
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081818, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Full Featured Configurable Accelerator
for Object Detection with YOLO
DANIEL PESTANA1, PEDRO R. MIRANDA1, JOÃO D. LOPES1, RUI P.DUARTE1,(Member,
IEEE), MÁRIO VÉSTIAS2,(Member, IEEE), HORÁCIO C. NETO1, AND JOSÉ T. DE
SOUSA1,(Member, IEEE)
1
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, 1000-029 Lisboa, Portuga

2
INESC-ID, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1500-310 Lisboa, Portugal

Corresponding author: Mário Véstias (e-mail: mario.vestias@isel.pt).

“This work was supported in part by the Fundação para a Ciência e Tecnologia (FCT) under Grant UIDB/50021/2020, and in part by the

projects PTDC/EEI-HAC/30848/2017, through INESC-ID and IPL/IDI&CA/2020/TRAINEE/ISEL through Instituto Politécnico de

Lisboa.”

ABSTRACT Object detection and classification is an essential task of computer vision. A very efficient

algorithm for detection and classification is YOLO (You Look Only Once). We consider hardware

architectures to run YOLO in real-time on embedded platforms. Designing a new dedicated accelerator for

each new version of YOLO is not feasible given the fast delivery of new versions. This work’s primary goal

is to design a configurable and scalable core for creating specific object detection and classification systems

based on YOLO, targeting embedded platforms. The core accelerates the execution of all the algorithm

steps, including pre-processing, model inference and post-processing. It considers a fixed-point format,

linearised activation functions, batch-normalisation, folding, and a hardware structure that exploits most

of the available parallelism in CNN processing. The proposed core is configured for real-time execution

of YOLOv3-Tiny and YOLOv4-Tiny, integrated into a RISC-V-based system-on-chip architecture and

prototyped in an UltraScale XCKU040 FPGA (Field Programmable Gate Array). The solution achieves

a performance of 32 and 31 frames per second for YOLOv3-Tiny and YOLOv4-Tiny, respectively, with

a 16-bit fixed-point format. Compared to previous proposals, it improves the frame rate at a higher

performance efficiency. The performance, area efficiency and configurability of the proposed core enable

the fast development of real-time YOLO-based object detectors on embedded systems.

INDEX TERMS Object detection, Convolutional Neural Network, FPGA, Lightweight YOLO.

I. INTRODUCTION

Object detectors have a wide range of application fields

such as security, transportation, military and medical. Their

task consists of classifying and locating multiple objects in

an image from predefined categories. Object detection has

been under extensive research in both academia [1], [2] and

real-world applications [3], [4]. Traditional approaches use

handcrafted low-level features and shallow trainable archi-

tectures [5].

Recent technological breakthroughs led to the fast evo-

lution of object detectors. The main contributions include

the development of Deep Neural Networks (DNNs), mostly

Convolutional Neural Networks (CNNs), and the increase of

hardware computing power. State-of-art object detectors use

deeper CNN models to learn more complex features without

designing them manually. There are two object detectors

categories: two-stage detectors based on region proposal and

one-stage detectors based on regression/classification.

Two-stage detectors follow the traditional object detection

pipeline by scanning the whole scenario and then focusing on

regions of interest. The first stage generates region proposals,

known as candidate bounding boxes, and the second stage

extracts features from each candidate box to perform the

classification and bounding box regression tasks. The most

popular two-stage detectors are R-CNN [6], Fast R-CNN [7],

R-FCN [8], Faster R-CNN [9], and Mask R-CNN [10].

One-stage detectors treat object detection as a regres-

sion/classification problem by adopting a unified framework

to obtain the labels and locations directly. These detectors

map straightly from image pixels to bounding box coor-

dinates and class probabilities. They do this by proposing

predicted boxes directly from input images without the re-

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081818, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

gion proposal step. The most well-known one-stage detec-

tors are You Only Look Once (YOLO) [11], its successors

YOLOv2 [12], YOLOv3 [13] and YOLOv4 [14], and Reti-

naNet [15]. See [1], [16], [17] for a full review of object

detectors.

The selection between one-stage and two-stage detectors

resides on a choice between speed and accuracy. Two-stage

detectors provide higher localisation and object recognition

accuracy, while one-stage detectors achieve higher inference

speed.

Among the several object detectors, YOLO is the one that

presents the best trade-off between accuracy and execution

time. However, despite its good results and lower complexity

compared to other object detectors, YOLO still has high com-

putational requirements because of its core neural network

model complexity.

Graphics Processing Units (GPUs) have been the most

common programmable accelerators for executing DNNs

due to their high parallelism and high-speed floating-point

computing power. However, their high energy consumption

and die area limits the usability of GPUs in embedded plat-

forms.

The lightweight YOLO versions Tinier-YOLO, Tiny-

YOLOv3 and Tiny-YOLOv4 have fewer parameters and

computations than the full versions and show some accuracy

reduction. However, for deploying them on embedded com-

puting platforms and achieving real-time detection, architec-

tures with high performance and low energy consumption are

required.

Recent studies [18], [19] have been using Field Pro-

grammable Gate Arrays (FPGAs) as a more energy-efficient

alternative to GPUs for executing DNNs. FPGAs provide ad-

vantages such as high dedicated hardware design flexibility,

fixed-point calculation, parallel computing and low power

consumption. Besides, unlike application-specific integrated

circuits, FPGAs can follow the fast evolution of object detec-

tors.

The problem is that designing a new dedicated accelerator

for a new version of YOLO is a time-consuming process.

Instead, we consider that a parameterisable and algorithm

oriented hardware core is the solution for designing these

real-time object detectors.

This paper proposes a configurable IP core to efficiently

execute complete object detector systems based on YOLO’s

lightweight versions. Contrary to YOLO’s previously pro-

posed dedicated accelerators that only consider a particular

model and only accelerate the IP core CNN, the currently

proposed IP core is easily configurable to support different

versions of YOLO. Moreover, it considers different frame

rates and accelerates the pre- and post-processing steps. Our

all-Verilog IP core is portable to FPGA devices from all ven-

dors and Application-Specific Integrated Circuits (ASICs).

As a test case, the IP core was integrated into a complete

hardware/software System-on-Chips (SoCs) solution using a

minimal RISC-V processor to control the algorithm and the

hardware accelerator. The accelerator has been configured

to run Tiny-YOLOv3 and Tiny-YOLOv4 in real-time, with

performance over 30 frames per second.

We prototyped the complete system using an Ultra-

Scale XCKU040 FPGA. While running Tiny-YOLOv3 for

768×576 images, the solution achieves a performance of 32

frames per second, with the hardware accelerator executing

with a 143 MHz clock frequency. For Tiny-YOLOv4, the

system analyses 31 frames per second. Compared to previous

dedicated solutions, the proposed IP core is significantly

more competitive and easy to design.

This document is organised as follows. Section 2 in-

troduces the background of CNNs, object detection with

YOLO and FPGA-based solutions. Section 3 describes the

architecture of the IP core developed to accelerate YOLO.

Section 4 presents the final solution’s performance results in

terms of resource consumption, the detectors’ execution time,

and the comparison with other FPGA-based works. Finally,

Section 5 concludes the work and highlights the significant

achievements and suggestions for future work.

II. BACKGROUND AND RELATED WORK
A. CONVOLUTIONAL NEURAL NETWORKS

CNNs consist of a sequence of interconnected layers imple-

menting two main stages: feature extraction and classifica-

tion, as shown in Figure 1. The stages realise convolutional,

pooling and fully connected layers. The network comprises

repeated blocks for feature extraction, each composed of a

convolutional layer, an optional batch-normalisation layer, a

non-linear layer with an activation function, and an optional

pooling layer. For classification purposes, fully connected

layers, optionally followed by a regression function, are

typically applied after the last block of the feature extraction

stage. Modern CNN models add other types of layers such as

shortcut, route and upsample layers.

Convolutional layers perform 3D convolutions, which is

equivalent to a set of 2D convolutions. In 2D convolutions,

a 2D kernel is overlapped and shifted as a sliding window

throughout the entire 2D input feature image, generating

a 2D Output Feature Map (OFM). Each overlap performs

a Multiply-ACcumulate (MAC) operation. Padding, which

consists of adding new elements around the Input Feature

Map (IFM) edges, allows the output to keep the same size.

Usually, zero-padding is applied.

The input of convolutional layers is a set of 2D feature

maps, designated channels, and another set of 3D kernels,

with each 3D kernel having the same number of 2D channels.

Applying a 3D kernel corresponds to performing a 2D con-

volution between each channel of the IFM and each channel

of the given 3D kernel, accumulating the convolution results

across all the channels. Adding the former result with a

shared bias associated with each 3D kernel creates the OFM.

Therefore, each 3D kernel creates one OFM.

Batch-normalisation layers are used for speeding up the

training by normalising the input data, that is, zero mean

and unit standard deviation [20]. Furthermore, the normalised

value is scaled and shifted. Eq. 1 expresses the computation

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081818, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1. Architecture of a typical CNN

performed by this layer for each input element, x, where

the mean, µ, and the variance, σ2, are statistics collected

from training. The scale factor, γ, and the shift factor, β,

are parameters learned during training. ǫ is a small constant

that avoids dividing by zero. The shift factor can include

bias computation instead of computing it in the convolutional

layer.

y =
x− µ

√
σ2 + ǫ

γ + β (1)

In inference, the values of µ, σ2, γ and β are known.

Thus, Eq. 1 can be reformulated as one multiplication and

one addition, as shown in Eq. 2, where γi and βi are the new

scale and shift factors.

y = x×
γ

√
σ2 + ǫ

+

(

−
µ× γ

√
σ2 + ǫ

+ β

)

= x× γi +βi (2)

The pooling layer downsamples the feature maps, leading

to a reduction of the number of inputs in the subsequent

layers. Each pooling block is replaced by the maximum

(maxpooling) or the mean (average pooling) value of its

activations. Some CNNs, instead of using pooling layers,

apply a stride of 2 in the convolutional layers. However,

pooling layers are more robust as they turn the network

invariant to small shifts and distortions when downsampling

[18].

The shortcut layer skips one or more layers by adding

a former layer’s output to the current layer’s input. CNN’s

focused on object detection tasks use routing and upsampling

layers [13]. The routing layer concatenates the output from a

former layer with the current layer’s input by stacking them

into separate channels. This procedure allows the detection

of fine-grained features, improving the localisation of small

objects. The upsampling layer upsamples a feature map,

typically by a factor of two, which allows to detect objects

at different scales and obtain more meaningful semantic

information from the features.

AlexNet [18] was one of the first CNN-based models for

image classification, followed by VGG-16 [18]. Both base

themselves on the architecture presented in Figure 1. They

mainly differ in the number of layers and the number and

size of the kernels. A more distinct model is GoogLeNet [18].

Different sized filters are convoluted in parallel for the same

input feature map, and the results are further concatenated.

Therefore, the input is processed at multiple scales.

ResNet [18] was the first CNN that exceeded the human-

level accuracy for image classification by deploying a deeper

network than the models mentioned above. Those models

suffered from the vanishing gradient problem, restraining

them from getting deeper. When training, after several mul-

tiplications, the gradient becomes infinitely small during

backpropagation, affecting the update of the weights in early

layers for profound networks. Shortcut layers were added to

the network to avoid that problem.

Darknet-53 [13] is a more recent CNN model that em-

ploys the shortcut layers first introduced by ResNet to allow

a deeper network. Darknet-53 is the backbone model of

the YOLOv3 object detector. CSPDarknet-53 [14] extends

DarkNet-53 with a split and merge strategy that improves the

gradient flow through the network model. This model is used

as the backbone of YOLOv4. Both of these networks have

a lightweight version to reduce the number of weights and

computations. We refer to them as Darknet-53-Tiny, used in

YOLOv3-Tiny, and CSPDarknet-53-Tiny, used in YOLOv4-

Tiny. Table 1 summarises the number of parameters and

the number of multiply-accumulate operations of the CNNs

mentioned above.

TABLE 1. Complexity of known convolutional neural networks.

Model # Million Parameters # GMAC

AlexNet 60 0.65
VGG16 138 7.80
ResNet-101 40 3.80
ResNet-152 55 5.65
Darknet-53 62.2 32.90
CSPDarknet-53 27.6 26
Darknet-53-Tiny 8.8 2.78
CSPDarknet-53-Tiny 6.5 3.75

The tiny versions of Darknet and CSPDarknet reduce the

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081818, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

complexity of the original models. The number of parameters

of the tiny versions is considerably reduced compared to

ResNet. However, the number of operations is only around

25% lower because the parameters are more reused during

inference.

B. OBJECT DETECTION WITH YOLO

A general-purpose object detector’s task is to locate and clas-

sify existing objects in an image from predefined categories.

The most common way to label and output the located ob-

ject’s coordinates is to draw a bounding box around it. State-

of-art object detectors are DNN-based, and their backbone

network for feature extraction consists of networks for image

classification excluding the last fully connected layers [1].

The best performance for both PASCAL VOC 2007/2012

and Microsoft COCO [16] datasets is achieved by two-stage

detectors, R-FCN and Mask R-CNN [1]. Higher frame rates

are achievable with one-stage detectors such as YOLO and

its successors [21]. Several versions are available for the

detectors, which mainly differ in the input feature maps’ sizes

of the first layer. However, the topology of the network is

the same for any version. For instance, YOLOv3 has three

versions with input feature maps of 320×320, 416×416 or

608×608. Bigger input feature maps tend to lead to higher

accuracy but lower speed. YOLOv3 and recently YOLOv4

present the best trade-off between accuracy and execution

time.

The YOLO detector process flow starts by resizing the in-

put images. Then, the YOLO network extracts features using

the CNN backbone and returns candidate bounding boxes

from those features for three different scales: 52×52, 26×26

and 13×13. These specific scales apply to the 416x416 input

case. Candidate bounding boxes are then filtered based on

their objectness score and the score of each class. Finally,

non-maximum suppression is used to remove multiple detec-

tions of the same object, and the final detections, bounding

boxes and class labels, are drawn over the original input

image.

The method scales the input image to have the exact size of

the YOLO network’s first layer by maintaining its aspect ratio

and adding padding until meeting the desired dimensions.

The input image’s maximum width or height is scaled to the

resized image’s desired dimension, while the other dimen-

sion is scaled proportionally to keep the aspect ratio. The

resize method is based on a bilinear interpolation. For each

unknown pixel of the resized image, this method considers

the closest 2×2 neighbourhood of available pixels from the

input image surrounding the unknown pixel. It interpolates

its final value by calculating the weighted average of the four

available pixels.

The resizing procedure can be divided into three steps.

First, the pre-processing stage determines the indexes and

factors that are related to each possible pixel of the resized

image. In other words, the positions and weights of the

closest 2×2 pixels are determined for each unknown pixel

based on the dimensions of both input and resized images.

The input image’s width is then resized by calculating the

weighted sum of two of the closest pixels based on each

unknown pixel’s horizontal indexes and factors. This second

step generates an intermediate image with the resized image’s

desired width while keeping the input image’s height. For in-

stance, a 768×576 input image is converted into a 416×576

intermediate image. The final step resizes the image’s height

by determining the other two closest pixels’ weighted sum

based on each unknown pixel’s vertical indexes and factors.

Finally, this converts a 416×576 intermediate image to the

desired 416×312 resized image. Note that the resizing of

both width and height is done for all the input image chan-

nels.

The CNN-based YOLO network is composed of convolu-

tional, shortcut, yolo, upsample and route layers. The yolo

layer applies the logistic activation in the predictions of each

bounding box, excluding the width and height parameters.

The route layer concatenates the output from a former layer

with the input of the current layer by stacking them into dif-

ferent channels. There are no fully connected layers, and con-

volutional layers with stride two are used instead of maxpool

layers. All convolutional layers include batch-normalisation

and the Leaky ReLU with a = 0.1 as the activation function,

except the layer immediately before each yolo layer, which

uses a linear activation function.

Objects of various sizes are detected with different feature

map scales through a structure similar to the FPN [16].

YOLO uses three scales: 52×52 to detect small objects,

26×26 to detect medium objects and 13×13 to detect big

objects.

After executing the YOLO network block, there are several

candidate bounding boxes for each scale. However, only a

few correspond to actual detections depending on the number

of objects in the image. The actual detections correspond to

the bounding boxes whose product between the objectness

score and each class’s conditional probability is above a given

threshold with a default value of 0.5. The bounding boxes can

be multi labelled, i.e., can have more than one object, and the

objects can belong to different classes.

Due to detecting objects with different scales and with

three bounding boxes per grid cell, multiple bounding boxes

of the same object might be found. The Non-Maximum

Suppression (NMS) algorithm is used to remove these mul-

tiple detections [22]. After applying the NMS algorithm,

the detector’s post-processing phase ends by drawing the

bounding boxes and respective class labels over the original

input image.

In this paper, YOLOv3-Tiny and YOLOv4-Tiny are used

as case studies. Compared to YOLOv3, the tiny network

detects objects using only two scales: 26×26 and 13×13,

downsamples the feature maps using max-pooling instead of

convolutions with stride two and does not use shortcut layers.

The last maxpool layer has a stride of 1 and uses half padding

such that the feature map keeps its resolution.

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081818, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

C. FIXED-POINT QUANTISATION

The CNN execution can be accelerated by approximating

the computation at the cost of minimal accuracy drop. One

of the most common strategies is reducing the precision of

operations. During training, the data is typically in single-

precision floating-point format. For inference in FPGAs, the

feature maps and kernels can be converted to fixed-point

format with less precision, typically 8 or 16 bits, reducing

the storage requirements, hardware utilisation and power

consumption [23].

In general, the feature maps of deeper layers tend to

present a more extensive numerical range than the ones from

initial layers, and the weights also tend to be much smaller

than the pixels of feature maps [24]. The precision must be

increased for intermediate results to prevent overflow. Thus,

different precision values are typically used for weights,

intermediate results, and output feature maps from different

layers.

The proposed IP core considers both weights and activa-

tions represented in fixed-point format to improve the object

detection throughput. The proposed architecture can be easily

modified to consider integer or floating-point formats.

Weights can be directly converted to fixed-point, given a

trained floating-point model. Then, the quantised network

can be fine-tuned with a post-training step to improve the

model’s accuracy after quantisation.

The quantised models executed by the IP core can be fine-

tuned or not. Different layers require different fixed-point

scales. Hence, dynamic quantisation is considered where dif-

ferent layers are allowed to have different fixed-point scales.

To analyse the accuracy drop caused by the conversion

to fixed-point, YOLOv3-Tiny and YOLOv4-Tiny detectors

were run with the MS COCO 2017 test dataset, with a post-

training quantised model without fine-tuning, and the mAP50

metric was evaluated using the CodaLab platform [25].

The results show that a 16-bit fixed-point model presents a

mAP50 drop below 2.1 compared to the original floating-

point model. Fine-tuning would most probably improve the

precision of the network and would allow lower fixed-point

formats. The bit width of the fixed-point representation es-

tablishes a trade-off between the area and performance of the

hardware accelerator and the accuracy of the network model.

D. BATCH-NORMALIZATION

This work adopted the batch-normalization folding method

proposed in [26] to implement batch-normalization. It con-

sists of a linear transformation to fold the parameters of

the batch-normalisation layer into the preceding convolu-

tional layer, consequently reducing the number of parameters

and operations of the network. As a result, the pre-trained

floating-point weights w and biases b are updated to their new

values w′ and b′ according to Eq. 3.

w′ =
γ × w
√
σ2 + ǫ

b′ = b−
µ× γ

√
σ2 + ǫ

(3)

Quantisation is applied to w′ and b′.

E. CNN ACCELERATION WITH FPGAS

One of the main advantages of accelerating CNNs with

FPGAs, rather than with a Central Processing Unit (CPU)

or GPU, is the flexibility to design customised hardware to

exploit various parallelism sources and use dedicated dis-

tributed on-chip buffers to support data reuse. As networks

get deep, the number of operations and storage requirements

increase. Thus, external memory is required, whose access

results in high latency and significant energy consumption.

FPGAs present a density of hard-wired Digital Signal Pro-

cessing (DSP) blocks and a collection of On-Chip Memories

(OCMs) that can be used to perform the MAC operations and

reduce the number of external memory accesses.

The most common approaches for accelerating CNN in-

ference in FPGAs in previous works [19] are mainly focused

on exploiting the parallelism of the MAC operations of the

convolutions and on approximating the model with fixed-

point computation.

Typical FPGA-based CNN accelerators [27]–[31] intro-

duce several levels of memory hierarchy. The system in [31]

is composed of two on-chip input buffers, one for fetching the

feature maps and the other for fetching the parameters from

the external memory using a Direct Memory Access (DMA).

The data is streamed into configurable cores responsible for

computing the MAC operations. Each core has its on-chip

registers. The on-chip output buffer stores the intermediate

results and outputs the feature maps. These are transferred

back, if needed, to the external memory. The CPU issues the

controller’s workload, which in turn generates control signals

to the other modules. The multipliers and adder trees present

in each core are usually pipelined to reduce the circuit’s

critical path and increase the throughput.

The computation of each convolutional layer can be seen

as the application of four nested loops. Each loop is associ-

ated with a source of parallelism:

• intra-convolution: multiplications in 2D convolutions

are implemented concurrently

• inter-convolution: multiple 2D convolutions are com-

puted concurrently

• intra-FM: multiple pixels of a single output Feature Map

(FM) are processed concurrently

• inter-FM: multiple output FMs are processed concur-

rently.

The sources of parallelism to be exploited depend on

the convolutional layers’ characteristics, like the number of

channels and input feature map size, and on the FPGA re-

sources. The architectural configuration of the cores, number

of MACs and registers, and the temporal data scheduling

are defined by applying loop optimisation techniques, such

as loop unrolling and loop tiling [20]. According to a given

unroll factor, loop unrolling parallelises the loops’ execution

at the expense of resource utilisation. Loop tiling divides the

data into multiple blocks to increase the data locality.

The CNN execution can be further accelerated by approx-

imating the computation at the cost of a minimal accuracy

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081818, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

drop. Two of the most common strategies are reducing the

precision and number of operations. During training, data are

represented in single-precision floating-point format. During

inference, data can be converted to fixed-point, typically 8 or

16 bits, to reduce storage requirements, hardware utilisation,

and power consumption [20].

The most common approaches to reducing the number

of operations are weight pruning and low-rank approxima-

tion [32]. A fine-tuning phase often follows these methods

to counterbalance the accuracy drop. Operation reduction

methods are not considered in this work.

Zhang et al. [28] were one of the first to employ loop

optimisation strategies to accelerate the execution of AlexNet

in an FPGA. The accelerator achieves a performance of 62

Giga Operations Per Second (GOPS), using 32-bit floating-

point arithmetic. Suda et al. [29] reach a performance of 187

GOPS for the same AlexNet using loop optimisation tech-

niques alongside 16-bit fixed-point arithmetic. Since then,

many other proposals have considered data quantisation and

data pruning to design optimised hardware accelerators for

CNN inference [19].

Considering specifically the acceleration of YOLO, Wei et

al. [33] proposed an FPGA-based architecture for the acceler-

ation of YOLOv2-tiny. The Leaky ReLU activation function

is replaced with ReLU to reduce resource consumption. The

authors report an inference throughput of 19 Frames Per

Second (FPS) in a Zynq 7035 FPGA. Liu et al. [34] also

proposed an FPGA-based accelerator of YOLOv2-tiny with

a 16-bit fixed-point number representation for both inputs

and outputs. The system achieves 69 FPS using an Arria 10

GX1150 FPGA.

Some works proposed various simplifications of YOLOv2

[35], [36]. The former considers a mixed algorithmic solution

with convolutional layers and a Support Vector Machine

(SVM). The solution achieves 40 FPS in a Zynq XCZU9EG

FPGA device with a 1.5pp accuracy drop. The second adopts

a pipelined CNN architecture where each layer is mapped to

a dedicated hardware module. The solution was implemented

in a Virtex XC7VX485T FPGA, with a sizeable on-chip

memory, achieving 109 FPS at 18.3 W of power.

While YOLOv2 targets only 24 classes of objects [37],

YOLOv3 targets 80 classes, thus requiring a higher number

of operations per inference. Oh et al. [38] implemented the

YOLOv3-tiny model on a Zynq XCZU9EG FPGA. The

network is trained with a pedestrian signalling dataset, and

the weights and activations are quantised with an 8-bit fixed-

point. The backbone network is implemented in the pro-

gramming logic, whilst the programming system handles the

detection layers and the remaining functionality. The authors

claim a throughput of 104 FPS without detailing the hardware

architecture or resource consumption. The utilisation of an 8-

bit fixed-point data representation improves the performance

but reduces the precision by about 15%.

Ahmad et al. [39] apply batch-normalisation folding and

post-training quantisation of 18 bits. Only the convolutions

are handled in hardware, and all the other layers and activa-

tion functions are implemented in software. The hardware ar-

chitecture exploits the inter-FM, inter-convolution and intra-

convolution parallelisms with a total parallelism factor of

2304. The actual throughput is not reported.

Yu et al. [40] accelerate all YOLOv3-Tiny layers in hard-

ware. They exploit intra-convolution instead of the intra-FM

parallelism, and the data is quantised with 16 bits with a

reduction in mAP of 2.5 pp. The solution achieves a latency

of 532 ms per inference, less than 2 FPS. The high latency

reduces its applicability to real-time scenarios.

This paper proposes a configurable core for the efficient

execution of full object detectors based on Tiny YOLO.

Contrary to previous solutions that only accelerate the CNN

of a particular YOLO version, the YOLO core proposed in

this work accelerates all algorithm steps, including pre-CNN

acceleration (width and height resize), CNN acceleration and

post-CNN acceleration (detection phase).

III. HARDWARE ACCELERATOR IP CORE
This section describes the hardware architecture designed

to accelerate lightweight versions of YOLO, including the

layers of the background CNN network, pre-CNN and post-

CNN operations.

A. HIGH-LEVEL ARCHITECTURE

The architecture of the accelerator is composed of three

main modules, xWeightRead, xComp and AXI-DMA, as rep-

resented in Figure 2.

YOLO

Accelerator

FIGURE 2. High-level architecture of the accelerator.

The xWeightRead stage reads weights and biases from

the external memory and stores them in the on-chip memory.

This stage is constituted by an array of configurable vRead

units. A vRead unit is a dual-port memory. One port is used

for writing the weights and biases read from the external

memory via the DMA, and the other port is used for reading

those values and feeding them to the xComp stage. The

write and read addresses are generated by two independent

Address Generator Units (AGUs) so that the write and read

accesses can be performed simultaneously.

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081818, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

The xComp stage computes convolutions, maxpool and

activation functions and stores the results back to the on-chip

memory. This stage is composed of a matrix of configurable

custom computing Functional Units (FUs), where each row

shares a vRead unit and a vWrite unit. The vRead unit is used

for reading tiles of the input feature map from the external

memory. The vWrite unit includes a dual-port memory, an

internal AGU to store the computation results, and an exter-

nal AGU to write the stored results to the external memory

via DMA. The various vRead and vWrite units share a merge

block each, which is a priority encoder for allowing DMA

access to only one vRead and one vWrite at a given time.

The function of the AXI-DMA block is to read/write data

from/to the external memory. It handles 256-bit-wide data

and allows configurable bursts for both reads and writes.

It has two data native interfaces, allowing the xComp and

xWeightRead modules to read and write from memory and

an AXI-4 interface to access the external memory. It also

has a native configuration interface driven by the CPU. Like

the FUs, the DMA can be configured while executing so

that configurations, data transfers, and FU computing can co-

occur.

Each stage has a configuration module with specific con-

figurations shared between the same FU types within the

stage. Apart from the internal configurations of each stage,

there are global control and status registers that are common

to all stages:

• Run: starts the execution of the configurations stored in

the shadow registers of each stage;

• Clear: resets the configurations stored in the register

files of each stage;

• Done: indicates the end of execution of all configura-

tions of all the stages.

B. DETAILED ARCHITECTURE

The detailed architecture of the IP core is shown in Figure 3.

The custom FUs are reconfigurable, allowing them to form

different hardware datapaths for different computations.

FIGURE 3. Detailed architecture of the accelerator.

Each FU in the same row receives the same feature map tile

but a different 3D kernel, which corresponds to computing

multiple OFM (Output Feature Map) in parallel (inter-FM

parallelism), corresponding to an unrolling factor defined by

nCols. In turn, each FU in the same column receives the

same 3D kernel but a different FM tile, corresponding to

the computation of multiple pixels of a single output FM

in parallel (intra-FM parallelism), where the unroll factor

is defined by nRows. Therefore, the total number of FU is

nCols x nRows. Multiple 2D convolutions are computed

inside each FU in parallel (inter-convolution parallelism),

with an unroll factor defined by nMACs.

The data flow is the following. The vRead units read

data from the external memory using the DMA and store

them internally. Simultaneously, the data in the vRead units,

obtained from the external memory in the previous run, is

broadcast to columns or rows of FUs, depending on the type

of vRead unit. Each custom FU computes a different 3D

convolution. The computation results of the custom FUs are

concatenated and stored in the vWrite unit. Simultaneously,

the results of the previous run are written back to the external

memory via the DMA.

1) xWeightRead stage
Figure 4 shows the detailed architecture of the xWeightRead

stage, omitting the merge module. This module is composed

of a Bias vRead unit and an array of Weight vRead units.

These units read data from the external memory using their

external AGUs, write these data to their internal Bias and

Weights memories and, at the same time, read previous data

from their internal memories to feed the compute FUs.

FIGURE 4. xWeightRead stage detailed architecture.

The Weight vRead units share the Internal AGU to read the

data from the internal memory. The external AGUs are indi-

vidual, as each uses a different base address value. However,

their configuration is shared because only the first external

AGU’s base address is configurable (WEIGHT_EXT_ADDR

runtime parameter). The base addresses of the other ex-

ternal AGUs are calculated in hardware by adding the

product of the external AGU position and the address

offset (WEIGHT_OFFSET runtime parameter) to the base

(WEIGHT_EXT_ADDR). This scheme results from the same

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081818, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

convolutional layer’s kernels being stored sequentially in the

external memory and having the same size. Despite requiring

the use of nCols-1 multipliers in the design, performing

this calculation in hardware allows keeping the configuration

size independent of the number of vReads.

The weight memories are asymmetric dual-port memories,

with an external bus of 256 bits and an internal bus of

nMACs × DATAPATH_W bits, allowing nMACs weights to

be read simultaneously from the same 3D kernel to per-

form inter-convolution parallelism. As all the custom FUs

share the same bias in the same matrix column, the Bias

vRead unit uses only a single read address defined by the

BIAS_START_B runtime parameter, which does not require

an internal AGU.

The runtime parameters of the xWeightRead stage are used

by the internal and external AGUs that control the access

pattern of the weights and bias memories. For the vReads,

the external AGU controls the write address of the memories

whilst the internal AGU controls the read address.

The communication with the external memory is done

through the native external memory interface, where the

address is calculated by adding a base value with an offset

value. The communication with the internal memory is done

via the native internal memory interface. The address is

determined by adding a base value with an offset calculated

using a sequential counter inside the external AGU.

2) xComp stage
The xComp stage is composed of an array of FM Tile vRead

units, a matrix of custom FUs and an array of vWrite units.

The vRead units operate similarly to the vRead units from the

xWeightRead stage. Each custom FU receives a bias, weights

and pixels from the FM tile to compute 3D convolutions. The

vWrite units write the results to their internal memories and

send the previous results back to the external memory.

The vReads for the input FM tiles are similar to the vReads

for the weights. Namely, the base address of each external

AGU is calculated with nRows-1 multipliers; the config-

urations are shared between the external AGUs; and the

asymmetric dual-port memories that store the FM tiles use a

single internal AGU and operate as ping-pong buffers. Figure

5 shows the detailed architecture of the xComp vReads, for

simplification omitting the calculation of the external AGU’s

base addresses, the merge module and the dataflow.

The read address of the memories can be configured to

come from the internal AGU or values stored in other mem-

ory.

The detailed architecture of the custom FU is represented

in Figure 6. The reconfigurable interconnections inside the

FU allow forming different datapaths to accelerate different

CNN layers. The FUs can be configured to form convolu-

tional, with or without bias, or maxpool datapaths. A set of

activation functions (e.g., Leaky ReLU, sigmoid) can also be

configured.

The default operation is the 3D convolution performed

by the MACs in parallel. Each MAC performs one tile

FIGURE 5. xComp vReads detailed architecture.

FIGURE 6. Custom FU detailed architecture.

convolutions of input channels, and an adder tree sums the

convolution results across the channels. The internal AGU

controls the number of accumulations to perform by resetting

the accumulator of the MACs when the output address is

zero. The bias can be included in the convolutions’ computa-

tion by enabling the bias runtime parameter. The b_shift

runtime parameter indicates the number of bits to shift the

bias before the accumulation, according to its quantisation

format.

The IP core implements the activation functions after

the convolution. The leaky runtime parameter enables the

leaky activation, which is implemented with two adders, one

multiplexer and shifters. The sigmoid runtime parameter

enables the sigmoid activation, which is implemented with

simple comparators, multiplexers, adder/subtracters and a

priority encoder. In case the sigmoid activation is not applied

to all output channels, the mask runtime parameter provides

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081818, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

a second enable for the sigmoid computation, which is indi-

vidual for each custom FU in the matrix row. After the op-

tional activation blocks, the result is shifted considering the

value of the shift runtime parameter and the quantisation

format of the results.

The IP core is designed to compute the convolutional and

maxpool layers’ in the same run. The computation of the

Maxpool layer, which is enabled by the maxpool runtime

parameter, is performed with a 2-bit counter to handle 2×2

blocks of pixels, a comparator to find the maximum value

in the 2×2 block and a multiplexer to select that value.

The Maxpool can also be performed standalone without

performing convolutions in the same run by bypassing the

pixels from the FM tile to the Maxpool computation input.

The bypass_adder runtime parameter provides the option

of routing one of the MACs’ result to the output of the custom

FU. It is used when only needing to compute individual

accumulations with a single MAC.

The runtime parameters for the xComp vWrites are used by

the internal and external AGUs that control the access pattern

of the memories that store the computation results. For the

vWrites, the internal AGU controls the write-address of the

memories whilst the external AGUs control the read address

of the memories. Therefore, the direction parameter of

the external AGUs is hard-wired to one, which indicates that

the data is read from the internal memories and written into

the external memory. Similarly to the vReads, the vWrites

require nRows-1 multipliers for the calculation of the base

address of each external AGU, use a single internal AGU

shared by all memories and share the runtime parameters

between the external AGUs.

3) AXI-DMA
The AXI-DMA module converts the requests of the vReads

and vWrites of the native interface to the AXI4 read and write

transactions of the AXI4 interface.

For the read transactions (vReads), the runtime parameter

defines the total number of transfers in a single run. The

AXI4 protocol supports a maximum of 256 transfers per

burst. Therefore, the DMA contains an internal counter,

initialised at the beginning of the configuration run, that

decrements each time a transfer is done. For instance, if the

total number of transfers is 500, the first burst will have 256

transfers while the second burst will have 244 (500-256).

C. IMPLEMENTATION OF PRE- AND POST-CNN YOLO

FUNCTIONS

The proposed IP core can also accelerate the pre- and post-

CNN operations of the YOLO algorithm. As stated in section

II-B, the pre-CNN image resizing method is divided in width

and height resize and accelerated in the IP core by performing

two accumulations per MAC.

For resizing the width, each row of the input image is

stored in a different FM tile vRead and padding rows are

added if the height of the input image is not multiple the

number of rows of the matrix of FUs. The pixels in the vRead

memories are addressed by the pattern memory that stores the

irregular patterns of the horizontal indices instead of using

the internal AGU directly. The horizontal factors are stored in

the weight vReads unit. For each matrix row, only one custom

FU is used per input channel instead of all the row’s custom

FUs. Unlike the kernels in the convolutional layers, there

is no parallelism between horizontal factors. Also, only one

MAC is used per custom FU by setting the bypass_adder

parameter to one as the channels are not summed as in the

convolutions.

The rows from the intermediate image generated by the

width resize step to be stored in the FM tile vReads depend on

the vertical indexes’ values, considering the height resizing.

As these values do not follow any regular pattern, only the

first row of custom FUs is used, and the ext_addr param-

eter of its external AGU is determined by the base address

configured in the software according to the rows selected by

the vertical indexes. The vertical factors are stored in the

weight vReads, and only one matrix row with four MACs

is used. The total parallelism factor for the height resizing

computation is only four.

The RISC-V soft-processor software entirely handles the

post-CNN functions to identify the detections with a score

above the threshold and applies non-maximum suppression.

The IP accelerates the function that draws the labels and

boxes when any detections are found. When drawing labels,

each label pixel has to be multiplied by the RGB value

computed during the setup, as each class is associated with

a different RGB colour. Hence, the FM tile vRead stores the

label and the weight vRead stores the RGB values. The post-

CNN is bounded by communication due to irregular writes

to the external memory. Therefore, only four MACs are used

for the computation of the coloured labels. When drawing the

boxes, only the RGB values are stored in the FM tile vRead,

and the weight vRead is not used.

D. CONFIGURATION OF THE YOLO IP CORE

The synthesis parameters that determine the internal architec-

ture of the proposed YOLO IP core are described in Table 2.

TABLE 2. Synthesis parameters of the YOLO IP core.

Parameter Description

nCols Number of FUs per row

nRows Number of FUs per column

nMACs Number of MAC per FU

DDR_ADDR_W Address width of external memory

DATAPATH_W Datapath width

VREAD_TILE_EXT_ADDR_W External address width of FM tile

VREAD_BIAS_ADDR_W Internal address width of bias memory

VREAD_WEIGHT_ADDR_W Internal address width of weight memory

VREAD_TILE_ADDR_W Internal address width of FM tile

VREAD_PATTERN_ADDR_W Internal address width of vRead memory

VWRITE_ADDR_W Internal address width of vWrite memory

The execution time for the computation of the CNN-only

in the YOLO IP core can be roughly estimated according to

Eq. 5, assuming a balanced overlap between communication

and computation.

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081818, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ExecT ≈
NumOperations of model

2× Parallelismfactor × Freq
× Eff (4)

where the NumOperations of model is the total number of

operations necessary to execute an inference of the model, the

Parallelismfactor is the number of MAC units performing

computations in parallel in the design, and Freq is the

operating frequency of the circuit.

The total number of MAC units is given by:

NumberofMAC = nMAC × nCols× nRows (5)

The efficiency factor (Eff ) depends on the ratio between

the number of kernels and the number of FUs per row and

the ratio between the feature maps’ size and the number of

feature map tiles. The maximum efficiency is achieved if the

size of kernels or tiles is a multiple of nCols and nRows,

respectively. As expected, the execution time decreases when

increasing the parallelism factor. A tool was developed to

automatically determine this efficiency based on the IP core

and the description of the CNN model.

The pre- and post-CNN processing depend on the size

of the images, (ix, iy, iz) as explained in section III-C. The

pre-CNN processing includes the weight and high resize

steps. The post-CNN processing takes the detections, filters

the boxes, and draws the boxes and their labels. The first

two are implemented in software, and the drawing phase is

implemented in the accelerator.

The number of cycles to resize the image in weight is

the maximum of the number of computational, wRcomp, and

communication, wRcomm, cycles, according to equations 6

and 7.

wRcomp =
(Nix × iy × iz)

nMACs× nRows
(6)

wRcomm =
((ix +Nix)× iy × iz)× CH × 2

MemoryBW
(7)

where Nix is the weight of the resized image, CH is the

number of channels, and MemoryBW is the memory trans-

fer rate.

The number of cycles to resize the image in height is

the maximum of the number of computational, hRcomp, and

communication, hRcomm, cycles, according to equations 8

and 9.

hRcomp =
(Nix ×Niy × iz)

nMACs
(8)

hRcomm =
((ix)× (iy +Niy)× iz)× CH × 2

MemoryBW
(9)

where Niy is the height of the resized image.

The execution time of the post-CNN processing is de-

pendent on the number of labels and boxes. The process

is communication bounded with irregular write accesses to

external memory.

The address widths of the on-chip memories are found

after deciding the size of each type of memory. The size

of weight memories is chosen as twice the largest filter size

to allow ping-pong buffering. The size of the tile memories

is chosen to permit storing a tile of the input feature map

necessary to calculate at least a line of the output feature map.

The tiles cover the entire width of the input FM for the layers

where the FM tile memories are not used in a ping-pong

fashion, as they are transferred only once or twice depending

on the scale. Thus, unlike the other memories in the design,

FM tile memories do not need to have twice their data size

due to the ping-pong operation.

The address width of the output memories depends on

the number of results computed per tile in each run, which

depends on the tiling factor chosen for the width of the

tiles. The memory is doubled to work in ping-pong. The

bias memory size must have enough space to store all bias

associated with the filters present in the weight memories.

IV. RESULTS

This section reports the results obtained with the proposed IP

core, configured to run the YOLOv3-Tiny and the YOLOv4-

Tiny detectors. The development board used to evaluate this

work is the Kintex UltraScale KU040 [41]. The synthesis

parameters used to determine the proposed IP core’s internal

architecture are shown in Table 3.

TABLE 3. Synthesis parameters chosen for the IP core for the two versions of
Tiny-YOLO.

Parameter Tiny-YOLOv3 Tiny-YOLOv4

nCols 16 24

nRows 13 13

nMACs 4 4

DDR_ADDR_W 32 32

DATAPATH_W 16 16

VREAD_TILE_EXT_ADDR_W 15 15

VREAD_BIAS_ADDR_W 3 3

VREAD_WEIGHT_ADDR_W 14 14

VREAD_TILE_ADDR_W 15 15

VREAD_PATTERN_ADDR_W 10 10

VWRITE_ADDR_W 8 8

The number of nCols, nRows and nMACs were chosen

to achieve a target frame rate around 30, according to the

equations of section III-D. Also, the number of nRows was

chosen to best map the size (multiples of 13) of the feature

maps of YOLOv3-Tiny and YOLOv4-Tiny. The pre- and

post-CNN processing have an estimated execution time of 7

ns.

The dimension of the tile memory was chosen to accom-

modate the biggest FM tile with 32256 pixels. Therefore,

VREAD_TILE_ADDR_W is 15. As each pixel is 16 bits, each

FM tile memory requires 64kB.

The size of the output memories was chosen to store

the maximum number of results per tile (104). As these

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081818, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

memories always work in ping-pong fashion, their size must

be doubled; hence, VWRITE_ADDR_W is 8.

The weight memory was chosen to store the largest 3D

kernel with a total of 4608 weights. Since this memory

also works in a ping-pong fashion, twice this size must

be considered; therefore, VREAD_WEIGHT_ADDR_W is 14.

The weights are also represented in 16 bits, so each weight

memory requires 32Kb.

The YOLO core accelerator was integrated into a RISC-

V based SoC, and the whole system was called SoC-YOLO.

The system uses a low-performance RISC-V soft-processor

to control the memory sub-system and peripherals. The pe-

ripherals’ set includes a boot controller, internal memory

to store the firmware, external memory to store the image

and weights, timer to measure the application’s time perfor-

mance, UART for the bootloader and debugging and Ethernet

to load images to the board. Both the soft-processor and

the IP core main hardware components operate with a clock

frequency of 143MHz.

Table 4 presents the resource consumption of the

SoC-YOLO system-on-chip, in terms of the FPGA primi-

tives. As highlighted, most of the resources are occupied by

the hardware accelerator.

TABLE 4. Resource consumption of the SoC-YOLO accelerator for different
configurations.

Component BRAM FF LUT DSP

AXI Interconnect 0 9,887 3,442 0

DDR4 Controller 25.5 11,918 9,697 3

RISC-V CPU 0 902 2,569 4

Internal memory 17 41 60 0

AXI Cache 1 592 629 0

YOLO IP core v3 339 86,319 103,655 832

YOLO IP core v4 403 124,761 146,820 1248

Ethernet 1 382 193 0

UART 0 89 86 0

Timer 0 130 2 0

Others 0 728 480 0

Total v3 383.5 110,988 138,946 839

Total v4 447.5 149430 182,111 1255

Each DSP Block implements one multiply-accumulate op-

eration. Therefore, the peak performance of the system totals

nCols×nRows×nMACs×2×freq = 238 GOPS for Tiny-

YOLOv3 and 357 GOPS for Tiny-YOLOv4. The expected

efficiency running the CNN was determined as 96 % for the

first model and 82% for the second.

A. PERFORMANCE ANALYSIS RUNNING YOLOV3-TINY

The software baseline of the YOLO application was divided

into four sections: peripherals initialisation and preparation

of the data in the external memory, pre-CNN, CNN and post-

CNN. The software-only version’s execution time running on

the RISC-V soft-processor at 143MHz is 969 seconds (above

16 minutes).

The execution time of the YOLOv3-Tiny detector imple-

mented in the SoC-YOLO platform is detailed in Table 5. The

total execution time is 30.9 ms, achieving a frame rate of 32

FPS.

TABLE 5. Performance of the YOLOv3-Tiny detector in the SoC-YOLO
platform.

Section Execution time (ms)

Width resize 1.09

Height resize 1.94

CNN (DarkNet-53-Tiny) 24.4

Get detections 1.94

Filter boxes 0.14

Draw detections 1.37

Total time (ms) 30.9

Compared to the software baseline, the pre-CNN proce-

dure was accelerated from 1 s to only 3 ms. The post-CNN

procedure’s detection drawing method was improved from

approximately 12 ms to nearly 1.4 ms. Both accelerations

are mainly due to reducing the communication time be-

tween the FPGA and the external memory using the DMA

engine inside the IP core. The highest speed-up of 40k×
was achieved for CNN’s acceleration, from 968 seconds to

only 24.4 ms, which is very close to the expected value. The

expected value is the CNN number of operations over the

IP peak performance times its efficiency, which results in

5.56GOPS/(238GOPS × 0.96) = 24.3ms.

Table 6 compares the execution time of the fixed-point

model of the YOLOv3-Tiny detector implemented in the

SoC-YOLO platform with the original floating-point model

from Darknet-53-Tiny executed in both CPU and GPU.

SoC-YOLO is nearly 27× faster than the CPU version and

only 2× slower than the GPU version without batch, being,

however, the only platform suitable for embedded systems.

TABLE 6. Performance comparison of the YOLOv3-Tiny detector in different
platforms.

Platform Time (ms) FPS

CPU (Intel i7-8700 @ 3.2 GHz) 828.3 1.2

GPU (RTX 2080 Ti) 15.4 64.9

FPGA (SoC-YOLO) 30.9 32.4

The execution time of CNN is always constant as long as

the parallelism factor is kept. On the other hand, the pre-CNN

execution time depends on the input image’s dimensions,

whilst the post-CNN execution time depends on the number

of candidates and final detections. For both software baseline

and final firmware, the timing results reported were for a

768×576 input image from which the detector finds five

candidate boxes and four final detections.

Figure 7 shows the variation of the pre-CNN execution

time according to the input image’s resolution. The width-

resize method is slower for wide input images, and the

height-resize method increases its execution time for square

input images.

In turn, Figure 8 shows how the post-CNN execution

time rises when detecting more candidate boxes and final

detections, which could result from the reduction of the

threshold score. The increase in the detector’s execution time

when requiring a higher input image resolution or a lower

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081818, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 7. Execution time of the pre-CNN depending on the input image
resolution.

FIGURE 8. Execution time of the post-CNN depending on the number of
detections.

score threshold can be compensated by reducing the CNN’s

execution time by applying a higher parallelism factor.

The pre- and post-CNN processing stages are independent

of the number of nCols. Therefore, the execution times

represented in figures 7 and 8 are the same for both YOLO-

Tiny models.

B. PERFORMANCE ANALYSIS RUNNING YOLOV4-TINY

The execution time of the YOLOv4-Tiny detector on the

SoC-YOLO platform with the proposed IP core is 32.1 ms,

around 31 FPS.

SoC-YOLO runs the background CNN in 26.9 ms, close to

the expected value of 25.6 ms. In this case the expected value

is 7.51GOPS/(357GOPS × 0.81) = 25.6ms.

Table 7 compares the execution time of the fixed-point

model of the YOLOv4-Tiny detector implemented over the

SoC-YOLO platform with the original floating-point model

executed in both CPU and GPU. SoC-YOLO is nearly 33×
faster than the CPU version and only 1.6× slower than the

GPU version and, as referred, is more suitable for embedded

systems.

TABLE 7. Performance comparison of the YOLOv4-Tiny detector in different
platforms.

Platform Time (ms) FPS

CPU (Intel i7-8700 @ 3.2 GHz) 1054.1 0.9

GPU (RTX 2080 Ti) 19.7 50.7

FPGA (SoC-YOLO) 32.1 31.2

C. COMPARISON WITH FPGA-BASED

IMPLEMENTATIONS

The SoC-YOLO implementation with the proposed IP core

configured for YOLOv3-Tiny was compared to previous

detectors in FPGA referred in subsection II-E (see Table 8).

All implementations consist of hardware/software co-design.

As far as we know, there are no reported works on implemen-

tations of YOLOv4-Tiny on FPGA, so this implementation is

not compared to previous works.

Oh et al. [38] claims a throughput of 104 FPS without

detailing the hardware architecture or resource consumption.

The hardware architecture in Ahmad et al. [39] achieved a to-

tal parallelism factor of 2304, which is over 2.5× higher than

that of SoC-YOLO and would justify a higher throughput.

However, the only performance metric reported is the number

of MAC operations per second, calculated from the product

between the number of DSPs and the frequency. The actual

throughput is not reported, and therefore no fair performance

comparison can be made between the two works. Yu et al.

[40] execute all YOLOv3-Tiny layers in the programmable

logic of a Zynq 7020 device, which has between 4× and

8× fewer hardware resources than the UltraScale XCKU040

used herein. They achieved a throughput of 2 FPS, which

is about 17× lower than SoC-YOLO. Both works perform

16-bit MAC operations, and based on the MAC operations

per second, SoC-YOLO has better performance and better

area efficiency in LUT and DSP consumption. Despite the

resources necessary for dynamically configuringSoC-YOLO,

its area efficiency (MOPS/s/kLUT and MOPS/s/DSP) is

about 3.2× higher compared to [40].

The SoC-YOLO platform uses a soft processor with lower

performance and executes at a lower frequency than the other

works’ hard processor. Still, the system can achieve a real-

time performance as the software development is simplified

at the expense of the IP core accelerator’s features. For

instance, the DMA integration frees the CPU from handling

data transfers to only execute the configurations of the FUs.

The number of configurations is invariant to the number of

FUs in the design, consequently reducing the configuration

time.

All the other works only focus on the acceleration of the

CNN part of the YOLOv3-Tiny detector. This work executes

the detector’s complete process flow by adding the image

resize before the CNN and drawing the detections after the

CNN.

12 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081818, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 8. Comparison of FPGA-based implementations of the YOLOv3-Tiny detector.

[38] [39] [40] SoC-YOLO

FPGA UltraScale+ XCZU9EG Virtex-7 XC7VX485T Zynq 7020 UltraScale XCKU040

Freq.(MHz) - 200 100 143

LUT (K) - 49 26 139

BRAM - 70 93 384

DSP - 2304 160 839

FPS 104.2 - 1.9 32.4

FP (bits) 8 18 16 16

GOPS - - 10.5 180

MOPS/s/kLUT - - 403.8 1295.0

MOPS/s/DSP - - 66.3 215.5

Power (W) - 4.81 3.36 3.87

V. CONCLUSIONS
This work proposes a new configurable hardware accelerator

for the execution of the Tiny versions of YOLO. The IP core

is parameterisable, taking into account the characteristics of

the underlining CNN of the object detector and the avail-

able resources in the target device. Hardware optimisations

such as the approximation of the activation functions, batch-

normalisation, folding and post-training dynamic quantisa-

tion were considered to improve performance efficiency.

The IP core consists of a matrix of vector functional units

that share configurations among the same type, an integrated

DMA for fast data transfers, heterogeneous stages, automatic

ping-pong memories and address generation units handling

6-level nested loops without software intervention. The cus-

tom MAC-based FUs are organised in a matrix structure

to exploit Inter-FM, Intra-FM and Inter-Convolution paral-

lelism and enhance pixel and weight sharing.

The yolo, upsample and most of the maxpool layers are

executed alongside the precedent convolutional layer. The IP

core also accelerates the pre-CNN procedure and the drawing

of the detections in the post-CNN procedure.

The accelerator was integrated into a RISC-V-based SoC

platform and then configured for real-time execution of

YOLOv3-Tiny and YOLOv4-Tiny object detectors. The

fixed-point models without fine-tuning induce a mAP50

drop of less than 2.1 compared to the original floating-

point models. The system achieves a frame throughput of 32

and 31 FPS for the complete YOLOv3-Tiny and YOLOv4-

Tiny detectors, showing significantly higher performance and

resource efficiency than previous works.

As future work, the hardware accelerator can be improved

with additional types of layers. For example, to accelerate the

shortcut layers present in the YOLOv3 network, an optional

adder can be placed between each two FM tile vReads to

add pixels from different input FMs before the convolution

operation.

REFERENCES
[1] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, “A Survey

of Deep Learning-Based Object Detection,” IEEE Access, vol. 7, pp.

128 837–128 868, 2019.

[2] L. Liu, W. Ouyang, X. Wang, P. W. Fieguth, J. Chen, X. Liu, and

M. Pietikäinen, “Deep Learning for Generic Object Detection: A Survey,”

International Journal of Computer Vision, pp. 1 – 58, 2018.

[3] E. Unlu, E. Zenou, N. Riviere, and P.-E. Dupouy, “Deep learning-based

strategies for the detection and tracking of drones using several cameras,”

IPSJ Transactions on Computer Vision and Applications, vol. 11, pp. 1–13,

2019.

[4] R. Simhambhatla, K. Okiah, S. Kuchkula, and R. Slater, “Self-Driving

Cars: Evaluation of Deep Learning Techniques for Object Detection in

Different Driving Conditions,” SMU Data Science Review, vol. 2, no. 1,

2019.

[5] N. O. Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. A.

Velasco-Hernández, L. Krpalkova, D. Riordan, and J. Walsh, “Deep

learning vs. traditional computer vision,” CoRR, vol. abs/1910.13796,

2019. [Online]. Available: http://arxiv.org/abs/1910.13796

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies

for accurate object detection and semantic segmentation,” in 2014 IEEE

Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–

587.

[7] R. Girshick, “Fast r-cnn,” in 2015 IEEE International Conference on

Computer Vision (ICCV), 2015, pp. 1440–1448.

[8] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based

fully convolutional networks,” in Proceedings of the 30th International

Conference on Neural Information Processing Systems, ser. NIPS’16.

Red Hook, NY, USA: Curran Associates Inc., 2016, p. 379–387.

[9] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 39, no. 6, p. 1137–1149, Jun. 2017. [Online].

Available: https://doi.org/10.1109/TPAMI.2016.2577031

[10] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in 2017 IEEE

International Conference on Computer Vision (ICCV), 2017, pp. 2980–

2988.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look

once: Unified, real-time object detection,” in 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

[12] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2017, pp. 6517–6525.

[13] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”

2018.

[14] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed

and accuracy of object detection,” 2020.

[15] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense

object detection,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 42, no. 2, pp. 318–327, 2020.

[16] Z. Zhao, P. Zheng, S. Xu, and X. Wu, “Object Detection With Deep Learn-

ing: A Review,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 30, no. 11, pp. 3212–3232, Nov 2019.

[17] X. Feng, Y. Jiang, X. Yang, M. Du, and X. Li, “Computer vision algorithms

and hardware implementations: A survey,” Integration, vol. 69, pp. 309–

320, 2019, doi:10.1016/j.vlsi.2019.07.005.

[18] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient Processing of Deep

Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE, vol.

105, no. 12, pp. 2295–2329, Dec 2017.

[19] M. P. Véstias, “A survey of convolutional neural networks on edge with

reconfigurable computing,” Algorithms, vol. 12, no. 8, 2019. [Online].

Available: https://www.mdpi.com/1999-4893/12/8/154

[20] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, “Accelerating CNN

inference on FPGAs: A Survey,” 2018.

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081818, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[21] X. Feng, Y. Jiang, X. Yang, M. Du, and X. Li, “Computer vision algorithms

and hardware implementations: A survey,” Integration, vol. 69, pp. 309–

320, 2019.

[22] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look

Once: Unified, Real-Time Object Detection,” 2015.

[23] A. Gonçalves, T. Peres, and M. Véstias, “Exploring data size to run convo-

lutional neural networks in low density fpgas,” in Applied Reconfigurable

Computing, C. Hochberger, B. Nelson, A. Koch, R. Woods, and P. Diniz,

Eds. Cham: Springer International Publishing, 2019, pp. 387–401.

[24] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A Survey of FPGA-Based

Neural Network Accelerator,” 2017.

[25] CodaLab, “COCO Detection Challenge (Bounding Box),”

https://competitions.codalab.org/competitions/20794#participate, 2020.

[26] P. Kluska and M. Zieba, “Post-training Quantization Methods for Deep

Learning Models,” in Intelligent Information and Database Systems, N. T.

Nguyen, K. Jearanaitanakij, A. Selamat, B. Trawiński, and S. Chittaya-

sothorn, Eds. Cham: Springer International Publishing, 2020, pp. 467–

479.

[27] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,

S. Song, and et al., “Going Deeper with Embedded FPGA Platform for

Convolutional Neural Network,” in Proceedings of the 2016 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, 2016, p.

26–35.

[28] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing

FPGA-Based Accelerator Design for Deep Convolutional Neural Net-

works,” in Proceedings of the 2015 ACM/SIGDA International Sympo-

sium on Field-Programmable Gate Arrays, 2015, p. 161–170.

[29] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s.

Seo, and Y. Cao, “Throughput-Optimized OpenCL-Based FPGA Acceler-

ator for Large-Scale Convolutional Neural Networks,” in Proceedings of

the 2016 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, 2016, p. 16–25.

[30] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing Loop Operation

and Dataflow in FPGA Acceleration of Deep Convolutional Neural Net-

works,” in Proceedings of the 2017 ACM/SIGDA International Sympo-

sium on Field-Programmable Gate Arrays, ser. FPGA ’17. ACM, 2017,

pp. 45–54.

[31] M. P. Véstias, R. P. Duarte, J. T. de Sousa, and H. C. Neto, “A fast and

scalable architecture to run convolutional neural networks in low density

fpgas,” Microprocessors and Microsystems, vol. 77, p. 103136, 2020.

[32] M. P. Véstias, R. P. Duarte, J. T. de Sousa, and H. C. Neto, “Fast

convolutional neural networks in low density fpgas using zero-skipping

and weight pruning,” Electronics, vol. 8, no. 11, 2019. [Online]. Available:

https://www.mdpi.com/2079-9292/8/11/1321

[33] G. Wei, Y. Hou, Q. Cui, G. Deng, X. Tao, and Y. Yao, “Yolo acceleration

using fpga architecture,” in 2018 IEEE/CIC International Conference on

Communications in China (ICCC), 2018, pp. 734–735.

[34] X. Xu and B. Liu, “Fclnn: A flexible framework for fast cnn prototyping

on fpga with opencl and caffe,” in 2018 International Conference on Field-

Programmable Technology (FPT), 2018, pp. 238–241.

[35] H. Nakahara, H. Yonekawa, T. Fujii, and S. Sato, “A lightweight yolov2:

A binarized cnn with a parallel support vector regression for an fpga,”

in Proceedings of the 2018 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, ser. FPGA ’18. New York, NY, USA:

Association for Computing Machinery, 2018, p. 31–40.

[36] D. T. Nguyen, T. N. Nguyen, H. Kim, and H. Lee, “A high-throughput

and power-efficient fpga implementation of yolo cnn for object detection,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 27, no. 8, pp. 1861–1873, 2019.

[37] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman, “The PASCAL Visual Object Classes

Challenge 2012 (VOC2012) Results,” http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

[38] S. Oh, J. H. You, and Y. K. Kim, “Implementation of Compressed

YOLOv3-tiny on FPGA-SoC,” in 2020 IEEE International Conference on

Consumer Electronics - Asia (ICCE-Asia), 2020, pp. 1–4.

[39] A. Ahmad, M. A. Pasha, and G. J. Raza, “Accelerating Tiny YOLOv3

using FPGA-Based Hardware/Software Co-Design,” in 2020 IEEE Inter-

national Symposium on Circuits and Systems (ISCAS), 2020, pp. 1–5.

[40] Z. Yu and C.-S. Bouganis, “A Parameterisable FPGA-Tailored Architec-

ture for YOLOv3-Tiny,” in Applied Reconfigurable Computing. Architec-

tures, Tools, and Applications, F. Rincón, J. Barba, H. K. H. So, P. Diniz,

and J. Caba, Eds. Cham: Springer International Publishing, 2020, pp.

330–344.

[41] Avnet, “Kintex UltraScale KU040 Development Board: Hardware User

Guide,” December 2015.

DANIEL PESTANA received the MSc in Elec-

trical and Computer Engineering from Instituto

Superior Técnico. Currently working as hardware

and embedded systems engineer at Deimos En-

genharia for space mission projects. His main

fields of interest include digital system design,

hardware acceleration, FPGA design, embedded

systems and microcontroller programming.

PEDRO R. MIRANDA received the MSc in

Electrical and Computer Engineering from Insti-

tuto Superior Técnico. He is currently developing

reconfigurable computing architectures for Real-

Time SAR imagery. His main interest is digital

system design, with an emphasis on reconfigurable

computing.

JOÃO D. LOPES is a PhD student of electrical

and computer engineering at the Department of

Electrical and Computer Engineering of the Insti-

tuto Superior Técnico (IST), University of Lisbon

and a junior researcher at the INESC-ID research

institute in Lisbon, Portugal, working on reconfig-

urable computing with seven published technical

papers.

RUI P. DUARTE received his PhD from Impe-

rial College London, UK, in 2014. He is now a

researcher at the Electronic Systems Design and

Automation (ESDA) research group at INESC-ID

in Lisbon, Portugal. His research interests include

reconfigurable computing, fault-tolerant and low-

power architectures.

14 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081818, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

MÁRIO P. VÉSTIAS received the PhD in elec-

trical and computer engineering in 2002 from the

Technical University of Lisbon, Portugal. He is a

Coordinate Professor at the Polytechnic Institute

of Lisbon, School of Engineering (ISEL), De-

partment of Electronics, Telecommunications and

Computer Engineering (DEETC), where he is re-

sponsible for undergraduate and graduate courses

on computer architecture and digital systems de-

sign. He is also a senior researcher at the ESDA

(Electronic Systems Design and Automation) group at INESC-ID in Lisbon.

His research interests include Computer Architectures and Digital Systems

for Embedded Reconfigurable Computing.

HORÁCIO C. NETO is an Associate Professor at

the University of Lisbon, School of Engineering

(IST), Department of Electrical and Computer En-

gineering (DEEC). He is responsible for the Elec-

tronic Systems Design and Automation (ESDA)

research group at INESC-ID, a research institute

associated with IST. His main research interests

are Digital Systems Design and Computer Archi-

tecture, with an emphasis on Reconfigurable Com-

puting. He has a PhD in Electrical and Computer

Engineering from the Technical University of Lisbon.

JOSÉ T. DE SOUSA is a Lecturer at the De-

partment of Electrical and Computer Engineering

at the University of Lisbon, School of Engineer-

ing (IST), and a senior researcher at INESC-ID,

a research institute associated with IST (1999-

present). He is also a tech entrepreneur in the

area of Semiconductor Intellectual Property, hav-

ing founded and managed three companies: Core-

works (2001-2013, co-founder and CEO), IP-

bloq (2017-2019, co-founder and CEO), IObundle

(2018-present, owner and founder). His main interests are Digital Systems

Design and Computer Architecture, with an emphasis on Reconfigurable

Computing. He holds four international patents, is co-author of one book

and has published more than 70 technical papers in international journals and

conferences. He was General Chair of the 2013 Field Programmable Logic

and Applications Conference, co-editor of its proceedings and a related

special issue on the IEEE Transactions on Computers journal.

VOLUME 4, 2016 15


