number of different devices have been devel-

oped. The following sections of this introduction will look in detail at the two primary

classes of zone plates and at specific examples of zone plates found in the literature.

1.2 Soret and Folded Zone Plates

The simplest and oldest type of zone plate, the Soret zone plate, is made of annuli of perfect

electrical conductors (PEC) that block every other half-wave zone, as Soret proposed. This

zone plate is illustrated in Fig. 1.3. Studying Fig. 1.3, it can be seen that a portion of

the incident field will be reflected by the opaque half-wave zones, while the remainder will

be transmitted through the transparent half-zones. The half-wave zones are designed such

that only the portions of field that will constructively interfere at the distance F in front

of the zone plate are reflected by the opaque part of the zone plate. A similar constructive

interference will also occur for the transmitted field at the distance F behind the zone

plate. Therefore, there are two focal points associated with this structure, and it can be

4



used either as a reflection zone plate if the feed is on the same side of the zone plate as the

incident wave, or a transmission zone plate if the feed is located on the opposite side of the

zone plate.

To ensure constructive interference, the radii of the zones are computed based on the

requirement that the distance from the focal point to the edge of a zone be a half wavelength

longer than the distance from the focal point to the edge of the previous zone, as discussed

in Sec. 1.1. In Fig. 1.3, ρ1 and ρ2 are chosen so that r2 = r1 + λ/2. Applying this

requirement to each subsequent zone leads to the well-known design formula for Soret zone

plates. If each of these half-wave zones is numbered consecutively starting at the center of

the zone plate, the outer radius of the nth half-wave zone is

ρn =

√(
nλ

2

)2

+ nλF , (1.1)

in which λ is the design wavelength in free space. The total number of half-wave zones is

NSoret, and this number includes both the opaque and the transparent zones.

In determining the radii that define each half-wave zone, it is never specified whether

the odd numbered zones or the even numbered zones should be made opaque. Based

on Fresnel’s zoning principle, these complementary configurations work equally well. The

choice of which zones to make opaque depends primarily on the mode of operation of the

zone plate. Typically, even numbered zones are opaque for transmission zone plates. In

this case, the total number of half-wave zones NSoret is even. Odd numbered zones are

opaque for reflection zone plates, like that in Fig. 1.3, and NSoret is odd. Describing the

number of zones in terms of NSoret ensures the outer zone is always opaque so that there

is no confusion about the location of the edge of the zone plate. The diameter of the zone

plate is then D = 2ρNSoret
.

This work will address reflection zone plates for which the odd numbered zones are

opaque and the total number of half-wave zones NSoret is odd. This is done without sacrific-

ing generality, however, because the concepts discussed pertain equally well to transmission

zone plates.

The obvious problem with the Soret zone plate is that its ability to focus power is
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Figure 1.4: Geometry of the folded zone plate.

inherently limited. The presence of both a transmission focal point and a reflection focal

point means that only half of the incident energy is focused to each of the focal points. The

folded zone plate is a variant of the Soret zone plate designed to address this problem. This

zone plate is shown in cross section in Fig. 1.4 and is created by placing a PEC disc at the

distance λ/4 behind a Soret zone plate. The distance to the PEC disc imparts an additional

round-trip phase change of π radians on the portion of the incident field that is transmitted

through the zone plate and reflected by the disc [7]. The term ‘folded’ arises from the

fact that this zone plate is essentially folding, or imaging, the transmission focal point to

the location of the reflection focal point. The field reflected by the disc adds constructively

with the field reflected by the opaque zones at the focal point. This configuration, therefore,

roughly doubles the magnitude of the electromagnetic field at the focal point compared to

the Soret zone plate.

1.3 Phase-Correcting Zone Plates

The phase correction proposed by Rayleigh as a way of improving the performance of Soret

zone plates has been implemented successfully using a number of different techniques. A

few of the most common methods for achieving the desired phase correction are shown in

cross section in Fig. 1.5. The folded zone plate that has already been discussed is, in fact,

a rudimentary phase-correcting zone plate. For comparison, this zone plate is shown again
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Figure 1.5: Geometry of various phase-correcting zone plates: (a) the folded zone plate,
(b) the multilayer zone plate, (c) the planar lens, and (d) the grooved-dielectric, phase-
correcting zone plate

in Fig. 1.5(a). As discussed, this zone plate imparts a phase shift by forcing parts of the

incident field to travel an additional distance. The multilayer Fresnel zone plate, shown in

Fig. 1.5(b), extends this idea further. Opaque annuli are placed at a number of different

distances (three in the figure) away from the reflecting disc [8]. Each level of annuli imparts

a different phase shift on a different portion of the incident field to correct the phase in finer

increments than a folded zone plate. Fig. 1.5(c) shows a planar lens [9]. This zone plate,

used in the transmission mode, incorporates two or more dielectrics to impart different

phase shifts on the incident field. The zone plate in the figure is made from two dielectrics,

and if the permittivities of the dielectrics, ε1 and ε2, are chosen correctly, this zone plate

can have two planar interfaces. This feature is beneficial because it allows the zone plate to

be mounted flush with a surface, such as a wall or the exterior of a ship or aircraft. One of

the most commonly used methods to achieve phase correction is to cut circular grooves into

a single dielectric slab, as shown in Fig. 1.5(d). It is this zone plate, the grooved-dielectric,

phase-correcting zone plate, that will be considered in this work.

A grooved-dielectric, phase-correcting zone plate works by forcing the incident wave to

travel through different amounts of the dielectric. The difference in travel time through

the grooves adjusts the phase at the output plane of the zone plate. The axially symmetric

geometry of this zone plate is shown in detail in Fig. 1.6. This type of zone plate is relatively
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Figure 1.6: Cross section of the grooved-dielectric, phase-correcting zone plate.

simple to manufacture and does not require a dielectric with any particular permittivity.

When working with Soret and folded zone plates, it is a convenient to think about divid-

ing the zone plate into NSoret half-wave zones. For phase-correcting zone plates, however,

the idea of fractional zones is not as useful; therefore, slightly different terminology is used.

Instead of NSoret half-wave zones, a phase-correcting zone plate is divided into N full-wave

Fresnel zones. For a zone plate with NSoret even, a phase-correcting zone plate with the

same diameter has N = NSoret/2 full-wave zones.

The zone plate shown in Fig. 1.6 has N = 3 full-wave zones. The focal length of the

zone plate is F , and the diameter of the zone plate, D, is twice the radius of the outermost

full-wave zone. In Sec. 1.1, a full-wave Fresnel zone was defined by the requirement that

the distance from the focal point to the edge of a zone be a wavelength longer than the

distance from the focal point to the edge of the previous zone. This requirement gives rise

to the standard design formula for zone plates. The outer radius of the mth full-wave zone

is [10]

Πm =
√

(mλ)2 + 2mFλ, m = 1, 2, ..., N. (1.2)

Each of the full-wave zones is subdivided into P subzones (P = 4 are shown in the Fig.

1.6), defined such that the distance from the focal point to the edge of a subzone is λ/P

longer than the distance from the focal point to the edge of the previous subzone. When
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the subzones are numbered consecutively starting at the center of the zone plate, there are

NP subzones. The outer radius of the nth subzone is

ρn =

√(
nλ

P

)2

+
2nFλ
P

, n = 1, 2, ..., NP. (1.3)

When P = 2, Eq. (1.3) reduces to Eq. (1.1), as expected.

Because of the path length difference of λ/P established by Eq. (1.3), the phase of the

contribution at F from each subzone lags the phase from the previous subzone by 2π/P

radians. The phase is corrected to compensate for this by adjusting the thickness of the

dielectric in each subzone. The velocity of an electromagnetic wave traveling through a

dielectric is less than the velocity in free space, a fact that can be used to impart the

opposite phase shift on the subzones closer to the focal point. For consecutive subzones,

the thickness decreases by the distance d:

d =
λ

P
(√
εr − 1

) , (1.4)

in which εr is the relative permittivity of the dielectric.

An example is presented to illustrate the theory behind this design process. Consider

the second and third subzones of the first full-wave zone shown in the inset in Fig. 1.6. The

phases of the horizontal rays traveling through the zone plate at the inner radii of these

zones are related by

2π
[(

ObO′b
)√

εr +
(
O′bO

′′
b

)]
/λ = 2π

[(
OaO′a

)√
εr +

(
O′aO

′′
a

)]
/λ− 2π/P. (1.5)

This result together with Eq. (1.3) means that the rays travelling through these points and

arriving at the focal point, F, are in phase:

2π
[(

OaO′a
)√

εr +
(
O′aO

′′
a

)
+ O′′aF

]
/λ = 2π

[(
ObO′b

)√
εr +

(
O′bO

′′
b

)
+ O′′bF

]
/λ. (1.6)

Examining Eqs. (1.2), (1.3), and (1.4), it can be seen that the phase correction can be

made smoother by increasing P . Figure 1.7 shows the effect on the profile of a zone plate

of varying P . The figure shows profiles for zone plates with P = 2, P = 4, and P = 8, as

well as the profile in the limit as P →∞.
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(a) (b) (c) (d)

Figure 1.7: Cross sections of zone plates with (a) P = 2, (b) P = 4, (c) P = 8, and (d)
P →∞.

When the design procedure described above is followed, the thickness of the outermost

subzone in each full-wave zone is zero. While this produces the proper phase shift in these

subzones, it presents a manufacturing problem, requiring concentric rings of dielectric to be

suspended without support. The solution to this problem is to add a base of thickness t to

each of the subzones. This base can be seen in Fig. 1.6. The base thickness is chosen for

mechanical reasons, but it will be shown that it also affects the electromagnetic properties

of the zone plate.

1.4 Applications of Zone Plates

Fresnel zone plates trace their history to the field of optics. It is not surprising, there-

fore, that most of the early zone plates were used as optical devices. One of the earliest

applications of the zone plate was as an objective lens for an optical telescope built by

Robert Wood. Using a gramophone needle to cut grooves in a wax-coated piece of glass,

Wood created the first phase-correcting zone plate [4]. Because of this contribution, phase-

correcting zone plates are frequently referred to as Wood-type zone plates [10]. Optical

lenses are typically not very large, so the benefits of zone plates (reduced weight and thick-

ness) are not needed for many applications. For this reason, the zone plate was considered

an experimental curiosity for years.

Though scattered references appear in the literature after Wood’s telescope [11], it was

not until the middle of the twentieth century that researchers ‘rediscovered’ zone plates

and began to widely utilize them in a variety of lower-frequency applications. A period
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of experimental work served as the basis for the renewed interest in zone plates. Hull

constructed a Soret zone plate with zones that could be individually removed to study the

effect of the number of zones on the focusing ability [12], and Van Buskirk and Hendrix

experimented with folded zone plates at X-band frequencies (8.2-12.4 GHz) [7]. Sanyal and

Singh constructed both Soret and phase-correcting zone plates to perform a comparison,

although they made a significant error in the calculation of the groove depth for the latter,

which affected their conclusions [13].

Around this time, researchers began to use zone plates in communication systems. Sobel,

Wentworth, and Wiltse developed a phase-correcting zone plate for millimeter-wave trans-

mission systems [6]. Weibel and Dressel also used a phase-correcting zone plate receiver

in millimeter-wave link experiments [14]. Zone plates are still being used in communica-

tions systems, especially for applications for which form-factor requirements exclude the use

of other technologies. Curvilinear zone plates have been designed for radomes and other

conformal antenna applications [15–17]. Wall- or roof-mounted zone plates have been com-

mercialized for indoor communications [18, 19], and a zone plate integrated into a solar sail

has been proposed as a light-weight option for space vehicle communications [20]. Cylin-

drical zone plates produce a beam that is omnidirectional in the azimuth plane and is ideal

for wireless LAN coverage [21]. Zone plates with multiple focal points have been devel-

oped for satellite communications, allowing signals to be received from multiple satellites

simultaneously [22].

Zone plates can also be adapted to different fabrication techniques. Integrated-circuit

zone plate antennas have been developed as replacements for patch antennas at millimeter-

wave frequencies [23, 24], while folded zone plates [25] and multilayered phase-correcting

zone plates [8] have been fabricated directly on dielectric substrates.

Today, with improved manufacturing technology and the advent fiber-optics for high-

bandwidth communications, the application of zone plates has returned full-circle to optics.

Zone plates are used as collimating lenses for optical systems [26, 27] and as optical signal

processing filters [28]. Other applications have arisen that require lenses to be as light

as possible. Space-based telescopes for detecting extra-solar planets have been proposed,
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requiring large apertures but minimal weight to reduce the cost of delivering the telescope

to orbit [29, 30]. Zone plates are even used for photography. High-end camera lenses use

zone plate-like focusing elements to correct for chromatic abberation without adding much

weight [31, 32]. Soret zone plates, by themselves, are sometimes used as camera lenses

because of the artistically desirable, soft-focus effect they produce [33].

Recent research has extended the use of zone plates to even higher frequencies, such as

X-rays. At these frequencies, it is difficult to find a material with a refractive index that is

appropriate for fabricating focusing elements. Soret and folded zone plates are particularly

useful for the focusing these signals because they do not rely on refraction for focusing.

Applications include zone plates for high resolution X-ray and Gamma-ray astronomy [34].

Some commercially available X-ray imaging systems also incorporate zone plates [35].

This section is not intended to present an exhaustive list of the applications for zone

plates. Instead, the goal of this section is to convey a few examples that represent some

of the diversity of what has historically been done and what is currently being done in the

field of Fresnel zone plates. A number of other applications of zone plates are summarized

in the books by Hristov [10], Minin and Minin [36, 37], and Guo and Barton [38].

1.5 Application to Free-Space, Focused-Beam Measurement Systems

A practical application that will be specifically addressed in this work is the use of zone

plates as focusing elements in a free-space, focused-beam measurement system. The focused-

beam system, as it will be referred to in the remainder of the document, is used to character-

ize the electromagnetic properties (complex permittivity and permeability) of a material. A

typical focused-beam system, like the one shown in Fig. 1.8, consists of two horn antennas

and two focusing elements. The field radiated by the transmit horn is converted by a lens

into a Gaussian beam with the waist at the point where the sample of material is placed.

Another lens focuses the field that is transmitted through the sample to the receive horn,

where it is measured. In addition, the transmit horn is used to measure the field reflected

from the sample. At the waist of a Gaussian beam, where the sample is placed, the phase

is uniform and the amplitude has a Gaussian taper [39]. For a sample that is large enough
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Transmit Horn Receive Horn

Dielectric Lenses

Figure 1.8: Schematic diagram of a focused-beam measurement system.

that the field of the beam is insignificant at its edges, the beam can be approximated as

a plane wave normally incident on an infinite piece of the sample. Using this assumption,

plane wave theory can be used to model the measurement system. The measured values

of the reflection and transmission coefficients can then be used to calculate the complex

permittivity and permeability of the sample [40–43].

The sizes of the components of a focused-beam system scale with the inverse of the

frequency. For measurements at low frequencies, the size, weight, and cost of the dielectric

lenses can become extreme. For example, the lenses in a system designed to make measure-

ments for frequencies as low as 800 MHz, shown in Fig. 1.9, have a diameter of 6 feet and

weigh thousands of pounds each. In addition to being difficult to manipulate, these lenses

present manufacturing challenges: It is difficult to find a thick enough slab of material from

which to machine the lenses, while molding the lenses also presents issues, including the

presence of air bubbles in the completed lenses.

In this work, a zone plate will be evaluated as a replacement for the doubly-hyperbolic

lens in a focused-beam system. A system that uses zone plates, like that seen in Fig. 1.10

offers a few distinct advantages. Zone plates are lighter and thinner than traditional lenses

and could make a focused-beam system for low frequencies easier to setup and reconfigure.

Additionally, zone plates could mitigate many of the manufacturing problems associated

with lenses. A reduction in cost is another advantage of zone plates compared to lenses. For

example, one common material used to make dielectric lenses and zone plates for microwave
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Sample Lens

Horn

Figure 1.9: Photograph of a focused-beam system designed to make material measure-
ments for frequencies as low as 800 MHz. Image credit: Dr. John Schultz and STL/GTRI.

Sample Under Test

Transmit Horn Receive Horn

Zone Plates

Figure 1.10: Schematic diagram of a focused-beam measurement system using zone plates.
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Figure 1.11: Cost per square foot of Rexolite (August 2008) [44].

and millimeter-wave frequencies is Rexolite. The cost of Rexolite increases nonlinearly with

thickness, as can be seen in Fig. 1.11 [44]. The reduction in thickness of the zone plate

therefore translates into an even larger reduction in cost. Because of the advantages in

weight, thickness, and cost, zone plates may allow the operating frequency of a focused-

beam system to be lowered further, to regions where lenses are prohibitively large.

Zone plates are not without their drawbacks, however. The most well-documented of

these is their limited bandwidth [45]. Zone plates are diffractive devices and are designed

to work at one particular frequency. This is evident from the presence of the wavelength-

dependent terms in Eqs. (1.1)-(1.4). Away from the design frequency, the performance of

the zone plate degrades. In addition, the field at the sample in a focused-beam system must

have phase uniformity and a specified amplitude taper, as discussed above. The profile of

a zone plate is discontinuous, and there is concern about how this will affect both of these

qualities.

Hristov indicates indicate that Brandt, Pashin, and Petelin attempted to use zone plates

for free-space measurement systems in 1958 (Figure 5.30 and reference #66 in [10]). Hris-

tov’s reference, which is in Russian, has not been found by this author.

1.6 A Discussion of Fresnel Lenses and Fresnel Zone Plates

In 1822, during his tenure as French Commissioner of Lighthouses, Fresnel developed a

ground-breaking lighthouses lens. The visible range of a lighthouse beam is limited by the
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optics used to collimate the light from the source, which was historically an oil lamp. In the

early nineteenth century, the state of the art lighthouse optics were metal reflectors that

were placed behind the source. These reflectors were inefficient, but lenses, which would be

an improvement, were too heavy to be supported and rotated at the top of a lighthouse.

Fresnel developed a much lighter lens by sectioning the lens and removing much of the glass

from each section. The result is a lens, now called the Fresnel Lens, that looks similar to

a phase-correcting Fresnel zone plate, specifically when P →∞. Because of this similarity

in appearance and in name, it is easy to confuse the two devices. This section will briefly

examine the theory behind the Fresnel lens to draw a distinction between it and the zone

plate.

Figure 1.12 is a photograph of the author and a Fresnel lens from the lighthouse at

Point Loma in San Diego, CA. The lens pictured is the original lens for the new Point

Loma lighthouse, purchased in 1891 from Henry Le Paute of Paris, France for approximately

$4,000. With the exception of a brief period of blackout during World War II, the lens was

used continuously until 1997, when it was decommissioned [46]. A simplified schematic

drawing of this Fresnel lens is given in Fig. 1.13. The lines emanating from the source show

how the lens refracts rays of light.

Though Fresnel lenses resemble phase-correcting zone plates, they are fundamentally

different devices. Zone plates are designed to work for a monochromatic source or incident

plane wave. Their focusing is coherent: Through diffraction (and sometimes refraction),

the phase of the field from each zone adds constructively at the focal point. Fresnel lenses,

however, must collimate radiation from an incoherent source containing frequencies over

the whole visible range. Fresnel lenses can achieve this because they are much larger with

respect to the wavelength than the zone plates studied in this work. The center-most section

of the lens in Fig. 1.12 is hundreds of thousands of wavelengths across at optical frequencies!

The dimensions of the lens, therefore, do not need to be held to optical tolerances. Instead

of the strict zoning described by Eq. (1.3), a Fresnel lens is designed by choosing a desired

thickness for the lens and then ensuring that the profile in each section satisfies Snell’s law

of refraction. This refraction does not take the phase of the focused field into account, but
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Figure 1.12: The author with a Fresnel lens at the Point Loma lighthouse in San Diego,
CA.

17



Figure 1.13: Schematic drawing of a Fresnel lens.

instead incoherently sums the power at the focal point. Unlike zone plates, Fresnel lenses

use additional prisms to redirect the light radiated upwards by the source. These prisms

can be seen in both Fig. 1.12 (in the conical-shaped section at the top of the lens) and

in Fig. 1.13. Following the rays that are incident on these prisms in Fig. 1.13 shows that

the prisms use both refraction and internal reflection to correct the ray’s path. Historically,

each ring and prism of the lens was fabricated by polishing a separate piece of glass. Fresnel

lenses were not only a breakthrough for nautical safety and navigation, but also beautiful

hand-crafted pieces of art.

1.7 Contribution of Research

This chapter has described the long history of the Fresnel zone plate. Despite all of the

work that has been done, there are many aspects of zone plates that have never been

addressed using a rigorous, full-electromagnetic analysis. It will be shown in this work that

an accurate, full-electromagnetic method allows us to consider effects that are not accounted

for using the simpler theories that are frequently applied to the analysis of zone plates.

This is particularly important for microwave and millimeter-wave applications, where these

effects can be significant.

A body-of-revolution finite-difference time-domain (BOR-FDTD) simulator was devel-

oped to address this shortcoming. This computer program allows zone plates to be examined
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in more detail than they have in the past, and accounts for all of the factors that influ-

ence the focusing by a zone plate. This powerful modeling tool is applied to the study

of two particular microwave/millimeter-wave applications of zone plates: zone plates used

as antennas in communications applications and zone plates used as focusing elements in

free-space, focused-beam measurement systems. Both of these applications allow distinct

aspects of the zone plate to be examined. These studies examine a number of character-

istics of zone plates in greater detail than has been done before. Results that are specific

to these two applications, such as design graphs and system-level performance studies are

an important contribution of this work. Many of the conclusions drawn are relevant to

applications for zone plates in addition to the two discussed in this work.

This work is organized around these two applications. Within the context of these

applications, individual topics of interest are addressed. A brief overview and an explanation

of the contributions of each part of the dissertation follows.

The first zone plates examined are those used as antennas in communications applica-

tions. For these applications, the zone plate must either collimate radiation from a point

source in the transmit mode, or focus an incident plane wave in the receive mode. The chal-

lenge when designing many antennas for communications systems is to collect (or transmit)

as much power as possible. Parametric studies are performed for Soret, folded, and grooved-

dielectric zone plate antennas to examine the effects of various parameters on the ability

of the zone plates to collect or transmit power. The results of these studies are used to

generate new design graphs for each type of zone plate. These design graphs will help engi-

neers to choose the appropriate parameters to meet specific performance requirements and

to evaluate tradeoffs made in the design process. In addition, the design graphs are used to

make general statements about the effect of the configuration and the physical properties

of the zone plate on its focusing ability.

When designing a grooved-dielectric, phase-correcting zone plate, a number of different

parameters must be specified. Historically, these parameters have been chosen based on

arguments derived using geometrical (ray-tracing) techniques, but it will be shown that

these techniques are unable to account for many of the factors that influence the focusing.
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In this work, the more accurate BOR-FDTD method is used to give new insight into the

effect of these parameters. In particular, a few design choices are examined in detail; these

include:

• the focal length of the zone plate

• the base thickness of the zone plate

• the effect of a matching layer

• the number of phase corrections per zone.

The resulting observations are used to develop general rules of thumb for designing zone

plates.

A second, more novel application of zone plates is also studied. In this application,

zone plates are used as focusing elements in a free-space, focused-beam system used to

measure the electrical properties of sheets of material. In a focused-beam system, unlike

most communications systems, both the source and the focal point are near the zone plate.

The zone plate must, therefore, replace the functionality of a doubly-hyperbolic lens. The

advantages of a zone plate over a lens for this application include a reduction in the weight

and the amount of material needed to manufacture the device. These advantages allow the

zone plate to be scaled for use at lower frequencies.

In this work, a zone plate is designed to replace a particular doubly-hyperbolic lens:

the lens used in GTRI’s existing focused-beam system. To this end, new design equations

are developed for a zone plate that has one planar side (to simplify manufacturing). These

design equations are used in conjunction with BOR-FDTD simulations to develop a novel

zone plate that incorporates knowledge that was developed in the earlier stages of this work.

The use of this zone plate in a focused-beam system is studied both experimentally and

with FDTD simulations. In a focused-beam system, the field at the beam waist (the sample

location) is approximated as a plane wave. The feasibility of using a zone plate in this

system therefore depends on the nature of the field in the focal region of the zone plate. In

particular, one would like answers to the following questions:
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• Is the amplitude taper of the field at the beam waist sufficient?

• Is the phase of the field at the beam waist sufficiently uniform?

• Is the field at the beam waist linearly polarized?

• Is the bandwidth of the zone plate large enough to warrant its use?

Measurements and simulations of the field focused by the existing lens are used as a baseline

against which the performance of the zone plate is compared. The answer to these questions

is important for this particular application, but the findings can be applied to zone plates

in any focusing system.

As a final test, the complete focused-beam system, with the new zone plates as focusing

elements, is used to measure the permittivity of dielectric sheets. To evaluate the accuracy

of these measurements, the results obtained are compared to results for a system that uses

the traditional lenses and to published values. A new technique for extending the bandwidth

over which the zone plate can be used is proposed and tested. The results presented will

allow designers to make an informed decision about whether the weight and cost savings

offered by using a zone plate overshadow its disadvantages, principally reduced bandwidth.

The zone plates studied throughout this work are traditional designs which are based

on optical, ray-tracing methods. With the power of full-wave simulators, such as the BOR-

FDTD method, available, a natural question arises: If we were given a block of material

of the same volume, could we use these methods to develop a focusing element that is

better than the traditional zone plate? To start answering this question, the topic of

non-traditional zone plate design is addressed. A preliminary analysis of one particular

non-traditional design method is presented: Two zone plates, one for antenna applications

and the other for focused-beam applications, are designed and optimized using a genetic

algorithm. These zone plates are compared with traditionally-designed zone plates and

with lenses and are shown to have improved performance. However, the value of these

improvements depends on the requirements of a particular application.
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1.8 Outline

In this section, an outline of this dissertation is presented. Figure 1.14 is a graphical

representation of this outline and the organizational structure of this work. In this chapter,

Chapter 1, the basic operation of a zone plate was described and their applications discussed.

The particular application of zone plates to a free-space, focused-beam measurement system

was introduced. In Chapter 2, the methods that are typically used to analyze zone plates

are described, and the need for a rigorous, full-electromagnetic analysis is explained. The

technique chosen for this research, the BOR-FDTD method, is applied to the zone plate.

The computational tool that results is used throughout the remainder of this work.

The first application of zone plates studied is in antennas for communications systems, as

discussed in Sec. 1.4. In Chapter 3, a visualization of the Poynting vector near a zone plate

is used to discuss the focusing mechanism of the Soret zone plate. Metrics for evaluating

zone plate antennas are defined, and parametric studies for Soret and folded zone plates

are used to generate design graphs based on these metrics. These design graphs are used

to make general observations about the effect of various design parameters on the focusing

ability of zone plates. Existing measurements for integrated-circuit zone plate antennas are

used to validate the BOR-FDTD simulations for Soret zone plates.

In Chapter 4, a similar study to that in Chapter 3 is performed for grooved-dielectric,

phase-correcting zone plates. Design graphs are presented for this type of zone plate as

well. Individual design choices, including the focal length, the base thickness, the use of a

matching layer, and the number of phase corrections per subzone are evaluated using BOR-

FDTD simulations. Existing measurements for the field focused by a doubly-hyperbolic

lens and the far-field pattern of a grooved-dielectric zone plate are used to validate the

BOR-FDTD simulations for these devices.

Starting with Chapter 5, research done on the second application is presented. The

lens used for GTRI’s standard focused-beam system is discussed, and design equations for

a single-sided zone plate to replace this lens are derived. BOR-FDTD simulations are used

to compare the focusing ability of a single lens with a single zone plate. The application

of the zone plate to a focused-beam system is then studied using simulation results, and a
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proposal for improving the usable bandwidth of the zone plate is presented.

In Chapter 6, this zone plate is studied both with simulations and with measurements.

The fabrication procedure for the zone plate is discussed, as is the measurement system used

to probe the field focused by the zone plate. The questions expressed earlier about the field

focused by the zone plate are individually addressed. Finally, a full focused-beam system

with zone plates as focusing elements is tested. To evaluate the accuracy of the system,

permittivity measurements for three different materials are presented and compared to

measurements from a system that uses lenses and to published values.

Chapter 7 is concerned with the improvement of zone plate performance using non-

traditional methods in the design process. This idea is only briefly explored; it is mainly

presented as a topic for future research. The particular example of zone plates designed

with a genetic algorithm (GA) is presented. A brief overview of the GA is given, fol-

lowed by a discussion of the formulation of the zone plate optimization problem. A zone

plate for antenna applications is designed using the GA and is compared with a lens and

a traditionally-designed zone plate. The same process is repeated for a zone plate for

focused-beam applications. The value of the improvement achieved with the optimization

is discussed.
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CHAPTER II

BOR-FDTD ANALYSIS OF ZONE PLATES

The synthesis of a zone plate, based on the simple but powerful principles discussed in

the introduction, is straightforward. The accurate analysis of such a device, however, is

far more difficult. In this chapter, an overview of the techniques that are typically used to

analyze zone plates is presented. The merits and accuracy of these techniques are discussed.

The primary analysis technique used in this work, the body-of-revolution, finite-difference

time-domain (BOR-FDTD) method, is presented, and the implementation of this technique

for the analysis of zone plates is described.

2.1 Overview of Techniques for the Analysis of Zone Plates

A number of different techniques have been used to analyze Fresnel zone plates. These

techniques vary in complexity, depending on the accuracy required and the geometrical

properties of the zone plate. The simplest and earliest methods are based on geometrical

optics principles, which follow the same reasoning that Soret, Rayleigh, and Wood used

in the development of zone plates [7, 10]. These methods rely on the assumption that

(F/D)2 � 1, and therefore the contribution of every zone to the field at the focus is

approximately the same. For optical zone plates, this is a decent approximation, and since

most early zone plates were for optical applications, these methods were sufficient.

As zone plates began to be used outside of optics, different techniques were applied to

their analysis. Kirchhoff diffraction theory is one method that is frequently used to analyze

zone plates. The scalar Kirchhoff diffraction integral has been applied to the analysis of

zone plates with general feeds [13, 47], while zone plates for which the polarization of the

feed is important have been treated with the vectorial Kirchhoff diffraction integral [48].

Using this technique, the solution of the wave equation at a point in space is expressed

in terms of the solution of the wave equation and its derivative at all points on a closed

surface surrounding the point [49]. This closed surface is typically chosen to be a hemisphere
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of large radius. The aperture of the zone plate is contained in the planar section of the

hemisphere. The electromagnetic field is assumed to be uniform over each open subzone of

a Soret zone plate and an integration is performed over each of these subzones. The field

and its derivative are assumed to be zero over each blocked subzone and on the spherical

section of the hemisphere, far from the zone plate. In a phase-correcting zone plate, the

phase shift of the field is assumed to be perfect, and an integration is performed over the

entire zone plate.

The assumption that the electromagnetic field is uniform over each subzone is not nec-

essarily good, however. For this assumption to be valid, the widths of the subzones (∆ρn)

must be large compared to the wavelength; certainly ∆ρn/λ > 1. When the condition

NP � 1 is satisfied, which is true for many practical zone plates, the minimum width for

a subzone (the outer one, n = NP ) is

(
∆ρn
λ

)
min

=
(

∆ρNP
λ

)
≈ 1
P

√
1 + 4

(
F

D

)2

. (2.1)

Upon solving Eq. (2.1) for F/D, we have

F

D
≈ 1

2

√
P 2

(
∆ρn
λ

)2

min

− 1 . (2.2)

A typical value for the number of subzones per full-wave zone in a phase-correcting zone

plate is P = 4, and for the inequality ∆ρn/λ > 1 to be satisfied, we should at least have

(∆ρn/λ)min = 2. Upon substituting these numerical values into Eq. (2.2), we find that

F/D must be greater than four. This is a condition usually satisfied for zone plates used

at optical frequencies but not for those used at microwave and millimeter-wave frequencies

[11].

In addition to the Kirchhoff diffraction integral, more advanced diffraction techniques

have been applied to the analysis of zone plates. These methods rely on modifying the

Kirchhoff solution to include combinations of the geometric theory of diffraction, uniform

asymptotic theory, and edge current corrections, among other techniques [23, 24, 50–52].

The drawback of these diffraction techniques is that they are not valid for zone plates of

all sizes or for determining the radiation patterns in all directions. To use these methods,
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the results from different techniques must be stitched together to form a meaningful design

graph over a large range of design parameters [51].

An additional difficulty imposed on the analysis of phase-correcting zone plates, which

is not present in the case of the Soret zone plates, is the need to model reflections and other

physical effects of the dielectric. A method has been presented that addresses this issue by

incorporating plane-wave reflection and transmission coefficients into the model [53]. Each

subzone is first treated as an infinite slab of dielectric, and the coefficients for the infinite

series of internal reflections are computed. These coefficients are then incorporated into the

field calculations. This method is an improvement over methods that treat each subzone

as an ideal phase shifter, but it still relies on the assumption that the reflections can be

treated as independent plane-wave reflections.

In light of the issues mentioned above, the way to ensure that microwave and millimeter-

wave zone plates are modeled accurately over a wide range of parameters is to use a full-

electromagnetic technique. In the past, researchers have done this by applying rigorous

numerical techniques to the analysis of zone plates, including integral equation methods

[27, 54] and finite-difference time-domain (FDTD) methods [55, 56]. A good FDTD analysis

for phase-correcting zone plates used as optical microlenses has been reported, in which

design graphs are presented that demonstrate the effect of the f -number (the ratio of the

focal length to the diameter, F/D) on the focusing ability of the microlenses [57].

2.2 The BOR-FDTD Method

The full-electromagnetic technique used in this work is the body-of-revolution finite-difference

time-domain (BOR-FDTD) method. The BOR-FDTD algorithm exploits the rotational

symmetry of Fresnel zone plates and is therefore a natural choice for modeling the devices.

For the most part, the standard implementation of BOR-FDTD is used. In this section, the

basics of the method will be explained, without dwelling on the details that can be found in

the literature [58, 59]. This discussion will provide the background necessary to understand

the specific adaptations that are made to the algorithm to model zone plates.

Using BOR-FDTD, the computational cost of modeling zone plate antennas is reduced
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Figure 2.1: Three-dimensional layout of field components for FDTD in cylindrical coor-
dinates.

by decomposing the electromagnetic field into a Fourier series of rotationally symmetric

modes:

~E(ρ, φ, z, t) =
∞∑
m=0

~eu(ρ, z, t,m) cosmφ+ ~ev(ρ, z, t,m) sinmφ

~H(ρ, φ, z, t) =
∞∑
m=0

~hu(ρ, z, t,m) cosmφ+ ~hv(ρ, z, t,m) sinmφ , (2.3)

in which the Fourier coefficients (~eu, ~ev, ~hu, and ~hv) represent the electric and magnetic

field and are unknown, the Fourier mode is represented by m, and the subscripts u and v

indicate fields with cosinusoidal and sinusoidal dependence, respectively.

When the Fourier-series representation of the field, Eq. (2.3), is substituted into Maxwell’s

equations, a time-stepping algorithm can be developed to find values of the Fourier-series

coefficients at a future time from those at the present time using a computer. To do this,

a volume of space is discretized and the differential equations are approximated as differ-

ence equations using the central difference approximation. A cylindrical volume of space

can be discretized in a manner similar to the Yee method for a rectangular lattice [60],

with spatially-staggered field components that can be seen in Fig. 2.1. Rearranging the

difference equations results in FDTD update equations in cylindrical coordinates. The field
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Figure 2.2: Two-dimensional layout of field components for BOR-FDTD.

values are computed in a leap-frogging fashion: The values of the magnetic field compo-

nents are computed from the neighboring electric field components, the time is advanced by

a half time step (∆t/2), and the electric field components are computed from the neighbor-

ing magnetic field components. This process, referred to as updating the field components,

is then repeated until a specified number of time steps have been completed.

The computational advantage of the BOR-FDTD method comes from the fact that the

azimuthal (φ) dependence can be removed from these equations and calculated analyti-

cally. This reduces the computational space to one with two dimensions, while preserving

knowledge of the solution in three dimensions. The two-dimensional grid that is used for

BOR-FDTD simulations is shown in Fig. 2.2. The spacing between a field component and

the nearest occurrence of the same component is ∆ρ in the ρ-direction and by ∆z in the

z-direction. Notice that there are now co-located field components (ez and hρ, hz and eρ),

which differs from the standard Yee method. A position within this grid with the coor-

dinates (ρ, z) is represented by the indices i = ρ/∆ρ and k = z/∆z. The magnetic field

components are computed for integer time steps, n = t/∆t, and the electric field compo-

nents are computed for a time that is a half-time step later, n + 1/2. It is important to

note that, for a given mode m, Eq. (2.3) can be decomposed into two sets of fields which
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are independent for isotropic materials :

~E(ρ, φ, z, t,m) =
∞∑
m=0

~EA(ρ, φ, z, t,m) +
∞∑
m=0

~EB(ρ, φ, z, t,m)

~H(ρ, φ, z, t,m) =
∞∑
m=0

~HA(ρ, φ, z, t,m) +
∞∑
m=0

~HB(ρ, φ, z, t,m) . (2.4)

In these equations

~EA(ρ, φ, z, t,m) = eρ cos (mφ)ρ̂+ eφ sin (mφ)φ̂+ ez cos (mφ)ẑ

~HA(ρ, φ, z, t,m) = hρ sin (mφ)ρ̂+ hφ cos (mφ)φ̂+ hz sin (mφ)ẑ , (2.5)

~EB(ρ, φ, z, t,m) = eρ sin (mφ)ρ̂+ eφ cos (mφ)φ̂+ ez sin (mφ)ẑ

~HB(ρ, φ, z, t,m) = hρ cos (mφ)ρ̂+ hφ sin (mφ)φ̂+ hz cos (mφ)ẑ , (2.6)

and the space-time-mode dependence of the Fourier coefficients (e∗(ρ, z, t,m) , h∗(ρ, z, t,m))

has been suppressed for clarity. The BOR-FDTD update equations for the fields with the

azimuthal dependence of Eq. (2.5) are:

eρ|n+1/2
i+1/2, k = eρ|n−1/2

i+1/2, k +
∆t
ε∆z

(
hφ|ni+1/2, k−1/2 − hφ|

n
i+1/2, k+1/2

)
+

m∆t
ε(i+ 1/2)∆ρ

hz|ni+1/2, k

eφ|
n+1/2
i, k = eφ|

n−1/2
i, k +

∆t
ε∆ρ

(
hz|ni−1/2, k − hz|

n
i+1/2, k

)
+

∆t
ε∆z

(
hρ|ni, k+1/2 − hρ|

n
i, k−1/2

)
ez|n+1/2

i, k+1/2 = ez|n−1/2
i, k+1/2 −

m∆t
εi∆ρ

hρ|ni, k+1/2

+
(i+ 1/2)∆t

εi∆ρ
hφ|ni+1/2, k+1/2 −

(i− 1/2)∆t
εi∆ρ

hφ|ni−1/2, k+1/2

hρ|n+1
i, k+1/2 = hρ|ni, k+1/2 +

∆t
µ∆z

(
eφ|

n+1/2
i, k+1 − eφ|

n+1/2
i, k

)
+

m∆t
µi∆ρ

ez|n+1/2
i, k+1/2

hφ|n+1
i+1/2, k+1/2 = hφ|ni+1/2, k+1/2 +

∆t
µ∆ρ

(
ez|n+1/2

i+1, k+1/2 − ez|
n+1/2
i, k+1/2

)
+

∆t
µ∆z

(
eρ|n+1/2

i+1/2, k − eρ|
n+1/2
i, k+1

)
hz|n+1

i+1/2, k = hz|ni+1/2, k +
∆t

(i+ 1/2)µ∆ρ

(
ieφ|

n+1/2
i, k − (i+ 1)eφ|

n+1/2
i+1, k

)
− m∆t

(i+ 1/2)µ∆ρ
eρ|n+1/2

i+1/2, k . (2.7)
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For these equations, the φ-dependence of the field has been removed and the co-located

field components have been accounted for.

Figure 2.2 also shows that there are field components located along the z-axis (eφ,

ez, and hρ). These components require special boundary conditions, and therefore special

update equations. The ez component is zero for any mode m > 0. Additionally, eφ and hρ

are zero for any mode m 6= 1 [58]. The update equations for the on-axis components are:

ez|n+1/2
0, k+1/2 =

 ez|n−1/2
0, k+1/2 + 4∆t

ε∆ρhφ|
n
1/2, k+1/2 m = 0

0 m > 0

eφ|
n+1/2
0, k =


eφ|

n−1/2
0, k − 2∆t

ε∆ρhz|
n
1/2, k

+ ∆t
ε∆z

(
hρ|n0, k+1/2 − hρ|

n
0, k−1/2

)
m = 1

0 m 6= 1

hρ|n+1
0, k+1/2 =


hρ|n0, k+1/2 + ∆t

µ∆ρez|
n+1/2
1, k+1/2

+ ∆t
µ∆z

(
eφ|

n+1/2
0, k+1 − eφ|

n+1/2
0, k

)
m = 1

0 m 6= 1 .

(2.8)

The field components that are solved for in Eqs. (2.7) and (2.8) can be substituted into Eq.

(2.5) to reconstruct the full three-dimensional field.

The update equations given in Eqs. (2.7) and (2.8) are only for fields with the azimuthal

dependence described by Eq. (2.5). For many problems, these equations are sufficient to

describe the field. In general, however, the solution to a problem is wholly or partially

comprised of fields with the azimuthal dependence described by Eq. (2.6). In this case, a

relationship between Eq. (2.5) and Eq. (2.6) can be exploited so that the update equations

for Eq. (2.6) do need to be implemented. If all of the field components in Eq. (2.6) are

rotated by φr = 90◦ about the axis of symmetry, the resulting field has the azimuthal

dependence of Eq. (2.5). Therefore, to simulate fields with the azimuthal dependence of

Eq. (2.6), the fields of the source can be transformed (rotated by φr = 90◦), the simulations

can be run using the update equations given in Eqs. (2.7) and (2.8), and the results can

be transformed back. For m = 0, the update equations simplify to the same form, so no

transformations are necessary.
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Additionally, the Fourier modes represented by m in Eq. (2.3) are orthogonal. This

means that a separate BOR-FDTD simulation can be run for each mode, and the results

from all modes can be superimposed to obtain the complete field. The number of modes

(and therefore independent simulations) required depends on the nature of the problem.

Problems with a rotationally symmetric electromagnetic field, such as a monopole oriented

along the axis of symmetry, can be represented using only the m = 0 mode [61]. Other

problems, such as those with linearly polarized fields propagating along the axis of sym-

metry, can also be represented with a single mode, the m = 1 mode. In general, however,

some number of modes greater than one will be necessary to represent the electromagnetic

field. As more modes are added, the numerical stability condition changes. An empirically-

determined representation of the stability condition is given in [58]:

∆t ≤ ∆x/sc , (2.9)

in which ∆x is the cell size (∆ρ or ∆z), c is the speed of light in free space, s ≈ m+ 1 for

m > 0, and s =
√

2 for m = 0. This means that, for a fixed cell size, the number of time

steps necessary to represent the same amount of actual time increases with m. Therefore,

much of the benefit of the BOR-FDTD method is lost as the number of modes (m) needed

grows. This is not a concern for this work, however, because all of the problems addressed

here can be represented by the m = 1 mode.

2.3 BOR-FDTD Modeling of Zone Plates

The goal of this section to illustrate how the BOR-FDTD method is used to model zone

plates. Details about the method, including the simulation setup, simulation parameters,

and the source conditions will be discussed. The parallelization of the method will be

explained. Special attention will be given to methodologies that are not a standard part of

the BOR-FDTD algorithm, including a technique for modeling the field from a pyramidal

horn.
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Figure 2.3: Geometry for the BOR-FDTD simulation of (a) a Soret zone plate antenna
and (b) a phase-correcting zone plate antenna.

2.3.1 Simulation Parameters

The representation of the physical region modeled by the BOR-FDTD method is called

the simulation space. The simulation space includes the zone plate and the free space that

surrounds it and is shown in Fig. 2.3 for two problems that are typical of those encountered

in this work. The opaque zones that make up a Soret zone plate, shown in Fig. 2.3(a),

are constructed from PEC annuli and are incorporated into a simulation by setting the

tangential components of the electric field to zero along the surface of the BOR-FDTD

cells that coincide with the annuli. In the case of the folded zone plate (not shown in Fig.

2.3), the reflector is modeled as a PEC disc with a diameter equal to the diameter of the

outermost closed zone, D. A phase-correcting zone plate, shown in Fig. 2.3(b) is modeled

as a collection of annular rings of dielectric with the relative permittivity εr.

The numerical representation of an electromagnetic wave accumulates error as it prop-

agates through a discretized space. These errors, called numerical dispersion, are due to

small errors in the velocity of propagation of an electromagnetic wave in the FDTD grid

and increase as the path traveled by the wave gets longer. This is particularly troublesome

because the zone plates simulated in this work are electrically-large structures (up to 75

wavelengths in diameter). The error due to numerical dispersion can be decreased by in-

creasing the sampling density of the FDTD grid. Experimentation with the BOR-FDTD
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model showed that sampling density of 100 cells per wavelength sufficiently reduced the er-

ror from dispersion. The simulation space is discretized into cells that are square (∆ρ = ∆z

in Fig. 2.2). As an added benefit, the fine sampling density also ensures that the features

of a zone plate are modeled in adequate detail.

As Fig. 2.3 shows, the geometries that are modeled for this work consist of a zone plate

in free space. To accurately model such a structure, an absorbing boundary condition is

necessary to prevent reflections at the edge of the simulation space. The absorbing boundary

condition used is the uniaxial perfectly matched layer (PML). The uniaxial PML is a region

of anisotropic material with parameters that are carefully chosen to absorb as much of the

incident field as possible while reflecting as little as possible. Details of its implementation

in cylindrical coordinates can be found in [58]. The PML can be seen surrounding the

simulation space on three sides in Fig. 2.3.

2.3.2 Source Conditions

One of the advantages of the FDTD method is that it produces time-domain results, which

can be Fourier transformed into the frequency domain. Therefore, a single time-domain

simulation gives results over a broad range of frequencies. This range of frequencies can be

controlled by the time-domain waveform. In this work, two different waveforms are used.

The differentiated Gaussian pulse is used for modeling zone plate antennas:

Edg(t) = −Eo

(
t

τp

)
exp

{
−
[
(t/τp)2 − 1

]
/2
}
, (2.10)

in which τp = 1/ωp and ωp is the center frequency in radians/sec. This waveform offers a

broad range of frequencies without significant low-frequency content, which can be prob-

lematic for FDTD simulations [62]. The Fourier transform of Eq. (2.10) is

Edg(ω) = jωτ2
p

√
2πEo exp

{
−
[
(ωτp)2 − 1

]
/2
}
. (2.11)

For some applications, such as a focused-beam system, a pulse with a narrower bandwidth

is desired. For these applications, a modulated Gaussian pulse is used:

Emg(t) = Eo exp
[
− (t/τp)

2 /2
]

sin(ωot) . (2.12)
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The Fourier transform of Eq. (2.12) is

Emg(ω) = − j

2
τp
√

2πEo exp
{
− [(ω − ωo) τp]

2 /2
}

+
j

2
τp
√

2πEo exp
{
− [(ω − ωo) τp]

2 /2
}
. (2.13)

The frequency content of a modulated Gaussian pulse can be controlled by choosing ωo and

τp.

Three different types of source conditions are used in this study. The simplest of these

is a model for an infinitesimal dipole, oriented along the ρ-axis for φ = 0. The dipole is a

‘hard source’ implemented by setting the field to a particular value. For a specified location

z, the eρ component closest to the axis is driven with a differentiated Gaussian pulse in

time.

The remaining two sources are based on the total-field scattered-field (TF/SF) formu-

lation. The idea behind the TF/SF formulation is that the total electromagnetic field can

be decomposed into an incident component and a scattered component,

~Etot = ~Einc + ~Escat

~Htot = ~Hinc + ~Hscat , (2.14)

and these components can be treated separately throughout the simulation space. The ‘inc’

subscript refers to the incident field. This field is known and is determined by the type of

source desired; it can be any solution to Maxwell’s equations. The ‘scat’ subscript refers

to the scattered field. This field is unknown and is the quantity that is solved for with the

BOR-FDTD method. To implement a TF/SF source, a surface called the TF/SF boundary

is placed around the section of the simulation space that contains a scatterer. In the case

of the BOR-FDTD method, this surface has three sides, which constitutes a closed surface

when revolved about the z-axis. The TF/SF boundary can be seen in Fig. 2.3. The update

equations along the boundary of the box are then manipulated by adding or subtracting

the incident field so the total field exists inside the box and only the scattered field exists

outside the box. The details of these modifications to the update equations can be found

in [60]. This process is frequently referred to as injecting the field of the source into the
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simulation space, and the source itself is called an injector. These terms will be used in the

remainder of this document.

Two different types of injectors are used in this work. A plane-wave injector is used

to study zone plate antennas in the receive mode. An analytical representation of a plane

wave propagating in the z-direction is needed for the TF/SF formulation. In rectangular

coordinates the field for the plane wave is

~Einc(x, y, z, t) = Edg(t)x̂

~Hinc(x, y, z, t) =
1
ηo
Edg(t)ŷ , (2.15)

in which ηo is the impedance of free space, ηo =
√
µo/εo ≈ 377 Ω. Rewriting this in

cylindrical coordinates,

~Einc(ρ, φ, z, t) = Edg(t) cosφρ̂− Edg(t) sinφφ̂

~Hinc(ρ, φ, z, t) =
1
ηo

(
Edg(t) sinφρ̂+ Edg(t) cosφφ̂

)
. (2.16)

Note that the field depends only on components with either a sine or cosine variance and

therefore can be represented with a single Fourier mode, m = 1.

The second type of injector used in this work is a Gaussian beam injector. This injector

is used to model the pyramidal horn antenna used in the focused-beam measurement system.

The field from this horn antenna was measured and found to closely resemble the far-field

of a Gaussian beam. The far-field of a Gaussian beam with an electric field polarized in the

x̂ direction can be written in spherical coordinates [63]:

~Einc(r, θ, φ) =
[
Fθ(θ, φ)θ̂ + Fφ(θ, φ)φ̂

]
e−jkor/r

Fθ(θ, φ) =
2j
ko

(
kow

2

)2

Eo exp
{
−[(kowo/2) sin θ]2

}
cosφ

Fφ(θ, φ) = −2j
ko

(
kow

2

)2

Eo exp
{
−[(kowo/2) sin θ]2

}
cos θ sinφ , (2.17)

in which ko = 2πf/c, f is the frequency, and c is the speed of light in free space. Rewriting
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this in cylindrical coordinates,

~Einc(ρ, φ, z) = C(ρ, z)
[
z − zo

r
cosφρ̂− z − zo

r
sinφφ̂− ρ

r
cosφẑ

]
~Hinc(ρ, φ, z) =

C(ρ, z)
ηo

[(
z − zo

r

)2

sinφρ̂+ cosφφ̂− ρ(z − zo)
r2

sinφẑ

]
, (2.18)

in which

C(ρ, z) =
2j
rko

(kowo/2)2 exp
{
− [kowoρ/(2r)]

2
}
e−jkor/r , (2.19)

and r =
√
ρ2 + (z − zo)2. To be injected into the BOR-FDTD simulation, the field must be

written in the time-domain. In this work, the Gaussian beam injector is used to simulate

the horn antenna for the focused-beam system for a single frequency at a time. Rather than

taking the Fourier transform of Eq. (2.18) and convolving it with a modulated Gaussian

envelope, the frequency-dependent terms in the real part of Eq. (2.18) can be treated as a

constant and the spherical phase can be converted into time delay:

~Einc(ρ, φ, z, t) = C(ρ, z)Emg(t− r/c)
[
z − zo

r
cosφρ̂− z − zo

r
sinφφ̂− ρ

r
cosφẑ

]
~Hinc(ρ, φ, z, t) =

C(ρ, z)
ηo

Emg(t− r/c)

[(
z − zo

r

)2

sinφρ̂

+ cosφφ̂− ρ(z − zo)
r2

sinφẑ
]
, (2.20)

in which

C(ρ, z) =
2j
rko

(kowo/2)2 exp
{
− [kowoρ/(2r)]

2
}
. (2.21)

This representation of the Gaussian beam is meaningful only at a single frequency, but this

is sufficient for its use in this work. Like the plane wave, the Gaussian beam injector can

be represented with a single Fourier mode, m = 1.

The parameters zo and wo in Eq. (2.18) describe the location and the radius of the

beam waist. These parameters were used to build the model of the horn in the focused-

beam system. The field of the isolated horn antenna was measured on a plane located 43.2

cm from the aperture of the antenna. Details about the measurement procedure can be

found in Chapter 6. The parameters zo and ωo were then fit to the measurements on this

plane by minimizing the root mean square (RMS) error of the model over the entire plane.
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Figure 2.4: Measured and simulated (FDTD) results for the electric field Ey of the isolated
horn antenna. (a) Magnitude and (b) phase for the horn at f = 10 GHz. (c) Schematic
diagram of the measurement setup.

A comparison of the resultant model for the horn at 10 GHz and the measurements can

be seen in Fig. 2.4. Figure 2.4(a) shows the magnitude of the electric field, while Fig.

2.4(b) shows the phase, plotted for two cuts. The red lines are for horizontal cuts (y = 0),

and the blue lines are for vertical cuts (x = 0). The solid lines are for the BOR-FDTD

simulations and the dashed lines are for the measurements. For reference, the coordinate

system used for the measurements is shown in Fig. 2.4(c). The figures show reasonable

agreement between the simulations and the measurements. The asymmetry of the measured

fields is one noticeable difference between the simulations and measurements, however. The

magnitude of the measured field for the horizontal cut falls off faster than it does for the

vertical cut. This is not true for the simulations, for which the two cuts are almost identical.
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Figure 2.5: Geometry for the BOR-FDTD simulation of a zone plate with a Gaussian
beam injector.

This is a restriction imposed by the BOR-FDTD method: The type of asymmetry seen in

the measurement is difficult to decompose into a Fourier series, so a more symmetric model

for the horn is used. Despite this difference, results presented in Chapter 6 show that good

agreement between simulations and measurements of zone plates and lenses is still obtained.

For the focused-beam system simulations, we are interested in total field quantities for

comparison with measurements. For this reason, the TF/SF method can be formulated in

a slightly different manner. Instead of a three-sided, closed surface, the TF/SF boundary

for the Gaussian beam injector is just a single surface, as shown in cross section in Fig.

2.5. The field for the Gaussian beam is added or subtracted along this surface so that the

total field (incident Gaussian beam + scattered field) exists in the region above the injector

surface and only the scattered field exists in the region below the surface. Truncating the

TF/SF boundary at the edge of this surface, instead of surrounding the zone plate with

a closed surface, creates a numerical error. For the Gaussian beam injector, however, the

field has decayed so much by the point of truncation that the error introduced is negligible.

2.3.3 Parallelization

The BOR-FDTD method allows the zone plates studied in this work to be simulated as

two-dimensional problems. Nevertheless, the electrically-large simulation space necessary

to model a zone plate and its focal region means that simulations can take prohibitively

long to complete on a single computer. One method used to speed the simulations up is
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Figure 2.6: Geometry for the parallelized BOR-FDTD simulation of a phase-correcting
zone plate antenna.

to parallelize the problem. This is done by splitting the simulation space into a number of

different pieces, as is shown in Fig. 2.6. In this figure, for example, the dashed lines divide

the simulation space into nine pieces. The update equations for each piece are computed

on a separate computer processor (called a node). Recall from Sec. 2.2 that the update

of a particular field component requires knowledge of the neighboring components. The

field components at the edge of a node, therefore, require information about the field in an

adjacent node. This is achieved by using the Message Passing Interface (MPI) protocol to

synchronize the electromagnetic field at the boundary: After each time step, the magnetic

field values along the boundary of each node are communicated to the node that computes

the fields in the adjacent block. The update equations are then computed for the next time

step, and the process is repeated. The overhead associated with this process is minimal,

and the transfer of field data between adjacent nodes is the only additional computation

necessary to run the simulation on many processors instead of one.

To perform the simulations in this work, a ‘Beowulf-style’ cluster of seventy-three desk-

top computers was used. These computers were networked using ethernet to allow the

transfer of data between computers. In a cluster with this configuration, each node has

access to only its own memory but can communicate with all of the other nodes. Each of

the nodes features a dual-core AMD Athlon 64 X2 processor and two gigabytes of RAM.

One of the larger simulations performed for this work was for a focused-beam system
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lens. On a single core (half of the computing power of a dual-core computer), this simulation

took 13.5 hours. The same job, run on the entire cluster, took 15 minutes. This particular

simulation required 1.92 GB of RAM, and therefore is essentially the biggest problem that

can be run on a single machine. Run in parallel, this memory requirement is spread out

over different computers.

The ability to run individual simulations of zone plates rapidly using this cluster allowed

parametric studies to be performed and was essential to the generation of the design graphs

that will be presented in the upcoming chapters.
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CHAPTER III

DESIGN STUDY FOR SORET AND FOLDED ZONE PLATE

ANTENNAS

In this chapter, a study of Soret and folded zone plate antennas using BOR-FDTD is

presented. Visualizations of the electromagnetic field around a zone plate are used to

discuss its focusing mechanism. Metrics for evaluating the focusing properties of zone plate

antennas are defined, and parametric studies based on these are performed by varying

the number of zones, the focal length, and the diameter of the zone plate. The results

of the studies are used to generate design graphs. The design graphs are used to make

general statements about the effect of these parameters on the focusing ability of the zone

plates. Finally, the BOR-FDTD method is compared to other techniques typically used to

analyze zone plates, and the simulation results are validated by comparison with existing

measurements.

3.1 Visualizations

Some of the most interesting and instructive results of the BOR-FDTD simulations are

the visualizations of the electromagnetic field and related quantities surrounding the zone

plate antenna. A visualization of the magnitude of the time average of the Poynting vector∣∣∣〈~S(t)〉
∣∣∣ near the zone plate can provide insight into the focusing mechanism of the zone

plate.

In Fig. 3.1,
∣∣∣〈~S(t)〉

∣∣∣ is plotted in dB for a Soret zone plate and for a metal disc, with

blue being the least intense and red being the most intense. The result on the left is for a

PEC disc with diameter D/λ = 40.3, and the result on the right is for a Soret zone plate

with the same diameter and F/λ = 10 (NSoret = 25). The excitation is a normally incident

plane wave with the electric field oriented in the x-direction. In both cases, the upper figure

is a half cross section in the plane perpendicular to the electric field of the incident wave

(the yz-plane), and the lower figure is a quarter cross section in the plane perpendicular to
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Figure 3.1: Magnitude of the time average of the Poynting vector
∣∣∣〈~S(t)〉

∣∣∣ on two cross
sections for (a) a PEC disc, for which the transverse cross section is for z = 0.49D (z is
twice the focal length of the zone plate) and (b) a Soret zone plate, for which the transverse
cross section is for z = F . The zone plate has NSoret = 25 zones and a focal length of
F/λ = 10. Both the disc and the zone plate have a diameter of D/λ = 40.3. Because of the
symmetry of the electromagnetic field, only a portion of each cross section is shown.
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the direction of propagation of the incident wave (the xy-plane). In Fig. 3.1(a), the bottom

figure is for z = 2F = 0.49D, whereas in Fig. 3.1(b), the bottom figure is for z = F . The

data are normalized to the magnitude of the time average of the Poynting vector for the

incident wave,
∣∣∣〈~Si(t)〉∣∣∣ (0 dB on graph).

First, consider the results for the disc in Fig. 3.1(a). Directly behind the disc (ρ < D/2,

z > 0) there is a shadow, except along and close to the axis (ρ = 0) where energy is being

transported along the axis. This energy forms the famous Poisson spot or spot of Arago

[64]. In front of the disc (ρ < D/2, z < 0), there is a distinct pattern that can be interpreted

as the interference of the field scattered by the edge of the disc and the field of the standing

wave due to direct reflection from the disc. To the right of the disc (ρ > D/2), the constant

time-average power (0 dB) for the incident wave is seen for z < 0, and diffraction bands are

evident for z > 0.

Now, consider the results for the Soret zone plate in Fig. 3.1(b). The two focal points

(reflection and transmission) are clearly seen in the figure. Note that energy flows into

these points and then out. Energy is clearly passing through the openings in the zone plate

(compare this with the results for the disc), and this energy is being concentrated at the

far focal point. Similarly, energy is being reflected by the structure of the zone plate and

concentrated at the near focal point. Notice that the energy is spread out over regions

surrounding the focal points. This spreading is particularly evident along the axis. As

expected, the diffraction bands for the zone plate are more complex than those for the disc.

3.2 Metrics for Evaluating Zone Plate Antennas

Detailed studies of the effects of geometrical parameters on the focusing ability of zone

plate antennas are one of the major contributions of this work. For these studies, metrics

for quantifying the focusing ability must be defined. This is complicated by the fact that a

zone plate antenna is composed of two major subsystems: One is the zone plate itself, and

the other is the feed. Figure 3.2 is a schematic diagram of a zone plate antenna which shows

these two components. Frequently, the feed is a dipole, an open-ended waveguide, or a horn

antenna (as shown in Fig. 3.2) placed at the focal point of the zone plate. Because one of the
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Figure 3.2: Schematic diagram showing the relationship between the zone plate and the
feed in a Soret zone plate antenna.

purposes of this research is to look for trends in zone plate antenna performance, the feed

for the zone plate has been made as simple as possible to allow the effects of the zone plate

to be separated from the effects of the feed. For a specific zone plate antenna (zone plate

and feed), the field pattern of the feed (a receiving antenna) could be incorporated into the

model, if desired. This would account for any mismatch of the polarization characteristics

of the zone plate and feed.

To quantify the focusing ability of a zone plate at the focal point, the focusing gain FG

is introduced. This is the ratio of the magnitude of the axial component of the time-average

Poynting vector at the focal point to the magnitude of the axial component of the time-

average Poynting vector for the incident plane wave. The time-average Poynting vector

〈~S(t)〉 is the real part of the complex Poynting vector ~Sc, so

FG =

∣∣∣Re[ẑ · ~Sscat
c ]

∣∣∣∣∣∣Re[ẑ · ~Sic]
∣∣∣ , (3.1)

in which the superscript ‘scat’ refers to the scattered field and the superscript i refers to the

incident field. For the reflecting zone plates (Soret and folded), the feed is located between

the zone plate and the source of the plane wave (see Fig. 3.2), so it effectively blocks the

incident field from reaching the focal point; therefore, the scattered field (total field minus

incident field) is used for the calculation of ~Sscat
c in the numerator of Eq. (3.1). This is clear
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in Fig. 2.3(a), which shows the focal point in the scattered-field region of the BOR-FDTD

simulation space for the Soret zone plate antenna.

A more physically realistic method is also used to quantify the focusing ability of a zone

plate. This method accounts for the finite size of a horn or waveguide feed by modeling the

feed as an aperture of radius ρdisc that receives all of the power normally incident upon it.

The effective area Ae of a receiving zone plate antenna is calculated by integrating the axial

component of the time-average Poynting vector over the area of the feed and dividing by

the axial component of the time-average Poynting vector for the incident plane wave. The

effective area for the antenna on reception can then be converted into a gain on transmission

by multiplying by 4π/λ2:

G =
4π
λ2
Ae =

4π
∣∣∣∣2π∫

o

ρdisc∫
o

Re[ẑ · ~Sscat
c ]ρdρ dφ

∣∣∣∣
λ2
∣∣∣Re[ẑ · ~Sic]

∣∣∣ . (3.2)

As in Eq. (3.1), the scattered field is used for the calculation of ~Sscat
c in the numerator

of Eq. (3.2). This gain takes into account the spreading of the energy on the focal plane,

whereas the focusing gain defined by Eq. (3.1) does not.

3.3 Parametric Studies and Design Graphs

For the parametric studies performed in this work, the values of the focal length F , the

diameter D, and the number of half-wave zones NSoret were varied over the ranges of values

typically encountered in microwave and millimeter-wave applications. In the design graphs

presented in this work, the focal lengths and diameters of the zone plates are given in terms

of the design wavelength: F/λ and D/λ. This allows antenna designers to use these results

for zone plates designed for any frequency. For reference, the geometries of the Soret and

folded zone plates are repeated in Fig. 3.3.

3.3.1 Design Graphs Based on the Focusing Gain

A series of simulations was run for Soret zone plate antennas of varying F/λ and NSoret.

The focusing gain FG was calculated using Eq. (3.1) and is plotted in relief in Fig. 3.4

The dashed lines are for constant NSoret, and the solid lines are for constant F/λ. This
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Figure 3.3: Geometry of (a) the Soret zone plate and (b) the folded zone plate.
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Figure 3.4: Focusing gain, FG, of the Soret zone plate antenna for various values of F/λ
and D/λ. The dashed lines are for constant NSoret, and the solid lines are for constant F/λ.

47



40 60 75
1

20

0 20

30

40

50

10

26

FG = 30 dB

22
18

1410

6

3 19 25

61

N
=1

Sor
et

5 97 1511

35

51

A B

C

Figure 3.5: Design graph for the Soret zone plate antenna. The solid lines represent
contours of constant focusing gain FG (in dB), while the dashed lines are for constant
NSoret.

representation of the data is useful for observing trends as the parameters are varied. In

Fig. 3.5, these same data are presented in a form more suitable for designing zone plate

antennas. The solid lines are contours of constant FG, spaced 2 dB apart, and the dashed

lines are for constant NSoret. These plots show the focusing gain as a function of the

continuous variables, F/λ and D/λ. However, because NSoret is restricted to integer values,

only a finite number of points can be obtained for a given F/λ. These points lie along the

lines of constant NSoret. Note that not all of these lines of constant NSoret are shown in Fig.

3.5.

Soret zone plate antennas are defined by the three primary design parameters F/λ,

D/λ, and NSoret, as well as the focusing gain FG. The parameters F/λ, D/λ, and NSoret

are related through (1.1), and therefore only two of the three can be independently chosen.

Figure 3.5 can be used to design a zone plate antenna given any two of these four quantities.

For example, given the desired focusing gain and F/λ, we can determine D/λ and NSoret.

In this case, Figure 3.5 is used to find the appropriate zone plate diameter, and then the

closest geometry with an integer number of zones is found by solving Eq. (1.1) for NSoret
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Figure 3.6: Design graph for the folded zone plate antenna. The solid lines represent
contours of constant focusing gain FG (in dB), while the dashed lines are for constant
NSoret.

and rounding the result:

NSoret = round

[
−2 (F/λ) + 2

√
(F/λ)2 +

1
4

(D/λ)2

]
. (3.3)

Figures 3.4 and 3.5 give the focusing gain FG for all points within the rectangular grid

displayed, even though some areas near the edges of the grid may represent unrealistic

designs.

Adding a reflecting disc of diameter D/λ at the distance λ/4 behind a Soret zone plate

transforms it into a folded zone plate, as depicted in Fig. 3.3(b). The parametric study was

repeated for the folded zone plate antenna. A contour plot of the focusing gain FG for this

antenna is shown in Fig. 3.6.

3.3.2 General Observations From Design Graphs

In addition to being a useful tool for those wishing to design a zone plate antenna, these

design graphs can be used to make general statements about the effect of the design param-

eters on the focusing ability of these zone plates. To this end, there are a few interesting

trends that can be observed in Figs. 3.4, 3.5, and 3.6. When the focal length, F/λ, or
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(a) (b) (c)

Figure 3.7: Cross sections of the three Soret zone plates marked by dots in Fig. 3.5.
The parameters for the zone plates are (a) F/λ = 10, NSoret = 11, and D/λ = 23.7, (b)
F/λ = 10, NSoret = 35, and D/λ = 51.2, and (c) F/λ = 40, NSoret = 15, and D/λ = 51.2.

the number of zones, NSoret, is held constant and the other quantity (NSoret or F/λ) is

increased, the focusing gain FG increases. Of course, the diameter, D/λ, also varies in

both cases to accommodate the relationship in Eq. (1.1). The incremental increase in FG

eventually tapers off, however. These trends can be at least partially explained by simple

physical phenomena. Figure 3.7 will be used to help illustrate the causes of the trends. The

figure shows cross-sectional profile of the three zone plates marked by dots in Fig. 3.5. The

zone plate in Fig. 3.7(a) has a focal length F/λ = 10 and NSoret = 11 half-wave zones.

The diameter, therefore, is D/λ = 23.7. This profile corresponds to the zone plate marked

by point A. The zone plates in Fig. 3.7(b) and (c) correspond to points B (F/λ = 10,

NSoret = 35, and D/λ = 51.2) and C (F/λ = 40, NSoret = 15, and D/λ = 51.2), respec-

tively. These profiles are drawn to scale, with the exception of the thickness of the metal

annuli, which have been thickened so that they are more visible.

Examples of these two trends can be seen in Fig. 3.8. Figure 3.8(a) shows FG as a

function of NSoret for Soret zone plate antennas with F/λ = 20 and is generated by taking

the focusing gain along a horizontal line in Fig. 3.5. As more zones are added to the zone

plate (and D/λ increases), more of the incident energy can be focused and FG increases.

However, as the diameter grows, each successive additional zone focuses the incident energy

more obliquely (with a smaller angle between the outermost zone and the focal point) than

the previous zone. This can be seen by comparing the angle from the outermost zone to the
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Figure 3.8: Focusing gain for zone plates with (a) F/λ = 20 and (b) NSoret = 11.

focal point in the zone plate profiles in Fig. 3.7(a) and (b). This means that each additional

zone contributes less to the focusing gain than the previous and results in the trend for FG

that is seen in Fig. 3.8(a): FG is continuously increasing, but with a decreasing rate of

change. It is not surprising that the gain does not grow without bound, as predicted by

geometrical optics. As NSoret is increased, the outermost zones decrease in width relative

to the wavelength, according to Eq. (2.1), and the geometrical principles used to design the

zone plate become less accurate.

Figure 3.8(b) shows FG as a function of F/λ for Soret zone plates with NSoret = 11.

This figure is generated by taking the focusing gain along a dashed line of constant NSoret

in Fig. 3.5. The trend in this figure is similar to that seen in Fig. 3.8(a): As F/λ is

made larger, the rate of increase of FG decreases. In Fig. 3.8(b), in fact, there is almost

no increase in FG for F/λ & 20. The explanation for this trend is also similar: For very

low F/λ, the outer zones must focus energy very obliquely (see Fig. 3.7(a)). As F/λ is

increased, the focusing becomes less and less oblique (see Fig. 3.7(c)), and FG increases.

Eventually, as changes in F/λ begins to affect smaller and smaller changes in the angle from

the outmost zone to the focal point, and the rate of increase in FG decreases.

Another interesting trend is noticed when F/λ and NSoret are adjusted simultaneously

in a way that keeps the diameter of the zone plate constant. Initially, as F/λ is increased,
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Figure 3.9: Focusing gain for zone plates with D/λ = 40.

FG increases because the focusing from the outer zones is less oblique. At the same time,

however, as F/λ is increased, the number of zones in the zone plate must be reduced to

satisfy Eq. (1.1). This causes a decreases in FG. Comparison of Figs. 3.7(b) and (c), which

have the same diameter, illustrates these two ideas. For a certain F/λ, these competing

factors balance out, and a maximum FG is reached. Beyond this point, FG decreases with

increasing F/λ. As an example of this trend, Fig. 3.9 shows FG as a function of F/λ for

Soret zone plate antennas with D/λ = 40. This line is generated by taking the focusing gain

along a vertical line in Fig. 3.5. The maximum focusing gain (FGmax ≈ 25.3 dB) occurs

for NSoret = 25 (marked in Fig. 3.9), when the focal length is F/λ = 9.8. NSoret has been

marked for a few additional points to reinforce that it decreases as F/λ increases.

The three trends illustrated in Figs. 3.8 and 3.9 are true for folded zone plate antennas

as well. Using the information in Figs. 3.5 and 3.6, the maximum focusing gain for a zone

plate antenna of any given diameter can be found. This was done for the range of diameters

studied in this work, and the graph in Fig. 3.10 was constructed using this information.

The values of F/λ and NSoret at which the maximum focusing gain occurs are indicated for

a few points on each curve.
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Figure 3.10: The maximum value of the focusing gain FG for a Soret or folded zone plate
antenna with a fixed diameter D/λ.

3.3.3 Comparison of Soret and Folded Zone Plates

From a comparison of Figs. 3.5 and 3.6, it is evident that the focusing gain of the folded zone

plate antenna is generally greater than that of the Soret zone plate antenna, as expected.

In Sec. 1.2, based on a simple argument, it was stated that adding the reflecting disc should

double the magnitude of the electromagnetic field at the focal point, thereby quadrupling

the scattered power and increasing the focusing gain by 6 dB. Comparing Figs. 3.5 and

3.6, it can be seen that the increase in focusing gain is not 6 dB for all focal lengths and

diameters. In Fig. 3.11, this idea is examined further by comparing the focusing gains for

the two types of zone plate antennas when the number of zones is fixed at NSoret = 25.

The increase in focusing gain for the folded zone plate antenna is seen to be much less

than 6 dB when F/λ is small, and to approach 6 dB as F/λ becomes large. The anticipated

fourfold increase in power at the focal point is based on a simple analysis that ignores

multiple diffraction and assumes that radiated energy passing through the clear portions

of the zone plate will be perfectly reflected back through the same clear portions with a

round-trip phase change of π. For zone plates with short focal lengths, these assumptions

are not good, and the increase in focusing gain due to the addition of the reflector is small

or non-existent.
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Figure 3.11: Comparison of FG for the Soret and folded zone plate antennas for a constant
number of zones NSoret = 25.

3.3.4 Design Graphs Based on the Gain

The same parametric studies for the Soret and folded zone plates were repeated using the

gain G to quantify the focusing ability of the zone plate. The gain is calculated using

Eq. (3.2), with radius of the disc of integration chosen to be ρdisc = λ/2 to represent a

typical feed. Figures 3.12 and 3.13 show the gain for Soret and folded zone plate antennas,

respectively. The same overall trends evident in Figs. 3.5 and 3.6 are seen in Figs. 3.12

and 3.13. Increasing the radius of the ‘feed aperture’ ρdisc in Eq. (3.2) generally increases

G, although the amount of this increase depends on the distribution of power in the focal

plane.

The maximum possible value of G can also be calculated for a zone plate with a given

diameter. Figure 3.14 shows Gmax as D/λ is varied over the range of diameters studied in

this work. The gain for a uniformly illuminated aperture, G = (πD/λ)2, is also shown in Fig.

3.14. A comparison of this gain with that for the zone plates illustrates the well-documented

inefficiency of the Soret and folded zone plates as compared to a perfect focusing element

[10, 38]. The comparison of the gain for a Soret and folded zone plate antenna with identical

parameters is similar to the comparison of the focusing gain in Fig. 3.11: The expected

6 dB increase for the folded zone plate antenna is not seen, especially for antennas with

short focal lengths.
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Figure 3.12: Design graph for the Soret zone plate antenna with ρdisc = λ/2. The solid
lines represent contours of constant gain G (in dB), while the dashed lines are for constant
NSoret = 25.
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Figure 3.13: Design graph for the folded zone plate antenna with ρdisc = λ/2. The solid
lines represent contours of constant gain G (in dB), while the dashed lines are for constant
NSoret = 25.
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Figure 3.14: The maximum value of the gain G for a zone plate with a fixed diameter D/λ
and with ρdisc = λ/2. The gain of a uniformly illuminated aperture of the same diameter
is also shown.

3.4 Comparison of the BOR-FDTD Method to Other Methods of Anal-
ysis

In Sec. 2.1, some of the methods that are frequently used to analyze zone plates were

presented, and the reasoning behind the decision to use the BOR-FDTD method in this

work was discussed. To support these arguments, a detailed comparison of the BOR-FDTD

method with two other analysis techniques will be presented in this section for Soret zone

plate antennas.

As discussed in Sec. 2.1, a simple geometric theory is sometimes used to analyze Fresnel

zone plates when (F/D)2 >> 1. Under this condition, the so-called paraxial approximation

applies, and the area of each zone (and therefore the contribution from each zone to the

focusing) is approximately the same [10]. Using Fresnel’s zone theory, each successive pair of

zones added to a Soret zone plate (one opaque and one transparent) increases the magnitude

of the electric field at the focal point by an additive factor that is twice the magnitude of

the incident electric field, Eo. For a Soret zone plate with odd opaque zones (i.e., the center

zone is blocked) the focusing gain of the zone plate antenna at the focal point is

FGSoret =
∣∣∣∣Efocal

Eo

∣∣∣∣2 =
∣∣∣∣(NSoret + 1)Eo

Eo

∣∣∣∣2 = (NSoret + 1)2 . (3.4)

When the reflecting plate is added to create a folded zone plate, each additional zone

56



(either opaque or transparent) adds another factor of 2Eo to the field at the focal point.

The focusing gain for a folded zone plate antenna is therefore

FGfolded =
∣∣∣∣(2NSoret)Eo

Eo

∣∣∣∣2 = (2NSoret)2 . (3.5)

Kirchhoff diffraction theory is also frequently used to analyze zone plates. Applied to a

single annular aperture of the Soret zone plate in Fig. 3.3(a), the scalar Kirchhoff diffraction

integral yields

En(z) =
Eojk

2

ρn∫
ρn−1

e−jkr

r

[
1 +

z

r

(
1 +

1
jkr

)]
ρ dρ, (3.6)

in which z is set equal to F to find the focusing gain at the focal point. To model a

reflection zone plate with Eq. (3.6), the incident electromagnetic field is assumed to be

perfectly reflected by the opaque zones. The phase shift associated with this reflection is

uniform and can therefore be disregarded. The contribution to the field from the reflection

from each opaque zone is summed to give the focusing gain

FGSoret =

∣∣∣∣∣ 1
Eo

NSoret∑
l=1

El(z)

∣∣∣∣∣
2

, (3.7)

in which only the odd zones are summed. The scalar diffraction analysis of a folded zone

plate uses the assumption that the addition of the reflecting disc produces fields on fictitious

zones, located in the transparent regions of the zone plate in Fig. 3.3(b), that differ in phase

by exactly π from the fields incident on these zones. The focusing gain of the folded zone

plate is then

FGfolded =

∣∣∣∣∣ 1
Eo

(
NSoret∑
l=1

El(z)−
NSoret−1∑
m=2

Em(z)

)∣∣∣∣∣
2

, (3.8)

in which l is the index for the opaque zones (odd integers in the type of zone plates studied

in this work) and m is the index for the fictitious zones (even integers).

Figure 3.15 compares the focusing gains FG for Soret zone plate antennas calculated

using the BOR-FDTD method, the geometrical theory as defined in Eq. (3.4), and the

scalar form of the Kirchhoff diffraction integral (KDI) in Eq. (3.7). The focal lengths used

for these graphs, F/λ = 3 and F/λ = 20, were chosen to demonstrate the dependence of

the accuracy of the different analysis methods on this parameter. It is clear from the figures
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Figure 3.15: Comparison of focusing gains for Soret zone plate antennas computed with
the BOR-FDTD method and two analytical techniques when (a) F/λ = 3 and (b) F/λ = 20.
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that the analytical techniques diverge from the BOR-FDTD results as D/λ becomes large

with respect to F/λ (as F/D becomes small) and that both the geometric theory and KDI

theory overestimate the focusing gain. These results seem logical, because for small F/D,

the paraxial approximation does not apply and the geometric theory is not accurate. In

addition, when F/D is small, the width of the outer zones approaches the minimum value,

λ/2. The Kirchhoff diffraction theory uses the assumption that the incident field is reflected

unperturbed by the opaque zones, and as the zones become narrower, this assumption

becomes inaccurate. These figures offer additional justification for using the BOR-FDTD

method throughout this work, despite the fact that it requires more computational time

and memory.

3.5 Comparison of BOR-FDTD with Measurements

Any method of analysis is best validated by comparison with measurements. However, accu-

rate measurements for the type of zone plates antennas studied in this chapter, particularly

the folded zone plate antenna, are not readily available. Measured far-field patterns for a

similar zone plate antenna, the integrated-circuit (IC) zone plate antenna, are presented in

[23] and in [24]. Comparison of the BOR-FDTD model with these measurements requires

a few modifications to the BOR-FDTD analysis. These modifications will be discussed in

this section, and then the comparison will be presented.

The IC zone plate antenna consists of a Soret zone plate mounted on a dielectric sub-

strate and backed by a quarter wavelength thick dielectric substrate and a reflecting disc

to form a folded zone plate. The geometry for the IC zone plate antenna is shown in Fig.

3.16. Mounted opposite the zone plate and reflector on the dielectric substrate is a dipole

to feed the antenna. The substrate used for the measurements had a relative permittivity of

εr = 3.86 and an attenuation constant of α = 0.016 Np / mm at the frequency f = 230 GHz.

3.5.1 Near-Field to Far-Field Transformation Methodology

The presence of the finite dielectric substrate shown in Fig. 3.16 causes difficulties when

measuring or computing far-field quantities. The issue of reflections from the edges of the
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Figure 3.16: Geometry for the integrated-circuit zone plate antenna.

substrate during the measurement process was described as being “generally very trouble-

some” in [23]. To reduce the effects of these reflections in the measured data, an electrically-

large substrate was used in conjunction with millimeter-wave absorbing material that was

placed around the outer edges of the substrate.

A similar technique was implemented in the BOR-FDTD simulations. A cylindrical sub-

strate with an electrically-large radius was terminated with PML. While this technique ef-

fectively models an infinite substrate, allowing no reflections from the outer edge, it presents

problems for computing far-field quantities with the FDTD method. The traditional near-

field to far-field transformation (NFFFT) technique used in the FDTD algorithm involves

integrating the product of the free-space Green’s function and the frequency-domain electro-

magnetic field over a closed surface in free space. This process is not suitable for problems

involving an infinite substrate, because the free-space Green’s function is not valid for sur-

faces passing through the substrate [60]. Methods for computing the NFFFT for antennas

on layered dielectric slabs exist [65]. However, in this work, this problem was avoided in an

easy-to-implement manner, using an approximation to the full NFFFT.
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Figure 3.17: Diagram showing the relationship between the near-field to far-field transform
surface and the dielectric substrate.

In this approximation, the standard NFFFT integrals are used; however, only the contri-

bution from specific portions of the transform surface are included. The relevant geometry is

shown in Fig. 3.17. The contribution of the NFFFT integral along the surface 2, where the

free-space Green’s function does not apply, is set to zero. The integral is then taken along

surface 1 or surface 3, depending on the direction in which the far-field is being calculated.

To mitigate the problems that arise when the integral is abruptly truncated, the electromag-

netic field on the surface of interest (either surface 1 or 3) is spatially filtered before being

integrated. The filter response is unity in the region between ρ = 0 and ρ = ρtaper > D/2,

leaving the field in this region unchanged. In the region between ρ = ρtaper and ρ = ρt, the

filter response decreases linearly from unity to zero and smooths out the abrupt truncation.

This procedure introduces an error into the far-field patterns computed by the NFFFT.

This error can be reduced by increasing the size of ρt. In the typical implementation

of a NFFFT, the simulation space is confined to the region immediately surrounding the

scatterer (e.g. out to the radius D/2 for a zone plate). The major drawback of this

technique, therefore, is the need to simulate substrates with a radius ρt that is significantly

larger than the radius of the zone plate. The size of ρt is dependant on the particular

problem, as it should be made large enough that the frequency-domain electromagnetic

field is sufficiently small along surface 2.

To validate the transformer and to demonstrate the effect of the radius of the substrate,
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Figure 3.18: (a) Geometry of an infinitesimal dipole on a substrate. (b) Power patterns
computed using different NFFFT techniques. Theoretical results from [23].

the far-field pattern of an infinitesimal dipole on a substrate is compared with theoretical

results. The substrate is 0.3 mm thick with a permittivity of εr = 3.86, and the geometry is

shown in Fig. 3.18(a). The power patterns for the E-plane (xz-plane) computed by different

NFFFT techniques are shown in Fig. 3.18(b). The dashed black line in Fig. 3.18(b) is the

theoretical power pattern, computed in [23]. The green line is the power pattern for a

dipole on a finite substrate with radius ρs = 18λ calculated using the standard, free-space

NFFFT. The red line is the power pattern calculated with the modified NFFFT presented

in this section for an infinite substrate with ρt = 8λ. The ripples in this pattern are even

worse than the pattern for the truncated substrate. For an infinite substrate with ρt = 30λ,

however, there is a noticeable improvement in the agreement with the theoretical results.

For highly directive antennas, such as the IC zone plate antennas considered in [23] and

[24], the error in the NFFFT is less of a concern. Most of the power is concentrated around

θ = 0◦, so the contribution to the far-field from the areas where the NFFFT is truncated

is much smaller. For the IC zone plate antennas in this work, a radius of ρt approximately

five times as large as the radius of the zone plate was chosen to prevent the introduction of

significant error.

62



Dielectric Substrate

Dipole
Disc

t

Figure 3.19: Geometry for a dipole on a substrate backed by a metal disc.

3.5.2 Comparison with Measurements

Initially, the BOR-FDTD results were compared to measurements of a dipole on a substrate

backed by a metallic disc [23]. Figure 3.19 shows the geometry of a dipole on a substrate

with thickness t/λd = 3.77, backed by a disc with diameter D/λd = 8, in which λd = λ/
√
εr

is the wavelength in the substrate. The power pattern for this antenna is shown in Fig.

3.20. The power pattern is for the E-plane (xz-plane), and the agreement between the

BOR-FDTD results and the measurements is reasonably good.

Next, a complete IC zone plate antenna (see Fig. 3.16) was modeled using the BOR-

FDTD method. The parameters used in this simulation were NSoret = 18, F/λd = 9.04

(F = 6.0 mm), and D/λd = 31.25 (D = 20.72 mm). The pattern in the E-plane for this IC

zone plate antenna is plotted in Fig. 3.21. Considering that the high-frequency measurement

technique in [23] makes obtaining highly accurate results difficult, the agreement between

the computed and measured power patterns is also reasonably good. This is especially true

in the region of the main lobe.
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Figure 3.20: Power pattern in the E-plane for a dipole antenna on a substrate with
thickness t/λd = 3.77, backed by a metallic disc with diameter D/λd = 8. Measured data
from [23].
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Figure 3.21: Power pattern in the E-plane for the IC zone-plate antenna with f/λd = 9.04.
Measured data from [23].
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CHAPTER IV

DESIGN STUDY FOR GROOVED-DIELECTRIC ZONE PLATE

ANTENNAS

In this chapter, a study similar to that in Chapter 3 is performed for grooved-dielectric,

phase-correcting zone plate antennas using the BOR-FDTD method. Visualizations of

the electromagnetic field are used to discuss the focusing mechanism of this type of zone

plate, and the results of a parametric study are used to generate design graphs. By taking

advantage of the accuracy of the BOR-FDTD method, a number of factors that influence

the focusing ability of a zone plate are examined in more detail than they have been before.

These factors include the base thickness, the number of phase corrections per zone, the

presence of a matching layer, and the tendency of the actual focal length to be shorter than

the desired focal length. Design graphs are also given which show the weight and volume

savings for zone plates compared to hyperbolic lenses. The performance metrics used for

the design study are compared to metrics that commonly appear in the literature to clarify

the terminology used throughout this work. Finally, the BOR-FDTD analysis is validated

by comparison with previous measurements.

4.1 Visualizations

In Sec. 3.1, visualizations of the magnitude of the time average of the Poynting vector∣∣∣〈~S(t)〉
∣∣∣ were used to discuss the focusing mechanism of the Soret zone plate. In this section,

similar figures are presented to give insight into the focusing mechanism of a grooved-

dielectric, phase-correcting zone plate.
∣∣∣〈~S(t)〉

∣∣∣ is plotted in cross section in Fig. 4.1 for a

hyperbolic lens of diameter D/λ = 39.8 and focal length F/λ = 30 as well as for a phase-

correcting zone plate of the same diameter and focal length (N = 6, P = 4). Both devices

are for a dielectric with the relative permittivity εr = 2.53, which is a typical value for

Rexolite [66].

The excitation is a normally incident plane wave with the electric field oriented in the
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Figure 4.1: Magnitude and direction of the time average of the Poynting vector
∣∣∣〈~S(t)〉

∣∣∣
for (a) a hyperbolic lens with a diameter of D/λ = 39.8 and a focal length of F/λ = 30 and
(b) a grooved-dielectric, phase-correcting zone plate with a focal length of F/λ = 30, N = 6
zones (D/λ = 39.8), a base thickness of t/λ = 0.1, and four (P = 4) phase corrections per
full-wave zone. Both devices are constructed from a dielectric with εr = 2.53.
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x-direction, and the cross sections shown are for the plane perpendicular to this incident

electric field (the yz-plane). The left halves of Figs. 4.1(a) and 4.1(b) show arrows indicating

the direction of the time-average Poynting vector. The length of each arrow is proportional

to the logarithm of the magnitude of the time-average Poynting vector
∣∣∣〈~S(t)〉

∣∣∣ at the point

where the arrow originates. The right half of each of these figures shows
∣∣∣〈~S(t)〉

∣∣∣ plotted in

dB, with red representing the greatest intensity and blue representing the least intensity.

Outlines for the hyperbolic lens and the phase-correcting zone plate are on the respective

plots.

As expected, the spatial variation in the power is much smoother for the lens than

for the phase-correcting zone plate. The interpretation of Fig. 4.1(a) is straightforward:

Outside of the lens, the arrows in Fig. 4.1(a) look like the rays that one expects from

a geometrical (ray-tracing) analysis. Inside of the lens, there is an interference pattern

created by reflections from the surfaces of the lens. Such a simple interpretation is not

readily possible for the zone plate in Fig. 4.1(b), for which the spatial variation in power

is more complicated. Clearly, however, both devices focus energy at the distance F from

the device. For the zone plate, there is a second maximum on the axis at z = F ′ ≈ F/3.

This secondary focal point is well-documented in the literature [67]. In the region beyond

the lens and zone plate (ρ > D/2) the time-average Poynting vector for the incident plane

wave (0 dB) can be seen, overlaid by diffraction bands. The cross sections in Fig. 4.1 clearly

show the reduction in the volume of dielectric that can be achieved by replacing a lens with

a zone plate. For this example, the volume, and hence the weight, is reduced by a factor of

about six.

4.2 Parametric Study and Design Graphs

A parametric study was performed for the grooved-dielectric, phase-correcting zone plate

antenna, in a manner similar to the studies for the Soret and folded zone plates in Sec. 3.3.

For reference, the geometry of the grooved-dielectric, phase-correcting zone plate is shown

in Fig. 4.2. The three primary geometrical parameters that describe a zone plate are the

focal length, the diameter, and the number of zones. These parameters are interrelated
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Figure 4.2: Geometry of the grooved-dielectric, phase-correcting zone plate.

through Eq. (1.2), D/λ = 2
√
N(N + 2F/λ), and therefore only two of the three can be

chosen independently.

In this study, like that for the Soret and folded zone plate antennas in Chapter 3, the

focal length F is varied from 1 to 50 wavelengths, and the diameter D is varied from 3.5 to

75 wavelengths. The number of zones N , therefore, ranges from 1 to 37, and the ratio of the

focal length to the diameter, or the f -number, covers cases up to approximately 2.5. These

f -number values are typical of microwave or millimeter-wave zone plates [68]. Quarter-wave

zone plates are used, meaning the phase is corrected in 90 degree increments (P = 4). The

base thickness of the dielectric slab is t/λ = 0.1.

The dielectric used for the zone plates was assumed to be lossless and to have the

relative permittivity of Rexolite, εr = 2.53. There were two reasons for the omission of the

loss: First, this reduced the number of parameters that had to be considered in the design

study and allowed us to concentrate on the important geometrical parameters that mainly

determine the focusing ability of the lenses. Second, calculations that were made using a

loss typical of that for Rexolite showed that the effect of loss on the gain was generally less

than the effect caused by other parameters, such as the base thickness, which is considered.

The same metrics introduced in Sec. 3.2 are used to quantify the focusing ability of

these zone plate antennas as well. The focusing gain FG is defined for phase-correcting
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zone plates in a manner similar to Eq. (3.1) for Soret and folded zone plates:

FG =

∣∣∣Re[ẑ · ~Stot
c ]
∣∣∣∣∣∣Re[ẑ · ~Sic]
∣∣∣ , (4.1)

Likewise, the formula for the gain is similar to Eq. (3.2):

G =
4π
∣∣∣∣2π∫

0

ρdisc∫
0

Re[ẑ · ~Stot
c ]ρ dρ dφ

∣∣∣∣
λ2
∣∣∣Re[ẑ · ~Sic]

∣∣∣ . (4.2)

There is one important difference in the calculation of these metrics for grooved-dielectric,

phase-correcting zone plate antennas: These antennas use zone plates in the transmission

mode, and the incident field therefore makes an important contribution at the focal point.

For this reason, the total field was used for the calculation of ~Stot
c in the numerators of Eqs.

(4.1) and (4.2), unlike Eqs. (3.1) and (3.2), which use the scattered field. This distinction is

clear in Fig. 2.3, which shows the focal point in the scattered-field region for the Soret zone

plate and in the total-field region for the grooved-dielectric, phase-correcting zone plate.

4.2.1 Design Graphs Based on Focusing Gain

Figure 4.3 is a design graph for the focusing gain for the grooved-dielectric, phase-correcting

zone plate antenna. The solid lines are contours of constant focusing gain FG (spaced 2 dB

apart) while the dashed lines are for a constant number of full-wave zones N . Note that not

all of the lines of constant N are shown. For convenience, the curves of constant FG are

shown as continuous lines; of course, they have practical meaning only where they intersect

a curve of constant N , which must be an integer. Results are given for all points in the

grid, even though some regions near the edges represent unrealistic designs.

The trends in this plot are similar to the trends for the Soret and folded zone plates:

Increasing the diameter D/λ while holding the focal length F constant results in an increase

in the focusing gain FG. For larger values of D/λ, however, the effect lessens, as can be

seen by the increase in the spacing between contours for any horizontal line though Fig. 4.3

as D/λ gets larger. Likewise, if the number of zones N is held constant and diameter and

focal length are allowed to increase in a way that satisfies Eq. (1.2), the focusing gain also

generally increases. Again, the increase eventually tapers off. Finally, note that when the
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Figure 4.3: Design graph for the grooved-dielectric, phase-correcting zone plate antenna.
The solid lines represent contours of constant focusing gain FG (in dB), while the dashed
lines represent lines of constant number of full-wave zones N . P = 4, εr = 2.53, and
t/λ = 0.1.

diameter is held constant and N and F/λ are increased, the focusing gain initially increases.

Eventually, FG reaches a maximum and begins to decrease. The maximum value for the

focusing gain was found for a grooved-dielectric, phase-correcting zone plate as a function

of diameter, as was done for Soret and folded zone plates in Fig. 3.10. The value of FGmax

is plotted in Fig. 4.4. The values of N and F/λ that result in the zone plate with the

highest FG are given for a few diameters in the figure. A more detailed discussion of all

three of these general trends in terms of a few simple physical phenomena can be found in

Chapter 3.

One major difference between the design graph for the grooved-dielectric, phase-correcting

zone plate (Fig. 4.3) and the Soret and folded zone plates (Fig. 3.5), however, is the pres-

ence of the ripples that can be seen in the lines of constant FG in Fig. 4.3. In Sec. 4.2.3,

it will be shown that these ripples are caused by multiple reflections within the dielectric

and are related to the base thickness t of the zone plate.
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Figure 4.4: The maximum value of the focusing gain FG for a grooved-dielectric, phase-
correcting zone plate antenna with a fixed diameter D/λ.

4.2.2 Design Graphs Based on the Gain

The gain, G, computed from Eq. (3.2) with ρdisc = λ/2 is shown in Fig. 4.5 in the same

manner that the focusing gain is presented in Fig. 4.3. The analysis of this design graph is

very similar to the analysis of Fig. 4.3: as the diameter, focal length, and number of zones

are varied, the gain is seen to follow the same trends as the focusing gain. An increase

in the radius of the aperture, ρdisc, beyond λ/2 would increase the value of G, though the

amount of increase would depend on how the power is distributed in the focal plane of the

zone plate. The maximum value of G for a zone plate antenna with a given diameter is

plotted in Fig. 4.6. The values of N and F/λ that result in the zone plate with the highest

G are given for a few diameters in the figure.

4.2.3 Effect of the Base Thickness on Focusing Ability

The design graphs for grooved-dielectric, phase-correcting zone plates (Figs. 4.3 and 4.5)

show ripples in the lines of constant FG and G. To examine the effect of these ripples, we

will compare the focusing gain of a zone plate with F/λ = 20 and N = 5 (D/λ = 30) to

that of a zone plate with F/λ = 15 and N = 5 (D/λ = 26.5). The points that correspond

to these designs are marked with dots in Fig. 4.3. Based on a simple geometric analysis,

we would expect the focusing gain of the zone plate with F/λ = 20 to be slightly greater
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Figure 4.5: Design graph for the grooved-dielectric, phase-correcting zone plate antenna
with ρdisc = λ/2. The solid lines represent contours of constant gain G (in dB), while the
dashed lines represent lines of constant number of full-wave zones N . P = 4, εr = 2.53, and
t/λ = 0.1.
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Figure 4.6: The maximum value of the focusing gain G for a grooved-dielectric, phase-
correcting zone plate antenna with a fixed diameter D/λ.
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Figure 4.7: Focusing gain FG as the base thickness t/λ is varied for two similar zone
plates. The solid line shows FG for a zone plate with F/λ = 15 (D/λ = 26.5), and the
dashed line for a zone plate with F/λ = 20 (D/λ = 30). Both zone plates share the
parameters N = 5, εr = 2.53, and P = 4.

than the zone plate with F/λ = 15. Contrary to expectations, however, the zone plate

with F/λ = 20 has a smaller focusing gain (about 1 dB less) than the one with F/λ = 15,

as can be seen by the respective proximity of the dots in Fig. 4.3 to the contour line for

FG = 26 dB.

This interesting result is caused by multiple reflections within the structure of the phase-

correcting zone plate. Figure 4.7 shows the focusing gain FG as a function of the base thick-

ness t/λ for the two zone plates marked by the dots in Fig. 4.3 and mentioned previously.

For the figure, the wavelength in the dielectric is λd = λ/
√
εr = 0.629λ, and 0 ≤ t/λ ≤ 0.629

(0 ≤ t/λd ≤ 1). The zone plate with the focal length of F/λ = 15 has higher focusing gain

when t = 0.1λ = 0.159λd (indicated by dots in Fig. 4.7). Setting the base thickness to

t = 0.3λ = 0.477λd, however, would reverse the result, and the zone plate with F/λ = 20

would outperform the zone plate with F/λ = 15 by more than 1 dB (indicated by crosses in

Fig. 4.7). This shows that the presence and form of the ripples in Fig. 4.3 are dependant

on the base thickness, t.

Matching layers are often placed on the surfaces of conventional lenses to reduce reflec-

tions and improve their performance, and we might expect the same to be true for the zone

plate. To test this hypothesis, a dielectric, quarter-wave matching layer was placed on the

front surface of the zone plate, as shown in Fig. 4.8(a). The thickness of the layer was

(λ/
√
εrm)/4. For this case, the relative permittivity of the layer was εrm =

√
εr ≈ 1.59.
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Figure 4.8: (a) Geometry of the grooved-dielectric, phase-correcting zone plate with a
matching layer. (b) Focusing gain FG as the base thickness t/λ is varied for two similar
zone plates with a matching layer. The solid line shows FG for a zone plate with F/λ = 15
(D/λ = 26.5), and the dashed line for a zone plate with F/λ = 20 (D/λ = 30). Both zone
plates share the parameters N = 5, εr = 2.53, and P = 4.

Figure 4.8(b) shows the effect of including the matching layer. It clearly alters the depen-

dence of the focusing gain on the base thickness t/λ. For some values of t/λ, the layer

increases FG as expected, while for other values of t/λ it decreases FG. This can be seen

by comparing the points marked on the figures. When t/λ = 0.1 (dots), the matching

layer increases FG for both designs (F/λ = 15 and 20) compared to Fig. 4.7. However,

when t/λ = 0.3 (crosses), the addition of the matching layer results in a decrease in FG for

both designs. From these results, it appears that the effectiveness of a simple quarter-wave

matching layer for increasing the focusing gain of the zone plate must be evaluated for each

design.

The choice of the base thickness controls the overall thickness of the zone plate and, as

shown above, affects the focusing ability of the zone plate. Despite this, it has received a

relatively small amount of attention in the literature [69]. In a practical design, a thickness

t > 0 is necessary to support the zone plate. In an analysis of these devices that uses

geometrical optics, the base thickness does not affect the focusing, because it imparts a
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uniform phase shift for all of the incident field. In reality, however, t does determine

how much of the incident energy is reflected from the dielectric-air interfaces and how the

multiple reflections that occur within the zone plate produce constructive or destructive

interference. Therefore, it is reasonable to assume that t can be optimized. An in-depth

study, however, showed that there does not appear to be a simple, analytical method for

optimizing t. The study also showed that for typical microwave or millimeter-wave zone

plates, the change in the focusing gain due to varying t can be as much as 2 dB. The findings

in this work agree with the conclusions drawn in recently-published work by Petosa, Gagnon,

and Ittipiboon [70].

4.2.4 Effect of the Number of Phase Corrections Per Zone on Focusing Ability

In addition to the physical size of a zone plate, the number of phase corrections per full-

wave zone P also has an effect on the focusing ability of a zone plate. The geometrical

optics design methodology for a phase-correcting Fresnel zone plate, discussed in Chapter

1, predicts that increasing the number of phase corrections per full-wave zone will improve

the focusing ability of the device. Extensive simulations with the BOR-FDTD method have

shown this is not always true; a larger value for P does not guarantee improved focusing.

Nevertheless, some general observations can be made about the effect of P on the focusing

ability of a zone plate. For the zone plates presented in this chapter, there is generally a

considerable improvement in focusing ability when the number of phase corrections per zone

is increased from P = 2 to P = 4. Increasing P beyond four does not consistently improve

the focusing, however. Figure 4.9 illustrates these points; it shows the focusing gain as the

diameter is varied for zone plate antennas with F/λ = 20. Among the phase-correcting

zone plates, the P = 2 case clearly has the lowest focusing gain FG for every value of the

diameter D/λ. The P = 4 and P = 8 cases, however, have generally similar focusing gains,

and the best choice between the two alternates as D/λ is changed. The difference between

the focusing gains when P = 4 and P = 8 is generally within the variance observed by

changing the base thickness, t. This suggests that the effect on the focusing gain due to

internal reflection may be greater than the effect of increasing P from four to eight.
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Figure 4.9: Focusing gain FG as the diameter D/λ is varied for zone plate antennas with
P = 2, P = 4, and P = 8. F/λ = 20, εr = 2.53, and t/λ = 0.1 for all of the zone plates.
The focusing gain of a hyperbolic lens with F/λ = 20 and εr = 2.53, and a Soret zone plate
with F/λ = 20 are also shown for comparison.

Also shown on the graph are the focusing gains for hyperbolic lenses with F/λ = 20 and

εr = 2.53 and Soret zone plates with F/λ = 20. As expected, the focusing gains for the

Soret zone plates, described in detail in Chapter 3, are not as large as the focusing gains

for the grooved-dielectric, phase-correcting zone plates. Notice that the focusing gains for

the lenses are slightly greater than those for the zone plates with P = 4 and P = 8 when

D/λ . 40 (F/D & 0.5). However, For D/λ & 40 (F/D . 0.5), the zone plates actually

outperform the hyperbolic lenses.

This counter-intuitive observation can be explained by examining the profile of these

lenses. The thickness at the center of the hyperbolic lens, h, varies greatly over the range

of lenses simulated to generate Fig. 4.9. To better visualize this, Fig. 4.10 shows the

profile for examples of lenses and zone plates at two extremes of the range of diameters

examined in this work. For the smaller values of D/λ, the ratio h/F is small. The lens can

be considered thin and the customary, simple arguments for focusing apply. Figure 4.10(a)

shows the profile of a hyperbolic lens with diameter D/λ = 22.7. This lens has a thickness

h/λ = 4.3, so the ratio h/F is small: h/F = 0.21. The focusing gains for devices with this
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(a) (b)

Figure 4.10: Profile for two hyperbolic lenses with F/λ = 20 and diameters (a) D/λ = 22.7
and (b) D/λ = 69.3. The profile for zone plates with the same focal length and diameter
are also shown.

diameter are marked by point A in Fig. 4.9. For the larger values of D/λ, the ratio h/F

is of the order one, so the lens can no longer be considered thin. Figure 4.10(b) shows the

profile of a thick lens, with D/λ = 69.3 and h/λ = 21.3. The ratio of the thickness to the

focal length is therefore h/F = 1.07. The focusing gains for devices with this diameter are

marked by point B in Fig. 4.9. The profiles of the corresponding zone plates with P = 4

are also shown in black in Fig. 4.10. The zone plate have N = 3 and N = 20 zones,

respectively. Referring back to Fig. 4.9, it can be seen that it is in the range where the

hyperbolic lenses are thick (near point B) that the zone plate outperforms the lens.

4.2.5 Effect of Focal Shift on Focusing Ability

The BOR-FDTD simulations show that the actual focal point (i.e. the point of greatest

focusing gain) of a microwave or millimeter-wave zone plate tends to be located closer to

the zone plate than Eq. (1.2) predicts. This effect has been noted by other researchers for

zone plates [36, 54, 71] as well as for traditional lenses [72].

An example of this effect is in Fig. 4.11, which shows the focusing gain FG along a

portion of the z-axis for three different zone plates. The focal length is designed to be

F/λ = 10 for all three zone plates and is marked by the solid black line in the figure. Each

zone plate has a different number of zones: N = 20 (F/D = 0.18), N = 15 (0.22), and
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Figure 4.11: Focusing gain FG along the z-axis for zone plates with N = 20, N = 15,
and N = 10. For all three zone plates, the focal length was designed to be F/λ = 10. The
other parameters are t/λ = 0.1 and εr = 2.53. The dots indicate the point of maximum
focusing gain for each zone plate.

N = 10 (0.29). It is clear from Fig. 4.11 that the actual focal length of each zone plate

antenna (the distance from the zone plate to the point of maximum focusing gain) is shorter

than specified in the design. The decrease in FG at the designed focal point due to focal

length shortening is 0.9 dB for the zone plate with N = 20, 0.7 dB for N = 15, and 0.4 dB

for N = 10. As N is increased and the focal length F is held constant, the diameter D of

the zone plate is increased according to (1.3), and the f -number is decreased. Figure 4.11,

therefore, suggests that the reduction of focusing gain due to focal length shortening is more

severe for zone plates with small f -numbers. Simulations for the other zone plates in the

parametric study, Fig. 4.3, confirm this trend. The focal length shortening is, therefore, of

greater concern for microwave and millimeter-wave zone plates, for which a small f -number

is typical, than it is for optical zone plates.

To compensate for this displacement of the focal point, the value of F used in the

standard design formulas can be made slightly longer than the desired distance to the

focal point. One particular empirical correction that provides this compensation has been

proposed by Hristov and Herben in [71]. They suggest an improvement to the zoning

algorithm by adjusting the focal length in Eq. (1.3):

ρn =

√(
nλ

P

)2

+
2nλ (F + d/2)

P
, (4.3)
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Figure 4.12: Focusing gain FG along the z-axis for zone plates designed using the alterna-
tive zoning rule defined in Eq. (4.3) with N = 20, N = 15, and N = 10. For all three zone
plates, the focal length was designed to be F/λ = 10. The other parameters are t/λ = 0.1
and εr = 2.53. The dots indicate the point of maximum focusing gain for each zone plate.

in which d is difference in thickness between consecutive subzones in a grooved-dielectric,

phase-correcting zone plate and is calculated using Eq. (1.4). This correction is applied to

zone plates with P > 2 by Wiltse in [73]. The values of ρn that are calculated from Eq.

(4.3) are the same as the values that would be calculated from Eq. (1.3) for a zone plate

with a focal length that is d/2 longer. Hence, the new formula is effectively the same as

designing a zone plate with a slightly longer focal length.

BOR-FDTD simulations show that this technique does improve the focusing ability of a

zone plate antenna. By designing zone plates with Eq. (4.3), or effectively forcing the focal

length of the zone plate to be slightly longer than the original design, some of the natural

shortening of the focal length can be offset and the point of greatest focusing gain can be

moved closer to the desired focal point. The focusing gains for the three corresponding zone

plates designed using Eq. (4.3) are plotted in Fig. 4.12. The point of maximum focusing

gain is seen to be closer to the desired focal point (F/λ = 10) for all three of the designs

than it is in Fig. 4.11.

Despite the obvious improvement seen from Fig. 4.11 to Fig. 4.12, the plots show that

this technique is not necessarily optimal. In general, the focusing gain can be made even

larger by further adjustments of the focal length in (1.3). For each of the zone plates in
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Fig. 4.11, a different amount of adjustment to the focal length is necessary to optimize

the focusing gain. In the proposed method, the focal lengths for the three zone plates are

corrected by the same amount; however, because they all require correction in the same

direction, the new zoning formula offers at least some improvement for each.

The discussion of improving the focusing gain by artificially increasing the designed focal

length must be kept in perspective, however. It is important to note that the simulations

for the zone plates used in the parametric study show that the decrease in the focusing

gain, FG, due to the shift of the focal point is of the same order of magnitude as the

aforementioned fluctuations in FG due to the choice of the number of phase corrections

per zone P or the variation in the base thickness, t. Therefore, a true optimization for the

focusing gain of the zone plate must involve a full electromagnetic analysis that attempts

to remove any decrease in gain due to both of these factors.

4.2.6 Weight and Volume of Zone Plate Antennas

One of the advantages of Fresnel zone plate antennas over traditional hyperbolic lenses is

the reduction in weight and volume. Figures 4.13-4.15 present design graphs that show the

weight (and volume, which is proportional to weight) savings for zone plates with the same

ranges of parameters that are presented in Figs. 4.3 and 4.5. The figures show lines of

constant weight (volume) savings. This parameter is determined by calculating the volume

of a hyperbolic lens with a given focal length F/λ and diameter D/λ and dividing by the

volume of a zone plate with the same focal length and diameter. For example, for a zone

plate with P = 4, F/λ = 40, and D/λ = 60 (N = 10), Fig. 4.13 shows that the weight

savings ratio is slightly greater than eight. This means that the zone plate weighs more

than eight times less than a lens with the same focal length and diameter. The zone plates

and lenses are made from Rexolite and have a base thickness of t/λ = 0.1.

Figure 4.13 gives the ratio of the weight of the hyperbolic lens to the weight of the zone

plate when P = 4. Figure 4.14 is for P = 8, and Fig. 4.15 is for the limit as P → ∞. In

the latter case, the zone plate profile is smooth, except for discontinuous jumps at the zone

boundaries. As P is increased, the savings in weight decrease, although the amount of the
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Figure 4.13: Design graph for the weight savings of zone plates with P = 4. The solid
lines represent contours of constant weight savings (weight of the hyperbolic lens divided
by the weight of the zone plate), while the dashed lines represent lines of constant number
of full-wave zones N . εr = 2.53, and t/λ = 0.1.

decrease is small. For the example presented above (F/λ = 40, D/λ = 60, and N = 10),

the weight savings factors are 8.2, 7.1, and 6.3 for P = 4, P = 8, and P →∞, respectively.

4.3 Clarification of Zone Plate Performance Metrics

In the literature, zone plate antennas are often characterized by a few common metrics.

However, the terminology used to refer to these metrics varies among researchers. This

section is designed to clarify the relationship between these metrics and the results presented

in this work.

The classical zone plate performance measure is that which is defined as efficiency in

[45]. This same metric is alternately referred to as the phase efficiency [8], the diffraction

efficiency [36, 74], or the aperture efficiency [69]. This term encapsulates the effect on

the performance of a zone plate due to the phase approximation. It is useful for studying

the effects of decreasing the step size for phase correction (increasing P ), which has been

shown in this chapter to be one of many factors that influence the focusing ability of a

phase-correcting zone plate antenna.
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Figure 4.14: Design graph for the weight savings of zone plates with P = 8. The solid
lines represent contours of constant weight savings (weight of the hyperbolic lens divided
by the weight of the zone plate), while the dashed lines represent lines of constant number
of full-wave zones N . εr = 2.53, and t/λ = 0.1.
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Figure 4.15: Design graph for the weight savings of zone plates with P → ∞. The solid
lines represent contours of constant weight savings (weight of the hyperbolic lens divided
by the weight of the zone plate), while the dashed lines represent lines of constant number
of full-wave zones N . εr = 2.53, and t/λ = 0.1.
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An efficiency can be calculated from the BOR-FDTD results. This is accomplished by

comparing the focusing gain of a zone plate with a fixed value of P to the focusing gain

for the same zone plate as P approaches infinity: FG/FGP→∞. Of course, the continuous

profile in the limit P →∞ cannot be modeled with the standard BOR-FDTD method, but

the ‘stair-case error’ inherent in the method can be made acceptably small by increasing

the level of discretization.

In Table 4.1, the efficiency calculated from the BOR-FDTD results is compared with

the efficiency η computed using an approximate geometrical argument in [45]. Results are

given for two antennas with fairly different parameters: F/λ = 30 and N = 6 (F/D = 0.75),

and F/λ = 12.5 and N = 20 (F/D = 0.21). The two have the same material property,

εr = 2.53, and the physically unrealistic base thickness t = 0, which was chosen to isolate

the effects of the phase approximation. For this comparison, the maximum value of the

focusing gain was used. Recall from Sec. 4.2.5 that this occurs at a point slightly closer to

the zone plate than F . The values computed with the BOR-FDTD method are seen to be

comparable to the published efficiencies based on the approximate geometrical analysis.

4.4 Comparison with Measurements

To validate the BOR-FDTD analysis of grooved-dielectric, phase-correcting zone plate an-

tennas, simulation results for problems with similar physical characteristics were compared

to measurements available in the literature for both near- and far-field quantities. For the

near-field tests, simulations of the field focused by a dielectric lens were compared to mea-

surements. The far-field test was a comparison of the simulated and measured radiation

patterns for a grooved-dielectric, phase-correcting zone plate antenna.

To test the accuracy of the BOR-FDTD simulations in the near-field, BOR-FDTD

results were compared to Carswell’s measurements for a doubly-hyperbolic lens [75]. He

measured the electric field in the vicinity of the focal point of the lens using the experimental

setup shown in Fig. 4.16. The source at the frequency 34.5 GHz (λ = 0.869 cm) was an

open-ended waveguide (modeled in FDTD as a linearly polarized point source) located

27 cm from the polystyrene (εr = 2.54 [66]) lens of diameter 27 cm. The lens was mounted
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Table 4.1: Comparison of BOR-FDTD and published efficiency results for two zone plates:
εr = 2.53 and t = 0 for both.

F/λ = 30, N = 6

P FG/FGP→∞ η [45]

P = 2 54.1% 40.5%

P = 4 80.4% 81.0%

P = 8 96.7% 95.0%

P = 16 99.5% 98.7%

P →∞ 100% 100%

(a)

F/λ = 12.5, N = 20

P FG/FGP→∞ η [45]

P = 2 57.5% 40.5%

P = 4 90.7% 81.0%

P = 8 95.8% 95.0%

P = 16 97.0% 98.7%

P →∞ 100% 100%

(b)

Metal Screen

F = 27 cm
F

Lens

D = 27 cm

Figure 4.16: Experimental setup for measuring the components of the electric field near
the focal point of the lens. F = 27 cm, D = 27 cm, and εr = 2.54.
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Figure 4.17: Relative intensity for the transverse (ρ) and longitudinal (z) components of
the electric field focused by a hyperbolic lens. Measured data are from [75].

in a metal screen, and the electric field was measured near the focal point, which was 27 cm

from the lens. With these measurements, Carswell showed, contrary to scalar theory, that

in the focal plane there was a longitudinal component Ez to the electric field as well as

the expected transverse component Eρ. This observation is in agreement with the vector

theory of Boivin and Wolf [76].

The intensities Iρ = |Eρ|2 and Iz = |Ez|2 computed with BOR-FDTD are compared

with the measured results in Fig. 4.17. For the comparison, the peak amplitudes of both

measured patterns were scaled to the computed values. This was necessary because of doubt

as to the accuracy of the magnitude of the longitudinal field relative to the magnitude of

the transverse field for the measurements. This doubt was also raised by Carswell when

he compared the measured results to the theory of Boivin and Wolf [75]. The BOR-FDTD

results are seen to be in relatively good agreement with the measured results for both field

components.

Goldsmith gives the radiation pattern for a grooved-dielectric, phase-correcting zone

plate fabricated from Rexolite, which was designed for use at 95 GHz and measured at

94 GHz [66]. The parameters for Goldsmith’s zone plate were F = 12.7 cm, P = 4, D =

9.53 cm, t = 0.19 cm, and N = 3 (with the outermost subzone of the third full-wave zone
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Figure 4.18: Normalized radiation pattern at 94 GHz for a phase-correcting zone plate
with F = 12.7 cm, P = 4, D = 9.53 cm, εr = 2.53, and t = 0.19 cm. BOR-FDTD data are
plotted in the E-plane and the H-plane. Measured data are from [66].

not included in the zone plate). The zone plate was illuminated with linearly-polarized

radiation from a horn antenna. The field due to the horn was modeled as a Gaussian beam,

in a manner similar to the horn for the focused-beam system, discussed in Sec. 2.3.2, Eq.

(2.21). As specified in [66], the taper for the illumination was −10 dB, that is, at the edge

of the zone plate the illumination was −10 dB down from the value at the center of the zone

plate. The Gaussian beam waist can be calculated to give an incident power pattern that

satisfies this requirement. The plane (E or H) of the measured pattern is unspecified in

[66]. Therefore, wo was calculated separately to give a −10 dB taper for the two principal

planes. The calculated values are wo = 0.31 cm for the E-plane and wo = 0.32 cm for the

H-plane. The parameter zo was specified by the measurement setup, zo = 27 cm.

The results from the BOR-FDTD simulation are plotted along with the measured results

from [66] in Fig. 4.18. The agreement between the BOR-FDTD results and the measure-

ments is reasonably good. The main beams in both the E- and H-planes of the BOR-FDTD

results are similar to the measured main beam. The sidelobe level is also approximately the

same in all three sets of data. The results in Figs. 4.17 and 4.18 provide confirmation that

the BOR-FDTD method is correctly modeling dielectric focusing elements.
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CHAPTER V

DESIGN OF A ZONE PLATE FOR A FOCUSED-BEAM

MEASUREMENT SYSTEM

In the previous two chapters, design studies were presented for zone plate antennas that

have applications in communications systems. These zone plates were designed to collimate

radiation from a point source in the transmit mode, or to focus an incident plane wave

in the receive mode. However, in many focusing systems, both the source and the focal

point are located near the zone plate. For these focusing applications, a zone plate can be

designed to replace the functionality of a doubly-hyperbolic lens, and this is the subject

that will be addressed in this chapter.

A practical application for such a zone plate will also be examined in this chapter: A

zone plate will be designed to be a focusing element in a free-space, focused-beam system

to measure the electrical properties of materials. BOR-FDTD simulation results for both

an existing lens and the zone plate designed to replicate its functionality will be presented.

The lens will be used to establish performance requirements for zone plates used for this

focusing application.

At the onset of this research, there were a few concerns about using zone plates for

focusing applications. The most well-documented of these is their limited bandwidth [45].

As diffractive devices, zone plates are designed to work at one particular frequency, and

performance degrades away from this frequency. In addition, there are a few specific re-

quirements for focused-beam systems, as discussed in Chapter 1. The field at the sample

must have a specified amplitude taper, must have phase uniformity, and must be linearly

polarized. Unlike a hyperbolic lens, the profile of a zone plate is discontinuous, and there

is concern about how this will affect these qualities. These concerns will also be addressed

in this chapter.

In Sec. 1.5, the application of zone plates for focused-beam systems was introduced. The
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primary motivating factors given for using zone plates in these systems were weight and cost

savings, particularly at low frequencies. While low-frequency focused-beam measurement

systems remain the target application for zone plates, the comparison of a doubly-hyperbolic

lens and a zone plate was performed using scale models at frequencies in the range 8-12 GHz

(X-band). This choice was made to keep project costs down and to simplify the procedures

for experimentally validating the zone plate design.

5.1 Lens for the Focused-Beam System

In this study, a zone plate will be designed to replace a lens in an existing focused-beam

measurement system at the Georgia Tech Research Institute (GTRI). Before discussing

the design of the zone plate, a brief overview of the existing lens will be given. This lens

is currently used in GTRI’s standard focused-beam system for characterizing materials at

frequencies in the range 4-18 GHz. The lens is constructed by placing two hyperbolic, plano-

convex lenses back-to-back. For use in a focused beam system (see Fig. 1.8), the ‘input’

portion of the lens is oriented with the convex surface towards the horn, and the ‘output’

portion of the lens is oriented with the convex surface towards the sample under test. The

geometry for this lens can be seen in Fig. 5.1, and its geometrical parameters are listed in

Table 5.1. The hyperbolic profiles are described by the focal length (Fi and Fo) and the

radii (ri and ro) for each respective half of the lens.

The lens requires a bracket to hold the two plano-convex halves together and to support

the lens in the focused-beam system. The geometry for the mounting bracket is shown on

one side of the lens in Fig. 5.1, shaded in gray. This bracket consists of two metal rings

that completely surround the lens. The two lens halves are sandwiched between the rings,

and six bolts are used to fasten the rings together. These bolts are not shown in the figure

and are not included in the BOR-FDTD model of the lens because they are not rotationally

symmetric.

5.2 Zone Plate for the Focused-Beam System

A zone plate was designed to replace the lens from Fig. 5.1 in a focused-beam system. The

zone plate was designed with parameters similar to those of the lens to allow for a direct
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Figure 5.1: Geometry for the lens used in GTRI’s standard focused-beam system.

Table 5.1: Parameters for the lens used in GTRI’s standard focused-beam system.

Parameter Symbol Value

Relative Permittivity εr 2.53 cm

Input Lens, Focal Length Fi 35.98 cm

Input Lens, Thickness ti 13.50 cm

Input Lens, Radius ri 29.21 cm

Input Lens, Pedestal pi 1.27 cm

Output Lens, Focal Length Fo 80.23 cm

Output Lens, Thickness to 7.94 cm

Output Lens, Radius ro 29.21 cm

Output Lens, Pedestal po 1.59 cm

Base Radius rb 30.48 cm
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Figure 5.2: Geometry for (a) a doubly-hyperbolic lens and (b) a zone plate.

comparison. Both the zone plate and the lens were made from Rexolite, with the same base

radius. The input and output focal lengths (Fin and Fout) of the zone plate were designed to

be the same as the lens, and zone plate was divided into N = 5 full-wave zones. The design

frequency for the zone plate was chosen to be the center of the frequency band of interest,

f = 10 GHz. Cross-sectional profiles for both the lens and the zone plate are shown in Fig.

5.2.

In Sec. 4.2.4, it was shown that the number of phase corrections per zone P does

not significantly affect the power delivered to the focal point once P & 8. For this zone

plate, P → ∞ was chosen, which gives a smooth profile with discontinuous jumps at the

zone boundaries, as seen in Fig. 5.2(b). The goal of this work was to determine how the

zoning concept affects focusing, so the zone plate profile that is most similar to the smooth

lens profile was chosen. Historically, zone plates with a small number of phase corrections

per zone were preferred to simplify manufacturing. With modern, computer-controlled

manufacturing techniques, however, it is now possible to fabricate zone plates with P →∞.

The manufacturing process for this zone plate is discussed in detail in Chapter 6. A zone

plate with this profile is frequently referred to as a zoned Fresnel lens in reference to its
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Table 5.2: Comparison of the physical properties of the existing lens and the zone plate
designed to replace it.

Lens Zone Plate

Diameter 60.96 cm 59.59 cm

Base Thickness - 1.27 cm

Maximum Thickness 24.30 cm 6.32 cm

Volume 34720 cm3 10542 cm3

Weight 1 80.4 lb 24.4 lb

Weight Savings Factor 2 - 3.3

similar appearance to the classical Fresnel lens (see Sec. 1.6).

The cross section of the zone plate in Fig. 5.2(b) shows that the side of the zone

plate facing the focal plane is planar. This was an additional design requirement that

was imposed to help simplify the manufacture of the zone plate. By designing one side

to be planar, the attachment of the zone plate to the rotating platform of a lathe (called

‘fixturing’) is drastically simplified.

The profiles in Fig. 5.2 are drawn to scale and demonstrate the difference in thickness

between the two devices. The maximum thickness of the zone plate is 25% of the thickness

of the lens, and the weight of the zone plate is 30% of the weight of the lens, excluding the

mounting brackets. A comparison of the physical parameters of the lens and the zone plate

is given in Table 5.2.

5.2.1 Design Equations for the Zone Plate

The equations used to generate the profile for the non-planar side of the zone plate are

discussed in this section. In Chapter 1, the design equations for Soret, folded, and grooved-

dielectric, phase-correcting zone plates, designed to replace hyperbolic lenses, are given

and discussed. A zone plate for a focused-beam system, however, must replace a doubly-

hyperbolic lens, so a different set of design equations are required. The derivation of these

1Based on a density of 1.05 gcm3 [77].
2Computed by dividing the volume of the lens by the volume of the zone plate.
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Figure 5.3: Geometry used to illustrate the definition of a full-wave Fresnel zone for a
zone plate designed to replace a doubly-hyperbolic lens.

equations is similar to that for Eqs. (1.2)-(1.4) for the grooved-dielectric, phase-correcting

zone plate. A full-wave Fresnel zone is now defined by the following requirement: The

cumulative distance from the input focal point to the edge of a zone plus the distance from

the edge of the zone to the output focal point must be a wavelength longer than same

quantity for the previous zone. This is illustrated in Fig. 5.3: Π1 and Π2 are chosen such

that FiO + OFo + λ = FiΠ1 + Π1Fo and FiΠ1 + Π1Fo + λ = FiΠ2 + Π2Fo. Applying this

requirement gives rise to the new formula for the outer radius of the mth full-wave zone:

Πm =
1
2

[
(mλ+ Fin + Fout)

2 − 2
(
F 2

in + F 2
out

)
+

(
F 2

in − F 2
out

mλ+ Fin + Fout

)2
]1/2

, m = 1, 2, ..., N. (5.1)

When the subzones are numbered consecutively starting at the center of the zone plate, the

outer radius ρn of the nth subzone is

ρn =
1
2

[ (
nλ

P
+ Fin + Fout

)2

− 2
(
F 2

in + F 2
out

)
+

(
F 2

in − F 2
out

nλ/P + Fin + Fout

)2
]1/2

, n = 1, 2, ..., NP. (5.2)

The thickness dn of the zone plate profile for each ρn is then calculated to satisfy Fermat’s

principle of least time:

dn =
1

√
εr − 1

[√
Π2

1 + F 2
in +

√
Π2

1 + F 2
out

−
√
ρ2
n + F 2

in −
√
ρ2
n + F 2

out +Nnλ

]
, n = 1, 2, ..., NP. (5.3)

in which Π1 is the outer radius of the first zone. In Eq. (5.3), Nn takes on a value from 0 to

N−1, depending on which zone the nth subzone is in. For example, Nn = 0 when 1 ≤ n ≤ P
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(the first full-wave zone), and Nn = 1 when P + 1 ≤ n ≤ 2P (the second full-wave zone).

A base of thickness t = 1.27 cm (t/λ = 0.46) is added to each dn for structural support.

In the particular case of P → ∞, the design equations can be written in a simplified

manner. Instead of calculating the thickness of the profile for specific values of ρn, the

thickness of the smooth profile can be calculated for an arbitrary ρ. The thickness of the

profile in full-wave zone between Πm and Πm+1 (still defined by Eq. (5.1)) is

d(ρ) =
1

√
εr − 1

[√
Π2

1 + F 2
in −

√
Π2

1 + F 2
out

−
√
ρ2 + F 2

in −
√
ρ2 + F 2

out + (m− 1)λ
]
. (5.4)

When this version of the equation is used to generate a zone plate, care should be taken

to sample ρ densely enough around outer edges of each zone (ρ ≈ Πm) to ensure that the

discontinuous jump in the profile from one zone to the next is placed in the correct position

Zone plates designed with Eqs. (5.1)-(5.4) exhibit the same focal length shortening that

was seen for the zone plates used in antennas (see Fig. 4.11). BOR-FDTD simulations

were therefore used as part of the design process to adjust the zone plate to compensate

for this focal length shift. The original value of Fin and Fout were 35.98 cm and 80.23 cm,

respectively (from Table 5.1). Simulations were used to iteratively increase the values of Fin

and Fout in Eqs. (5.1)-(5.4), adjusting the zone plate profile until the actual focal lengths of

the zone plate coincided with the focal lengths of the doubly-hyperbolic lens. The adjusted

values of Fin and Fout are 40.01 cm and 84.26 cm, respectively.

5.3 Comparison of the Zone Plate and the Lens

Sections 5.1 and 5.2 describe an existing lens and a zone plate designed to replace it. To eval-

uate the usefulness of this zone plate for focusing applications (particularly focused-beam

systems), its focusing characteristics are compared with those of the lens. In particular,

we are interested in the behavior of the two devices near the focal plane when they are

illuminated by a pyramidal standard gain horn (Narda model 640), as shown in Fig. 5.2.

The BOR-FDTD method, described in detail in Chapter 2, was used to model the

focusing by both the lens and the zone plate. The source, a pyramidal horn, was modeled as
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Figure 5.4: Magnitude of the z-component of the time average of the Poynting vector∣∣∣ẑ · 〈~S(t)〉
∣∣∣ in dB on a cross section in the yz-plane for the lens and the zone plate at

f = 10 GHz.

a Gaussian beam injector as explained in Sec. 2.3.2. The horn, fed by a WR90 waveguide,

has a limited operating bandwidth (approximately 8-12 GHz). To simulate this limited

bandwidth, the time-envelope of the source was chosen to be a modulated Gaussian pulse.

Recall that the frequency content of a modulated Gaussian pulse can be controlled by

choosing by choosing ωo and τp in Eq. (2.12). To achieve the desired frequency range, these

parameters were chosen to be ωo = 6.28× 1010 rad/sec and τp = 1.61× 10−10.

Figure 5.4 shows the magnitude of the z-component of the time average of the Poynting

vector
∣∣∣ẑ · 〈~S(t)〉

∣∣∣ for both the lens and the zone plate, normalized to the maximum intensity

for each device. This figure shows
∣∣∣ẑ · 〈~S(t)〉

∣∣∣ plotted in dB, with red representing the

greatest intensity and blue representing the least intensity. Outlines for the lens and zone

plate are on the respective plots, and the dashed white line indicates the location of the

focal plane. The solid white lines outline the metal mounting bracket that surrounds the

lens. The scattering from the bracket is visible in the figure. For the zone plate, the bracket

was made from Delrin (εr ≈ 3.1) to reduce the amount of scattering. The bracket for the

zone plate, which will be discussed in more detail in Chapter 6, is not shown in Fig. 5.4.
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This figure shows a definite similarity between the focusing of the two devices. Both

the lens and the zone plate direct a majority of the incident power to a small spot on

the focal plane. The figure shows that both devices focus power in a beam-like manner,

tapering down to a spot on the focal plane and then expanding beyond the focal plane. The

zone plate, however, clearly directs more power away from this spot than the lens; this is

indicated by the diffraction bands that occur outside the spot. The bands are green in color

and are roughly 30 dB below the point of highest power (at the center of the focal spot).

Looking at Fig. 5.4, the focusing by the lens and the zone plate appear to be qualitatively

similar. The remainder of this section describes quantitative measures that further this

comparison.

5.3.1 Time-Average Power Delivered to the Focal Spot

When comparing the zone plate and the lens, one metric of interest is the amount of power

focused by each device. This can be quantified by looking at how much power is intercepted

by a disc of radius ρd on the focal plane. To compute the time-average power received, the

z-component of the time average of the Poynting vector 〈~S(t)〉 is integrated over the disc.

The time-average Poynting vector 〈~S(t)〉 is the real part of the complex Poynting vector ~Sc,

so

Prec =

ρd∫
0

2π∫
0

ẑ · Re(~Sc)ρdφ dρ . (5.5)

In Fig. 5.5, Prec is plotted as a function of ρd for both the lens and the zone plate at

f = 10 GHz. For reference, the vertical black line indicates the point at which the radius

of the disc of integration equals the radius of the lens or zone plate. For the figure, Prec

is normalized by Pinj, the injected power, which is the total time-average power supplied

by the horn. If all of the power Pinj passed though the focal plane, then Prec/Pinj → 1 as

ρd →∞.

The dashed line shows the power received for the lens. Most of the power is concentrated

into a small region, ρd . 5 cm. Beyond this region, the plot levels off at Prec/Pinj ≈ 0.8.

Power lost to reflection and over-illumination of the lens accounts for the fact that not all

of the power supplied by the horn is delivered to the focal spot (Prec/Pinj never reaches
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Figure 5.5: Fraction of the power supplied by the horn that passes through a disc of radius
ρd in the focal plane for the lens and the zone plate at f = 10 GHz.

1). The solid line shows that the zone plate does not deliver as much power to the focal

spot as the lens; it delivers slightly more than 60% of the injected power to the focal spot,

ρd . 5 cm. Subsequent increase in ρd results in an increase in received power. This behavior

can be understood by referring back to the z-component of the Poynting vector for the lens

and the zone plate, which are plotted in Fig. 5.4. Tracing the dashed white line from the

axis (y = 0) to the outer edge of the simulation space, it can be seen that a number of

the diffraction bands are incident on the focal plane. These bands account for the step-like

increases in Prec/Pinj for the zone plate in Fig. 5.5: As the radius is increased, more of this

misdirected power is included in the integral, Eq. (5.5). A clear example of this occurs

when ρd is slightly greater than 40 cm. This region is marked by a box labeled A in both

Figs. 5.4 and 5.5. The increase in Prec/Pinj in Fig. 5.5 inside of this box corresponds to a

region of relatively large
∣∣∣〈~S(t)〉

∣∣∣ in Fig. 5.4. Because the intensity of the diffraction bands

for the lens are lower than they are for the zone plate (by at least 10 dB), this effect is not

as significant for the lens.

5.3.2 Size and Axial Position of the Focal Spot

In addition to comparing the amount of power delivered to the focal spot, it is also important

to look at the size and axial position of this spot. For a plane parallel to the xy-plane at
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Figure 5.6: Radius of the -10 dB spot ρ10 for (a) the lens and (b) the zone plate for f = 8,
10, and 12 GHz. Here, z is the distance from the output plane of the lens or zone plate.

the distance z from the output plane of the lens or zone plate, the radius at which the

power has decreased 10 dB from the on-axis value was determined and called ρ10. For an

ideal plane wave, ρ10 would be infinite for all z, because the field is invariant in the radial

direction. For a Gaussian beam, the ρ10 would be the smallest at the waist of the beam,

and its value at the waist would indicate how tightly the beam is focused. This metric can

be used to compare the amplitude taper of the lens and the zone plate.

In Fig. 5.6, ρ10 is plotted for the lens (a) and zone plate (b) for three frequencies:

f = 8 GHz (dashed black line), 10 GHz (solid red line), and 12 GHz (dash-dot blue line).

This figure shows that both the lens and the zone plate are focusing in a beam-like manner.

For the lens, the beam waist is located at approximately the same distance z from the

output plane for all three frequencies. This distance is marked by the vertical dashed black

line. As the frequency is lowered, the radius of the focal spot increases from 3.4 cm for

f = 12 GHz (dash-dot blue line) to 4.6 cm for f = 8 GHz (dashed black line).
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The results for the zone plate show a different trend. At the design frequency, f =

10 GHz, the plot of ρ10 for the zone plate looks similar to that for the lens (solid red lines).

The size and position of the waist is similar for the lens and the zone plate. However,

as the frequency changes, the waist of the beam of the zone plate moves significantly. At

f = 8 GHz (dashed black line), the waist gets closer to the zone plate, while it moves farther

from the zone plate at f = 12 GHz (dash-dot blue line). At f = 8 GHz, the region where

ρ10 does not change much with changing z is smaller in the axial direction than it is at

f = 10 GHz. However, the general form of ρ10 remains similar to that of the lens: As z is

increased, the spot becomes narrow, levels out at a well-defined waist, and then expands

again. At f = 12 GHz, the waist becomes less well-defined, indicating that the focusing

mechanism is beginning to break down.

Figure 5.6 shows that the lens and the zone plate have different dependence on frequency.

This can be better understood by examining the plot of
∣∣∣ẑ · 〈~S(t)〉

∣∣∣ for both devices at all

three frequencies in Figs. 5.7 and 5.8. In both sets of figures, the dashed white line

represents the location of the beam waist for the lens when f = 10 GHz. Comparing the

two sets of figures, it is clear that the focusing from the lens is not highly dependent on

frequency, whereas it is much more so for the zone plate. For the lens, the beam looks similar

at all three frequencies, with only a minor shift in the location of the waist. Contrast this

with the plots for the zone plate. When f = 8 GHz (Fig. 5.8(a)), the waist of the beam

is closer to the zone plate. For the zone plate when f = 12 GHz (Fig. 5.8(c)), there is no

clearly defined beam waist and the field looks more like that of a collimated beam.

5.3.3 Phase Uniformity over the Focal Spot

Another metric that is important for focused-beam systems and in many focusing applica-

tions is the uniformity of the phase over the focal spot. This is quantified by computing the

root mean square (RMS) deviation in phase from a uniform value over the disc of radius

ρ10 at each axial position z. The values used for ρ10 in this calculation are those plotted

in Fig. 5.6. For an ideal plane wave, the phase deviation would be zero for all z, and for

a Gaussian beam, the phase deviation would be only exactly zero at the beam waist [39].
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Figure 5.7:
∣∣∣ẑ · 〈~S(t)〉

∣∣∣ in dB on a cross section in the yz-plane for the lens at the frequency
(a) f = 8 GHz, (b) f = 10 GHz, and (c) f = 12 GHz.
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at the frequency f = 8, 10, and 12 GHz.

Figure 5.9 shows the phase deviation as a function of axial distance from both the lens (a)

and the zone plate (b) at f = 8, 10, and 12 GHz. As in Fig. 5.6, the vertical dashed black

line indicates the location of the waist for the lens when f = 10 GHz. For both devices, the

phase deviation is very close to zero at one point for each of the frequencies. At this point,

the deviation for the lens ranges from 0.2◦ to 0.6◦ over the frequency range. The deviation

for the zone plate ranges from 0.2◦ to 0.9◦. The locations of these points correspond to the

locations of minimum ρ10 in Fig. 5.6 and, therefore, follow the same trends: The waist of

the beam for the lens stays at a fixed distance as the frequency is varied, while it moves for

the zone plate.

Based on the results in Sections 5.3.2 and 5.3.3, the zone plate behaves like the doubly-

hyperbolic lens at the design frequency: The focal spot is of similar size and location, and

the uniformity of the phase at the beam waist is comparable. The zone plate appears
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to be a suitable replacement for the lens at the design frequency. Away from the design

frequency, the location of the beam waist for the zone plate is significantly more frequency-

dependent than it is for the lens. In addition, the focusing mechanism of the zone plate

begins to break down as the frequency moves farther away from the design frequency. The

importance of these bandwidth limitations, of course, depends on the application. The

particular application of zone plates to a focused-beam system will be considered in the

next section.

5.4 Application of Zone Plates to a Focused-Beam System

The results from the comparison in the previous section can be applied to study the fea-

sibility of replacing lenses with zone plates in a focused-beam measurement system. In

this section, the focusing characteristics of the zone plate will be examined in light of this

particular application.

The limitation on the power delivered to the focal spot of the zone plate, discussed in

Sec. 5.3.1 is, by itself, not significant. Calibration procedures for the focused-beam system

allow the measurements to be independent of the amount of power delivered to the sample.

However, the fact that a significant amount of power can be sent in directions away from the

focal spot can become important. One of the assumptions of the focused-beam technique

is that the edges of the sample are outside the region that is strongly illuminated. If zone

plates are used and an edge of the sample is located at a point that receives significant

power, such as in a diffraction band, some of this power may be scattered back to one or

both of the horns. For example, if a sample edge is located inside of box A in Fig. 5.4,

where there is a relatively large amount of power, there is the potential for errors in the

material measurements made using the focused-beam system. A combination of techniques

can be used to solve this problem. Absorber can be placed around the edges of the sample

to reduce unwanted scattering. The signals received by the horns can also be time gated

to remove unwanted reflections from either an edge of the sample or from elsewhere in the

system. The time-gating procedure is not a unique requirement of the zone plate system;

it is also necessary for the lens system.
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∣∣∣ẑ · 〈~S(t)〉

∣∣∣ in dB on a cross section in the yz-plane for a system of two zone
plates at the frequency (a) f = 8 GHz, (b) f = 10 GHz, and (c) f = 12 GHz.

The frequency-dependant shift in the beam waist is a concern that must be accounted for

in a focused-beam system that uses zone plates. To see how this shift can adversely affect a

focused-beam system, examine Fig. 5.10. In this figure, the magnitude of the z-component

of the time-average Poynting vector
∣∣∣ẑ · 〈~S(t)〉

∣∣∣ is plotted for a system of two zone plates

for f = 8, f = 10, and f = 12 GHz, respectively. The source in these figures is located

below the bottom zone plate. The distance between the two zone plates in all three cases

is twice the output focal length of the zone plate when f = 10 GHz. To use this system of

zone plates for focused-beam measurements, a sample of material would be placed halfway

between each set of zone plates. The sample location is indicated by the dashed while line

in between the zone plates in Fig. 5.10. A second dashed white line in each of the figures

indicates the position of the receive horn. The sample location is clearly at the beam waist

when f = 10 GHz. When f = 8 GHz, the sample is not at the waist and the receive horn

is not located at the correct position. When f = 12 GHz, there is no clearly defined waist

between the zone plates, although the receive horn is located in an acceptable position.

Figure 5.11 shows the 10 dB radius ρ10 for this same system of two zone plates. Notice

that there are now two beam waists. The observations that were made about Fig. 5.8 are

reinforced by this figure: At the design frequency, f = 10 GHz (solid red line), one waist is
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Figure 5.11: Radius of the -10 dB spot for the zone plate for f = 8, 10, and 12 GHz. Here,
z is the distance from the output plane of the input zone plate.

between the lenses at the sample location (indicated a dashed black line) and the other is

at the location of the receive horn (also indicated by a dashed black line). When f = 8 GHz

(dashed black line), the shifted waists can be seen, as can the ambiguous nature of the waist

at the sample when f = 12 GHz (dash-dot blue line).

One approach to overcome this problem is to compensate for the shift in the beam waist

by moving the zone plates with respect to the sample at each frequency. To implement this

idea, BOR-FDTD simulations or measurements would be used to determine the behavior

of the focal length as a function of frequency. Using this knowledge, the zone plates and

sample could be rearranged so that the space between the zone plate would be twice the

focal length at a particular frequency. The sample would then be placed halfway between

the zone plates, and its material properties could be measured at that frequency. This

process could then be repeated for every desired frequency. The drawback of this approach

is that some of the simplicity of the focused-beam system is lost, and the system becomes

less convenient to use.

A good compromise between optimizing the position of the sample at each frequency

and ease-of-use is to choose a few different spacings and then measure a band of frequencies

for each of these spacings. This idea takes advantage of the fact that there is a region

around the waist at each frequency for which the amplitude taper and phase uniformity

appear to be near the optimal values achieved exactly at the waist. If the focused-beam
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Figure 5.12: Schematic diagram of a focused-beam measurement system with zone plate
focusing elements. The spacing between the zone plates and the sample zs is adjusted for
three frequencies.

system was configured so that the sample was placed near the beam waist, it is reasonable

to expect that the focused-beam measurement system would still give acceptable results.

The proposed idea is illustrated for three frequencies in Fig. 5.12: The zone plates

are closest together for measurements around 8 GHz and farthest apart for measurements

around 12 GHz. The spacings zs are determined by the locations of minimum phase devia-

tion; for the zone plate considered in Fig. 5.9 these spacings are: zs = 38 cm for f = 8 GHz,

zs = 55 cm for f = 10 GHz, and zs = 72.4 cm for f = 12 GHz. BOR-FDTD simulations

were used to examine this idea. Three simulations were run for the three configurations

shown in Fig. 5.12. The magnitude of the z-component of the time-average Poynting vector∣∣∣ẑ · 〈~S(t)〉
∣∣∣ near the pair of zone plates is plotted in dB in Fig. 5.13. The results shown

are for the respective frequencies (e.g., in Fig. 5.13(a), the spacing zs is set for f = 8 GHz

and
∣∣∣ẑ · 〈~S(t)〉

∣∣∣ is plotted for f = 8 GHz). In this figure, the sample location (indicated by

the dashed line) now coincides with the beam waist at each frequency. The distance from

the output zone plate to the receive horn is held constant for all three frequencies. This is

done to simplify the process of reconfiguring the system between measurements; the horn

and the zone plate can be moved towards or away from the sample as a single unit.

The -10 dB radii ρ10 for the rearranged systems are plotted in Fig. 5.14(a). For this
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∣∣∣ẑ · 〈~S(t)〉

∣∣∣ in dB on a cross section in the yz-plane for a system of two zone
plates at the frequency (a) f = 8 GHz, (b) f = 10 GHz, and (c) f = 12 GHz. The spacing
between the zone plates is chosen separately for each frequency.

figure, the axis has been modified so that ρ10 is plotted relative to the locations of the two

waists of each system. The waist associated with the sample location is plotted using a

coordinate system centered at zs, and the waist associated with the receive horn is plotted

using a coordinate system centered at the location of the horn zhorn. For reference, the

locations of the centers of both of these coordinate systems are shown in Fig. 5.14(b).

Figure 5.14(a) shows that the beam waists for both the sample and the horn are now in

approximately the correct place when f = 8 and f = 10 GHz. When f = 12 GHz, the waist

for the horn is in approximately the correct place.

The results presented in this chapter give us confidence that zone plates can be used for

focused-beam systems. At the beginning of this research, there were four primary concerns

regarding zone plates for focusing applications: the amplitude taper, and phase uniformity,

the polarization of the field, and the bandwidth of the device. In Sec. 5.3, the amplitude

taper and phase uniformity were shown to be similar to the lens at the design frequency.

The polarization of the field at the beam waist will be examined using measurements of the

field in Chapter 6. The frequency-dependent behavior of the zone plate was studied, and the
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Figure 5.14: (a) Radius of the -10 dB spot for the zone plate for f = 8, 10, and 12 GHz.
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beam waist was shown to move as the frequency was changed. In this section, a technique

was proposed to compensate for the frequency dependence by adjusting the configuration of

a focused-beam system for a few distinct frequencies. BOR-FDTD simulations of a focused-

beam system with two zone plates arranged in multiple configurations indicate that this

may be an effective solution. This technique is experimentally explored in the next section.
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CHAPTER VI

EXPERIMENTAL STUDY OF A ZONE PLATE FOR A

FOCUSED-BEAM MEASUREMENT SYSTEM

In this chapter, experimental results for the study of the application of zone plates to free-

space, focused-beam measurement systems are presented. The fabrication of the zone plate

is discussed, and measurements of the electric field in a volume surrounding the focal point

of both the zone plate and the doubly-hyperbolic lens that the zone plate was designed to

replace are presented. These data are used to validate the BOR-FDTD simulations and to

further the comparison of the zone plate with the lens. A set of two zone plates is used

to perform measurements of the electrical properties of different dielectric sheets, and the

results are compared to the results from a standard system which uses two doubly-hyperbolic

lenses and to values from the literature, when possible.

6.1 Fabrication of the Zone Plate

The zone plate presented in Chapter 5 was fabricated by selectively removing material from

a slab of Rexolite using computer numerical controlled (CNC) manufacturing techniques.

CNC manufacturing is based on the premise that software can be written to control the

movements of different cutting tools. The software is generated from drawings of the part

to be manufactured. This process allows complicated parts to be machined with great

accuracy.

An engineering drawing of the zone plate was created using SolidWorks1, a three-

dimensional computer-aided design (CAD) software package. This drawing included all

of the geometrical properties of the zone plate, including a mathematical representation of

the curve that is rotated about the axis of symmetry to generate the profile. SolidWorks

can generate both three-dimensional models and two-dimensional drawings. In Fig. 6.1, a

1Copyright Dassault Systems
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two-dimensional drawing of the zone plate is shown. The dimensions in this drawing are

given in inches. The SolidWorks drawing of the zone plate was converted into software that

was used to control the movements of cutting tools by Kurt Wiesmayer of Wiesmann Tool,

Inc., Alpharetta, Georgia.

The zone plate was made of Rexolite 1422 purchased from C-Lec Plastics2. The di-

mensions of the piece of Rexolite received from C-Lec Plastics were 6.35 cm by 60.96 cm by

60.96 cm (2.5 in by 24 in by 24 in), with positive tolerances only (meaning that the piece was

guaranteed to be at least this size). This was important because the thickness of the zone

plate (see Table 5.2) is 6.32 cm.

The actual process of machining of the zone plate was done in two steps. The first

step was to use a milling machine to ‘rough out’ the general shape of the zone plate. The

zone plate was mounted on a platform in the milling machine, and a rotating cutting bit

then cut a coarse approximation to the zone plate. Figure 6.2(a) shows a photograph of

the milling machine and two zone plates after this phase of the fabrication was completed.

Figure 6.2(b) is a closeup photograph of a zone plate. Notice the step-like approximation

to the profile of the zone plate.

A lathe was then used to remove the remainder of the material. The zone plate was

mounted to a rotating platform and the location of a cutting tool was controlled by a

computer to shave away a small amount of material at a time until the exact profile specified

for the zone plate was obtained. Figure 6.3(a) shows a photograph of the lathe in the process

of shaping the zone plate. Figure 6.3(b) shows a closeup photograph of the cutting tool

and the zone plate. Notice that the profile is smooth for the outer zone, which has already

been cut. Also notice the white shavings of Rexolite, which give an indication of how little

material is removed at a time. The inner zones have not yet been cut and are as they were

after the milling step. The combination of using a milling machine to remove the bulk of

the material and a lathe to finish the profile allowed tight tolerances to be achieved. A

typical dimension of the finished zone plate differs by less than .005 inch from the specified

value.

2Rexolite is a registered trademark of C-Lec Plastics, www.rexolite.com.

110



TR
UE

 R
.0

00
23

.4
61

20
.8

13
17

.8
73

14
.4

66

10
.1

37

R1
2.

75
0

0.5
00

2.
48

8

D
O

 N
O

T 
SC

A
LE

 D
RA

W
IN

G

zp
dr

aw
in

g SH
EE

T 
1 

O
F 

2

UN
LE

SS
 O

TH
ER

W
IS

E 
SP

EC
IF

IE
D

:

SC
A

LE
: 1

:8
W

EI
G

HT
: 

RE
V

D
W

G
.  

N
O

.

ASI
ZE

TIT
LE

:

N
A

M
E

D
A

TE

C
O

M
M

EN
TS

:

Q
.A

.

M
FG

 A
PP

R.

EN
G

 A
PP

R.

C
HE

C
KE

D

D
RA

W
N

FI
N

IS
H

M
A

TE
RI

A
L

IN
TE

RP
RE

T 
G

EO
M

ET
RI

C
TO

LE
RA

N
C

IN
G

 P
ER

:

D
IM

EN
SI

O
N

S 
A

RE
 IN

 IN
C

HE
S

TO
LE

RA
N

C
ES

:
FR

A
C

TIO
N

A
L

A
N

G
UL

A
R:

 M
A

C
H

   
  B

EN
D

 
TW

O
 P

LA
C

E 
D

EC
IM

A
L 

   
TH

RE
E 

PL
A

C
E 

D
EC

IM
A

L 
 

A
PP

LIC
A

TIO
N

US
ED

 O
N

N
EX

T 
A

SS
Y

PR
O

PR
IE

TA
RY

 A
N

D 
C

O
N

FI
DE

N
TIA

L
TH

E 
IN

FO
RM

A
TIO

N
 C

O
N

TA
IN

ED
 IN

 T
HI

S
D

RA
W

IN
G

 IS
 T

HE
 S

O
LE

 P
RO

PE
RT

Y 
O

F
<I

N
SE

RT
 C

O
M

PA
N

Y 
N

A
M

E 
HE

RE
>.

  A
N

Y 
RE

PR
O

D
UC

TIO
N

 IN
 P

A
RT

 O
R 

A
S 

A
 W

HO
LE

W
ITH

O
UT

 T
HE

 W
RI

TT
EN

 P
ER

M
IS

SI
O

N
 O

F
<I

N
SE

RT
 C

O
M

PA
N

Y 
N

A
M

E 
HE

RE
> 

IS
 

PR
O

HI
BI

TE
D

.

5
4

3
2

1

F
ig

u
re

6.
1:

E
ng

in
ee

ri
ng

dr
aw

in
g

of
th

e
zo

ne
pl

at
e

to
be

m
an

uf
ac

tu
re

d.

111



(a)

(b)

Figure 6.2: Photographs of (a) the milling machine at Wiesmann Tool, Inc. and (b) the
zone plate after the milling process.
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(a)

(b)

Figure 6.3: Photographs of (a) the lathe in the process of shaping the zone plate at
Wiesmann Tool, Inc. and (b) the cutting tool and the zone plate in the lathe.
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Figure 6.4: SolidWorks drawing of the bracket for the zone plate.

A bracket was designed to support this zone plate in a vertical position. The bracket

was made from 1.27 cm thick pieces of Delrin3, which was chosen because it is mechanically

rigid and machinable. It will not sag or bend significantly when supporting the weight of

the zone plate, which is important in order to maintain alignment. These pieces were bolted

together to create a u-shaped channel. Notice that in the drawing for the zone plate, Fig.

6.1, a lip was left around the outside of the device. This lip is an extension of the zone plate

base, and therefore has a thickness t = 1.27 cm. At its widest, the lip extends 2.6 cm beyond

the outer radius of the zone plate, with a radius of 32.38 cm. At its narrowest point (the

center of each of the flat edges) the distance from the center of the zone plate to the edge is

limited by the size of the piece of Rexolite and is 30.48 cm. This lip slides into the groove

made by the bracket, and the flat edge rests on the bracket, supporting the weight of the

zone plate. The groove provides front-to-back stability and keeps the zone plate oriented

at a 90◦ angle with respect to the base. Figure 6.4 shows a three-dimensional SolidWorks

model of the bracket. The dark-colored parts (six pieces) are made from Delrin. The Delrin

bracket (εr ≈ 3.1 [78]) scatters less of the incident field than a metal bracket would. The

3Delrin is a registered trademark of E. I. du Pont de Nemours and Company (DuPont), www.dupont.com.
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(b)(a)

10 cm

Figure 6.5: Photographs of the zone plate and bracket from (a) the front and (b) the side.

light-colored base seen in Fig. 6.4 is made from two Aluminum ‘angles’ (L-shaped pieces

with a 90◦ angle). A thin piece of Aluminum is used as a spacer between the two angles.

This bracket was also machined by Wiesmann Tool.

Photographs of the completed zone plate supported by the assembled bracket are shown

in Fig. 6.5.

6.2 Experimental Procedure to Study Focusing

The focusing characteristics of this zone plate and the lens used for GTRI’s existing focused-

beam system were studied experimentally. Measurements of the electric field were made

throughout the volume surrounding the focal point for both the zone plate and the doubly-

hyperbolic lens. These measurements were used to validate the conclusions drawn from the

BOR-FDTD study of Chapter 5 and to further the comparison of the two devices.

Measurements of the field were taken using an existing experimental facility at GTRI,

called the ‘beamscan system’. This system consists of a horn, the zone plate or lens, an

electric field probe, and a system of rails and linear positioners. Diagrams of the experi-

mental setup are shown in Fig. 6.6. Figure 6.6(a) shows the coordinate system that will be

used for the remainder of the work. The horn shown in the diagram is a pyramidal standard
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Figure 6.6: Schematic diagrams of the beamscan system showing (a) the coordinate system
used and (b) the relationship between the components of the system.
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WR90 
Waveguide

Metal Plug

Coaxial Lines

8.2 cm

1.5 cm

Loop

Figure 6.7: Schematic diagram of the dipole probe.

gain horn (Narda model 640). This particular horn was chosen for its linear polarization

and its relatively symmetric radiated field. The horn is oriented so that the electric field is

polarized in the y-direction. The distance between the horn and the front of the zone plate

(or lens) is fixed at 43.2 cm for all of the measurements and simulations presented in this

work.

A system of three linear positioners allows the probe to be moved in the x-, y-, and z-

directions with respect to the zone plate or lens. A network analyzer connected to the horn

and the probe, as shown in Fig. 6.6(b), is used to measure the magnitude and phase of the

desired field component. Data acquisition software is interfaced with the network analyzer

and the linear positioners to automate this process4, as shown in Fig. 6.6(b). A graphical

user interface allows the user to enter the parameters of the particular measurement to be

performed, such as the range of frequencies and positions to be scanned.

For this work, a new probe was designed to measure the electric field focused by the zone

plate and the lens. Using this probe, each individual measurement samples the field over

a small area, rather than averaging the field over a larger area like a horn or open-ended

waveguide probe would. This facilitates the comparison of the measured field values with

those from the simulations. A diagram of the probe is in Fig. 6.7. The dipole probe is

made from a pair of semi-rigid coaxial lines. The exposed center conductor of each line

forms one arm of the dipole, and the two lines are run through a plug in the end of a WR90

waveguide. Inside the waveguide, the exposed center conductors of the lines are connected

to form a loop which couples to the magnetic field in the waveguide. Notice that the probe

4The automated data acquisition software was written by members of the Signature Technology Labora-
tory (STL) at GTRI.
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1 cm

(a) (b)

Figure 6.8: Photograph of the dipole probe (a) attached to the WR90 waveguide and (b)
free-standing with the loop visible.

Horn

Zone Plate
Probe

Figure 6.9: Schematic diagram of the beamscan system configured to measure the z-
component of the electric field.

is a balanced structure. Photographs of the probe are in Fig. 6.8. Figure 6.8(a) shows the

probe with the metal plug inserted into the waveguide, and Fig. 6.8(b) shows the probe

with the loop visible.

The probe can be oriented to measure the x- or y-component of the electric field. The

y-component is measured when the probe is oriented as it is drawn in Fig. 6.6(a), and

the x-component is measured when the probe is rotated by 90◦. The z-component can

also be measured, although the accuracy and the physical range for the measurements were

restricted in this configuration by the presence of the coaxial lines. To measure the z-

component of the field, the probe is oriented as shown in Fig. 6.9. This figure shows a

top-down view of the measurement system. When the probe is positioned at a location

x < 0, as it is in the figure, the scattering from the waveguide and the coaxial lines does

not have a large effect on the measurement of the field. When the probe is positioned at

a location x > 0, however, the waveguide and coaxial lines are located in the region where

the field is most intense, and scattering from these components of the probe introduces an

error in the measurements of the field.
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The region around the beamscan system was surrounded by foam absorber to reduce

reflections from other objects in the room. A photograph of the beamscan system configured

to measure the field focused by the zone plate is shown in Fig. 6.10. The probe is located at

the end of a pyramid of absorber on the left side of the photograph, and the x- and y-axis

rails are covered by absorber.

6.3 Experimental Study of Lens and Zone Plate Focusing

The system shown in Fig. 6.10 was used to measure the field in a volume surrounding

the focal region of both the existing lens and the newly-fabricated zone plate. In this

section, the measured data are presented and compared to data obtained from BOR-FDTD

simulations. These data are used to give a more detailed comparison of the lens and the

zone plate. Specifically, data related to the characteristics required of a focusing element

in a focused-beam system will be presented, evaluated, and compared for both the zone

plate and the lens. These characteristics include the amplitude taper, phase uniformity,

and linearity of the polarization at the waist of the beam as well as the bandwidth over

which the device can be used.

The full set of measured data are presented in Appendix A. These data have value beyond

just the comparative function they serve in this chapter. The measurements performed for

this work represent a more detailed look at the field in the focal region of the lens for GTRI’s

standard focused-beam system than previously existed. The data for the zone plate can

serve as a useful tool for designing zone plates for any application. Appendix A provides a

record of these measurements.

To determine if a zone plate can replace a doubly-hyperbolic lens, the first step is to

validate that the zone plate is indeed working as a focusing element. To do this, the behavior

of the field along the z-axis is of interest. |Ey| is plotted as a function of the distance from

the zone plate and the lens at the design frequency of the zone plate (f = 10 GHz) in

Fig. 6.11. The red (solid) lines are for the BOR-FDTD simulations, and the blue (dashed)

lines are for the measurements. There is good agreement between the simulations and

measurements for both devices. The location of the maximum |Ey| is approximately the
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Figure 6.11: Measured and simulated (FDTD) results for the electric field Ey along the
z-axis when f = 10 GHz. The magnitude Ey at f = 10 GHz for the (a) the zone plate (b)
the lens are plotted as a function of the distance from the respective focusing element.

same distance from the zone plate as it is from the lens. In both figures, the dashed black

line is located at z = 55 cm, the location of the maximum field value for the lens. The lens

focuses the field to a narrower region along the axis than the zone plate does, however.

6.3.1 Amplitude Taper

One of the most important requirements for a zone plate in a focused-beam measurement

system, which has been discussed repeatedly throughout this document, is the need for the

amplitude of the field focused by the zone plate to have a similar taper to that focused by

the lens. The amplitude taper for the two devices can be examined in Fig. 6.12, which

shows the field for the design frequency of the zone plate, f = 10 GHz. The magnitude of

the y-component of the electric field |Ey| for the zone plate is plotted in dB in Fig. 6.12(a)

for two cuts. The red lines are for horizontal cuts (y = 0) and the blue lines are for vertical

cuts (x = 0), all on the focal plane (z = 55 cm from the output plane of the zone plate or

the lens). The solid lines are for the BOR-FDTD simulations, and the dashed lines are for

the measurements (the field is sampled every 6.35 mm). The same quantities are plotted

for the lens in Fig. 6.12(b). The figures show good agreement between the simulations and

the measurements, both in the main beam and in the sidelobes.

A comparison of the zone plate and lens shows that the amplitude taper is similar for
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Figure 6.12: Measured and simulated (FDTD) results for the magnitude of the electric
field Ey on the focal plane for (a) the zone plate and (b) the lens.

both devices. Both have a main beam of similar size (with a radius of 6.5 cm for the zone

plate and 7.7 cm for the lens). At the edge of the main beam, the field is down at least

30 dB for both devices. Note, however, that the sidelobes for the lens are generally lower

than for the zone plate.

Figure 6.13 shows the magnitude of Ey in dB for the zone plate and the lens for two

planar cuts through the focal point: a horizonal cut (xz-plane) in (a) and (c), and a vertical

cut (xy-plane) in (b) and (d). Measured results are plotted on the left of each figure, and

FDTD results are plotted on the right, with red representing the highest intensity and blue

representing the lowest intensity. The field was measured at points spaced ∆x = 6.35 mm

(∆x/λ ≈ 0.21) apart; this causes the pixelation in the figures for the measured field. Each

of these plots show good agreement between the simulations and measurements.

Figures 6.12 and 6.13 support the conclusion of the BOR-FDTD comparison in Chapter

5: based on the amplitude taper of the field focused by the zone plate, the zone plate

appears to be an acceptable replacement for the lens at the design frequency.
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Figure 6.13: Magnitude of Ey at f = 10 GHz for (a) a horizontal cut (xz-plane), and (b)
a vertical cut (xy-plane) through the focus of the zone plate. The same two cuts are plotted
for the lens in (c) and (d).
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Figure 6.14: Measured and simulated (FDTD) results for the phase of the electric field Ey
on the focal plane for (a) the zone plate and (b) the lens. The dashed black lines indicate
the extent of the main beam from Fig. 6.12.

6.3.2 Phase Uniformity

The behavior of the phase in the focal region is also important. The phase of Ey for two

cuts through the focal plane is plotted in degrees in Fig. 6.14. The line conventions are the

same as in Fig. 6.12: The red lines are for horizontal cuts (y = 0) and the blue lines are for

vertical cuts (x = 0). The solid lines are for the BOR-FDTD simulations, and the dashed

lines are for the measurements. In this figure, the vertical dashed black lines indicate the

extent of the main beam (the region between the first nulls in Fig. 6.12). Again, there

is good agreement between the simulated and measured results, particularly in the main

beam, for both the zone plate and the lens. The phase of the field focused by the zone plate

(Fig. 6.14(a)) is comparably uniform in the main beam to the phase of the field focused

by the lens (Fig. 6.14(b)). At the edge of the main beam focused by the zone plate (x or

y = 6.5 cm), the phase for the vertical cut (x = 0) has shifted by about 75◦. At the same

distance from the axis, the phase for the same cut of the field focused by the lens has shifted

by about 100◦.

The phase on the xz-plane is plotted for both the zone plate (Fig. 6.15(a)) and the lens

(Fig. 6.15(b)) when f = 10 GHz, with measured data on the left and simulated data on the
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Figure 6.15: Phase of Ey at f = 10 GHz for a horizontal cut (xz-plane) through the focus
of (a) the zone plate and (b) the lens.

right. Contours of constant phase are spaced 10◦ apart and are color coded. The value of

the phase is set to zero at z = 55 cm, and the color scale is referenced to this value, with

red representing a positive phase shift and blue representing a negative phase shift. The

dominant feature of the phase in the region shown is the linear component of the phase due

to the distance from the zone plate. This component has been subtracted to enhance the

detail of the phase in the focal region. What remains is a much smaller linear component

along the axis (notice the phase progression as z increases). This linear trend is similar to

the predicted linear phase component of an ideal Gaussian beam [39]. For any particular

value of z, as x is increased, the phase falls off with increasing distance from the axis.

There is value of z for which this falloff is slowest (i.e. the phase is flattest). Comparing the

location of the flattest phase with the location of the waist from the amplitude plots shows

that these points are nearly at the same distance from the zone plate, as expected. The

agreement between the measurements and simulations is reasonably good: The same general
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characteristics are seen in both, and the location of the flattest phase in the measured data

is close to that of the simulated data. Additionally, the linear phase shift with increasing z

along the axis is similar in both the measurements and simulations. Figure 6.15 also shows

a distinct similarity between the phase of the field focused by the zone plate and the phase

of the field focused by the lens. Particularly near the axis, the phase appears to behave in

the same way for both devices. This observation agrees with the conclusions from Chapter

5: at the design frequency, the phase of the field focused by the zone plate appears to be

acceptably uniform.

Collectively, Figs. 6.12-6.15 confirm that the zone plate is focusing energy in the manner

of a Gaussian beam and that this focusing is similar to the focusing by the lens. In Figs.

6.13(a) and (c), the beam-like nature of the focused field can be seen: The field focused by

the zone plate tapers to a waist near z = 55 cm and then expands with increasing distance

from the zone plate. The field focused by the lens has the same general characteristics,

although the waist is closer to z = 56 cm. The cuts in the xy-plane through the waist in

Figs. 6.13(b) and (d) clearly show the focal spot produced by both the zone plate and the

lens. In these plots, one of the most noticeable differences is that the sidelobes for the zone

plate are larger than for the lens. This was also seen in Figs. 6.12. Finally, Fig. 6.15 shows

that the phase flattens out near the waist for both devices.

6.3.3 Linear Polarization

In a focused-beam measurement system, the field near the waist of the beam (near the

sample) is treated as a linearly polarized plane wave. The measurement system is configured

so that the field from the horn in polarized in the y-direction. In this section, the other two

components of the electric field, Ex and Ez, will be studied to determine if the field focused

by a zone plate can be considered to be linearly polarized. In addition, measurements of

the other components of the electric field are also useful to confirm the accuracy of the

BOR-FDTD simulations.

The magnitude of Ex in the xy-plane through the focus is plotted for the zone plate

and the lens when f = 10 GHz in Fig. 6.16. The agreement between the measured and
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Figure 6.16: The magnitude of Ex in the xy-plane at f = 10 GHz through the focus for
(a) the zone plate and (b) the lens.

simulated values of Ex is reasonably good. The measured values of |Ex|, for both devices,

are generally larger than the simulated values. This is likely due to imperfect alignment of

the components of the beamscan system, particularly the horn and the dipole, and imperfect

construction of the dipole probe. The color scale is the same for these figures as for Fig.

6.13, so it can be seen that the maximum value of |Ex| for the zone plate is about 20 dB less

than the maximum of |Ey|. The Ex component is even smaller for the lens; the maximum

value of |Ex| for the lens is about 30 dB less than the maximum of |Ey|. Notice that outside

of the spots of largest intensity, |Ex| falls off more quickly for the lens than it does for the

zone plate, which has a distinct pattern of sidelobes.

Figure 6.17 shows the presence of a z-component of the electric field in both the simu-

lations and the measurements. The magnitude of Ez in a plane parallel to the yz-plane is

plotted for the zone plate and the lens when f = 10 GHz in Figs. 6.16(a) and (c), and |Ez|

is plotted in a xy-plane for the zone plate and the lens when f = 10 GHz in Figs. 6.16(b)

and (d). The yz-plane for these measurements and simulations is not through the focal

point, but is instead offset by x = −0.64 cm for the reasons explained in the discussion of

Fig. 6.9. For the same reasons, the plots for the xy-plane also do not go all the way to

x = 0.
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Figure 6.17: Magnitude of Ez at f = 10 GHz for (a) a vertical cut (yz-plane) through the
plane x = −0.64 cm, and (b) a vertical cut (xy-plane) through the focus of the zone plate.
The same two cuts are plotted for the lens in (c) and (d).
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Although Ez = 0 for an ideal plane wave, the field for an ideal Gaussian beam has a small

(non-zero) z-component [39]. Ez is therefore a particularly interesting metric for evaluating

the accuracy of the BOR-FDTD simulations and the sensitivity of the measurement system.

Because of the probe design, the measurements for Ez are not as accurate as they are for

Ex and Ey. However, the results in Fig. 6.17 agree well enough to indicate that the FDTD

model is correctly accounting for Ez. The value of |Ez| in the focal region looks similar for

both the zone plate and the lens. In Figs. 6.17(a) and (c) the intensity near the focal plane

is small on the axis for both devices. Moving away from the axis by increasing or decreasing

x, the intensity increases and then tapers back off to near zero. This is the form of |Ez|

predicted for an ideal Gaussian beam [39]. The scale of these plots is the same as the scale

for Figs. 6.13 and 6.16, so it can be seen that |Ez| is at least 20 dB smaller than |Ey|.

The results in Figs. 6.13, 6.16, and 6.17 show that the field at the beam waist is

nearly linearly polarized: the x- and z-components of the field are at least 20 dB below

the y-component of the field. This is important for the application of the zone plate to a

focused-beam system; these results show that it is reasonable to treat the field focused by

the zone plate as a plane wave near the beam waist.

The measured data presented in this section illustrate a few important concepts. A direct

comparison of the zone plate and the lens at the design frequency indicates that the zone

plate is an acceptable replacement for the lens in a free-space, focused-beam measurement

system. Additionally, the BOR-FDTD simulations were shown do a good job of predicting

the actual focusing by both the zone plate and the lens.

6.3.4 Bandwidth

In Chapter 5, simulations showed that the beam waist of the zone plate shifts from its

intended location away from the design frequency. This has an effect on the usable band-

width of the zone plate in a focused-beam measurement system. The conclusions about the

frequency dependence of the zone plate from Chapter 5 are supported by measurements

taken for f = 8 GHz and f = 12 GHz. In this section, a sample of these measurements will

be presented and discussed.
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Figure 6.18: Measured and simulated (FDTD) results for the electric field Ey along the
z-axis for the zone plate. The magnitude Ey at (a) f = 8 GHz and (b) f = 12 GHz is
plotted as a function of the distance from the respective focusing element.

Figure 6.18 shows |Ey| plotted as a function of the distance from the zone plate when

f = 8 GHz and f = 12 GHz. The vertical dashed black line in both figures is the location

of the beam waist for the lens when f = 10 GHz (z = 55 cm). The agreement between the

simulations and the measurements is not quite as good when f = 12 GHz. Nevertheless, the

shift of the beam waist as the frequency differs from the design frequency is quite evident

from the figure.

In Fig. 6.19, the magnitude of Ey on the xz-plane through the focus is plotted in dB

for the zone plate and the lens for the same two frequencies. Figs. 6.19(a) and (c) are for

f = 8 GHz and (b) and (d) are for f = 12 GHz. These figures clearly show that the field

focused by the zone plate at these frequencies looks different from the field focused at the

design frequency, f = 10 GHz. The field focused by the lens looks similar, however, for all

three frequencies: f = 8 GHz (Fig. 6.19(c)), f = 10 GHz (Fig. 6.13(c)), and f = 12 GHz

(Fig. 6.19(d)).

The complete set of measured and simulated data for the zone plate and lens at the

frequencies f = 8, 10, and 12 GHz is compiled in Appendix A. In general the agreement

between the measured and simulated results is quite good. This is especially true for

measured and simulated data when f = 8 and f = 10 GHz. The measurements for f = 8

and f = 12 GHz support the conclusions from Chapter 5 about the frequency-dependent
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Figure 6.20: Schematic diagram of the free-space focused-beam system.

nature of the zone plate.

6.4 Experimental Procedure to Test Focused-Beam System that uses
Zone Plates

In Chapter 5, BOR-FDTD simulations were used to begin to evaluate zone plates for use

as focusing elements in focused-beam systems. The focusing from the zone plate was found

to be frequency dependent, and a method for compensating for this frequency dependence

was proposed. Based on BOR-FDTD simulations, this method appeared to be a promising

solution to extend the usable bandwidth of the zone plate. To fully test the zone plate for

this application, a complete focused-beam system using two zone plates was constructed and

used to measure the complex permittivity of different materials. To evaluate the accuracy

of the system, these measurements were compared to measurements for the same materials

made with a focused-beam system with two lenses. When possible, measured permittivities

were also compared to published values.

The focused-beam system that was used for these tests was based on the setup for

GTRI’s standard focused-beam system. A diagram of the system is in Fig. 6.20, and

photographs of the focused-beam system are shown in Figs. 6.21 and 6.22. Figure 6.21

is a photograph of the focused-beam system that uses zone plates as focusing elements.

Notice that the sample holder is surrounded by absorbing foam, as suggested in Sec. 5.4.

Figure 6.22 is a photograph of the system that uses lenses as focusing elements. In this
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Figure 6.23: Schematic diagram of the four configurations necessary for a response and
isolation calibration for the focused-beam system.

photograph, a sheet of Rexolite is visible in the sample holder.

The distance from the both horns to the closest surface of the zone plate or lens is

43.2 cm. The distance between the zone plates is 2zs (2zs = 110 cm when the system is

configured for f = 10 GHz), and the sample is placed halfway between the zone plates. The

transmit horn and the receive horn are connected to ports one and two of the network ana-

lyzer, respectively. Data acquisition software on a personal computer controls the network

analyzer and records scattering parameter (S-parameter) data. Before the permittivities

can be calculated, the recorded data must be post-processed in two steps: a calibration

step and a time-gating step.

6.4.1 Calibration and Time Gating

The calibration is applied to the data using the same procedures that are used for GTRI’s

standard focused-beam system. The calibration explained in [79] is used: A response and

isolation calibration is made for each of the S-parameters. This requires eight distinct

measurements in four different configurations. Figure 6.23 is a schematic diagram of these

four configurations. Using the configuration in Fig. 6.23(a), the transmission response

coefficients Sres
21 and Sres

12 are measured. A metal plate of known thickness is placed in the
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sample holder, as shown in Fig. 6.23(b), and the reflection response coefficients Sres
11 and

Sres
22 and the transmission isolation coefficients Siso

21 and Siso
12 are measured. For all four of

these measurements, the metal plate is left in place and its thickness is mathematically

accounted for. Finally, the two configurations in Figs. 6.23(c) and (d) are used to measure

the reflection isolation coefficients Siso
11 and Siso

22 , respectively. In these configurations, a piece

of broad-band foam absorber placed in front of one of the horns is treated as a matched

load. These coefficients can then be used to calibrate the S-parameters measured with the

sample in place:

Scal
ij =

Smeas
ij − Sres

ij

Sres
ij − Siso

ij

, (6.1)

in which ij = 11, 12, 21, or 22. Additionally, the thickness of the metal plate tm is

accounted for by multiplying Scal
11 and Scal

22 by e−jkotm to adjust the reference plane for the

measurements. All four S-parameters are multiplied by ejkots to account for the space taken

up by the sample to be measured, which has a thickness of ts.

The time-gating procedure is also done in post-processing. The calibrated, frequency-

domain measurement data (Scal
ij ) are convolved with a Kaiser window. This procedure is

mathematically equivalent to multiplying the time-domain data by a finite window. This

windowing removes unwanted reflections, including multiple reflections between the zone

plate or lens and the sample.

6.4.2 Calculation of Permittivity

The calibrated and time-gated data can be used to calculate the permittivity of the dielectric

sheet. The process of computing dielectric properties from these measurements is called the

‘inversion’ of the measurements. There are a number of different ways to perform this

inversion. Two of the most common techniques are applied in this work. Both methods

treat the field near the beam waist as a plane wave. Using this assumption, the formulas

for a plane wave incident on a dielectric sheet can be used to find the theoretical values

of the S-parameters for sheets of different permittivity and permeability. By finding the

theoretical S-parameters that most closely match the measured S-parameters, the material

properties of the sample can be determined.
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One technique involves computing the permittivity of the sample using a single cali-

brated measurement, in this case Scal
21 [43]. Newton’s method is used to iteratively solve

for the permittivity. The theoretical value of Spw
21 for a plane wave incident on a dielectric

sheet of thickness l can be written as a function of the permittivity of the sample [43] for a

given frequency:

Spw
21 (εr) =

τ
(
1− Γ2

)
1− τ2Γ2

. (6.2)

In this equation,

Γ(εr) =
1−√εr
1 +
√
εr
, (6.3)

and

τ(εr) = e−jkol
√
εr , (6.4)

in which ko = 2π/λ is the propagation constant in free space. The actual permittivity can

be found at each frequency by solving for the root of the equation created by subtracting

the theoretical and measured values of S21,

Scal
21 − S

pw
21 (εr) = 0 . (6.5)

The value of εr for which Eq. (6.5) is minimized is assumed to be the permittivity of the

material.

The second technique used is based on the inversion algorithm for the transmission/reflection

method for waveguide or coaxial line measurements in [80]. All four of the S-parameter mea-

surements are used in this iterative inversion algorithm. Using all four measurements results

in a system of equations for which there are more independent equations than unknowns,

and the extra equations can be used to eliminate errors due to a slight displacement of

the sample from the calibration plane. For this reason, this technique is better suited for

warped samples [79]. The procedure is similar to the single measurement method: all four

S-parameters are written as a system of equations in terms of the complex permittivity

and permeability of a material. An iterative solver is used to find the closest match of the

measured S-parameters to the theoretical S-parameters.

The software to perform the inversion of the measurements was written by Dr. John

Schultz of STL/GTRI.
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Figure 6.24: The real part of the relative permittivity for a sheet of Rexolite determined
by focused-beam measurements. Measurements were made using two lenses and using two
zone plates with the spacing for the zone plates set for f = 10 GHz.

6.5 Experimental Study of Focused-Beam System

The measurement system described in Sec. 6.4 was used to measure the permittivity of a few

different dielectric materials. The measured permittivity values were compared to results

from a focused-beam system that uses two doubly-hyperbolic lenses and, when available, to

published values.

6.5.1 Rexolite

The first sample measured with the system was a sheet of Rexolite (cross-linked polystyrene).

The sheet has a thickness of 0.32 cm and is 60.96 cm by 60.96 cm in the other two di-

mension (this sheet can be seen in the sample holder in Fig. 6.22). The values of the

real part of the relative permittivity for Rexolite found in the literature are in the range

2.53 < Re(εr) < 2.54 [77, 81–83]. In Fig. 6.24, the green line (dash-dot-dot) is the measured

result using two doubly-hyperbolic lenses, and the red (solid) line is the measured result

using two zone plates with the spacing set for f = 10 GHz. The gray box shows the range

of values found in the literature. The permittivities were inverted from the measurements

using the single measurement technique. The four-measurement technique gave similar

results.

The RMS deviation from the average of the values from the literature, Re(εr) = 2.536,
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Figure 6.25: The imaginary part of the relative permittivity for a sheet of Rexolite de-
termined by focused-beam measurements. Measurements were made using two zone plates
with the spacing set for f = 8, 10, and 12 GHz.

was computed for both the lens and the zone plate over the frequency range 8-12 GHz. The

deviation for the lens was 0.18%, while for the zone plate it was 0.53%. From Fig. 6.24, it

is clear that the most accurate measurements made with the zone plate system are around

the design frequency, f = 10 GHz.

If the technique proposed in Chapter 5 is implemented, and the zone plate system is

reconfigured with the correct spacing for f = 8, 10, and 12 GHz as in Fig. 5.12, then

the agreement between the measurements and the published value improves in the region

around these respective frequencies. This suggests that the three measurements made with

the zone plates in different configurations could be stitched together to get a more accurate

measurement across the entire frequency band. This technique is illustrated in Fig. 6.25.

The black (dashed), red (solid), and blue (dash-dot) lines are for the permittivity measured

using two zone plates with the spacing set for f = 8, 10, and 12 GHz, respectively. Compar-

ing this measurement with the measurement for the f = 10 GHz spacing alone (red line) in

Fig. 6.24, a clear improvement can be seen. The RMS deviation from the published value

improves from 0.53% for the measurement in Fig. 6.24 to 0.31% for the measurement in

Fig. 6.25.

The values of the imaginary part of the relative permittivity for Rexolite found in the

literature are in the range 1.09 × 10−3 < Im(εr) < 1.67 × 10−3 [77, 81–83]. Figure 6.26
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Figure 6.26: The imaginary part of the relative permittivity for a sheet of Rexolite de-
termined by focused-beam measurements. Measurements were made using two lenses and
using two zone plates with the spacing for the zone plates set for f = 10 GHz.

gives the measured values of the imaginary part of the permittivity. The green line (dash-

dot-dot) is the measured result using two doubly-hyperbolic lenses, and the red (solid) line

is the measured result using two zone plates with the spacing set for f = 10 GHz. The

gray box shows the range of values found in the literature. This plot shows that the lens

performs better than the zone plate for this measurement. However, when Im(εr) is small

relative to Re(εr), as it is for Rexolite, it generally cannot be determined accurately with a

free-space system. A measurement system with a higher quality factor (Q) is necessary to

get accurate measurements of Im(εr) for a low-loss material like Rexolite [84].

6.5.2 Teflon

The two focused-beam systems were also used to measure the permittivity of a 0.32 cm

thick sheet of Teflon5 (polytetrafluoroethylene). This sheet is slightly smaller than the

sheet of Rexolite (approximately 30.48 cm by 45.72 cm in the other two dimensions). The

measurements of Teflon posed an additional difficulty because of the flexible nature of the

material. The sheet had been stored in way that left it slightly warped, which can adversely

affect the accuracy of focused-beam measurements [79]. An attempt to flatten the sheet

was made, and care was used when placing the sheet in the sample holder. Nevertheless,

the sheet of Teflon was still slightly warped when the measurement was taken.

5Teflon is a registered trademark of E. I. du Pont de Nemours and Company (DuPont).
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Figure 6.27: The real part of the relative permittivity for a sheet of Teflon determined
by focused-beam measurements. Measurements were made using two lenses and using two
zone plates with the spacing for the zone plates set for f = 10 GHz.

The relative permittivity of Teflon, based on accurate measurements in the literature,

is εr = 2.04 [82]. The measured values of the relative permittivity are given in Fig. 6.27.

The green line (dash-dot-dot) is the measured result using two doubly-hyperbolic lenses,

and the red (solid) line is the measured result using two zone plates with the spacing set

for f = 10 GHz. The black line shows the value from the literature. Because the sample

is warped, the four-measurement inversion technique is used to solve for the permittivity

of the Teflon sheet. Despite the use of this technique, the value of εr measured using both

systems is slightly higher than the value from the literature.

If the system is reconfigured in the same was as it was for the Rexolite sample and

the measurements are stitched together, an improvement in accuracy is seen. The black

(dashed), red (solid), and blue (dash-dot) lines are for the permittivity measured using two

zone plates with the spacing set for f = 8, 10, and 12 GHz, respectively. The RMS deviation

from the published value improves from 1.12% for the measurement in Fig. 6.24 to 0.93%

for the measurement in Fig. 6.25. The RMS deviation from the published value for the lens

measurement is slightly better, 0.88%.
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Figure 6.28: The real part of the relative permittivity for a sheet of Teflon determined
by focused-beam measurements. Measurements were made using two zone plates with the
spacing set for f = 8, 10, and 12 GHz.

6.5.3 Stycast

A sample of Stycast6 was also measured in the same way as the Rexolite and Teflon samples.

The sheet of Stycast is 0.66 cm thick and is 30.48 cm by 30.48 cm in the other dimensions.

The relative permittivity of the sheet is expected to be εr ≈ 8, although the exact value is not

specified. The permittivity determined from measurements with the system that uses zone

plates will therefore be directly compared to that of the system that uses lenses. Because

this sample is electrically thicker than the other samples (t/λd > 1/2), the four-measurement

inversion method failed to converge to a solution. The single-measurement inversion method

was used instead. Figure 6.29 shows the measured values of the permittivity when the

spacing for the zone plates is set for f = 10 GHz. In this figure, the agreement between

the permittivities determined by the two systems is fairly good. The results from the

reconfigured system are shown in Fig. 6.29. This system is configured in the same way as

for the Rexolite and Teflon sheets. In this case, the agreement for the compiled measurement

in Fig. 6.30 is similar to the agreement for the single-configuration measurement in Fig.

6.29.

The experiments presented in this section were designed to determine if zone plates are

suitable replacements for doubly-hyperbolic lenses in free-space, focused-beam measurement

6Stycast is currently marketed under the name ECCOSTOCK by Emerson & Cuming Microwave Products
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Figure 6.29: The real part of the relative permittivity for a sheet of Stycast determined
by focused-beam measurements. Measurements were made using two lenses and using two
zone plates with the spacing for the zone plates set for f = 10 GHz.
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Figure 6.30: The real part of the relative permittivity for a sheet of Stycast determined
by focused-beam measurements. Measurements were made using two zone plates with the
spacing set for f = 8, 10, and 12 GHz.
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systems. When the system is configured so that the spacing between the zone plates is cor-

rect for f = 10 GHz, the values of the permittivity measured by the system agree reasonably

well with the values measured by the system that uses lenses and with the published val-

ues. This is particularly true for frequencies near the design frequency, f = 10 GHz. The

technique proposed in Chapter 5 to account for the frequency-dependent shift of the beam

waist was experimentally tested. Three different configurations of the focused-beam system

were used to make measurements over the frequency range f = 8-12 GHz. Measurements

of three different dielectric samples (Rexolite, Teflon, and Stycast) showed that when this

technique is used, the focused-beam system that uses zone plates as focusing elements can

measure permittivity values with accuracy that is similar to a system that uses lenses as

focusing elements. The calculations and measurements from this work give us confidence

that zone plates can be used in a free-space, focused-beam measurement system designed

to work at low frequencies, as discussed in Chapter 1.
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CHAPTER VII

NON-TRADITIONAL ZONE PLATE DESIGNS: A TOPIC FOR

FUTURE RESEARCH

The Fresnel zone plates studied in this work are designed using the optical, ray-tracing

principles discussed in Chapter 1, in Eqs. (1.2)-(1.4), and Chapter 5, in Eqs. (5.1)-(5.3).

Zone plates designed in this manner have been successfully applied in antennas for com-

munications and in free-space, focused-beam measurement systems. With the power of the

BOR-FDTD method available, a question naturally arises: Given roughly the same volume

of material, could the BOR-FDTD method be used to develop a better focusing element

than the traditional zone plate? This question is particularly interesting for zone plates

with low values of F/D, like those used in microwave or millimeter-wave applications, for

which a full-electromagnetic analysis like the BOR-FDTD method has been shown to offer

an advantage over other analysis methods.

This is a broad, open-ended question, and there are many ways to approach this problem.

However, some insight into this question can be acquired by choosing a technique, applying

it, and examining the results. In this chapter the particular option that will be examined

is optimization of a zone plate using a genetic algorithm (GA). Any optimization routine

is most beneficial when it is used to design a zone plate for a specific application, with well

defined physical parameters (such as diameter, focal length, and thickness) and performance

goals. This makes it difficult to draw general conclusions about the benefit offered by these

techniques. To begin to address this question, two specific zone plates are designed using a

GA.

The two examples considered in this chapter are based on the two specific applications of

zone plates studied in this work. A GA is used to optimize the amount of power focused by

two types of grooved-dielectric, phase-correcting zone plates: one for antenna applications

and the other for use in a free-space, focused-beam measurement system. The performance
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of the optimized zone plates is compared to the performance of traditionally-designed zone

plates and to hyperbolic (or doubly-hyperbolic) lenses with the same focal lengths and

diameters. Of course, there are many other applications and performance metrics for which

the optimization of a zone plate could be useful. Some examples include an antenna with

two or more distinct frequencies of operation or a zone plate with the minimal weight needed

to meet a certain performance metric.

Zone plates are good candidates for optimization because of their complicated nature;

changes in the geometry bring about changes in the focusing ability of the devices in ways

that are typically not obvious to the designer. However, the complexity of the zone plate,

particularly when analyzed with a full-electromagnetic simulator like BOR-FDTD, makes

the optimization difficult by traditional methods. A genetic algorithm was chosen to perform

the optimization because it is especially useful for optimizing problems with highly complex

cost functions [85].

In this chapter, a brief overview of the genetic algorithm is presented, and the specific

formulation of the optimization procedure for zone plates is discussed. Optimization studies

for the two different zone plates are then presented. Knowing that it is unrealistic to expect

to find the best possible solution for a problem as complicated as the optimization of a zone

plate, the work presented in this chapter is intended to begin to answer the question posed

earlier and to lend insight into non-traditional zone plate designs. This is a topic that would

be interesting to expand upon in the future.

7.1 Overview of the Genetic Algorithm

There are many excellent references on genetic algorithms in the literature [85, 86], so only

a brief overview will be presented here. A genetic algorithm operates on a series of designs,

in this case zone plates, collectively called the population. Initially, the population can be

either random, seeded with specific designs, or some combination of both. Each zone plate

is called an individual, and the information defining the profile of each individual is encoded

in a chromosome. Each individual is given a fitness score based on its focusing performance.

The genetic algorithm then uses a natural selection technique to generate a new population:
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To create each member of the new generation, two members (called parents) are chosen from

the previous generation and a crossover operation is performed, combining the information

in the chromosome of each parent to form a new individual. The two parents that are

used to generate each new individual are chosen statistically so that the designs with the

highest fitness are more likely to contribute to the new generation. Random mutations, or

changes in small portions of the chromosome, are applied to the new population, and the

fitness of each individual in the new population is calculated. By repeatedly applying this

concept, the strongest traits are passed on from one generation to the next, and the fitness

of each progressive generation should improve. After a specific number of iterations or after

a certain performance goal has been satisfied, the process is terminated. This technique has

been successfully applied to many problems in the field of electromagnetics [86].

7.2 Formulation of the Optimization Problem

The genetic algorithm is a powerful tool, but in order to generate meaningful results, the

problem must be properly formulated. In this section, the details of optimizing a zone plate

with a genetic algorithm will be presented.

To ensure that the outcome of the GA optimization remains relevant to the work pre-

sented in this document, a few restrictions will be applied to the optimization process. The

‘zoning concept’ will be maintained, meaning that any design developed by the optimiza-

tion routine will be comprised of rotationally symmetric regions over which the profile is

continuous. Discontinuous jumps will be allowed at the boundaries of these regions (like

at the boundaries of each zone in a traditional zone plate). The restriction to rotationally

symmetric devices allows the BOR-FDTD method to be used.

Based on the desired application and size of the zone plate, the focal length F , the

maximum overall thickness T , the base thickness t, and the diameter D of the zone plate

are specified. There are then two ways that the optimization can be performed. The genetic

algorithm can modify these parameters directly, and the traditional design equations can

then be used to generate the profile. Alternatively, these parameters can be fixed and the

profile of the zone plate can be adjusted to optimize the performance. The latter method
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(a) (b)

Figure 7.1: Schematic diagram of the geometry of (a) a traditionally-designed zone plate
and (b) an example of a zone plate evaluated by the genetic algorithm.

results in a zone plate that does not conform to the traditional design equations. This is

the approach taken in this work.

To use this approach, the profile of the zone plate must be described in a slightly different

manner than the profiles of the zone plates in Chapters 4 and 5. Instead of dividing each

zone into a number of subzones, each zone is represented by a mathematically defined curve.

For the first zone (the central zone), this curve is a cubic spline with one control point and

two end points. The remainder of the zones are represented by straight line segments. This

method keeps the zoning concept intact, but drastically simplifies the number of parameters

that are needed to represent the profile (and therefore the number of parameters to be

optimized). Because of the way that the spline for the first zone is described, the control

point can be chosen such that the thickness exceeds that maximum specified thickness T

or is less than the base thickness t. In these cases, any part of the profile thicker than T

or thinner than t is truncated to these respective limits. The number of zones N is also

specified. In the optimization studies in this work, N is set to be slightly greater than it

would be for a traditionally-designed zone plate with the same focal length F and diameter

D. This was done to give the GA more free parameters to work with. The GA is free to

remove these extra zones by setting their widths to be zero.

This method of describing a zone plate can be understood by looking at an example.

A schematic diagram of a traditionally-designed zone plate is in Fig. 7.1(a), and a profile

of a zone plate represented using the new method is in Fig. 7.1(b). Each of the solid
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dots in Fig. 7.1(b) represents the thickness of the profile at a certain point, and each of

the lines below the zone plate represents the distance from the center of the zone plate at

which these thicknesses occur. Notice that every radius from ρ1 to ρN is associated with

two thicknesses, which are connected with a vertical line. Together, these thicknesses and

distances completely describe the curves that make up the zone plate profile (notice that

there is a control point in the first zone to describe the spline). Each of these parameters

is represented by a binary number, and these binary numbers are concatenated to form the

chromosome (a binary string) that represents the profile of the zone plate.

The optimization was performed using a combination of the Genetic Algorithm and

Direct Search Toolbox in Matlab1 and custom BOR-FDTD modeling software (discussed

in Chapter 2). Matlab was used to generate the initial population and to perform the

crossover and mutation functions. To determine the fitness of each member of the pop-

ulation, Matlab called the BOR-FDTD routine on a parallel cluster of computers and

processed its output. The actual fitness function depends on the specific application of the

zone plate and therefore will be discussed separately in the following sections. The draw-

back of using a FDTD simulator is that it takes a relatively long time to determine the

fitness of each generation. Even on a parallel cluster of computers, some of the studies pre-

sented in this work required up to 15 minutes to evaluate the fitness of a single generation.

This limited the size of the population to 40 individuals and the number of generations per

optimization to 500.

At the completion of an optimization, a hill-climbing algorithm can optionally be used

to make minor adjustments to the best individual. The hill-climbing algorithm sequentially

changes each bit of the chromosome and re-evaluates the fitness; if the fitness improves,

the chromosome is permanently changed. The next bit is then flipped and the process is

continued until each bit has been tested. If a change is made to any bit, the entire process

is repeated until each individual bit of the chromosome can be flipped without improving

the design. For convenience, the entire process from the generation of the initial population

to the optional hill-climbing of the best individual will be referred to as an optimization run

1Copyright The MathWorks, Inc.
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for the remainder of this document.

7.3 Optimization of a Zone Plate for Antenna Applications

A genetic algorithm optimization was performed for a grooved-dielectric, phase-correcting

zone plate designed for use in antenna applications. A detailed description of zone plates

for this application is given in Chapter 4. A traditionally-designed zone plate similar to

that shown in Fig. 4.1(b) was used as the starting point for the optimization study. The

zone plate has a focal length of F/λ = 30, a diameter of D/λ = 39.8, a base thickness of

t/λ = 0.1, a total thickness of T/λ = 1.8, and is made from Rexolite (εr = 2.53). The

zone plate in Fig. 4.1(b) has N = 6 zones, but the profile for the optimized zone plate was

allowed to have up to N = 8 zones.

The fitness function used for this optimization is the focusing gain FG. Recall from

Eq. (3.1) that FG is the ratio of the magnitude of the axial component of the time-average

Poynting vector at the focal point to the magnitude of the axial component of the time-

average Poynting vector for the incident plane wave:

FG =

∣∣∣Re[ẑ · ~Sscat
c ]

∣∣∣∣∣∣Re[ẑ · ~Sic]
∣∣∣ . (7.1)

Five different optimization runs were completed (40 individual per generation for 500

generations). Each run started with a different initial population. Three of these initial

populations were randomly generated, while two were seeded with a particular zone plate

design and some randomly mutated variations of this design. The design used to seed the

initial populations was the optimized design for focused-beam applications, which will be

discussed in detail in Sec. 7.4. The fitness value of the best member of the population for

each generation is plotted in Fig. 7.2 for all five runs. The solid dots at the end of the

lines for runs 4 (black line) and 5 (magenta line) are the fitness values after completing

the hill-climbing procedure on these two designs. Notice that the hill-climb results in only

a small improvement in the focusing gain. The dashed black lines in the figure show the

focusing gain of a reference design (a traditional design identical to that in Fig. 4.1(b),

but with P → ∞ instead of P = 4) and of the hyperbolic lens shown in Fig. 4.1(a). The
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Figure 7.2: The fitness value FG (in dB) for the best member of the population in each
generation. The optimization is for a zone plate for antenna applications.

figure shows that the randomly seeded optimizations, runs 1-3 (red, blue, and green lines),

resulted in designs that do not perform as well as the traditionally-designed zone plate. The

optimizations with initial populations that were seeded, runs 4 (black line) and 5 (magenta

line), however, resulted in designs that outperformed this zone plate. This figure shows

the value of seeding the population: A good solution can be found more quickly, which

is important because the size of the initial population and the number of generations is

restricted by the computational requirements of the fitness function.

The best individual (the design from run 4 after the hill-climbing operation) will be

examined in more detail in the remainder of this section and will be referred to as the GA

winner. The GA winner is compared with the traditionally-designed zone plate and the

hyperbolic lens in Fig. 7.3. In this figure, the magnitude of the z-component of the time-

average Poynting vector
∣∣∣ẑ · 〈~S(t)〉

∣∣∣ is plotted in dB for the lens, the traditionally-designed

zone plate, and the GA winner for the design frequency of the zone plate, f = 10 GHz.

The profiles of these devices are outlined in black in the figure, and the long dashed white

lines indicate the desired location for the focal point, F . A few interesting observations

can be made from this figure. It is clear that both zone plates (Figs. 7.3(b) and (c)) focus

power to the focal point. It appears, however, that both suffer from slight focal length

shortening, meaning that the point of maximum focusing gain is closer to the zone plate
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Figure 7.3:
∣∣∣ẑ · 〈~S(t)〉

∣∣∣ in dB for f = 10 GHz on a cross section in the yz-plane for (a) the
lens, (b) the traditionally-designed zone plate, and (c) the GA winner designed for antenna
applications.

152



Lens

Traditional ZP

GA Winner

30

25

20

15

10

5

0
0 5 10 15 20 25 30 35

z

F
G

 (
d

B
)

Figure 7.4: Focusing gain FG along the z-axis for the lens, the traditionally-designed zone
plate, and the GA winner.

than it is designed to be. This point will be further examined later in this section. Notice

also that the profile for the GA winner looks somewhat similar to a traditionally-designed

zone plate. One of the most obvious differences is in the first (center) zone, which has been

made smaller in the radial direction and consequently thinner. This effectively changes the

amount of phase shift imparted at the center of the zone plate. This is sometimes called

the ‘reference phase’ of the zone plate, and it is a design parameter that has received some

attention for Soret zone plates in the literature [87]. Another interesting observation can

be made about the behavior of the zone plates at the distance F ′ = F/3. This distance is

marked by the short dashed white line in Figs. 7.3(b) and (c). For the traditionally-designed

zone plate, there is an area in which the Poynting vector has a high intensity located at this

point (colored red in the figure). This is the secondary focal point of the zone plate that

is well-documented in the literature [67]. Interestingly, this feature is much smaller for the

optimized design.

Additional insight into these designs can be gained by looking at the distribution of

power along the z-axis. In Fig. 7.4, the focusing gain FG is plotted for each point along

this axis when f = 10 GHz. In this figure, z = 0 is located at the output plane of the zone

plate or the lens. The focal length shortening for the traditionally-designed zone plate is
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apparent in this figure. It is interesting to note that a similar focal length shortening exists

for the GA winner. This indicates that, as expected, this design is probably not the best

design possible. While the maximum value of the z-component of the Poynting vector is

greater for the GA winner than it is for the lens, the focal length shortening means that the

lens still has a greater focusing gain FG at F/λ = 30. The great reduction in the amplitude

at the secondary focal point at F ′ is clearly visible in Fig. 7.4. It is possible that this is

one of that factors that allows the GA winner to have a focusing gain that is greater than

the traditionally-designed zone plate.

Figures 7.2-7.4 show that the genetic algorithm successfully improved the design of the

zone plate, although the improvement in focusing gain was small (FG = 28.6 dB for the

GA winner versus FG = 27.8 dB for the traditional zone plate). The significance of this

improvement depends on the particular system for which the antenna is designed.

7.4 Optimization of a Zone Plate for Application to a Focused-Beam
System

A genetic algorithm optimization was also performed for a zone plate designed to replace a

doubly-hyperbolic lens in a focused-beam system. A detailed description of zone plates for

this application is given in Chapter 5. The starting point for the optimization is the zone

plate that was manufactured for the experimental study in Chapter 6. Based on this zone

plate, in the optimization study the maximum total thickness is restricted to T = 6.35 cm

and the base thickness is set to t = 1.27 cm. The diameter is D = 59.7 cm and the design

frequency is f = 10 GHz. The traditionally-designed zone plate has N = 5 zones, while the

profile for the optimization was allowed to have up to N = 8 zones.

The fitness function for this zone plate is based on the amount of power intercepted by

a disc of radius ρd on the focal plane. Using the definition of Prec from Eq. (5.5), the fitness

function is

Ffit =
Prec

Pinj
=

1
Pinj

ρfit∫
0

2π∫
0

ẑ · Re(~Sc)ρdφ dρ , (7.2)

in which Pinj is the injected power (the total time-average power supplied by the horn).

Examining Fig. 5.5, most of the power focused by the lens is concentrated into a disc
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Figure 7.5: The fitness value Ffit for the best member of the population in each generation.
The optimization is for a zone plate for focused-beam applications.

with radius ρd = 6.35 cm, and therefore the radius chosen for the calculation of the fitness

function is ρfit = 6.35 cm.

As was the case in Sec. 7.3, five optimization runs were performed, each with a different

initial population. In this case, however, the initial population was random for all five runs.

The fitness value of the best member of the population for each generation is plotted in

Fig. 7.5 for all five runs. The solid dot at the end of each of the lines is the fitness value

after completing the hill-climbing procedure. As in Fig. 7.2, this procedure did not make a

significant improvement to any of the designs. The black dashed lines represent the fitness

of the traditionally-designed zone plate and the lens. The figure shows that all five of the

optimization runs resulted in designs that outperform the traditionally-designed zone plate.

One of the simulation runs (run 4, black line) produced a zone plate that outperforms

the lens. The best individual from each generation (marked by the dots in Fig. 7.5) and

randomly mutated copies of these individuals were used to generate a new population. An

optimization run using this initial population failed to produce a result that was better then

the result of run 4. The design from run 4 will be examined in more detail and will be again

be referred to as the GA winner.

To study the focusing of this design,
∣∣∣ẑ · 〈~S(t)〉

∣∣∣ is plotted in Fig. 7.6 for the lens, the
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traditionally-designed zone plate, and the GA winner for the design frequency of the zone

plate, f = 10 GHz. In this figure, the dashed white line indicates the location of the focal

plane of the lens, and it is the same distance from the output plane of all three devices

(z = 55 cm). The profiles of the respective devices are outlined in black. The focusing

by the GA winner clearly behaves like the lens and the zone plate. The amplitude at

the focal point is slightly higher and the sidelobes on the focal plane are slightly lower

than the traditionally-designed zone plate. Notice that the profile for the GA winner looks

distinctly different than the profile for the traditionally-designed zone plate, a fact that will

be examined in more detail later in this section. First, however, the performance of this

design will be evaluated in a more quantitative way.

In Fig. 7.7, Prec/Pinj is plotted as a function of ρd for the lens and both zone plates at

f = 10 GHz. The vertical black line indicates the radius ρfit used in the calculation of the

fitness function. At this point, both the lens (dashed green line) and GA winner (dash-dot

blue line) deliver more than 80% of the incident power to a disc of radius ρfit compared to

only approximately 60% of the incident power for the traditionally-designed zone plate. The

genetic algorithm has designed a zone plate that performs as well as the doubly-hyperbolic

lens for this particular metric at the frequency f = 10 GHz. It is important to note, however,

that the GA winner suffers from one of the same problems as the traditionally-designed zone

plate: As ρd is increased beyond ρd ≈ 30 cm, there is an increase in the received power.

As was explained in the discussion of Fig. 5.5, this increase is due to power directed into

diffraction bands. Recall from Sec. 5.4 that these diffraction bands can introduce errors in

the measurements of electromagnetic properties by the focused-beam system if the edge of

a sample lies within with a diffraction band.

Based on the power delivered to the focal plane, the zone plate designed by the GA

appears to be a promising candidate to replace the lenses in a focused-beam system. An

important question remains, however: Does the improvement in Prec/Pinj come at the ex-

pense of the other focusing characteristics of the zone plate? In particular, the amplitude

taper, phase uniformity, and bandwidth must be similar to the traditionally-designed zone

plate to ensure that the new zone plate can achieve results similar to those presented in
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Figure 7.6:
∣∣∣ẑ · 〈~S(t)〉

∣∣∣ in dB for f = 10 GHz on a cross section in the yz-plane for (a)
the lens, (b) the traditionally-designed zone plate, and (c) the GA winner designed for
focused-beam applications.
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Figure 7.7: Fraction of the power supplied by the horn that passes through a disc of radius
ρd in the focal plane for the lens, the traditionally-designed zone plate, and the GA winner
(all at f = 10 GHz).

Chapter 6 when it is used in a focused-beam system. These characteristics can be compared

with the traditionally-designed zone plate by examining the -10 dB spot size and the phase

deviation over this spot. The radius of the -10 dB spot in Fig. 7.8(a) is indicative of the am-

plitude taper of the field focused by the zone plate. The radius looks similar for both zone

plates at all three frequencies. The phase deviation, plotted in Fig. 7.8(b) looks somewhat

similar as well, but the locations of the points of minimum phase deviation are different for

all three frequencies. When f = 10 GHz, the location of minimum phase deviation for the

GA winner is located closer to the dashed black line, which marks the focal length of the

double-hyperbolic lens, than it is for the traditionally-designed zone plate. This illustrates

the ability of the genetic algorithm to optimize the focal length of a zone plate to improve

its performance.

Unlike the zone plate that was designed for antenna applications in Sec. 7.3, the design

produced by the GA for this application and shown in Fig. 7.6(c) does not look like a

traditional zone plate. The first (center) zone is similar to the traditionally-designed zone

plate. Beyond this first zone, however, the GA winner has a series of three narrow ridges

of dielectric, extending approximately from the base to the maximum thickness. Typically,

zone plates are designed based on refractive principles (ray-tracing), but the ridges in this
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Figure 7.9: (a) Prec/Pinj for the lens, the traditionally-designed zone plate, the GA winner,
and variants of the GA winner, all at f = 10 GHz. (b) The profile of each of the devices for
which Prec/Pinj is shown.

design produced by the GA appear to be strictly diffractive elements. It is worth noting

that the GA winner achieves an even greater weight savings compared to the lens than the

traditionally-designed zone plate, despite the minimization of the weight not having been

factored into the optimization. The weight of the GA winner is only 22% of the weight of

the lens which is 72% of the weight of the traditionally-designed zone plate.

Because the GA winner looks significantly different than the traditionally-designed zone

plate, a series of simulations was run to examine the major characteristics of this design.

The results of this study are presented in Fig. 7.9(a), which shows Prec/Pinj as a function

of ρd for the lens, the traditionally-designed zone plate, and several variations of the GA

winner. The profile of the device corresponding to each line in Fig. 7.9(a) is shown in Fig.

7.9(b). Prec/Pinj for the lens (dashed green line), the traditionally-designed zone plate (solid

red line), and the GA winner (dash-dot blue line) were previously shown in Fig. 7.7, and

are repeated here for the purpose of comparison. The value of Prec/Pinj for a zone plate

consisting only of the first zone of the GA winner (solid black line) shows that while the

first zone makes an important contribution to the focusing ability of the zone plate, there
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is a significant amount of power focused by the outer zones as well. Adding a flat base of

the correct radius to the first zone actually causes a small decrease in the amount of power

focused (dashed black line). A profile which is an approximation to the GA winner was also

modeled to evaluate the impact of the dielectric ridges. The ridges were modeled as annuli

of dielectric, placed at the locations of the ridges for the GA winner, with a height stretching

from the base to the maximum allowable thickness. Comparing the plot of Prec/Pinj for this

device (dotted black line) to the plot for the first zone only (solid black line) shows that

these ridges are responsible for much of power focused by the new zone plate. In fact, this

simplified design outperforms the traditionally-designed zone plate (solid red line). The GA

winner (dash-dot blue line) improves on this design further by adjusting the angles at the

tops of the ridges and in the regions between the ridges, to reach a performance level that

is as good as the lens (dashed green line).

Figures 7.6-7.8 show that the zone plate designed using the genetic algorithm can deliver

power to the focal plane in a way that is similar to the lens and that it has better phase

deviation characteristics than the traditionally-designed zone plate. These improvements

are potentially beneficial for zone plates used in a focused-beam measurement system. How-

ever, the same major limitations of the traditionally-designed zone plate are still present

for the GA winner. The frequency dependence is similar, and power is still delivered to

diffraction bands which can lead to scattering from the edges of a sample, though these

bands are smaller in amplitude than for the traditional design (see Fig. 7.6).

7.5 Value of the GA Optimization

Both the zone plate optimized for antenna applications and the zone plate optimized for

use in a focused-beam system perform better then their traditionally-designed counterparts.

The genetic algorithm is clearly capable of improving the design of a zone plate. This raises

an important question: Do the improvements seen warrant the use of this non-traditional

design method?

There is no straightforward answer to this question. The value of the improvement is

entirely dependent on the application. For the two applications shown in this chapter, the
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performance improvements were somewhat incremental in nature. In situations for which

a traditionally-designed zone plate cannot meet the design specifications or if some sort of

special behavior is desired (e.g. multiple focal points or multiple frequencies of operation),

a non-traditional design method might be worthwhile.

One consideration is the amount of time and computational power required to generate

the designs. The design of each of the zone plates described in this chapter using the GA

required approximately one week on a parallel cluster of computers, whereas traditional zone

plates take only seconds to design on a single computer. If a zone plate is being designed

for a particular application and the resources to perform this type of non-traditional design

are available, then improved performance can likely be realized.
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CHAPTER VIII

CONCLUSIONS

In this research, Fresnel zone plates were studied using an accurate, full-electromagnetic sim-

ulator based on the body-of-revolution finite-difference time-domain (BOR-FDTD) method.

Simpler methods for analyzing a zone plate were discussed and compared to the BOR-FDTD

method. It was shown that the BOR-FDTD method allows a more complete analysis of the

focusing by a zone plate, and that this is particularly important for zone plates with a low

focal length to diameter (F/D) ratio. This computational tool was then used to investigate

zone plates for two different applications: zone plates for use as antennas in communication

systems and zone plates used as focusing elements in a free-space, focused-beam system to

measure the electrical properties of materials. Through these applications, many aspects

of zone plate focusing were studied in a more in-depth manner than they have been in the

past. The conclusions from these studies are applicable for the design of any zone plate.

First, a design study was performed for Soret and folded zone plates for antenna appli-

cations. New design graphs were generated that relate the three primary design parameters

of these zone plates (the focal length F/λ, the diameter D/λ, and the number of half-wave

zones, NSoret) to their focusing gain FG, a metric that is independent of any feed. Addi-

tional design graphs were generated for a more physically realistic metric, the gain G for

antennas with a particularly sized aperture feed. These design graphs were used to make

general statements about the effect of the design parameters on the focusing ability of a zone

plate. Both gains (FG and G) increase as F/λ or NSoret is increased while the other pa-

rameter is held fixed. As this happens, however, the incremental increase eventually tapers

off. If the diameter, D/λ, is held constant and focal length, F/λ, is increased, both metrics

initially increase, reach a maximum, and then decrease. The maximum achievable values

of FG and G for Soret and folded zone plates are plotted as a function of the diameter of

the zone plate.
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Results from the BOR-FDTD analysis of the Soret zone plate were also compared with

those from frequently used approximate analysis methods. The results from the approximate

methods were shown to diverge from those of the BOR-FDTD method as F/D becomes

small, which validates the motivation for the use of the full-electromagnetic method in this

work.

The design study was repeated for grooved-dielectric, phase-correcting zone plates, also

intended for use in antenna applications. These design graphs showed a similar relationship

between the parameters and the focusing ability. However, this study also showed that the

focal length, the base thickness, the number of phase corrections per zone, and the presence

of a matching layer affect the focusing ability in ways that are unexpected, based on the

simpler techniques often used to analyze zone plates. The effect of each of these parameters

was evaluated individually. For the zone plates studied in the work, the choice of base

thickness was found to change the focusing gain by as much as 2 dB because of reflections

within the zone plate. A matching layer was added and was not found to be beneficial

for reducing the effect of these reflections. An in-depth study showed that there does not

appear to be a simple, analytical method for optimizing the base thickness. Additionally,

it was shown that increasing the number of phase corrections per zone beyond P & 8 does

not necessarily increase the focusing gain of the zone plate. Finally, the actual focal length

of the zone plate was found to consistently be slightly shorter than the desired focal point.

This focal length shortening becomes more severe as the ratio F/D is decreased, making it

more of a concern for microwave and millimeter-wave zone plates than it is for optical zone

plates. To compensate for this effect, the focal length can be intentionally designed to be

slightly longer than desired.

Next, zone plates were evaluated for use in free-space, focused-beam systems to measure

the electrical properties of materials. One of the major advantages of zone plates for focused-

beam systems is the reduction in volume and weight compared to a doubly-hyperbolic lens.

These advantages may allow the zone plate to be used in low-frequency systems, for which

the lenses are prohibitively large. New design equations were used in conjunction with

BOR-FDTD simulations to develop a zone plate to replace the doubly-hyperbolic lenses
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that are used in GTRI’s standard focused-beam system. In order for the zone plate to be

used in the focused-beam system, there are ceratin requirements for the field focused by

the zone plate. To determine if the zone plate could satisfy these requirements, both BOR-

FDTD simulations and measurements were used to compare the zone plate with the existing

lens. The zone plate was fabricated, and measurements of the electric field over a volume

surrounding the focal point were compared to measurements taken for the lens. Based on

these comparisons, the requirements were addressed individually. The zone plate delivers

less power to its focal spot than the lens, but the amplitude taper, phase uniformity, and

linearity of the polarization of the field focused by the zone plate were found to be similar to

that of the field focused by the lens for the design frequency of the zone plate, f = 10 GHz.

The location of the beam waist for the zone plate, however, was shown to move as a function

of frequency.

To complete the evaluation of zone plates in a focused-beam system, a complete system

using two zone plates as focusing elements was assembled. Measurements of a dielectric

sample over a range of frequencies showed that a zone plate system can produce results

that are comparable to a lens system, but that care must exercised in interpreting the

results, particularly away from the design frequency. A technique that accounted for the

frequency-dependent shift of the focal point was presented and shown to offer the potential

to improve results. The calculations and measurements from this research give us confidence

that zone plates can be used in a focused-beam measurement system designed to work at

low frequencies.

Finally, a topic for future research was presented. The open-ended question was posed:

Can the power of the BOR-FDTD method be used to design a better focusing element

than the traditional zone plate using roughly the same amount of material? An analysis of

one particular design technique was presented. A genetic algorithm was used to optimize

grooved-dielectric, phase-correcting zone plates for an antenna application and for applica-

tion in a focused-beam system. The study showed that the performance of the optimized

zone plates for both applications was better than the traditionally-designed zone plates.

The optimized zone plate for the antenna application had a profile that looked similar to
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a traditionally-designed zone plate. Simulations showed that the focusing gain was higher

and the undesirable secondary focal point had been removed. The optimized design for the

focused-beam application did not look like a traditional zone plate, but nevertheless was

able to match the performance of the doubly-hyperbolic lens in terms of the amount of

power delivered to the focal spot when f = 10 GHz. It is clear that the genetic algorithm

can improve the performance of a zone plate, but the value of the improvement can only be

judged in light of the particular application of the zone plate.
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APPENDIX A

MEASURED AND SIMULATED DATA FOR THE ZONE PLATE

AND LENS

This appendix contains the results of the study of the zone plate for the focused-beam

system and the lens it was designed to replace. The measurement procedure is described

in Chapter 6, and the body-of-revolution finite-difference time-domain method used to

simulate the zone plate and lens is described in Chapter 2. Measured and simulated field

values are presented for both the zone plate and the lens. The results are presented for

three frequencies: f = 8, f = 10, and f = 12 GHz.

The following figures are included in this appendix for both the zone plate and the lens

at all three frequencies:

• |Ey| along the z-axis.

• |Ey| on the designed focal plane.

• Phase of Ey on the designed focal plane.

• |Ey| on the xz-plane.

• |Ey| on the yz-plane.

• Phase of Ey on the xz-plane.

• Phase of Ey on the yz-plane.

• |Ey| on the xy-plane.

• |Ex| on the xy-plane.

• |Ez| on the xy-plane.

• |Ez| on the yz-plane.
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z = 55 cm

xy-plane

xz-plane

yz-plane

Figure A.1: Schematic diagram of the coordinate system for the measured and simulated
field values.

The coordinate system used for the data presented in this Appendix is shown in Fig.

A.1. In this figure, the distance from the output plane of the zone plate (or lens) to the

xy-plane is z = 55 cm. This is the focal length of the lens and zone plate when f = 10 GHz.

In the figure captions, this is referred to as the ‘designed focal length’. In all of the data

presented in this Appendix, the parameter z is the distance from the output plane of the

zone plate or lens. Unless specifically noted in a figure caption, the xy-, xz-, and yz-planes

shown in Fig. A.1 are those on which the field was measured and simulated.
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Figure A.2: Measured and simulated (FDTD) results for the electric field Ey of the zone
plate when f = 10 GHz. (a) |Ey| along the z-axis, with z = 0 located at the output plane
of the zone plate. The dashed back line indicates the designed focal length. (b) Magnitude
and (c) phase of Ey on the designed focal plane (z = 55 cm). The dashed black lines in (c)
indicate the extent of the main beam.
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Figure A.3: Magnitude of Ey at f = 10 GHz for the zone plate for (a) and (c) a horizontal
cut on the xz-plane and (b) and (d) a vertical cut on the yz-plane. Figures (a) and (b) are
for measurements and figures (c) and (d) are for FDTD simulations. The dashed white line
is the location of the designed focal point.

170



y (cm)

z 
(c

m
)

Measured

(b)

FDTD

Zone Plate Designed for Focused-Beam System
f = 10 GHz

y (cm)

z 
(c

m
)

(d)

x (cm)

z 
(c

m
)

(a)

x (cm)

z 
(c

m
)

(c)

Deg.

150

100

50

0

-100

-150

Figure A.4: Phase of Ey at f = 10 GHz for the zone plate for (a) and (c) a horizontal cut
on the xz-plane and (b) and (d) a vertical cut on the yz-plane. Figures (a) and (b) are for
measurements and figures (c) and (d) are for FDTD simulations.
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Figure A.5: Magnitude of (a) and (c) Ey and (b) and (d) Ex for a vertical cut (xy-plane)
through the designed focal plane of the zone plate when f = 10 GHz. Figures (a) and (b)
are for measurements and figures (c) and (d) are for FDTD simulations.
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Figure A.6: Magnitude of Ez for (a) and (c) a vertical cut (xy-plane) through the designed
focal plane of the zone plate and (b) and (d) a vertical cut (yz-plane) through the plane
x = −0.64 cm when f = 10 GHz. Figures (a) and (b) are for measurements and figures (c)
and (d) are for FDTD simulations.
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Figure A.7: Measured and simulated (FDTD) results for the electric field Ey of the zone
plate when f = 8 GHz. (a) |Ey| along the z-axis, with z = 0 located at the output plane
of the zone plate. The dashed back line indicates the designed focal length. (b) Magnitude
and (c) phase of Ey on the designed focal plane (z = 55 cm). The dashed black lines in (c)
indicate the extent of the main beam.
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Figure A.8: Magnitude of Ey at f = 8 GHz for the zone plate for (a) and (c) a horizontal
cut on the xz-plane and (b) and (d) a vertical cut on the yz-plane. Figures (a) and (b) are
for measurements and figures (c) and (d) are for FDTD simulations. The dashed white line
is the location of the designed focal point.
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Figure A.9: Phase of Ey at f = 8 GHz for the zone plate for (a) and (c) a horizontal cut
on the xz-plane and (b) and (d) a vertical cut on the yz-plane. Figures (a) and (b) are for
measurements and figures (c) and (d) are for FDTD simulations.
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Figure A.10: Magnitude of (a) and (c) Ey and (b) and (d) Ex for a vertical cut (xy-plane)
through the designed focal plane of the zone plate when f = 8 GHz. Figures (a) and (b)
are for measurements and figures (c) and (d) are for FDTD simulations.
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Figure A.11: Magnitude of Ez for (a) and (c) a vertical cut (xy-plane) through the
designed focal plane of the zone plate and (b) and (d) a vertical cut (yz-plane) through the
plane x = −0.64 cm when f = 8 GHz. Figures (a) and (b) are for measurements and figures
(c) and (d) are for FDTD simulations.
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Figure A.12: Measured and simulated (FDTD) results for the electric field Ey of the zone
plate when f = 12 GHz. (a) |Ey| along the z-axis, with z = 0 located at the output plane
of the zone plate. The dashed back line indicates the designed focal length. (b) Magnitude
and (c) phase of Ey on the designed focal plane (z = 55 cm). The dashed black lines in (c)
indicate the extent of the main beam.
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Figure A.13: Magnitude of Ey at f = 12 GHz for the zone plate for (a) and (c) a horizontal
cut on the xz-plane and (b) and (d) a vertical cut on the yz-plane. Figures (a) and (b) are
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is the location of the designed focal point.
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Figure A.14: Phase of Ey at f = 12 GHz for the zone plate for (a) and (c) a horizontal
cut on the xz-plane and (b) and (d) a vertical cut on the yz-plane. Figures (a) and (b) are
for measurements and figures (c) and (d) are for FDTD simulations.
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Figure A.15: Magnitude of (a) and (c) Ey and (b) and (d) Ex for a vertical cut (xy-plane)
through the designed focal plane of the zone plate when f = 12 GHz. Figures (a) and (b)
are for measurements and figures (c) and (d) are for FDTD simulations.
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Figure A.16: Magnitude of Ez for (a) and (c) a vertical cut (xy-plane) through the
designed focal plane of the zone plate and (b) and (d) a vertical cut (yz-plane) through
the plane x = −0.64 cm when f = 12 GHz. Figures (a) and (b) are for measurements and
figures (c) and (d) are for FDTD simulations.
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Figure A.17: Measured and simulated (FDTD) results for the electric field Ey of the lens
when f = 10 GHz. (a) |Ey| along the z-axis, with z = 0 located at the output plane of
the lens. The dashed back line indicates the designed focal length. (b) Magnitude and (c)
phase of Ey on the designed focal plane (z = 55 cm). The dashed black lines in (c) indicate
the extent of the main beam.
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Figure A.18: Magnitude of Ey at f = 10 GHz for the lens for (a) and (c) a horizontal cut
on the xz-plane and (b) and (d) a vertical cut on the yz-plane. Figures (a) and (b) are for
measurements and figures (c) and (d) are for FDTD simulations. The dashed white line is
the location of the designed focal point.
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Figure A.19: Phase of Ey at f = 10 GHz for the lens for (a) and (c) a horizontal cut on
the xz-plane and (b) and (d) a vertical cut on the yz-plane. Figures (a) and (b) are for
measurements and figures (c) and (d) are for FDTD simulations.

186



dB

Measured FDTD

(a) (c)

y 
(c

m
)

x (cm) x (cm)

y 
(c

m
)

(b) (d)

y 
(c

m
)

x (cm) x (cm)

y 
(c

m
)

Lens for GTRI Focused-Beam System
f = 10 GHz

Figure A.20: Magnitude of (a) and (c) Ey and (b) and (d) Ex for a vertical cut (xy-plane)
through the designed focal plane of the lens when f = 10 GHz. Figures (a) and (b) are for
measurements and figures (c) and (d) are for FDTD simulations.
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Figure A.21: Magnitude of Ez for (a) and (c) a vertical cut (xy-plane) through the
designed focal plane of the lens and (b) and (d) a vertical cut (yz-plane) through the plane
x = −0.64 cm when f = 10 GHz. Figures (a) and (b) are for measurements and figures (c)
and (d) are for FDTD simulations.
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Figure A.22: Measured and simulated (FDTD) results for the electric field Ey of the lens
when f = 8 GHz. (a) |Ey| along the z-axis, with z = 0 located at the output plane of the
lens. The dashed back line indicates the designed focal length. (b) Magnitude and (c) phase
of Ey on the designed focal plane (z = 55 cm). The dashed black lines in (c) indicate the
extent of the main beam.
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Figure A.23: Magnitude of Ey at f = 8 GHz for the lens for (a) and (c) a horizontal cut
on the xz-plane and (b) and (d) a vertical cut on the yz-plane. Figures (a) and (b) are for
measurements and figures (c) and (d) are for FDTD simulations. The dashed white line is
the location of the designed focal point.
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Figure A.24: Phase of Ey at f = 8 GHz for the lens for (a) and (c) a horizontal cut on
the xz-plane and (b) and (d) a vertical cut on the yz-plane. Figures (a) and (b) are for
measurements and figures (c) and (d) are for FDTD simulations.
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Figure A.25: Magnitude of (a) and (c) Ey and (b) and (d) Ex for a vertical cut (xy-plane)
through the designed focal plane of the lens when f = 8 GHz. Figures (a) and (b) are for
measurements and figures (c) and (d) are for FDTD simulations.
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Figure A.26: Magnitude of Ez for (a) and (c) a vertical cut (xy-plane) through the
designed focal plane of the lens and (b) and (d) a vertical cut (yz-plane) through the plane
x = −0.64 cm when f = 8 GHz. Figures (a) and (b) are for measurements and figures (c)
and (d) are for FDTD simulations.
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Figure A.27: Measured and simulated (FDTD) results for the electric field Ey of the lens
when f = 12 GHz. (a) |Ey| along the z-axis, with z = 0 located at the output plane of
the lens. The dashed back line indicates the designed focal length. (b) Magnitude and (c)
phase of Ey on the designed focal plane (z = 55 cm). The dashed black lines in (c) indicate
the extent of the main beam.
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Figure A.28: Magnitude of Ey at f = 12 GHz for the lens for (a) and (c) a horizontal cut
on the xz-plane and (b) and (d) a vertical cut on the yz-plane. Figures (a) and (b) are for
measurements and figures (c) and (d) are for FDTD simulations. The dashed white line is
the location of the designed focal point.
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Figure A.29: Phase of Ey at f = 12 GHz for the lens for (a) and (c) a horizontal cut on
the xz-plane and (b) and (d) a vertical cut on the yz-plane. Figures (a) and (b) are for
measurements and figures (c) and (d) are for FDTD simulations.
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Figure A.30: Magnitude of (a) and (c) Ey and (b) and (d) Ex for a vertical cut (xy-plane)
through the designed focal plane of the lens when f = 12 GHz. Figures (a) and (b) are for
measurements and figures (c) and (d) are for FDTD simulations.
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designed focal plane of the lens and (b) and (d) a vertical cut (yz-plane) through the plane
x = −0.64 cm when f = 12 GHz. Figures (a) and (b) are for measurements and figures (c)
and (d) are for FDTD simulations.
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