
This paper is included in the Proceedings of USENIX ATC ’14:
2014 USENIX Annual Technical Conference.

June 19–20, 2014 • Philadelphia, PA

978-1-931971-10-2

Open access to the Proceedings of
USENIX ATC ’14: 2014 USENIX Annual Technical

Conference is sponsored by USENIX.

A Full GPU Virtualization Solution with
Mediated Pass-Through

Kun Tian, Yaozu Dong, and David Cowperthwaite, Intel Corporation

https://www.usenix.org/conference/atc14/technical-sessions/presentation/tian

USENIX Association 2014 USENIX Annual Technical Conference 121

A Full GPU Virtualization Solution with Mediated Pass-Through

Kun Tian, Yaozu Dong, David Cowperthwaite
Intel Corporation

Abstract
Graphics Processing Unit (GPU) virtualization is an
enabling technology in emerging virtualization
scenarios. Unfortunately, existing GPU virtualization
approaches are still suboptimal in performance and full
feature support.

This paper introduces gVirt, a product level GPU
virtualization implementation with: 1) full GPU
virtualization running native graphics driver in guest,
and 2) mediated pass-through that achieves both good
performance and scalability, and also secure isolation
among guests. gVirt presents a virtual full-fledged GPU
to each VM. VMs can directly access
performance-critical resources, without intervention
from the hypervisor in most cases, while privileged
operations from guest are trap-and-emulated at minimal
cost. Experiments demonstrate that gVirt can achieve
up to 95% native performance for GPU intensive
workloads, and scale well up to 7 VMs.

1. Introduction
The Graphics Processing Unit (GPU) was originally
invented to accelerate graphics computing, such as
gaming and video playback. Later on, GPUs were used
in high performance computing, as well, such as image
processing, weather broadcast, and computer aided
design. Currently, GPUs are also commonly used in
many general purpose applications, with the evolution
of modern windowing systems, middleware, and web
technologies.

As a result, rich GPU applications present rising
demand for full GPU virtualization with good
performance, full features, and sharing capability.
Modern desktop virtualization, either locally on clients
such as XenClient [35] or remotely on servers such as
VMware Horizon [34], requires GPU virtualization to
support uncompromised native graphical user
experience in a VM. In the meantime, cloud service
providers start to build GPU-accelerated virtual
instances, and sell GPU computing resources as a
service [2]. Only full GPU virtualization can meet the
diverse requirements in those usages.

However, there remains the challenge to implement full
GPU virtualization, with a good balance among
performance, features and sharing capability. Figure 1

shows the spectrum of GPU virtualization solutions
(with hardware acceleration increasing from left to
right). Device emulation [7] has great complexity and
extremely low performance, so it does not meet today’s
needs. API forwarding [3][9][22][31] employs a
frontend driver, to forward the high level API calls
inside a VM, to the host for acceleration. However, API
forwarding faces the challenge of supporting full
features, due to the complexity of intrusive
modification in the guest graphics software stack, and
incompatibility between the guest and host graphics
software stacks. Direct pass-through [5][37] dedicates
the GPU to a single VM, providing full features and the
best performance, but at the cost of device sharing
capability among VMs. Mediated pass-through [19],
passes through performance-critical resources, while
mediating privileged operations on the device, with
good performance, full features, and sharing capability.

Figure 1: The spectrum of I/O virtualization

This paper introduces gVirt, the first product level GPU
virtualization implementation, to our knowledge, with:
1) full GPU virtualization running a native graphics
driver in guest, and 2) mediated pass-through that
achieves good performance, scalability, and also secure
isolation among guests. A virtual GPU (vGPU), with
full GPU features, is presented to each VM. VMs can
directly access performance-critical resources, without
intervention from the hypervisor in most cases, while
privileged operations from guest are trap-and-emulated
to provide secure isolation among VMs. The vGPU
context is switched per quantum, to share the physical
GPU among multiple VMs without user notice. As such,
gVirt achieves full GPU virtualization, with a great
balance among performance, features, and sharing
capability. We implement gVirt in Xen, with integrated
Intel® Processor Graphics [13] in the 4th generation
Intel® Core™ processor. The principles and architecture
of gVirt, however, is also applicable to different GPUs
and hypervisors. gVirt was initially presented at the
Xen Summit [10], and all the gVirt source code is now
available to the open source community [8].

Device
Emulation

API
Forwarding

Mediated
Pass-Through

Direct
Pass-Through

Hardware Acceleration

122 2014 USENIX Annual Technical Conference USENIX Association

This paper overcomes a variety of technical challenges
and makes these contributions:

 Introduces a full GPU virtualization solution with
mediated pass-through that runs the native
graphics driver in guest

 Passes through performance-critical resource
accesses with graphics memory resource
partitioning, address space ballooning, and direct
execution of guest command buffer

 Isolates guests by auditing and protecting the
command buffer at the time of command
submission, with smart shadowing

 Further improves performance with virtualization
extension to the hardware specification and the
graphics driver (less than 100 LOC changes to the
Linux kernel mode graphics driver)

 Provides a product level open source code base for
follow-up research on GPU virtualization, and a
comprehensive evaluation for both Linux and
Windows guests

 Demonstrates that gVirt can achieve up to 95% of
native performance for GPU-intensive workloads,
and up to 83% for workloads that stress both the
CPU and GPU

The rest of the paper is organized as follows. An
overview of the GPU is provided in section 2. In
section 3, we present the design and implementation of
gVirt. gVirt is evaluated with a combination of graphics
workloads, in section 4. Related work is discussed in
section 5, and future work and conclusion are in section
6.

2. GPU Programming Model
In general, Intel Processor Graphics works as shown in
Figure 2. The render engine fetches GPU commands
from the command buffer, to accelerate rendering
graphics in many different features. The display engine
fetches pixel data from the frame buffer and then sends
them to external monitors for display.

This architecture abstraction applies to most modern
GPUs but may differ in how graphics memory is
implemented. Intel Processor Graphics uses system
memory as graphics memory, while other GPUs may
use on-die memory. System memory can be mapped
into multiple virtual address spaces by GPU page tables.
A 2GB global virtual address space, called global
graphics memory, accessible from both the GPU and
CPU, is mapped through global page table. Local
graphics memory spaces are supported in the form of
multiple 2GB local virtual address spaces, but are only

limited to access from the render engine, through local
page tables. Global graphics memory is mostly the
frame buffer, but also serves as the command buffer.
Massive data accesses are made to local graphics
memory when hardware acceleration is in progress.
Other GPUs have some similar page table mechanism
accompanying the on-die memory.

Figure 2: The architecture of the Intel Processor Graphics

The CPU programs the GPU through GPU-specific
commands, shown in Figure 2, in a producer-consumer
model. The graphics driver programs GPU commands
into the command buffer, including primary buffer and
batch buffer, according to high level programming APIs
like OpenGL and DirectX. Then the GPU fetches and
executes the commands. The primary buffer, a ring
buffer (ring buffer), may chain other batch buffers
(batch buffer) together. We use the terms: primary
buffer and ring buffer, interchangeably hereafter. The
batch buffer is used to convey the majority of the
commands (up to ~98%) per programming model. A
register tuple (head, tail) is used to control the ring
buffer. The CPU submits the commands to the GPU by
updating tail, while the GPU fetches commands from
head, and then notifies the CPU by updating head, after
the commands have finished execution.

Having introduced the GPU architecture abstraction, it
is important for us to understand how real-world
graphics applications use the GPU hardware so that we
can virtualize it in VMs efficiently. To do so, we
characterized, for some representative GPU-intensive
3D workloads (Phoronix Test Suite [28]), the usages of
the four critical interfaces: the frame buffer, the
command buffer, the GPU Page Table Entries (PTEs)
which carry the GPU page tables, and the I/O registers
including Memory-Mapped I/O (MMIO) registers, Port
I/O (PIO) registers, and PCI configuration space
registers for internal state. Figure 3 shows the average
access frequency of running Phoronix 3D workloads on
four interfaces.

Render Engine

GPU

System
Memory

GPU Page Tables

Graphics Memory
Access

Display Engine

Command Buffer Frame Buffer

CPU

Program

Fetch

USENIX Association 2014 USENIX Annual Technical Conference 123

The frame buffer and command buffer exhibit the most
performance-critical resources, as shown in Figure 3.
The detail test configuration is shown in section 4.
When the applications are being loaded, lots of source
vertexes and pixels are written by the CPU, so the
frame buffer accesses dominate, in the 100s of
thousands per second. Then at run-time, the CPU
programs the GPU, through the commands, to render
the frame buffer, so the command buffer accesses
become the largest group, also in the 100s of thousands
per second. PTE and I/O accesses are minor, in tens of
thousands per second, in both load and run-time phases.

Figure 3: Access patterns of running 3D workloads

3. Design and Implementation
gVirt is a full GPU virtualization solution with
mediated pass-through. As such, gVirt presents every
VM a full-fledged GPU, to run native graphics driver
inside a VM. The challenge, however, is significant in
three ways: 1) complexity in virtualizing an entire
sophisticated modern GPU, 2) performance due to
multiple VMs sharing the GPU, and 3) secure isolation
among the VMs without any compromise. gVirt
reduces the complexity and achieves good performance,
through the mediated pass-through technique, in
subsection 3.1, 3.2, 3.3, and 3.4, and enforces the
secure isolation, with the smart shadowing scheme in
subsection 3.5.

3.1. Architecture
Figure 4 shows the overall architecture of gVirt, based
on Xen hypervisor, with Dom0 as the privileged VM,
and multiple user VMs. A gVirt stub module, in Xen
hypervisor, extends the memory virtualization module
(vMMU), including EPT for user VMs and PVMMU
for Dom0, to implement the policies of trap and
pass-through. Each VM runs the native graphics driver,
and can directly access the performance-critical
resources: the frame buffer and command buffer, with
resource partitioning as presented in subsection 3.3 &
3.4. To protect privileged resources, that is, the I/O
registers and PTEs, corresponding accesses, from the
graphics driver in user VMs and Dom0, are trapped and

forwarded to the mediator driver in Dom0 for emulation.
The mediator uses hypercall to access the physical GPU.
In addition, the mediator implements a GPU scheduler,
which runs concurrently with the CPU scheduler in Xen,
to share the physical GPU amongst VMs.

Figure 4: The gVirt Architecture

gVirt uses the physical GPU to directly execute all the
commands submitted from a VM, so it avoids the
complexity of emulating the render engine, which is the
most complex part within the GPU. In the meantime,
the resource pass-through, of both the frame buffer and
command buffer, minimizes the hypervisor’s
intervention on the CPU accesses, while the GPU
scheduler guarantees every VM a quantum for direct
GPU execution. So gVirt achieves good performance
when sharing the GPU amongst multiple VMs.

gVirt stub: We extend the Xen vMMU module, to
selectively trap or pass-through guest access of certain
GPU resources. Traditional Xen supports only
pass-through or trap of the entire I/O resource of a
device, for either device emulation or device
pass-through. gVirt manipulates the EPT entries to
selectively present or hide a specific address range to
user VMs, while uses a reserved bit of PTEs in
PVMMU for Dom0, to selectively trap or pass-through
guest accesses to a specific address range. In both cases,
the PIO accesses are trapped. All the trapped accesses
are forwarded to the mediator for emulation, and the
mediator uses hypercalls to access the physical GPU.

Mediator: gVirt mediator driver emulates virtual GPUs
(vGPUs) for privileged resource accesses, and conducts
context switches amongst the vGPUs. In the meantime,
gVirt relies on the Dom0 graphics driver to initialize
the physical device and to manage power. gVirt takes a
flexible release model, by implementing the mediator as

0

400000

800000

1200000

Load Run-time

Ac
ce

ss
 F

re
qu

en
cy

 (H
z)

PTEs

I/O Registers

Command Buffer

Frame Buffer

GPU

Xen

Dom0

VM1

VM2

Pass-through Trap Hypercall

Qemu

VGA

gVirt Mediator

vGPUvGPU

GPU
Scheduler

Native
Graphics

Driver

Native
Graphics

Driver

Virtual BIOS

PVMMU

EPT
gVirt Stub

CPU
Scheduler

124 2014 USENIX Annual Technical Conference USENIX Association

a kernel module in Dom0, to ease the binding between
the mediator and hypervisor.

A split CPU/GPU scheduling mechanism is
implemented in gVirt, for two reasons. First, the cost of
the GPU context switch is over 1000X the cost of the
CPU context switch (~700us vs. ~300ns, per our
experiments). Second, the number of the CPU cores
likely differs from the number of the GPU cores, in a
computer system. So, gVirt implements a separate GPU
scheduler from the existing CPU scheduler. The split
scheduling mechanism leads to the requirement of
concurrent accesses to the resources from both the CPU
and the GPU. For example, while the CPU is accessing
the graphics memory of VM1, the GPU may be
accessing the graphics memory of VM2, concurrently.

Native driver: gVirt runs the native graphics driver
inside a VM, which directly accesses a portion of the
performance-critical resources, with privileged
operations emulated by the mediator. The split
scheduling mechanism leads to the resource partitioning
design in subsection 3.3. To support resource
partitioning better, gVirt reserves a Memory-Mapped
I/O (MMIO) register window, called gVirt_info, to
convey the resource partitioning information to the VM.
Note that the location and definition of gVirt_info has
been pushed to the hardware specification as a
virtualization extension, so the graphics driver must
handle the extension natively, and future GPU
generations must follow the specification for backward
compatibility. The modification is very limited, with
less than 100 LOC changes to Linux kernel mode
graphics driver.

Qemu: We reuse Qemu [7] to emulate the legacy VGA
mode, with the virtual BIOS to boot user VMs. This
design simplifies the mediator logic, because the
modern graphics driver doesn’t rely on the BIOS boot
state. It re-initializes the GPU from scratch. The gVirt
extension module decides whether an emulation request
should be routed to the mediator or to Qemu.

3.2. GPU Sharing
The mediator manages vGPUs of all VMs, by
trap-and-emulating the privileged operations. The
mediator handles the physical GPU interrupt, and may
generate virtual interrupt to the designated VMs. For
example, a physical completion interrupt of command
execution may trigger a virtual completion interrupt,
delivered to the rendering owner. The idea of emulating
a vGPU instance per semantics is simple; however, the
implementation involves a large engineering effort and
a deep understanding of the GPU. For example, ~700
I/O registers are accessed by the Linux graphics driver.

Render engine scheduling: gVirt scheduler
implements a coarse-grain quality of service (QoS)
policy. A time quantum of 16ms is selected as the
scheduling time slice, because it is less human
perceptible to image change. Such a relatively large
quantum also comes from that, the cost of the GPU
context switch is over 1000X that of the CPU context
switch, so it can’t be as small as the time slice in CPU
scheduler. The commands from a VM are submitted to
the GPU continuously, until the guest runs out of its
time-slice. gVirt needs to wait for the guest ring buffer
to become idle before switching, because most GPUs
today are non-preemptive, which may impact the
fairness. To minimize the wait overhead, gVirt
implements a coarse-grain flow control mechanism, by
tracking the command submission to guarantee the
piled commands, at any time, are within a certain limit.
Therefore, the time drift between the allocated time
slice and the executed time is relatively small,
compared to the large quantum, so a coarse-grain QoS
policy is achieved.

Render context switch: gVirt saves and restores
internal pipeline state and I/O register states, plus
cache/TLB flush, when switching the render engine
among vGPUs. The internal pipeline state is invisible to
the CPU, but can be saved and restored through GPU
commands. Saving/restoring I/O register states can be
achieved through reads/writes to a list of the registers in
the render context. Internal cache and Translation
Lookaside Table (TLB), included in modern GPUs to
accelerate data accesses and address translations, must
be flushed using commands at render context switch, to
guarantee isolation and correctness. The steps used to
switch a context in gVirt are: 1) save current I/O states,
2) flush the current context, 3) use the additional
commands to save the current context, 4) use the
additional commands to restore the new context, and 5)
restore I/O state of the new context.

gVirt uses a dedicated ring buffer to carry the
additional GPU commands. gVirt may reuse the
(audited) guest ring buffer for performance, but it is not
safe to directly insert the commands into the guest ring
buffer, because the CPU may continue to queue more
commands as well, leading to overwritten content. To
avoid the race condition, gVirt switches from the guest
ring buffer to its own dedicated ring buffer. At the end
of the context switch, gVirt switches from the dedicated
ring buffer to the guest ring buffer of the new VM.

Display management: gVirt reuses the Dom0 graphics
driver to initialize the display engine, and then manages
the display engine to show different VM frame buffers.
When two vGPUs have the same resolution, only the

USENIX Association 2014 USENIX Annual Technical Conference 125

frame buffer locations are switched. For different
resolutions, gVirt uses the hardware scalar, a common
feature in modern GPUs, to scale the resolution up and
down automatically. Both methods take mere
milliseconds. In many cases, gVirt may not require the
display management, if the VM is not shown on the
physical display, for example, when it is hosted on the
remote servers [34].

3.3. Pass-Through
gVirt passes through the accesses to the frame buffer
and command buffer to accelerate performance-critical
operations from a VM. For the global graphics memory
space, 2GB in size, we propose graphics memory
resource partitioning and address space ballooning
mechanism. For the local graphics memory spaces,
each with a size of 2GB too, we implement per-VM
local graphics memory, through render context switch,
due to local graphics memory only accessible by GPU.

Graphics memory resource partitioning: gVirt
partitions the global graphics memory among VMs. As
explained in subsection 3.1, split CPU/GPU scheduling
mechanism requires that the global graphics memory of
different VMs can be accessed simultaneously by the
CPU and the GPU, so gVirt must, at any time, present
each VM with its own resource, leading to the resource
partitioning approaching, for global graphics memory,
as shown in Figure 5.

Figure 5: Graphics memory with resource partitioning

The performance impact of the reduced global graphics
memory resource, due to the partitioning, is very limited
according to our experiments. Results are shown in
Figure 6, with performance normalized to the score of
the default 2GB case. We did experiments in the native
environment, and then scaled the 2GB global graphics
memory down to 1/2, 1/4, and 1/8, with negligible
performance impact observed. This is because the
driver uses the local graphics memory to hold the
massive rendering data, while the global graphics
memory mostly serves only for the frame buffer, and
the ring buffer, which are limited in size.

The resource partitioning also reveals an interesting
problem: the guest and host now have an inconsistent
view of the global graphics memory. The guest
graphics driver is unaware of the partitioning, assuming
with exclusive ownership: the global graphics memory
is contiguous, starting from address zero. gVirt has to
translate between the host view and the guest view, for

any graphics address, before being accessed by the
CPU and GPU. It therefore incurs more complexity and
additional overhead, such as additional accesses to the
command buffer (usually mapped as un-cacheable and
thus slow on access).

Figure 6: The performance with different size of the global

graphics memory

Address space ballooning: We introduce the address
space ballooning technique, to eliminate the address
translation overhead, illustrated in Figure 7. gVirt
exposes the partitioning information to the VM
graphics driver, through the gVirt_info MMIO window.
The graphics driver marks other VMs’ regions as
‘ballooned’, and reserves them from its graphics
memory allocator. With such design, the guest view of
global graphics memory space is exactly the same as
the host view, and the driver programmed addresses,
using guest physical address, can be directly used by
the hardware. Address space ballooning is different
from traditional memory ballooning techniques.
Memory ballooning is for memory usage control,
concerning the number of ballooned pages, while
address space ballooning is to balloon special memory
address ranges.

Figure 7: Graphics memory with address space ballooning

Another benefit of address space ballooning is to
directly use the guest command buffer, without any
address translation overhead, for direct GPU execution.
It simplifies the implementation a lot, by eliminating
the need of the shadow command buffer, in addition to
performance guarantee. However, such scheme may be
susceptible to security violation. We address this issue
with smart shadowing, by auditing and protecting the
command buffer from malicious attack, which is
discussed in subsection 3.5.

Guest View

Host View

VM1 VM2

0

20

40

60

80

100

120

LightsMark OpenArena UrbanTerror Nexuiz

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

 (t
o

2G
B)

2GB 1GB 512MB 256MB

Guest View

Host View

Ballooned Ballooned

VM1 VM2

126 2014 USENIX Annual Technical Conference USENIX Association

Per-VM local graphics memory: gVirt allows each
VM to use the full local graphics memory spaces, of its
own, similar to the virtual address spaces on CPU. The
local graphics memory spaces are only visible to the
render engine in the GPU. So, any valid local graphics
memory address programmed by a VM can be used
directly by the GPU. The mediator switches the local
graphics memory spaces, between VMs, when
switching the render ownership.

3.4. GPU Page Table Virtualization
gVirt virtualizes the GPU page tables with shared
shadow global page table and per-VM shadow local
page table.

Shared shadow global page table: To achieve resource
partitioning and address space ballooning, gVirt
implements shared shadow global page table for all
VMs. Each VM has its own guest global page table,
translated from the graphics memory page number to
the Guest memory Page Number (GPN). Shadow
global page table is then translated from the graphics
memory page number to the Host memory Page
Number (HPN). The shared shadow global page table
maintains the translations for all VMs, to support
concurrent accesses from the CPU and GPU
concurrently. Therefore, gVirt implements a single,
shared shadow global page table, by trapping guest
PTE updates, as shown in Figure 8. The global page
table, in MMIO space, has 512K PTE entries, each
pointing to a 4KB system memory page, so in overall
creates a 2GB global graphics memory space. gVirt
audits the guest PTE values, according to the address
space ballooning information, before updating the
shadow PTE entries.

Figure 8: Shared shadow global page table

Per-VM Shadow local page tables: To support
pass-through of local graphics memory access, gVirt
implements per-VM shadow local page tables. The
local graphics memory is only accessible from the
render engine. The local page tables are two-level
paging structures, as shown in Figure 9. The first level
Page Directory Entries (PDEs), located in the global
page table, points to the second level Page Table
Entries (PTEs), in the system memory. So, guest access

to the PDE is trapped and emulated, through the
implementation of shared shadow global page table.
gVirt also write-protects a list of guest PTE pages, for
each VM, as the traditional shadow page table approach
does [15][25] . The mediator synchronizes the shadow
page with the guest page, at the time of write-protection
page fault, and switches the shadow local page tables at
render context switches.

Figure 9: Per-VM shadow local page table

3.5. Security
Pass-through is great for performance, but it must meet
the following criteria for secure isolation. First, a VM
must be prohibited from mapping unauthorized
graphics memory pages. Second, all the GPU registers
and commands, programmed by a VM, must be
validated to only contain authorized graphics memory
addresses. Last, gVirt needs to address denial-of-service
attacks, for example, a VM may deliberately trigger lots
of GPU hangs.

3.5.1. Inter-VM Isolation
Isolation of CPU accesses: CPU accesses to privileged
I/O registers and PTEs are trap-and-emulated, under the
control of the mediator. Therefore a malicious VM can
neither directly change the physical GPU context, nor
map unauthorized graphics memory. CPU access to
frame buffer and command buffer is also protected, by
the EPT.

On the other hand, gVirt reuses the guest command
buffer, for the GPU to execute directly for performance,
as mentioned in subsection 3.3, but, it may violate
isolation, for example, a malicious command may
contain an unauthorized graphics memory address.
gVirt solves the problem with smart shadowing as
detailed in subsection 3.5.2.

Isolation of GPU accesses: gVirt audits graphics
memory addresses, in registers and commands, before
the addresses are used by the GPU. It is implemented at
the time of trap-and-emulating the register access, and
at the time of command submission.

Denial-of-service attack: gVirt uses the device reset
feature, widely supported in modern GPUs, to mitigate
the deny-of-service attacks. The GPU is so complex,

Guest
Global Page Table

(VM1)

System
Memory

Shadow
Global Page Table

GPN

GPN

HPN

HPN

Ballooned

Ballooned

Guest

Host

Guest
Global Page Table

(VM2)

Page Directory Table (PDEs) Page Table (PTEs)

Guest

Host

GPN

Shadow Page Directory Table (PDEs) Shadow Page Table (PTEs)

HPN

GPN

HPN

System
Memory

USENIX Association 2014 USENIX Annual Technical Conference 127

that an application may cause the GPU to hang for
many reasons. So, modern GPUs support device reset to
dynamically recover the GPU, without the need to
reboot the whole system. gVirt uses this capability to
recover from a variety of GPU hangs, caused by
problematic commands from VMs. In the meantime,
upon the detection of a physical GPU hang, gVirt also
emulates a GPU hang event, by removing all the VMs
from the run queue, allowing each VM to detect and
recover accordingly. A threshold is maintained for
every VM, and a VM is destroyed if the number of
GPU hangs exceeds the threshold.

3.5.2. Command Protection
Balancing performance and security is challenging for
full GPU virtualization. To guarantee no unauthorized
address reference from the GPU, gVirt audits the guest
command buffer at the time of command submission.
However there exists a window, between the time when
the commands are submitted and when they are actually
executed, so a malicious VM may break the isolation by
modifying the commands within that window. General
shadowing mechanism, such as the shadow page table
[15][25], may be applied. However, it is originally
designed for the case where the guest content is
frequently modified. It may bring large performance
overhead and additional complexity in gVirt.

The programming models of the command buffers
actually differ from that of the page tables. First, the
primary buffer, structured as a ring buffer, is statically
allocated with limited page number (32 pages in Linux
and 16 pages in Windows), and modification to
submitted ring commands (from head to tail) is not
allowed, per the hardware specification. It may be
efficient enough to copy only the submitted commands
to the shadow buffer. Second, the batch buffer pages
are allocated on demand, and chained into the ring
buffer. Once the batch buffer page is submitted, it will
unlikely be accessed until the page is retired. Shadow
buffer can be avoided for such one-time usage.

gVirt implements a smart shadowing mechanism, with
different protecting schemes for different buffers, by
taking advantage of their specific programming models.
That is: Write-Protection to the batch buffer, which is
unlikely modified (so, the write emulation cost is very
limited), and Lazy-Shadowing for the ring buffer,
which is small in size and can be copied from the guest
buffer to the shadow buffer with trivial cost.

Lazy-shadowing to the ring buffer: gVirt uses a lazy
shadowing scheme to close the attack window on the
ring buffer. gVirt creates a separate ring buffer, that is,
the shadow ring buffer, to convey the actual commands

submitted to the GPU. Guest submitted commands are
copied from the guest ring buffer to the shadow ring
buffer on demand, after the commands are audited.
Note that only the commands submitted to the GPU, are
shadowed here. Guest access remains passed through to
the guest ring buffer, without the hypervisor
intervention. The shadow buffer lazily synchronizes
with the guest buffer, when the guest submits new
commands. The shadow buffer is invisible to a VM, so
there is no chance for a malicious VM to attack.

Write-Protection to the batch buffer: The batch buffer
pages are write-protected, and the commands are
audited before submitting to the GPU for execution, to
close the attack window. The write-protection is applied
per page on demand, and is removed after the execution
of commands in this page is completed by the GPU,
which is detected by tracking the advance of ring head.
Modification to the submitted commands is a violation
of the graphics programming model per specification,
so any guest modification to the submitted commands is
viewed as an attack leading to the termination of the
VM. In the meantime, the command buffer usage may
not be page aligned, and the guest may use the free
sub-page space for new commands. gVirt tracks the
used and unused space of each batch buffer page, and
emulates the guest writes to the unused space of the
protected page for correctness.

Lazy-shadowing works well for the ring buffer. It incurs
an average number of 9K command copies per second,
which is a minor cost to a modern multi-GHz CPU. In
the meantime, Write-Protection works well for the
batch buffer, which protects ~1700 pages with only
~560 trap-and-emulations per second, on average.

3.6. Optimization
An additional optimization is introduced to reduce the
trap frequency, with minor modifications to the native
graphics driver. According to the hardware
specification, the graphics driver has to use a special
programming pattern at the time of accessing certain
MMIO, with up to 7 additional MMIO register accesses
[12][13], to prevent the GPU from entering power
saving mode. It doesn’t incur an obvious cost in the
native world, but it may become a big performance
challenge, in gVirt, due to the induced mediation
overhead. Our GPU power management design gives us
a chance to optimize: gVirt relies on Dom0 to manage
the physical GPU power, while the guest power
management is disabled. Based on this, we optimize the
native graphics driver, with a few lines (10 LOC change
in Linux) of changes, to skip the additional MMIO
register accesses, when it runs in the virtualized

128 2014 USENIX Annual Technical Conference USENIX Association

environment. This optimization reduces the trap
frequency by 60%, on average.

The graphics driver identifies whether it is in a native
environment or a virtualization environment, by the
information in gVirt_info MMIO window (refer to
subsection 3.1). The definition of gVirt_info has been
pushed into the GPU hardware specification, so
backward compatibility can be followed by future
native graphics driver and future GPU generations.

3.7. Discussion
Architecture independency: Although gVirt is
currently implemented on Intel Processor Graphics, the
principles and architecture can also be applied to
different GPUs. The notion of frame buffer, command
buffer, I/O registers, and page tables, are all abstracted
very well in modern GPUs. Some GPUs may use on-die
graphics memory, however, the graphics memory
resource partitioning and address space ballooning
mechanism, used in gVirt, are also amendable to those
GPUs. In addition, the shadowing mechanism, for both
the page table and command buffer, is generalized for
different GPUs as well. The GPU scheduler is generic,
too, while the specific context switch sequence may be
different.

Hypervisor portability: It is easy to port gVirt to other
hypervisors. The core component of gVirt is hypervisor
agnostic. Although the current implementation is on a
type-1 hypervisor, we can easily extend gVirt to the
type-2 hypervisor, such as KVM [17], with hooks to
host MMIO access (Linux graphics driver). For
example, one can register callbacks on the I/O access
interfaces, in the host graphics driver, so the mediator
can intercept and emulate the host driver accesses to the
privileged GPU resources.

VM scalability: Although partitioning graphics
memory resource may limit scalability, we argue it can
be solved in two orthogonal ways. The first way is to
make better use of the existing graphics memory, by
implementing a dynamic resource ballooning
mechanism, with additional driver cooperation, to share
the graphics memory among vGPUs. The other way is
to increase available graphics memory resource, by
adding more graphics memory in future generation
GPUs.

Scheduling dependency: An additional challenge, of
full GPU virtualization, is the dependency of engines,
such as 3D, blitter, and media. The graphics driver may
use semaphore commands, to synchronize shared data
structures among the engines, while the semaphore
commands may not be preempted. It then brings the
issue of inter-engine dependency, and leads to the gang

scheduling policy in gVirt, to always schedule all
engines together; however, it impacts the sharing
efficiency. We argue this limitation can be addressed,
with a hybrid scheme combining both per-engine
scheduling and gang scheduling, through constructing
an inter-engine dependency graph, when the command
buffers are audited. Then, GPU scheduler can choose
per-engine scheduling and gang scheduling policies
dynamically, according to the dependency graph.

4. Evaluation
We run 3D and 2D workloads in both Linux and
Windows VMs. For Linux 3D workloads, gVirt
achieves 89%, 95%, 91%, and 60% of native
performance in LightsMark, OpenArena, Nexuiz, and
UrbanTerror, respectively. For Linux 2D workloads,
gVirt achieves 81%, 35%, 28%, and 83% of native
performance, in firefox-asteroids, firefox-scrolling,
midori-zoomed, and gnome-system-monitor,
respectively. For Windows workloads, gVirt achieves
83%, 80%, and 76% of native performance, running
3DMark06, Heaven3D, and PassMark2D, respectively.
In the meantime, gVirt scales well without a visible
performance drop, up to 7 VMs.

4.1. Configuration

The hardware platform includes the 4th generation Intel
Core processor with 4 CPU cores (2.4Ghz), 8GB
system memory, and a 256GB Intel 520 series SSD disk.
The Intel Processor Graphics, integrated in the CPU
socket, supports a 2GB global graphics memory space
and multiple 2GB local graphics memory spaces.

We run 64bit Ubuntu 12.04 with a 3.8 kernel in both
Dom0 and Linux guest, and 64-bit Windows 7 in
Windows guest, on top of Xen version 4.3. Both Linux
and Windows runs native graphics driver with
virtualization extension (refer to subsection 3.1). Each
VM is allocated with 4 VCPUs and 2GB system
memory. The global graphics memory resources are
evenly partitioned among VMs, including Dom0. For
example, the guest is partitioned with 1GB global
graphics memory in the 1-VM case, and 512MB in the
3-VM case, respectively.

We use the Phoronix Test Suite [28] 3D benchmark
including LighsMark, OpenArena, UrbanTerror, and
Nexuiz, and Cairo-perf-trace [4] 2D benchmark
including firefox-asteroids (firefox-ast),
firefox-scrolling (firefox-scr), midori-zoomed (midori),
and gnome-system-monitor (gnome), as the Linux
benchmarks. In subsection 4.5, we run Windows
3DMark06 [1], Heaven3D [11] and PassMark2D [26]
workloads. All benchmarks are run in full screen
resolution (1920x1080). We compare gVirt to the

USENIX Association 2014 USENIX Annual Technical Conference 129

native, the direct pass-through (based on Intel VT-d),
and also to an API forwarding solution (VMGL [9]).
We didn’t collect the software emulation approach,
since it has already been proved infeasible for modern
GPU virtualization [9][22].

Three gVirt configurations are examined to show the
merits of individual technologies incrementally.

 gVirt_base: baseline gVirt without smart
shadowing and trap optimization

 gVirt_sec: gVirt_base with smart shadowing
 gVirt_opt: gVirt_sec with trap optimization

4.2. Performance
Figure 10 shows the performance of both Linux 3D and
2D workloads normalized to native. 3D workloads are
GPU intensive except UrbanTerror. gVirt_base
achieves 90%, 94%, 89%, and 47% of native
performance for LightsMark, OpenArena, Nexuiz, and
UrbanTerror, respectively. UrbanTerror is both CPU
and GPU intensive, so it suffers from mediation cost
more than the others.

For Linux 2D workloads, gVirt_base achieves 63% and
75% of native performance, for firefox-asteroids
(firefox-ast) and gnome-system-monitor (gnome),
respectively. However, it reaches only 12% and 15% of
native performance, for firefox-scrolling (firefox-scr)
and midori-zoomed (Midori) workloads, respectively.
This is because they are both CPU and GPU intensive,
incurring an up to 61K/s trap frequency, resulting in a
very high mediation cost, explained in subsection 4.3.

Figure 10: Performance running 3D and 2D workloads

gVirt_sec incurs an average 2.6% and 4.3%
performance overhead in 3D and 2D workloads,
respectively, much more efficient than a traditional
shadowing approach [15][25]. It demonstrates that the
smart shadowing scheme can protect the command
buffer very effectively, taking advantage of the GPU
programming model.

gVirt_opt further improves the performance, up to 214%
and 35%, in 2D and 3D workloads, respectively, by

optimizing the native graphics driver to reduce the trap
frequency. Firefox-scrolling and midori-zoomed
achieves the most obvious increase in 2D workloads, by
214% and 104%, respectively. This is because they
trigger very high access frequency of I/O registers
(54k/s and 40k/s), so they benefit more from trap
optimization. In 3D workloads, gVirt with optimization
achieves 89%, 95%, 91%, and 60% of native
performance, in LightsMark, OpenArena, Nexuiz, and
UrbanTerror, respectively. The performance of gVirt is
very close to VT-d with direct GPU pass-through.
VMGL performs much worse than gVirt, with only
13% of native performance (vs. 60% in gVirt) in
UrbanTerror, average 29% of native performance (vs.
57% in gVirt) in 2D workloads, and it fails to run
LightsMark.

Figure 11: gVirt handles up to 238% more commands, per

second, with trap optimization

Furthermore, Figure 11 shows the number of submitted
commands per second, with and without trap
optimization. UrbanTerror submits 31% more
commands per second, with optimization, matching the
35% performance improvement in Figure 10. In
firefox-scrolling and midori-zoomed, gVirt handles 238%
and 99% more commands per second, with
optimization, matching the 214% and 104%
performance increase in Figure 10, as well.

Figure 12: gVirt handles average 8X more commands, per

submission, in 3D workloads

0

20

40

60

80

100

120

%
 o

f N
at

iv
e

Pe
rf

or
m

an
ce

VMGL gVirt_base gVirt_sec gVirt_opt VT-d Native

0

200000

400000

600000

800000

N
um

be
r o

f C
om

m
an

ds
pe

r S
ec

on
d

gVirt_sec gVirt_opt

0

20

40

60

80

100

120

N
um

be
r o

f C
om

m
an

ds
pe

r S
ub

m
is

sio
n

130 2014 USENIX Annual Technical Conference USENIX Association

We also compare the number of commands per
submission, between 3D and 2D workloads, as shown
in Figure 12. On average, 3D workloads submit 8X more
commands, in every submission, compared to 2D
workloads. As a result, 3D workloads induce less
mediation overhead per command and achieve better
performance.

4.3. Overhead Analysis
We categorize the trap events of gVirt into 4 groups:
power management registers (PM) accesses, tail
register accesses of ring buffer (Tail), PTE accesses
(PTE), and other accesses (Others).

Figure 13 illustrates the break-down of the trap events in
gVirt_sec. For 3D workloads, there are around 23K,
22K, 27K, and 33K trap events per second, when
running LightsMark, OpenArena, UrbanTerror and
Nexuiz, respectively. Among them, ‘PM’ register
access dominates, accounting for up to 67%, 65%, 72%,
and 61% of the total trap events, because Linux
graphics driver accesses additional PM registers (up to
7) to protect the hardware from entering power saving
mode, per hardware specification, when accessing
certain registers [12][13]. Tail register access counts for
13%, 12%, 17%, and 13% of the total trap events,
respectively. Similarly, ‘PM’ register access in 2D
workloads dominates the trap events as well,
accounting for 76% of the total trap rate, on average.
2D workloads has an average 37K/s trap events, 42%
higher than that in the 3D workload (26K/s).

Figure 13: Break-down of the trap frequency, before and

after optimization

gVirt_opt reduces the trap events dramatically, as
shown in Figure 13. The trap event reduction comes
from the removal of all the PM register accesses, which
is unnecessary to vGPUs (The real power is managed
by Dom0). After the optimization, gVirt reduces the
trap rate by an average 65% and 54% for 3D and 2D
workloads, respectively. Firefox-scrolling and
midori-zoomed have more tail updates, from 19% and
18%, respectively, to 92% and 76% of total traps,

which matches the much improved performance (214%
and 104% higher), as seen in Figure 10.

The overhead of the smart shadowing scheme is very
limited. gVirt_sec copies average 5K and 12.8K ring
buffer commands (typically 1-5 double-words per
command), per second, for 3D and 2D workloads,
respectively. It write-protects an average of 2000 and
1300 batch buffer pages, along with ~870 and ~150
write emulations due to unaligned batch buffer usages,
per second, in 3D and 2D workload, respectively. The
CPU cycles spent for smart shadowing are trivial for a
modern multi-GHz processor. gVirt_sec incurs very
limited virtualization overhead, matching the
performance shown in subsection 4.2.

4.4. Scalability
Figure 14 presents the scalability of gVirt (gVirt_opt),
with all features and optimizations, from 1 VM to 7
VMs, running the same workloads in all VMs, with
performance normalized to 1 VM case. For LightsMark,
OpenArena and Nexuiz, the performance remains
almost flat, demonstrating that the GPU computing
power can be efficiently shared among multiple VMs.
In UrbanTerror, we see an 8% performance increase,
from 1vm to 7vm, because CPU parallelism helps
UrbanTerror, which is both GPU and CPU intensive.
For 2D workloads, firefox-asteroids and
gnome-system-monitor doubles performance from 1vm
to 3vm, because they are more CPU intensive
(relatively low access rate to GPU resources), so adding
more VMs improves performance. The physical CPU
cores saturate eventually, so the performance remains
flat, from 3vm to 7vm. In all cases, the performance of
gVirt doesn’t drop obviously with more VMs,
demonstrating very good scalability.

Figure 14: Scalability of gVirt

4.5. Windows

Figure 15 shows the performance of Windows graphics
workloads, with smart shadowing and trap optimization
(gVirt_opt). We didn’t run the baseline gVirt

0

10000

20000

30000

40000

50000

60000

Tr
ap

 F
re

qu
en

cy
 (H

z)

PM Tail PTE Others

Before
optimization

After
optimization

0

50

100

150

200

250

300

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 (t
o

1v
m

) 1vm 3vm 5vm 7vm

USENIX Association 2014 USENIX Annual Technical Conference 131

performance, because the Windows driver we received
from the production group has already implemented the
virtualization extension, without an option to turn off
the trap optimization. For 3DMark06 and Heaven3D,
gVirt achieves 83% and 81% of native performance,
respectively, which are very close to the VT-d
performance (85% and 87% of native performance). In
PassMark2D, gVirt achieves 76% of native
performance, better than that of the Linux 2D
workloads (average 57% of native performance),
because Windows 2D workload incurs only an average
6k traps per second, 57% less than that of Linux 2D
workloads, and therefore less mediation cost. VMGL
doesn’t support Windows guest.

Figure 15: Performance running Windows 3D/2D workloads

Further experiments show that smart shadowing brings
only 1.1% and 4.8% performance overhead for
Windows 3D and 2D workloads, respectively. It
write-protects an average 3600 batch buffer pages, and
copies about 10k ring buffer commands, per second,
demonstrating that the smart shadowing scheme can
protect the command buffer very efficiently, taking
advantage of the GPU programming model, in
Windows as well.

5. Related Work
Emulating a full-fledged GPU, purely through software,
is impractical due to complexity and extremely low
performance. Qemu [7] emulates only the legacy VGA
cards, with a para-virtualized frame buffer [20] to
accelerate 2D specific frame buffer accesses.

API forwarding is the most widely studied technique
for GPU virtualization, so far. VMGL [9], Xen3D [3]
and Blink [14] install a new OpenGL library in Linux
VM, forwarding OpenGL API calls to the host graphics
stack for acceleration.. GViM [31], vCUDA [18] and
LoGV [23] implement similar API forwarding
techniques, focusing on GPGPU computing. VMware’s
Virtual GPU [22] emulates a virtual SVGA device,
implementing a private SVGA3D protocol to forward
the DirectX API calls. However, API forwarding faces
the challenge of supporting full features, due to the
complexity of intrusive modification in the guest

graphics stack, and incompatibility between the guest
and host graphics stack.

Device Pass-through achieves high performance in I/O
virtualization. VT-d [5][37] translates memory
addresses of DMA requests, allowing the GPU to be
assigned to a single VM. SR-IOV [27] extends the
VT-d technology with a device hardware extension. It
has been widely used in the network device [36], by
creating multiple virtual functions, which can be
individually assigned to VMs. VPIO [19] introduces a
“virtual pass-through I/O” concept, where the guest can
access the hardware resource directly, mostly of the
time, for legacy network cards (NE2000 and RTL8139).
They either sacrifice the sharing capability, or are not
yet available to modern GPUs.

GPU scheduler is well explored. Kato [29] et al.
implements a priority-based scheduling policy for
multi-tasking environment, based on monitoring GPU
commands issued from user space. Kato [30] et al.
further extends that policy with a context-queuing
scheme and virtual GPU support. Gupta [32] et al.
proposes CPU and GPU coordinated scheduling, with a
uniform resource usage model to describe the
heterogeneous computing cores. Ravi [33] et al.
implements a scheduling policy, based on affinity score
between kernels, when consolidating kernels among
multiple VMs. Becchi [21] et al. proposes a virtual
memory based runtime, supporting flexible scheduling
policies, to dynamically bind applications to a cluster of
GPUs. Menychtas [16] et al. proposes a disengaged
scheduling policy, having the kernel grant application
access to the GPU, based on infrequent monitoring of
the application’s GPU cycle use. They were not applied
to full GPU virtualization, yet.

NVIDIA GRID [24] allows each VM’s GPU
commands to be passed directly to the GPU for
acceleration. A vGPU manager shares the GPU based
on time slices. It looks similar to gVirt in some ways;
however there is no public information on technical
details, or open access to the project.

6. Conclusion and Future Work
gVirt is a full GPU virtualization solution with
mediated pass-through, running a native graphics driver
in the VM, with a good balance among performance,
features, and secure sharing capability. We introduce
the overall architecture, with the policies of mediation
and pass-through base on the access patterns to the
GPU interfaces. To ensure efficient and secure graphics
memory virtualization, we propose graphics memory
resource partitioning, address space ballooning, shared
shadow global page table, per-VM shadow local page

0

20

40

60

80

100

120

3DMark06 Heaven3D Passmark2D

%
of

 N
at

ive
 P

er
fo

rm
an

ce

gVirt_opt VT-d Native

132 2014 USENIX Annual Technical Conference USENIX Association

table, smart shadowing mechanism, and additional
optimization to remove the unnecessary trap events.
gVirt presents a vGPU instance to each VM, with full
features, based on trap-and-emulating privileged
operations. Such full GPU virtualization solution allows
the native graphics driver to be run inside a VM. We
also reveal that different programming model of
applications might introduce different trap frequency
and therefore different virtualization overhead. Lastly,
gVirt is an open source implementation, so it provides a
solid base for follow-up GPU virtualization research.

As for future work, we will focus on the areas of
portability, scalability, and scheduling areas, as
discussed in subsection 3.7, in addition to fined-grained
QoS scheduling policy. In the meantime, we will
evaluate hardware assistance to further reduce the
mediation cost. Hypervisor interposition features are
also interesting to us, for example, supporting VM
suspend/resume and live migration [6]. With gVirt as
the vehicle, we will extend full GPU virtualization to
more usages, in desktop, server, and mobile devices, to
exploit specific challenges in different use cases.

References
[1] 3DMark06. http://www.futuremark.com
[2] Amazon GPU instances. http://aws.amazon.com/ec2/

instance-types/
[3] C. Smowton. Secure 3D graphics for virtual machines.

In EuroSEC'09: Proceedings of the Second European
Workshop on System Security. ACM, 2009, pp. 36-43.

[4] Cairo-perf-trace. http://www.cairographics.org
[5] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger,

G. Regnier, R. Sankaran, I. Schoinas, R. Uhlig, B.
Vembu, and J. Wiegert. Intel virtualization technology
for directed I/O. Intel Technology Journal, 10, August,
2006.

[6] E. Zhai, G. D. Cummings, and Y. Dong. Live migration
with pass-through device for linux vm. In Proc. OLS
(2008)

[7] F. Bellard. QEMU, a fast and portable dynamic
translator. In Proc. USENIX ATC (2005)

[8] gVirt. https://github.com/01org/XenGT-Preview-kernel,
https://github.com/01org/XenGT-Preview-xen,
https://github.com/01org/XenGT-Preview-qemu

[9] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and E.
D. Lara. VMM-independent graphics acceleration. In
Proc. VEE (2007), pp. 33-43

[10] H. Shan, K. Tian, Y. Dong, and D. Cowperthwaite.
XenGT: a Software Based Intel Graphics Virtualization
Solution. Xen Project Developer Summit (2013)

[11] Heaven3D. http://unigine.com/products/heaven
[12] Intel Graphics Driver. http://www.x.org/wiki/

IntelGraphicsDriver/
[13] Intel Processor Graphics PRM. https://01.org/

linuxgraphics/documentation/2013-intel-core-processor-f
amily

[14] J. G. Hansen. Blink: Advanced display multiplexing for
virtualized applications. In Proc. NOSSDAV (2007)

[15] K. Adams and O.Agesen. A Comparison of Software and
Hardware Techniques for x86 Virtualization. In Proc.
ASPLOS (2006)

[16] K. Menychtas, K. Shen, and M. L. Scott. Disengaged
Scheduling for Fair, Protected Access to Fast
Computational Accelerators. In Proc. ASPLOS (2014)

[17] KVM. www.linux-kvm
[18] L. Shi, H. Chen, and J. Sun. vCUDA: GPU Accelerated

High Performance Computing in Virtual Machines. In
Proc. IEEE IPDPS (2009)

[19] L. Xia, J. Lange, P. Dinda, and C. Bae. Investigating
virtual passthrough I/O on commodity devices. In Proc.
ACM SIGOPS (2009), pp. 83-94

[20] M. Armbruster. The Xen Para-virtualized Frame Buffer.
Xen Summit (2007).

[21] M. Becchi, K. Sajjapongse, I. Graves, A. Procter, V.
Ravi, and S. Chakradhar. A virtual memory based
runtime to support multi-tenancy in clusters with GPUs.
In Proc. HPDC (2012), pp. 97-108

[22] M. Dowty and J. Sugerman. GPU virtualization on
VMware's hosted I/O architecture. In Proc. ACM
SIGOPS (2009), pp. 73-82

[23] M. Gottschlag, M. Hillenbrand, J. Kehne, J. Stoess, and
F. Bellosa. LoGV: Low-overhead GPGPU virtualization.
In Proc. IEEE Workshop on Frontiers of Heterogeneous
Computing (2013).

[24] NVIDIA GRID. http://on-demand.gputechconf.com/gtc/
2013/presentations/S3501-NVIDIA-GRID-Virtualization
.pdf

[25] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proc. ACM SOSP (2003), pp.
164-177

[26] PassMark2D. http://www.passmark.com
[27] PCI SIG. I/O virtualization. http://www.pcisig.com/

specifications/iov
[28] Phoronix Test Suites. http://phoronix-test-suite.com
[29] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa.

TimeGraph: GPU Scheduling for Real-Time
Multi-Tasking Environments. In Proc. USENIX ATC
(2011)

[30] S. Kato, M. McThrow, C. Maltzahn, and S. BrandtGdev.
Gdev: First-Class GPU Resource Management in the
Operating System. In Proc. USENIX ATC (2012)

[31] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N.
Tolia, V. Talwar, and P. Ranganathan. GViM:
GPU-accelerated virtual machines. In Proc. ACM
HPCVirt (2009), pp. 17-24

[32] V. Gupta, K. Schwan, N. Tolia, V.Talwar, and P.
Ranganathan. Pegasus: Coordinated scheduling for
virtualized accelerator-based system. In Proc. USENIX
ATC (2011)

[33] V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar.
Supporting GPU sharing in cloud environments with a
transparent runtime consolidation framework, In Proc.
HPDC (2011), pp. 217-288

[34] VMware Horizon View. http://www.vmware.com/
products/horizon-view/

[35] XenClient. http://www.citrix.com/products/xenclient/
overview.html

[36] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H, Guan.
High performance network virtualization with SR-IOV.
In Proc. IEEE HPCA (2010), pp. 1-10

[37] Y. Dong, J. Dai, Z. Huang, H. Guan, K. Tian, Y. Jiang,
Towards high-quality I/O virtualization. SYSTOR 2009

