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Abstract 
Graphics Processing Unit (GPU) virtualization is an 
enabling technology in emerging virtualization 
scenarios. Unfortunately, existing GPU virtualization 
approaches are still suboptimal in performance and full 
feature support. 

This paper introduces gVirt, a product level GPU 
virtualization implementation with: 1) full GPU 
virtualization running native graphics driver in guest, 
and 2) mediated pass-through that achieves both good 
performance and scalability, and also secure isolation 
among guests. gVirt presents a virtual full-fledged GPU 
to each VM. VMs can directly access 
performance-critical resources, without intervention 
from the hypervisor in most cases, while privileged 
operations from guest are trap-and-emulated at minimal 
cost. Experiments demonstrate that gVirt can achieve 
up to 95% native performance for GPU intensive 
workloads, and scale well up to 7 VMs. 

1. Introduction 
The Graphics Processing Unit (GPU) was originally 
invented to accelerate graphics computing, such as 
gaming and video playback. Later on, GPUs were used 
in high performance computing, as well, such as image 
processing, weather broadcast, and computer aided 
design. Currently, GPUs are also commonly used in 
many general purpose applications, with the evolution 
of modern windowing systems, middleware, and web 
technologies. 

As a result, rich GPU applications present rising 
demand for full GPU virtualization with good 
performance, full features, and sharing capability. 
Modern desktop virtualization, either locally on clients 
such as XenClient [35] or remotely on servers such as 
VMware Horizon [34], requires GPU virtualization to 
support uncompromised native graphical user 
experience in a VM. In the meantime, cloud service 
providers start to build GPU-accelerated virtual 
instances, and sell GPU computing resources as a 
service [2]. Only full GPU virtualization can meet the 
diverse requirements in those usages. 

However, there remains the challenge to implement full 
GPU virtualization, with a good balance among 
performance, features and sharing capability. Figure 1 

shows the spectrum of GPU virtualization solutions 
(with hardware acceleration increasing from left to 
right). Device emulation [7] has great complexity and 
extremely low performance, so it does not meet today’s 
needs. API forwarding [3][9][22][31] employs a 
frontend driver, to forward the high level API calls 
inside a VM, to the host for acceleration. However, API 
forwarding faces the challenge of supporting full 
features, due to the complexity of intrusive 
modification in the guest graphics software stack, and 
incompatibility between the guest and host graphics 
software stacks. Direct pass-through [5][37] dedicates 
the GPU to a single VM, providing full features and the 
best performance, but at the cost of device sharing 
capability among VMs. Mediated pass-through [19], 
passes through performance-critical resources, while 
mediating privileged operations on the device, with 
good performance, full features, and sharing capability. 

 
Figure 1: The spectrum of I/O virtualization 

This paper introduces gVirt, the first product level GPU 
virtualization implementation, to our knowledge, with: 
1) full GPU virtualization running a native graphics 
driver in guest, and 2) mediated pass-through that 
achieves good performance, scalability, and also secure 
isolation among guests. A virtual GPU (vGPU), with 
full GPU features, is presented to each VM. VMs can 
directly access performance-critical resources, without 
intervention from the hypervisor in most cases, while 
privileged operations from guest are trap-and-emulated 
to provide secure isolation among VMs. The vGPU 
context is switched per quantum, to share the physical 
GPU among multiple VMs without user notice. As such, 
gVirt achieves full GPU virtualization, with a great 
balance among performance, features, and sharing 
capability. We implement gVirt in Xen, with integrated 
Intel® Processor Graphics [13] in the 4th generation 
Intel® Core™ processor. The principles and architecture 
of gVirt, however, is also applicable to different GPUs 
and hypervisors. gVirt was initially presented at the 
Xen Summit [10], and all the gVirt source code is now 
available to the open source community [8]. 
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This paper overcomes a variety of technical challenges 
and makes these contributions: 

 Introduces a full GPU virtualization solution with 
mediated pass-through that runs the native 
graphics driver in guest 

 Passes through performance-critical resource 
accesses with graphics memory resource 
partitioning, address space ballooning, and direct 
execution of guest command buffer 

 Isolates guests by auditing and protecting the 
command buffer at the time of command 
submission, with smart shadowing 

 Further improves performance with virtualization 
extension to the hardware specification and the 
graphics driver (less than 100 LOC changes to the 
Linux kernel mode graphics driver) 

 Provides a product level open source code base for 
follow-up research on GPU virtualization, and a 
comprehensive evaluation for both Linux and 
Windows guests 

 Demonstrates that gVirt can achieve up to 95% of 
native performance for GPU-intensive workloads, 
and up to 83% for workloads that stress both the 
CPU and GPU 

The rest of the paper is organized as follows. An 
overview of the GPU is provided in section 2. In 
section 3, we present the design and implementation of 
gVirt. gVirt is evaluated with a combination of graphics 
workloads, in section 4. Related work is discussed in 
section 5, and future work and conclusion are in section 
6.  

2. GPU Programming Model 
In general, Intel Processor Graphics works as shown in 
Figure 2. The render engine fetches GPU commands 
from the command buffer, to accelerate rendering 
graphics in many different features. The display engine 
fetches pixel data from the frame buffer and then sends 
them to external monitors for display.  

This architecture abstraction applies to most modern 
GPUs but may differ in how graphics memory is 
implemented. Intel Processor Graphics uses system 
memory as graphics memory, while other GPUs may 
use on-die memory. System memory can be mapped 
into multiple virtual address spaces by GPU page tables. 
A 2GB global virtual address space, called global 
graphics memory, accessible from both the GPU and 
CPU, is mapped through global page table. Local 
graphics memory spaces are supported in the form of 
multiple 2GB local virtual address spaces, but are only 

limited to access from the render engine, through local 
page tables. Global graphics memory is mostly the 
frame buffer, but also serves as the command buffer. 
Massive data accesses are made to local graphics 
memory when hardware acceleration is in progress. 
Other GPUs have some similar page table mechanism 
accompanying the on-die memory. 

  
Figure 2: The architecture of the Intel Processor Graphics 

The CPU programs the GPU through GPU-specific 
commands, shown in Figure 2, in a producer-consumer 
model. The graphics driver programs GPU commands 
into the command buffer, including primary buffer and 
batch buffer, according to high level programming APIs 
like OpenGL and DirectX. Then the GPU fetches and 
executes the commands. The primary buffer, a ring 
buffer (ring buffer), may chain other batch buffers 
(batch buffer) together. We use the terms: primary 
buffer and ring buffer, interchangeably hereafter. The 
batch buffer is used to convey the majority of the 
commands (up to ~98%) per programming model. A 
register tuple (head, tail) is used to control the ring 
buffer. The CPU submits the commands to the GPU by 
updating tail, while the GPU fetches commands from 
head, and then notifies the CPU by updating head, after 
the commands have finished execution. 

Having introduced the GPU architecture abstraction, it 
is important for us to understand how real-world 
graphics applications use the GPU hardware so that we 
can virtualize it in VMs efficiently. To do so, we 
characterized, for some representative GPU-intensive 
3D workloads (Phoronix Test Suite [28]), the usages of 
the four critical interfaces:  the frame buffer, the 
command buffer, the GPU Page Table Entries (PTEs) 
which carry the GPU page tables, and the I/O registers 
including Memory-Mapped I/O (MMIO) registers, Port 
I/O (PIO) registers, and PCI configuration space 
registers for internal state. Figure 3 shows the average 
access frequency of running Phoronix 3D workloads on 
four interfaces. 
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The frame buffer and command buffer exhibit the most 
performance-critical resources, as shown in Figure 3. 
The detail test configuration is shown in section 4. 
When the applications are being loaded, lots of source 
vertexes and pixels are written by the CPU, so the 
frame buffer accesses dominate, in the 100s of 
thousands per second. Then at run-time, the CPU 
programs the GPU, through the commands, to render 
the frame buffer, so the command buffer accesses 
become the largest group, also in the 100s of thousands 
per second. PTE and I/O accesses are minor, in tens of 
thousands per second, in both load and run-time phases. 

 
Figure 3: Access patterns of running 3D workloads 

3. Design and Implementation 
gVirt is a full GPU virtualization solution with 
mediated pass-through. As such, gVirt presents every 
VM a full-fledged GPU, to run native graphics driver 
inside a VM. The challenge, however, is significant in 
three ways: 1) complexity in virtualizing an entire 
sophisticated modern GPU, 2) performance due to 
multiple VMs sharing the GPU, and 3) secure isolation 
among the VMs without any compromise. gVirt 
reduces the complexity and achieves good performance, 
through the mediated pass-through technique, in 
subsection 3.1, 3.2, 3.3, and 3.4, and enforces the 
secure isolation, with the smart shadowing scheme in 
subsection 3.5.  

3.1. Architecture 
Figure 4 shows the overall architecture of gVirt, based 
on Xen hypervisor, with Dom0 as the privileged VM, 
and multiple user VMs. A gVirt stub module, in Xen 
hypervisor, extends the memory virtualization module 
(vMMU), including EPT for user VMs and PVMMU 
for Dom0, to implement the policies of trap and 
pass-through. Each VM runs the native graphics driver, 
and can directly access the performance-critical 
resources: the frame buffer and command buffer, with 
resource partitioning as presented in subsection 3.3 & 
3.4. To protect privileged resources, that is, the I/O 
registers and PTEs, corresponding accesses, from the 
graphics driver in user VMs and Dom0, are trapped and 

forwarded to the mediator driver in Dom0 for emulation. 
The mediator uses hypercall to access the physical GPU. 
In addition, the mediator implements a GPU scheduler, 
which runs concurrently with the CPU scheduler in Xen, 
to share the physical GPU amongst VMs. 

 
Figure 4: The gVirt Architecture 

gVirt uses the physical GPU to directly execute all the 
commands submitted from a VM, so it avoids the 
complexity of emulating the render engine, which is the 
most complex part within the GPU. In the meantime, 
the resource pass-through, of both the frame buffer and 
command buffer, minimizes the hypervisor’s 
intervention on the CPU accesses, while the GPU 
scheduler guarantees every VM a quantum for direct 
GPU execution. So gVirt achieves good performance 
when sharing the GPU amongst multiple VMs. 

gVirt stub: We extend the Xen vMMU module, to 
selectively trap or pass-through guest access of certain 
GPU resources. Traditional Xen supports only 
pass-through or trap of the entire I/O resource of a 
device, for either device emulation or device 
pass-through. gVirt manipulates the EPT entries to 
selectively present or hide a specific address range to 
user VMs, while uses a reserved bit of PTEs in 
PVMMU for Dom0, to selectively trap or pass-through 
guest accesses to a specific address range. In both cases, 
the PIO accesses are trapped. All the trapped accesses 
are forwarded to the mediator for emulation, and the 
mediator uses hypercalls to access the physical GPU. 

Mediator: gVirt mediator driver emulates virtual GPUs 
(vGPUs) for privileged resource accesses, and conducts 
context switches amongst the vGPUs. In the meantime, 
gVirt relies on the Dom0 graphics driver to initialize 
the physical device and to manage power. gVirt takes a 
flexible release model, by implementing the mediator as 
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a kernel module in Dom0, to ease the binding between 
the mediator and hypervisor. 

A split CPU/GPU scheduling mechanism is 
implemented in gVirt, for two reasons. First, the cost of 
the GPU context switch is over 1000X the cost of the 
CPU context switch (~700us vs. ~300ns, per our 
experiments). Second, the number of the CPU cores 
likely differs from the number of the GPU cores, in a 
computer system. So, gVirt implements a separate GPU 
scheduler from the existing CPU scheduler. The split 
scheduling mechanism leads to the requirement of 
concurrent accesses to the resources from both the CPU 
and the GPU. For example, while the CPU is accessing 
the graphics memory of VM1, the GPU may be 
accessing the graphics memory of VM2, concurrently.  

Native driver: gVirt runs the native graphics driver 
inside a VM, which directly accesses a portion of the 
performance-critical resources, with privileged 
operations emulated by the mediator. The split 
scheduling mechanism leads to the resource partitioning 
design in subsection 3.3. To support resource 
partitioning better, gVirt reserves a Memory-Mapped 
I/O (MMIO) register window, called gVirt_info, to 
convey the resource partitioning information to the VM. 
Note that the location and definition of gVirt_info has 
been pushed to the hardware specification as a 
virtualization extension, so the graphics driver must 
handle the extension natively, and future GPU 
generations must follow the specification for backward 
compatibility. The modification is very limited, with 
less than 100 LOC changes to Linux kernel mode 
graphics driver. 

Qemu: We reuse Qemu [7] to emulate the legacy VGA 
mode, with the virtual BIOS to boot user VMs. This 
design simplifies the mediator logic, because the 
modern graphics driver doesn’t rely on the BIOS boot 
state. It re-initializes the GPU from scratch. The gVirt 
extension module decides whether an emulation request 
should be routed to the mediator or to Qemu.  

3.2. GPU Sharing 
The mediator manages vGPUs of all VMs, by 
trap-and-emulating the privileged operations. The 
mediator handles the physical GPU interrupt, and may 
generate virtual interrupt to the designated VMs. For 
example, a physical completion interrupt of command 
execution may trigger a virtual completion interrupt, 
delivered to the rendering owner. The idea of emulating 
a vGPU instance per semantics is simple; however, the 
implementation involves a large engineering effort and 
a deep understanding of the GPU. For example, ~700 
I/O registers are accessed by the Linux graphics driver. 

Render engine scheduling: gVirt scheduler 
implements a coarse-grain quality of service (QoS) 
policy. A time quantum of 16ms is selected as the 
scheduling time slice, because it is less human 
perceptible to image change. Such a relatively large 
quantum also comes from that, the cost of the GPU 
context switch is over 1000X that of the CPU context 
switch, so it can’t be as small as the time slice in CPU 
scheduler. The commands from a VM are submitted to 
the GPU continuously, until the guest runs out of its 
time-slice. gVirt needs to wait for the guest ring buffer 
to become idle before switching, because most GPUs 
today are non-preemptive, which may impact the 
fairness. To minimize the wait overhead, gVirt 
implements a coarse-grain flow control mechanism, by 
tracking the command submission to guarantee the 
piled commands, at any time, are within a certain limit. 
Therefore, the time drift between the allocated time 
slice and the executed time is relatively small, 
compared to the large quantum, so a coarse-grain QoS 
policy is achieved. 

Render context switch: gVirt saves and restores 
internal pipeline state and I/O register states, plus 
cache/TLB flush, when switching the render engine 
among vGPUs. The internal pipeline state is invisible to 
the CPU, but can be saved and restored through GPU 
commands. Saving/restoring I/O register states can be 
achieved through reads/writes to a list of the registers in 
the render context. Internal cache and Translation 
Lookaside Table (TLB), included in modern GPUs to 
accelerate data accesses and address translations, must 
be flushed using commands at render context switch, to 
guarantee isolation and correctness. The steps used to 
switch a context in gVirt are: 1) save current I/O states, 
2) flush the current context, 3) use the additional 
commands to save the current context, 4) use the 
additional commands to restore the new context, and 5) 
restore I/O state of the new context. 

gVirt uses a dedicated ring buffer to carry the 
additional GPU commands. gVirt may reuse the 
(audited) guest ring buffer for performance, but it is not 
safe to directly insert the commands into the guest ring 
buffer, because the CPU may continue to queue more 
commands as well, leading to overwritten content. To 
avoid the race condition, gVirt switches from the guest 
ring buffer to its own dedicated ring buffer. At the end 
of the context switch, gVirt switches from the dedicated 
ring buffer to the guest ring buffer of the new VM. 

Display management: gVirt reuses the Dom0 graphics 
driver to initialize the display engine, and then manages 
the display engine to show different VM frame buffers. 
When two vGPUs have the same resolution, only the 
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frame buffer locations are switched. For different 
resolutions, gVirt uses the hardware scalar, a common 
feature in modern GPUs, to scale the resolution up and 
down automatically. Both methods take mere 
milliseconds. In many cases, gVirt may not require the 
display management, if the VM is not shown on the 
physical display, for example, when it is hosted on the 
remote servers [34]. 

3.3. Pass-Through 
gVirt passes through the accesses to the frame buffer 
and command buffer to accelerate performance-critical 
operations from a VM. For the global graphics memory 
space, 2GB in size, we propose graphics memory 
resource partitioning and address space ballooning 
mechanism. For the local graphics memory spaces, 
each with a size of 2GB too, we implement per-VM 
local graphics memory, through render context switch, 
due to local graphics memory only accessible by GPU. 

Graphics memory resource partitioning: gVirt 
partitions the global graphics memory among VMs. As 
explained in subsection 3.1, split CPU/GPU scheduling 
mechanism requires that the global graphics memory of 
different VMs can be accessed simultaneously by the 
CPU and the GPU, so gVirt must, at any time, present 
each VM with its own resource, leading to the resource 
partitioning approaching, for global graphics memory, 
as shown in Figure 5. 

 
Figure 5: Graphics memory with resource partitioning 

The performance impact of the reduced global graphics 
memory resource, due to the partitioning, is very limited 
according to our experiments. Results are shown in 
Figure 6, with performance normalized to the score of 
the default 2GB case. We did experiments in the native 
environment, and then scaled the 2GB global graphics 
memory down to 1/2, 1/4, and 1/8, with negligible 
performance impact observed. This is because the 
driver uses the local graphics memory to hold the 
massive rendering data, while the global graphics 
memory mostly serves only for the frame buffer, and 
the ring buffer, which are limited in size. 

The resource partitioning also reveals an interesting 
problem: the guest and host now have an inconsistent 
view of the global graphics memory. The guest 
graphics driver is unaware of the partitioning, assuming 
with exclusive ownership: the global graphics memory 
is contiguous, starting from address zero. gVirt has to 
translate between the host view and the guest view, for 

any graphics address, before being accessed by the 
CPU and GPU. It therefore incurs more complexity and 
additional overhead, such as additional accesses to the 
command buffer (usually mapped as un-cacheable and 
thus slow on access).  

 
Figure 6: The performance with different size of the global 

graphics memory 

Address space ballooning: We introduce the address 
space ballooning technique, to eliminate the address 
translation overhead, illustrated in Figure 7. gVirt 
exposes the partitioning information to the VM 
graphics driver, through the gVirt_info MMIO window. 
The graphics driver marks other VMs’ regions as 
‘ballooned’, and reserves them from its graphics 
memory allocator. With such design, the guest view of 
global graphics memory space is exactly the same as 
the host view, and the driver programmed addresses, 
using guest physical address, can be directly used by 
the hardware. Address space ballooning is different 
from traditional memory ballooning techniques. 
Memory ballooning is for memory usage control, 
concerning the number of ballooned pages, while 
address space ballooning is to balloon special memory 
address ranges.  

 
Figure 7: Graphics memory with address space ballooning 

Another benefit of address space ballooning is to 
directly use the guest command buffer, without any 
address translation overhead, for direct GPU execution. 
It simplifies the implementation a lot, by eliminating 
the need of the shadow command buffer, in addition to 
performance guarantee. However, such scheme may be 
susceptible to security violation. We address this issue 
with smart shadowing, by auditing and protecting the 
command buffer from malicious attack, which is 
discussed in subsection 3.5. 
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Per-VM local graphics memory: gVirt allows each 
VM to use the full local graphics memory spaces, of its 
own, similar to the virtual address spaces on CPU. The 
local graphics memory spaces are only visible to the 
render engine in the GPU. So, any valid local graphics 
memory address programmed by a VM can be used 
directly by the GPU. The mediator switches the local 
graphics memory spaces, between VMs, when 
switching the render ownership. 

3.4. GPU Page Table Virtualization 
gVirt virtualizes the GPU page tables with shared 
shadow global page table and per-VM shadow local 
page table. 

Shared shadow global page table: To achieve resource 
partitioning and address space ballooning, gVirt 
implements shared shadow global page table for all 
VMs. Each VM has its own guest global page table, 
translated from the graphics memory page number to 
the Guest memory Page Number (GPN). Shadow 
global page table is then translated from the graphics 
memory page number to the Host memory Page 
Number (HPN). The shared shadow global page table 
maintains the translations for all VMs, to support 
concurrent accesses from the CPU and GPU 
concurrently. Therefore, gVirt implements a single, 
shared shadow global page table, by trapping guest 
PTE updates, as shown in Figure 8. The global page 
table, in MMIO space, has 512K PTE entries, each 
pointing to a 4KB system memory page, so in overall 
creates a 2GB global graphics memory space. gVirt 
audits the guest PTE values, according to the address 
space ballooning information, before updating the 
shadow PTE entries. 

 
Figure 8: Shared shadow global page table 

Per-VM Shadow local page tables: To support 
pass-through of local graphics memory access, gVirt 
implements per-VM shadow local page tables. The 
local graphics memory is only accessible from the 
render engine. The local page tables are two-level 
paging structures, as shown in Figure 9. The first level 
Page Directory Entries (PDEs), located in the global 
page table, points to the second level Page Table 
Entries (PTEs), in the system memory. So, guest access 

to the PDE is trapped and emulated, through the 
implementation of shared shadow global page table. 
gVirt also write-protects a list of guest PTE pages, for 
each VM, as the traditional shadow page table approach 
does [15][25] . The mediator synchronizes the shadow 
page with the guest page, at the time of write-protection 
page fault, and switches the shadow local page tables at 
render context switches. 

  
Figure 9: Per-VM shadow local page table  

3.5. Security 
Pass-through is great for performance, but it must meet 
the following criteria for secure isolation. First, a VM 
must be prohibited from mapping unauthorized 
graphics memory pages. Second, all the GPU registers 
and commands, programmed by a VM, must be 
validated to only contain authorized graphics memory 
addresses. Last, gVirt needs to address denial-of-service 
attacks, for example, a VM may deliberately trigger lots 
of GPU hangs. 

3.5.1. Inter-VM Isolation 
Isolation of CPU accesses: CPU accesses to privileged 
I/O registers and PTEs are trap-and-emulated, under the 
control of the mediator. Therefore a malicious VM can 
neither directly change the physical GPU context, nor 
map unauthorized graphics memory. CPU access to 
frame buffer and command buffer is also protected, by 
the EPT.  

On the other hand, gVirt reuses the guest command 
buffer, for the GPU to execute directly for performance, 
as mentioned in subsection 3.3, but, it may violate 
isolation, for example, a malicious command may 
contain an unauthorized graphics memory address. 
gVirt solves the problem with smart shadowing as 
detailed in subsection 3.5.2. 

Isolation of GPU accesses: gVirt audits graphics 
memory addresses, in registers and commands, before 
the addresses are used by the GPU. It is implemented at 
the time of trap-and-emulating the register access, and 
at the time of command submission.  

Denial-of-service attack: gVirt uses the device reset 
feature, widely supported in modern GPUs, to mitigate 
the deny-of-service attacks. The GPU is so complex, 
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that an application may cause the GPU to hang for 
many reasons. So, modern GPUs support device reset to 
dynamically recover the GPU, without the need to 
reboot the whole system. gVirt uses this capability to 
recover from a variety of GPU hangs, caused by 
problematic commands from VMs. In the meantime, 
upon the detection of a physical GPU hang, gVirt also 
emulates a GPU hang event, by removing all the VMs 
from the run queue, allowing each VM to detect and 
recover accordingly. A threshold is maintained for 
every VM, and a VM is destroyed if the number of 
GPU hangs exceeds the threshold.  

3.5.2. Command Protection 
Balancing performance and security is challenging for 
full GPU virtualization. To guarantee no unauthorized 
address reference from the GPU, gVirt audits the guest 
command buffer at the time of command submission. 
However there exists a window, between the time when 
the commands are submitted and when they are actually 
executed, so a malicious VM may break the isolation by 
modifying the commands within that window. General 
shadowing mechanism, such as the shadow page table 
[15][25], may be applied. However, it is originally 
designed for the case where the guest content is 
frequently modified. It may bring large performance 
overhead and additional complexity in gVirt. 

The programming models of the command buffers 
actually differ from that of the page tables. First, the 
primary buffer, structured as a ring buffer, is statically 
allocated with limited page number (32 pages in Linux 
and 16 pages in Windows), and modification to 
submitted ring commands (from head to tail) is not 
allowed, per the hardware specification. It may be 
efficient enough to copy only the submitted commands 
to the shadow buffer. Second, the batch buffer pages 
are allocated on demand, and chained into the ring 
buffer. Once the batch buffer page is submitted, it will 
unlikely be accessed until the page is retired. Shadow 
buffer can be avoided for such one-time usage. 

gVirt implements a smart shadowing mechanism, with 
different protecting schemes for different buffers, by 
taking advantage of their specific programming models. 
That is: Write-Protection to the batch buffer, which is 
unlikely modified (so, the write emulation cost is very 
limited), and Lazy-Shadowing for the ring buffer, 
which is small in size and can be copied from the guest 
buffer to the shadow buffer with trivial cost. 

Lazy-shadowing to the ring buffer: gVirt uses a lazy 
shadowing scheme to close the attack window on the 
ring buffer. gVirt creates a separate ring buffer, that is, 
the shadow ring buffer, to convey the actual commands 

submitted to the GPU. Guest submitted commands are 
copied from the guest ring buffer to the shadow ring 
buffer on demand, after the commands are audited. 
Note that only the commands submitted to the GPU, are 
shadowed here. Guest access remains passed through to 
the guest ring buffer, without the hypervisor 
intervention. The shadow buffer lazily synchronizes 
with the guest buffer, when the guest submits new 
commands. The shadow buffer is invisible to a VM, so 
there is no chance for a malicious VM to attack. 

Write-Protection to the batch buffer: The batch buffer 
pages are write-protected, and the commands are 
audited before submitting to the GPU for execution, to 
close the attack window. The write-protection is applied 
per page on demand, and is removed after the execution 
of commands in this page is completed by the GPU, 
which is detected by tracking the advance of ring head. 
Modification to the submitted commands is a violation 
of the graphics programming model per specification, 
so any guest modification to the submitted commands is 
viewed as an attack leading to the termination of the 
VM. In the meantime, the command buffer usage may 
not be page aligned, and the guest may use the free 
sub-page space for new commands. gVirt tracks the 
used and unused space of each batch buffer page, and 
emulates the guest writes to the unused space of the 
protected page for correctness.  

Lazy-shadowing works well for the ring buffer. It incurs 
an average number of 9K command copies per second, 
which is a minor cost to a modern multi-GHz CPU. In 
the meantime, Write-Protection works well for the 
batch buffer, which protects ~1700 pages with only 
~560 trap-and-emulations per second, on average.  

3.6. Optimization 
An additional optimization is introduced to reduce the 
trap frequency, with minor modifications to the native 
graphics driver. According to the hardware 
specification, the graphics driver has to use a special 
programming pattern at the time of accessing certain 
MMIO, with up to 7 additional MMIO register accesses 
[12][13], to prevent the GPU from entering power 
saving mode. It doesn’t incur an obvious cost in the 
native world, but it may become a big performance 
challenge, in gVirt, due to the induced mediation 
overhead. Our GPU power management design gives us 
a chance to optimize: gVirt relies on Dom0 to manage 
the physical GPU power, while the guest power 
management is disabled. Based on this, we optimize the 
native graphics driver, with a few lines (10 LOC change 
in Linux) of changes, to skip the additional MMIO 
register accesses, when it runs in the virtualized 



128 2014 USENIX Annual Technical Conference USENIX Association

environment. This optimization reduces the trap 
frequency by 60%, on average. 

The graphics driver identifies whether it is in a native 
environment or a virtualization environment, by the 
information in gVirt_info MMIO window (refer to 
subsection 3.1). The definition of gVirt_info has been 
pushed into the GPU hardware specification, so 
backward compatibility can be followed by future 
native graphics driver and future GPU generations.  

3.7. Discussion 
Architecture independency: Although gVirt is 
currently implemented on Intel Processor Graphics, the 
principles and architecture can also be applied to 
different GPUs. The notion of frame buffer, command 
buffer, I/O registers, and page tables, are all abstracted 
very well in modern GPUs. Some GPUs may use on-die 
graphics memory, however, the graphics memory 
resource partitioning and address space ballooning 
mechanism, used in gVirt, are also amendable to those 
GPUs. In addition, the shadowing mechanism, for both 
the page table and command buffer, is generalized for 
different GPUs as well. The GPU scheduler is generic, 
too, while the specific context switch sequence may be 
different. 

Hypervisor portability: It is easy to port gVirt to other 
hypervisors. The core component of gVirt is hypervisor 
agnostic. Although the current implementation is on a 
type-1 hypervisor, we can easily extend gVirt to the 
type-2 hypervisor, such as KVM [17], with hooks to 
host MMIO access (Linux graphics driver). For 
example, one can register callbacks on the I/O access 
interfaces, in the host graphics driver, so the mediator 
can intercept and emulate the host driver accesses to the 
privileged GPU resources. 

VM scalability: Although partitioning graphics 
memory resource may limit scalability, we argue it can 
be solved in two orthogonal ways. The first way is to 
make better use of the existing graphics memory, by 
implementing a dynamic resource ballooning 
mechanism, with additional driver cooperation, to share 
the graphics memory among vGPUs. The other way is 
to increase available graphics memory resource, by 
adding more graphics memory in future generation 
GPUs. 

Scheduling dependency: An additional challenge, of 
full GPU virtualization, is the dependency of engines, 
such as 3D, blitter, and media. The graphics driver may 
use semaphore commands, to synchronize shared data 
structures among the engines, while the semaphore 
commands may not be preempted. It then brings the 
issue of inter-engine dependency, and leads to the gang 

scheduling policy in gVirt, to always schedule all 
engines together; however, it impacts the sharing 
efficiency. We argue this limitation can be addressed, 
with a hybrid scheme combining both per-engine 
scheduling and gang scheduling, through constructing 
an inter-engine dependency graph, when the command 
buffers are audited. Then, GPU scheduler can choose 
per-engine scheduling and gang scheduling policies 
dynamically, according to the dependency graph. 

4. Evaluation 
We run 3D and 2D workloads in both Linux and 
Windows VMs. For Linux 3D workloads, gVirt 
achieves 89%, 95%, 91%, and 60% of native 
performance in LightsMark, OpenArena, Nexuiz, and 
UrbanTerror, respectively. For Linux 2D workloads, 
gVirt achieves 81%, 35%, 28%, and 83% of native 
performance, in firefox-asteroids, firefox-scrolling, 
midori-zoomed, and gnome-system-monitor, 
respectively. For Windows workloads, gVirt achieves 
83%, 80%, and 76% of native performance, running 
3DMark06, Heaven3D, and PassMark2D, respectively. 
In the meantime, gVirt scales well without a visible 
performance drop, up to 7 VMs. 

4.1. Configuration 

The hardware platform includes the 4th generation Intel 
Core processor with 4 CPU cores (2.4Ghz), 8GB 
system memory, and a 256GB Intel 520 series SSD disk. 
The Intel Processor Graphics, integrated in the CPU 
socket, supports a 2GB global graphics memory space 
and multiple 2GB local graphics memory spaces. 

We run 64bit Ubuntu 12.04 with a 3.8 kernel in both 
Dom0 and Linux guest, and 64-bit Windows 7 in 
Windows guest, on top of Xen version 4.3. Both Linux 
and Windows runs native graphics driver with 
virtualization extension (refer to subsection 3.1). Each 
VM is allocated with 4 VCPUs and 2GB system 
memory. The global graphics memory resources are 
evenly partitioned among VMs, including Dom0. For 
example, the guest is partitioned with 1GB global 
graphics memory in the 1-VM case, and 512MB in the 
3-VM case, respectively. 

We use the Phoronix Test Suite [28] 3D benchmark 
including LighsMark, OpenArena, UrbanTerror, and 
Nexuiz, and Cairo-perf-trace [4] 2D benchmark 
including firefox-asteroids (firefox-ast), 
firefox-scrolling (firefox-scr), midori-zoomed (midori), 
and gnome-system-monitor (gnome), as the Linux 
benchmarks. In subsection 4.5, we run Windows 
3DMark06 [1], Heaven3D [11] and PassMark2D [26] 
workloads. All benchmarks are run in full screen 
resolution (1920x1080). We compare gVirt to the 
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native, the direct pass-through (based on Intel VT-d), 
and also to an API forwarding solution (VMGL [9]). 
We didn’t collect the software emulation approach, 
since it has already been proved infeasible for modern 
GPU virtualization [9][22].  

Three gVirt configurations are examined to show the 
merits of individual technologies incrementally. 

 gVirt_base: baseline gVirt without smart 
shadowing and trap optimization 

 gVirt_sec: gVirt_base with smart shadowing  
 gVirt_opt: gVirt_sec with trap optimization 

4.2. Performance  
Figure 10 shows the performance of both Linux 3D and 
2D workloads normalized to native. 3D workloads are 
GPU intensive except UrbanTerror. gVirt_base 
achieves 90%, 94%, 89%, and 47% of native 
performance for LightsMark, OpenArena, Nexuiz, and 
UrbanTerror, respectively. UrbanTerror is both CPU 
and GPU intensive, so it suffers from mediation cost 
more than the others.  

For Linux 2D workloads, gVirt_base achieves 63% and 
75% of native performance, for firefox-asteroids 
(firefox-ast) and gnome-system-monitor (gnome), 
respectively. However, it reaches only 12% and 15% of 
native performance, for firefox-scrolling (firefox-scr) 
and midori-zoomed (Midori) workloads, respectively. 
This is because they are both CPU and GPU intensive, 
incurring an up to 61K/s trap frequency, resulting in a 
very high mediation cost, explained in subsection 4.3.  

 
Figure 10: Performance running 3D and 2D workloads 

gVirt_sec incurs an average 2.6% and 4.3% 
performance overhead in 3D and 2D workloads, 
respectively, much more efficient than a traditional 
shadowing approach [15][25]. It demonstrates that the 
smart shadowing scheme can protect the command 
buffer very effectively, taking advantage of the GPU 
programming model. 

gVirt_opt further improves the performance, up to 214% 
and 35%, in 2D and 3D workloads, respectively, by 

optimizing the native graphics driver to reduce the trap 
frequency. Firefox-scrolling and midori-zoomed 
achieves the most obvious increase in 2D workloads, by 
214% and 104%, respectively. This is because they 
trigger very high access frequency of I/O registers 
(54k/s and 40k/s), so they benefit more from trap 
optimization. In 3D workloads, gVirt with optimization 
achieves 89%, 95%, 91%, and 60% of native 
performance, in LightsMark, OpenArena, Nexuiz, and 
UrbanTerror, respectively. The performance of gVirt is 
very close to VT-d with direct GPU pass-through.  
VMGL performs much worse than gVirt, with only  
13% of native performance (vs. 60% in gVirt) in 
UrbanTerror, average 29% of native performance (vs. 
57% in gVirt) in 2D workloads, and it fails to run 
LightsMark. 

  
Figure 11: gVirt handles up to 238% more commands, per 

second, with trap optimization 

Furthermore, Figure 11 shows the number of submitted 
commands per second, with and without trap 
optimization. UrbanTerror submits 31% more 
commands per second, with optimization, matching the 
35% performance improvement in Figure 10. In 
firefox-scrolling and midori-zoomed, gVirt handles 238% 
and 99% more commands per second, with 
optimization, matching the 214% and 104% 
performance increase in Figure 10, as well. 

  
Figure 12: gVirt handles average 8X more commands, per 

submission, in 3D workloads 
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We also compare the number of commands per 
submission, between 3D and 2D workloads, as shown 
in Figure 12. On average, 3D workloads submit 8X more 
commands, in every submission, compared to 2D 
workloads. As a result, 3D workloads induce less 
mediation overhead per command and achieve better 
performance. 

4.3. Overhead Analysis 
We categorize the trap events of gVirt into 4 groups: 
power management registers (PM) accesses, tail 
register accesses of ring buffer (Tail), PTE accesses 
(PTE), and other accesses (Others).  

Figure 13 illustrates the break-down of the trap events in 
gVirt_sec. For 3D workloads, there are around 23K, 
22K, 27K, and 33K trap events per second, when 
running LightsMark, OpenArena, UrbanTerror and 
Nexuiz, respectively. Among them, ‘PM’ register 
access dominates, accounting for up to 67%, 65%, 72%, 
and 61% of the total trap events, because Linux 
graphics driver accesses additional PM registers (up to 
7) to protect the hardware from entering power saving 
mode, per hardware specification, when accessing 
certain registers [12][13]. Tail register access counts for 
13%, 12%, 17%, and 13% of the total trap events, 
respectively. Similarly, ‘PM’ register access in 2D 
workloads dominates the trap events as well, 
accounting for 76% of the total trap rate, on average. 
2D workloads has an average 37K/s trap events, 42% 
higher than that in the 3D workload (26K/s). 

 
Figure 13: Break-down of the trap frequency, before and 

after optimization 

gVirt_opt reduces the trap events dramatically, as 
shown in Figure 13. The trap event reduction comes 
from the removal of all the PM register accesses, which 
is unnecessary to vGPUs (The real power is managed 
by Dom0). After the optimization, gVirt reduces the 
trap rate by an average 65% and 54% for 3D and 2D 
workloads, respectively. Firefox-scrolling and 
midori-zoomed have more tail updates, from 19% and 
18%, respectively, to 92% and 76% of total traps, 

which matches the much improved performance (214% 
and 104% higher), as seen in Figure 10. 

The overhead of the smart shadowing scheme is very 
limited. gVirt_sec copies average 5K and 12.8K ring 
buffer commands (typically 1-5 double-words per 
command), per second, for 3D and 2D workloads, 
respectively. It write-protects an average of 2000 and 
1300 batch buffer pages, along with ~870 and ~150 
write emulations due to unaligned batch buffer usages, 
per second, in 3D and 2D workload, respectively. The 
CPU cycles spent for smart shadowing are trivial for a 
modern multi-GHz processor. gVirt_sec incurs very 
limited virtualization overhead, matching the 
performance shown in subsection 4.2. 

4.4. Scalability 
Figure 14 presents the scalability of gVirt (gVirt_opt), 
with all features and optimizations, from 1 VM to 7 
VMs, running the same workloads in all VMs, with 
performance normalized to 1 VM case. For LightsMark, 
OpenArena and Nexuiz, the performance remains 
almost flat, demonstrating that the GPU computing 
power can be efficiently shared among multiple VMs. 
In UrbanTerror, we see an 8% performance increase, 
from 1vm to 7vm, because CPU parallelism helps 
UrbanTerror, which is both GPU and CPU intensive. 
For 2D workloads, firefox-asteroids and 
gnome-system-monitor doubles performance from 1vm 
to 3vm, because they are more CPU intensive 
(relatively low access rate to GPU resources), so adding 
more VMs improves performance. The physical CPU 
cores saturate eventually, so the performance remains 
flat, from 3vm to 7vm. In all cases, the performance of 
gVirt doesn’t drop obviously with more VMs, 
demonstrating very good scalability. 

 
Figure 14: Scalability of gVirt 

4.5. Windows 

Figure 15 shows the performance of Windows graphics 
workloads, with smart shadowing and trap optimization 
(gVirt_opt). We didn’t run the baseline gVirt 
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performance, because the Windows driver we received 
from the production group has already implemented the 
virtualization extension, without an option to turn off 
the trap optimization. For 3DMark06 and Heaven3D, 
gVirt achieves 83% and 81% of native performance, 
respectively, which are very close to the VT-d 
performance (85% and 87% of native performance). In 
PassMark2D, gVirt achieves 76% of native 
performance, better than that of the Linux 2D 
workloads (average 57% of native performance), 
because Windows 2D workload incurs only an average 
6k traps per second, 57% less than that of Linux 2D 
workloads, and therefore less mediation cost. VMGL 
doesn’t support Windows guest. 

 
Figure 15: Performance running Windows 3D/2D workloads 

Further experiments show that smart shadowing brings 
only 1.1% and 4.8% performance overhead for 
Windows 3D and 2D workloads, respectively. It 
write-protects an average 3600 batch buffer pages, and 
copies about 10k ring buffer commands, per second, 
demonstrating that the smart shadowing scheme can 
protect the command buffer very efficiently, taking 
advantage of the GPU programming model, in 
Windows as well. 

5. Related Work 
Emulating a full-fledged GPU, purely through software, 
is impractical due to complexity and extremely low 
performance. Qemu [7] emulates only the legacy VGA 
cards, with a para-virtualized frame buffer [20] to 
accelerate 2D specific frame buffer accesses. 

API forwarding is the most widely studied technique 
for GPU virtualization, so far. VMGL [9], Xen3D [3] 
and Blink [14] install a new OpenGL library in Linux 
VM, forwarding OpenGL API calls to the host graphics 
stack for acceleration.. GViM [31], vCUDA [18] and 
LoGV [23] implement similar API forwarding 
techniques, focusing on GPGPU computing. VMware’s 
Virtual GPU [22] emulates a virtual SVGA device, 
implementing a private SVGA3D protocol to forward 
the DirectX API calls. However, API forwarding faces 
the challenge of supporting full features, due to the 
complexity of intrusive modification in the guest 

graphics stack, and incompatibility between the guest 
and host graphics stack.  

Device Pass-through achieves high performance in I/O 
virtualization. VT-d [5][37] translates memory 
addresses of DMA requests, allowing the GPU to be 
assigned to a single VM. SR-IOV [27] extends the 
VT-d technology with a device hardware extension. It 
has been widely used in the network device [36], by 
creating multiple virtual functions, which can be 
individually assigned to VMs. VPIO [19] introduces a 
“virtual pass-through I/O” concept, where the guest can 
access the hardware resource directly, mostly of the 
time, for legacy network cards (NE2000 and RTL8139). 
They either sacrifice the sharing capability, or are not 
yet available to modern GPUs. 

GPU scheduler is well explored. Kato [29] et al. 
implements a priority-based scheduling policy for 
multi-tasking environment, based on monitoring GPU 
commands issued from user space. Kato [30] et al. 
further extends that policy with a context-queuing 
scheme and virtual GPU support. Gupta [32] et al. 
proposes CPU and GPU coordinated scheduling, with a 
uniform resource usage model to describe the 
heterogeneous computing cores. Ravi [33] et al. 
implements a scheduling policy, based on affinity score 
between kernels, when consolidating kernels among 
multiple VMs. Becchi [21] et al. proposes a virtual 
memory based runtime, supporting flexible scheduling 
policies, to dynamically bind applications to a cluster of 
GPUs. Menychtas [16] et al. proposes a disengaged 
scheduling policy, having the kernel grant application 
access to the GPU, based on infrequent monitoring of 
the application’s GPU cycle use. They were not applied 
to full GPU virtualization, yet. 

NVIDIA GRID [24] allows each VM’s GPU 
commands to be passed directly to the GPU for 
acceleration. A vGPU manager shares the GPU based 
on time slices. It looks similar to gVirt in some ways; 
however there is no public information on technical 
details, or open access to the project. 

6. Conclusion and Future Work 
gVirt is a full GPU virtualization solution with 
mediated pass-through, running a native graphics driver 
in the VM, with a good balance among performance, 
features, and secure sharing capability. We introduce 
the overall architecture, with the policies of mediation 
and pass-through base on the access patterns to the 
GPU interfaces. To ensure efficient and secure graphics 
memory virtualization, we propose graphics memory 
resource partitioning, address space ballooning, shared 
shadow global page table, per-VM shadow local page 
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table, smart shadowing mechanism, and additional 
optimization to remove the unnecessary trap events. 
gVirt presents a vGPU instance to each VM, with full 
features, based on trap-and-emulating privileged 
operations. Such full GPU virtualization solution allows 
the native graphics driver to be run inside a VM. We 
also reveal that different programming model of 
applications might introduce different trap frequency 
and therefore different virtualization overhead. Lastly, 
gVirt is an open source implementation, so it provides a 
solid base for follow-up GPU virtualization research. 

As for future work, we will focus on the areas of 
portability, scalability, and scheduling areas, as 
discussed in subsection 3.7, in addition to fined-grained 
QoS scheduling policy. In the meantime, we will 
evaluate hardware assistance to further reduce the 
mediation cost. Hypervisor interposition features are 
also interesting to us, for example, supporting VM 
suspend/resume and live migration [6]. With gVirt as 
the vehicle, we will extend full GPU virtualization to 
more usages, in desktop, server, and mobile devices, to 
exploit specific challenges in different use cases. 
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