
 

 

IEICE Electronics Express, Vol.xx, No.xx, xx-xx 

1 

Copyright © 20XX The Institute of Electronics, Information and Communication Engineers 

   

 

LETTER 

A Full Matrix Joint Optimization Method for Hardware 

Implementation of AES MixColumns/InvMixColumns 

Xiaoqiang ZHANG1, 2, 3a), Fan YANG1, 2), Xinxing ZHENG4, Xinggan ZHANG3), Ning WU5 

Abstract Among Advanced Encryption Standard (AES) operations, 

MixColumns/InvMixColumns is the second most computationally 

complex operation after S-box. It occupies a large hardware resources 

and critical path delay (CPD) in AES hardware implementations. To 

reduce the hardware complexity of the MixColumns/InvMixColumns, a 

whole matrix joint optimization method is proposed in this paper. All 

coefficient multiplications in MixColumns/InvMixColumns are 

combined into a single matrix multiplication in the proposed method, 

and larger number of common subexpressions can be shared in the 

combined matrix. Therefore, the area can be drastically reduced in 

implementations. The validity of our whole matrix joint optimization is 

verified by theoretical analyses and synthesis tools. Both analyses 

results and synthesized results indicate that, compared with column 

joint optimization and row joint optimization, the optimization 

efficiency is improved greatly in the whole matrix joint optimization. 

Compared with previous works, our implementations have wider area-

delay tradeoff, from less delay to minimal area cost.  

key words: MixColumns, joint optimization, common subexpression 

eliminations, critical path delay  

Classification: Integrated circuits  

1. Introduction 

Since the Advanced Encryption Standard (AES) is the 

latest block cipher standard published by the National 

Institute of Standards and Technology (NIST) in 2001, it 

is widely used in the systems of information security [1]. 

In the encryption process of AES, there are four 

operations in a round transform, i.e., SubBytes, 

ShiftRows, MixColumns, and AddRoundKey. The 

decryption process of AES performs the reverse data 

flow of encryption process, and the round transforms in 

decryption process perform four inverse operation of 

encryption process, i.e., InvSubBytes, InvShiftRows, 

InvMixColumns, and AddRoundKey.  

Among these four operations, ShiftRows/ 

InvShiftRows is free in hardware implementations, and 

AddRoundKey requires only one layer XOR operations, 

there is no space to be further optimized for both of them 

in hardware implementations. Therefore, the 

optimization of AES mainly focus on the optimizations 

of SubBytes/InvSubBytes and MixColumns/ 

InvMixColumns. SubBytes/InvSubBytes is only one 

nonlinear operation among the four operations, so it 

causes wide concern in hardware implementations of 

AES [2, 3]. Although the concern of MixColumns/ 

InvMixColumns is smaller than SubBytes/InvSubBytes 

in hardware implementations, it still has optimization 

space to be further developed [4].  

The MixColumns/InvMixColumns mainly consists 

of coefficient multiplications over GF(28). In hardware 

implementations, the optimizations of MixColumns/ 

InvMixColumns are mainly focused on gate counts 

reduction. And resource sharing is a most commonly 

method to reduce gate counts in hardware 

implementations. There are two levels resource sharing 

in hardware implementations of MixColumns/ 

InvMixColumns, byte level sharing and bit level sharing.  

In byte level sharing, the complex coefficient 

multiplications are decomposed into simple coefficient 

multiplications. The gate counts can be reduced by 

sharing common coefficient multiplications between 

outputs. The most common coefficient multiplication is 

{02}× operation, which is often called xtime function [1]. 

Different xtime block sharing strategies are proposed in 

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14].  

Besides these byte level sharing methods, a bit level 

sharing method is proposed in [4]. Compared with byte 

level sharing, more fine common operation units can be 

found in bit level sharing. In bit sharing level, the 

coefficient multiplications over GF(28) are further 

expressed as bit level expressions [4]. Gate counts will 

be shared in hardware implementations through common 

subexpressions sharing in bit level expressions. The 

common subexpressions can be found out effectively by 

 1 Key Laboratory of Advanced Perception and Intelligent 
Control of High-end Equipment, Ministry of Education, 
Wuhu 241000, China 

 2 College of Electrical Engineering, Anhui Polytechnic 
University, Wuhu 241000, China 

 3 School of Electronic Science and Engineering, Nanjing 
University, Nanjing 210023, China 

 4 College of Information Engineering, Wuhu Institute of 
Technology, Wuhu 241006, China 

 5 College of Electronic and Information Engineering, 
Nanjing University of Aeronautics and Astronautics,  
Nanjing 210016, China 

 a) zhangxiaoqiang@ahpu.edu.cn 
 
DOI: 10.1587/elex.XX.XXXXXXXX 
Received XXXX X, XXXX 
Accepted XXXX X, XXXX 
Published XXXX X, XXXX 

 

This article has been accepted and published on J-STAGE in advance of 
copyediting. Content is final as presented. 
 
 

 

 
 DOI: 10.1587/elex.17.20200391
Received November 18, 2020
Accepted November 27, 2020
Publicized December 07, 2020

Copyright ©     The Institute of Electronics, Information and Communication Engineers 2020

javascript:;


 

 

IEICE Electronics Express, Vol.xx, No.xx, xx-xx 

2 

 

 

common subexpressions elimination (CSE) algorithms, 

which are widely used in a variety of complex 

computing circuits, such as digital signal processing 

circuit [15, 16, 17, 18, 19], cryptographic circuits [20, 21, 

22], and codec circuits [23, 24, 25, 26]. 

The larger scale the bit level expressions are, the 

larger number of common subexpressions will be found 

among them, and the more gates will be reduced in 

hardware implementations [23, 25]. In [4], to improve 

the reduction rate, the coefficients on the same column 

are jointed to expand search scope of the common 

subexpressions. In this paper, a whole matrix joint 

optimization is proposed. Both column jointed 

optimization and row jointed optimization are used in the 

proposed whole matrix joint optimization, therefore, 

more gates counts are reduced in hardware 

implementations.  

As the hardware complexities are usually evaluated 

by area and delay [27, 28, 29], all implementations are 

constructed by the shortest critical path structures in this 

paper. But area and delay are often mutually restricted in 

hardware implementation, it has been proven that sharing 

common subexpressions will increase critical path delay 

(CPD) of implementations [26]. To control the CPD in 

implementations, a delay-aware CSE (DACSE) 

algorithm proposed in [22] is employed to find out the 

common subexpressions under delay constraints. Two 

delay constraints, a tighter constraint to achieve the 

shortest feasible CPD and a looser constraint to achieve 

the smallest area, are provided for each implementation.  

2. MixColumns/InvMixColumns 

AES is a symmetric block cipher that process data blocks 

of 128 bits, and the data blocks can be regarded as 4×4 

bytes state matrices. The MixColumns in AES 

transformation operates on the state matrix column-by-

column. It treats each column as a four-term polynomial 

over GF(28), and the polynomial is multiplied by another 

fixed polynomial modulo x4+1 [1]. As a result, The 

MixColumns can be expressed as 

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3 3,0 3

·

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

s s s s s s s s

s s s s s s s s

s s s s s s s s

s s s s s s

 =

      
      
   =
      
   
       

S A S：

,1 3,2 3,3s s

 
 
 
 
 
  

(1) 

where S, S′, and A are input state matrix, output state 

matrix, and coefficient matrix of MixColumns, 

respectively. As a result of this multiplication, the four 

bytes in a column are replaced by the following. 

       

       

       

       

0, 0, 1, 2, 3,

1, 0, 1, 2, 3,

2, 0, 1, 2, 3,

3, 0, 1, 2, 3,

02 03 01 01

01 02 03 01
,  {0,1,2,3}

01 01 02 03

03 01 01 02

c c c c c

c c c c c

c c c c c

c c c c c

s s s s s

s s s s s
c

s s s s s

s s s s s

 = + + +

 = + + +

=
 = + + +

  = + + +

 (2) 

The corresponding hardware architecture of (2) is shown 

as Fig. 1 

0,cs

 02  03  01  01

 01  02  03  01

 01  01  02  03

 03  01  01  02

1,cs 2,cs 3,cs

0,cs

1,cs

2,cs

3,cs

 

Fig. 1. Hardware architecture of MixColumns 

The width of circuit shown in Fig. 1 is 32 bits, and 

only one column of state matrix is performed at once 

time. For the whole state matrix, it requires four 

iterations by using the circuit or four same circuits 

operating parallelly. 

InvMixColumns is the inverse of the MixColumns 

transformation, it can be expressed as  

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

·

0 0 0 09

09 0 0 0

0 09 0 0

0 0 09 0

s s s s s s s se b d

s s s s s s se b d

s s s s d e b

s s s s b d e

 =

      
      
   =
      
   
       

S A S：

1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

s

s s s s

s s s s

 
 
 
 
 
  

(3) 

where S̃′, S̃, and Ã are output state matrix, input state 

matrix, and coefficient matrix of InvMixColumns, 

respectively. In the same way, a 32bits wide circuit for 

InvMixColumns can be constructed.  

As shown in Fig.1, MixColumns/InvMixColumns 

consists of coefficient multiplications and adders over 

GF(28). Both of them are linear operations over Galois 

field, which contain XOR operations only. Therefore, the 

area of their hardware implementations can be measured 

by total used XOR gate counts, and the CPD can also be 

measured by XOR gate counts on critical path. In this 

paper, the hardware complexities are measured by AXOR 

and TXOR, where AXOR and TXOR denote area and delay of 

a XOR gate, respectively. And the hardware complexity 

comparison means area comparison at the same CPD in 

this paper. 

3. The Proposed Joint Optimized Implementations 

3.1 Shortest CPD structures 

The coefficient multiplications over GF(28) in 

MixColumns/InvMixColumns can be expressed as bit 

level expressions [4], and these expressions can be 

further expressed as a 8×8 bits constant matrix 

multiplication [22]. To achieve the shortest CPD, the 

coefficient multiplications are constructed by Delay-

Driven-Binary-Tree (DDBT) structure in 

implementations, as the DDBT structure has the shortest 

CPD for the circuits consisting of single two-input gates 



 

 

IEICE Electronics Express, Vol.xx, No.xx, xx-xx 

3 

 

 

[30].  

Suppose input delays can be ignored, the coefficient 

multiplications are also constructed by Fastest-Binary-

Tree (FBT) structure [15, 31], which is a special case of 

the DDBT structure and it is only suitable for the circuits 

with same input delays [22]. The hardware complexities 

of these coefficient multiplications are listed on Table I. 

The direct implementations of coefficient multiplications 

can be further optimized by DACSE algorithm proposed 

in [22], the optimized results are also listed on Table I. 

The optimized implementations are also constructed by 

DDBT structures to achieve the shortest CPD. 

Table I. Hardware Complexities of Coefficient Multiplications 

(AXOR@TXOR) 

Methods 
MixColumns InvMixColumns 

{01}× {02}× {03}× {09}× {0b}× {0d}× {0e}× 

Direct 0@0 3@1 11@2 17@2 26@3 23@3 20@3 

Optimized 0@0 3@1 9@2 
12@2 

11@3 

17@3 

16@4 
15@3 16@3 

 

As shown on Table I, coefficient multiplication 

{01}× requires no hardware resources. And there is no 

common subexpression can be shared in coefficient 

multiplication {02}×. Coefficient multiplications {03}×, 

{0d}×, and {0e}× can achieve minimal area under the 

shortest CPD constraints. Coefficient multiplications 

{09}× and {0b}× achieve minimal area at the cost of 

1TXOR CPD increase. 

Besides the coefficient multiplications, the adders 

should also be constructed by DDBT structure to achieve 

the shortest CPD. But they cannot be constructed by FBT 

structure, as input delays of the adders are different. We 

take the adders for output s′0,c to illustrate the point in Fig. 

2.  

{01}s2,c

{01}s3,c

@0

@0

@1

@1
{02}s0,c

@2

@2
{03}s1,c

s′0,c

@3

{02}s0,c

{03}s1,c

{01}s2,c

{01}s3,c

s′0,c

s′0,c

@4

(a) (b)

{01}s2,c

{01}s3,c

@0

@1

@0

@1

@2

@3
{02}s0,c

{03}s1,c

Fig. 2. Structures of the adders: (a) DDBT structure; (b) FBT structure 

It requires 3TXOR in the implementation if the adders 

are constructed by DDBT structure, but it requires 4TXOR 

if the adders are constructed by FBT structure.  

3.2 Matrix joint optimization 

To share larger number of common subexpressions, 

a column joint optimization is proposed in [4]. In the 

column joint optimization, the common subexpressions 

are shared among not only expressions of each 

coefficient multiplications but also the coefficient 

multiplications on the same column. The column joint 

optimization is shown in Fig. 3(a). The coefficient 

multiplications on the same column are combined into a 

larger matrix multiplication. As a coefficient 

multiplication in MixColumns can be expressed as an 

8×8 bits matrix multiplication, the scale of combined 

matrix is 32×8 bits. Compared with individual 

optimization of each coefficient multiplication, can be 

found out in the combined matrix multiplication, so the 

area reduction is improved in the implementations. 

 

0,cs 1,cs 2,cs 3,cs

0,cs

1,cs

2,cs

3,cs

{}

{}

{}

{}

{}

{}

{}

{} {}

{}

{}

{}

{}

{}

{}

{}

(a)

0,cs 1,cs 2,cs 3,cs

0,cs

1,cs

2,cs

3,cs

{}

{}

{}

{}

{}

{}

{}

{} {}

{}

{}

{}

{}

{}

{}

{}

(b)

Fig. 3. Sketch of joint optimization: (a) column joint optimization; (b) 

row joint optimization 

Similarly, the coefficient multiplications on the same 

row can also share common subexpressions jointly. The 

row joint optimization is shown in Fig. 3(b). Not only the 

coefficient multiplications but also the adders on the 

same row are combined into an 8×32 bits matrix 

multiplication. Therefore, the area reduction can be 

further improved in the row joint optimization. 

Based on column joint optimization and row joint 

optimization, a whole matrix joint optimization can be 

deduced easily. In the whole matrix joint optimization, 

all coefficients in the coefficient matrix are combined 

into a 32×32 bits matrix. Hence the common 

subexpressions among all coefficient multiplications will 

be searched by the DACSE algorithm.  

3.3 Hardware complexities analyses 

The hardware complexities of MixColumns and 

InvMixColumns in different implementations are 

theoretically analyzed on Table II. As the circuit scale of 

MixColumns is smaller, all implementations can achieve 

the minimal area at the shortest CPD constraints after 

optimized by DACSE. As shown on Table II, in 

hardware implementations of MixColumns, the direct 

implementation requires 152AXOR@3TXOR. Only 5.26% 

area is reduced in individual optimization. Compared 

with individual optimized implementations, the area 

reductions are improved greatly in column joint 



 

 

IEICE Electronics Express, Vol.xx, No.xx, xx-xx 

4 

 

 

optimized implementations. The reduction is further 

improved in row joint optimization, as the adders are 

also joined into the joint optimization. Both row joint 

optimization and column joint optimization are used in 

whole matrix joint optimized implementations, therefore, 

the area reduction of whole matrix joint optimization is 

improved more than twice, compared with row joint 

optimization. 

Table II. Hardware Complexities of MixColumns & InvMixColumns 

Blocks Methods 
Min CPD Min Area 

AXOR{Red.} TXOR AXOR{Red.} TXOR{Inc.} 

M.C. 

Dir. 152 3 152 3 

Ind. 144{5.26%} 3 144{5.26%} 3 

Col. 136{10.53%} 3 136{10.53%} 3 

Row 132{13.16%} 3 132{13.16%} 3 

Mat. 108{28.95%} 3 108{28.95%} 3 

I.M.C. 

Dir. 440 5 440 5 

Ind. 332{24.55%} 5 328{25.45%} 6{20%} 

Col. 264{40.00%} 5 260{40. 91%} 6{20%} 

Row 264{40.00%} 5 248{43.64%} 8{60%} 

Mat. 193{56.14%} 5 169{61.59%} 8{60%} 

 

In hardware implementations of InvMixColumns, 

the complexities of direct implementation are 440AXOR@ 

5TXOR. After optimized by DACSE, the CPD of all 

implementations are increased when these 

implementations achieve the minimal area. At min CPD 

constraints, the row joint optimization has the same area 

reduction as column joint optimization, but it has more 

area reduction at looser delay constraints. By using 

whole matrix joint optimization, the area reduction is up 

to 56.14% at min CPD constraint and up to 61.59% at 

min area constraint. As shown in Table II, in row joint 

optimization and whole matrix optimization, the 

implementations achieve the minimal area at cost of 

3TXOR increased on critical path. 

From Table II, we can get that the area reductions of 

InvMixColumns implementations are larger than the 

ones of MixColumns implementations, as 

InvMixColumns operation is more complicated than 

MixColumns, and CSE algorithms have more efficiency 

in larger circuit.  

Our works are compared with previous works on 

Table III. Byte level sharing is used in most previous 

works, and bit level sharing is used in [4] only. The 

column joint optimization is also used in [4], but there is 

no delay constraints in the common subexpressions 

sharing process. According to Table II and Table III, 

MixColumns implementation proposed in [4] has the 

same area reduction as our column joint optimized 

implementation of MixColumns, but the CPD is larger 

than ours, as the adders in [4] are not constructed by 

DDBT structure. The CPD of InvMixColumns 

implementation is increased 1TXOR after sharing common 

subexpression in [4]. Compared with [4], our column 

joint optimized implementation of InvMixColumns has 

lower hardware complexity.  

Table III. Hardware complexities Comparisons of Our 

Implementations with Other Works 

Works 
Opt. 

Level 

MixColumns 

(AXOR@TXOR) 

InvMixColumns 

(AXOR@TXOR) 

[4] Bit 136@4 264@6 

[5] Byte 140@4 364@5 

[6] Byte 142@4 356@6 

[7] Byte 140@4 304@7 

[8] Byte 108@3 193@7 

[9] Byte 132@4 292@7 

[10] Byte 108@3 212@5 

[11] Byte 132@4 192@8 

[12] Byte 140@4 292@7 

[13] Byte 140@4 304@7 

[14] Byte 116@4 198@7 

Ours Bit 108@3 
193@5 

169@8 

 

The MixColumns implementations in [8] and [10] 

have the minimal area, and CPD is also kept without 

increasing. Our MixColumns implementation also 

achieves the same area at minimal CPD constraints as in 

[8] and [10]. For the InvMixColumns implementations 

proposed in previous works, the implementation 

proposed in [11] achieve the minimal area, but the CPD 

is also the largest in previous works. Our 

InvMixColumns implementation has lower hardware 

complexities, compared with previous works.  

3.4 Synthesized results in IC design process  

The implementations of MixColumns and 

InvMixColumns are described by Verilog HDL, and they 

are synthesized by SynopsysTM DC Tool with SMIC 

0.18μm technology.  

In synthesis process of DC, the implementations at 

min CPD constraints are also constrained by tight delays 

to achieve min delay, and the implementations at min 

area constraints are also constrained by loose delays to 

achieve min area. The synthesized results of DC are list 

on Table IV. 

Table IV. DC Synthesized Results for Different Implementations of 

MixColumns & InvMixColumns 

Blocks Met. 
Min Delay Min Area 

Area(gates) 

{Red.} 
Delay(ns) 

{Inc.} 
Area(gates) 

{Red.} 
Delay(ns) 

{Inc.} 

M.C. 

Dir. 638.67 0.62 384.00 1.05 

Ind. 638.67{0%} 0.62{0%} 384.00{0%} 1.05{0%} 

Col. 638.67{0%} 0.62{0%} 362.67{5.56%} 1.13{7.62%} 

Row 627.33{1.78%} 0.63{1.6%} 352.00{8.33%} 1.14{8.57%} 

Mat. 618.00{3.24%} 0.63{1.6%} 288.00{25%} 1.03{-1.9%} 

I.M.C. 

Dir. 2029.33 0.97 917.33 1.55 

Ind. 1966.33{3.10%} 0.98{1.03%} 877.33{4.36%} 1.77{14.19%} 

Col. 1792.33{11.68%} 1.03{6.19%} 693.33{24.42%} 2.16{35.39%} 

Row 1555.67{23.34%} 1.06{9.28%} 677.33{26.16%} 1.98{27.74%} 

Mat. 1271.67{37.34%} 1.07{10.31%} 455.33{50.36%} 2.99{92.90%} 

 

Compared with other optimizations, the 

implementations based on whole matrix joint 

optimization have minimal area, after synthesized by DC 

Tool. Some optimization methods are also integrated in 

DC tool. Therefore, the optimization space is small for 

implementations of MixColumns at minimal delay 

constraints, the area reduction of whole matrix joint 

optimization is only up to 3.24%. For the 



 

 

IEICE Electronics Express, Vol.xx, No.xx, xx-xx 

5 

 

 

implementations of InvMixColumns at minimal delay 

constraints, the area reduction of whole matrix joint 

optimization is up to 37.34%, it is also smaller than the 

one in theoretical analyses.  

For implementations constrained by minimal area, 

the area reduction of whole matrix joint optimization is 

up to 25% in MixColumns implementation, and up to 

50.36% in InvMixColumns implementation. They are 

closer to the area reductions in theoretical analyses. So 

the theoretical analyses mentioned in this paper have 

some guiding significances for actual hardware 

complexities evaluations. 

The MixColumns and InvMixColumns in other 

works are also implemented by Verilog HDL, and 

synthesized by DC Tool with the same setting conditions. 

These synthesized results are listed on Table V.  

Table V. The Comparisons of DC Synthesized Results 

Works 

MixColumns InvMixColumns 

Min Delay Min Area Min Delay Min Area 

Area 

(gates) 

Delay 

(ns) 

Area 

(gates) 

Delay 

(ns) 

Area 

(gates) 

Delay 

(ns) 

Area 

(gates) 

Delay 

(ns) 

[4] 638.67 0.62 362.67 1.13 1891.33 0.98 704.00 2.17 

[5] 652.00 0.65 288.00 1.26 1567.00 1.16 928.00 1.81 

[6] 631.00 0.64 306.67 1.07 1100.00 1.19 650.67 2.22 

[7] 652.00 0.65 288.00 1.26 1356.67 1.23 800.00 1.94 

[8] 508.00 0.68 288.00 1.21 821.00 1.20 514.67 2.00 

[9] 656.67 0.68 309.33 1.21 1149.33 1.27 654.67 2.16 

[10] 508.00 0.68 288.00 1.21 1125.33 1.16 565.33 1.92 

[11] 656.67 0.68 309.33 1.21 1008.00 1.40 469.33 2.45 

[12] 652.00 0.65 288.00 1.26 1149.33 1.27 654.67 2.16 

[13] 652.00 0.65 288.00 1.26 1356.67 1.23 800.00 1.94 

[14] 656.67 0.68 309.33 1.21 843.33 1.23 490.67 2.28 

Ours 618.00 0.63 288.00 1.03 1271.67 1.07 455.33 2.99 

 

Compared with previous works, our 

implementations at minimal delay constraints achieve 

nearly the minimal delay, and our implementations at 

minimal area constraints have achieved the minimal area. 

The results indicate that our designs can provide a wider 

range of area-delay tradeoff. The MixColumns 

implementations at minimal area constraints are also 

achieved the minimal area in many previous works, but 

the delays of these implementation are larger than ours.   

3.5 Synthesized results in FPGA design process 

Our designs are also synthesized by XilinxTM Vivado 

Tool with Virtex7, respectively. The synthesized results 

of Vivado are list on Table VI. No constraints are added 

in synthesized process, as the synthesized results are not 

affected by constraints in FPGA designs.  

Table VI. Vivado Synthesized Results for Different Implementations of 

MixColumns & InvMixColumns 

Methods 

MixColumns InvMixColumns 

Area(Slices) 

{Red.}  

Delay(ns) 

{Inc.} 

Area(Slices) 

{Red.} 

Delay(ns) 

{Inc.} 

Dir. 44 1.24 100 1.75 

Ind. 44{0%} 1.24{0%} 96 {4%} 1.77{1.14%} 

Col. 44{0%} 1.24{0%} 89 {11%} 1.85{5.71%} 

Row 43{2.27%} 1.29{4.03%} 88 {12%} 1.85{5.71%} 

Mat. 43{2.27%} 1.29{4.03%} 68 {32%} 2.20{25.71%} 

 

As some optimization methods are also integrated in 

Vivado, only one slice is reduced by whole matrix joint 

optimization in MixColumns implementation. In 

InvMixColumns implementation, the area reduction of 

whole matrix joint optimization is up to 32%. 

The MixColumns and InvMixColumns in other 

works are also synthesized by XilinxTM Vivado Tool with 

Virtex7. These synthesized results are listed on Table VII.  

Table VII. The Comparisons of Synthesized Results of 

InvMixColumns Implementations 

Methods 

MixColumns InvMixColumns 

Area 

(Slices)  

Delay 

(ns) 

Area 

(Slices) 

Delay 

(ns) 

[4] 44 1.24 91 1.75 

[5] 44 1.24 93 1.74 

[6] 44 1.24 89 2.44 

[7] 44 1.24 85 1.81 

[8] 44 1.24 89 1.75 

[9] 40 1.58 97 1.92 

[10] 44 1.24 89 1.73 

[11] 44 1.24 91 1.75 

[12] 44 1.24 97 1.92 

[13] 44 1.24 85 1.81 

[14] 40 1.58 70 2.24 

Ours 43 1.29 68 2.20 

 

As the basic logic element in Virtex7 is 6-input look-

up-table (LUT), the optimization effect is limited if the 

scale of common operation sharing is too small. In 

implementations of MixColumns, the optimization effect 

of our design is not obvious due to the circuit scale of 

MixColumns. In larger scale implementations of 

InvMixColumns, our design achieves the smallest area.   

Acknowledgments 

This work was supported in part by the National Natural 

Science Foundation of China under Grants 61976113 and 

61904001, in part by the Natural Science Foundation of 

Anhui Province under Grants 1908085MF179 and 

1908085QF272, in part by the Natural Science 

Foundation of the Anhui Province Higher Education 

Institutions under Grants KJ2019A0983 and 

KJ2019A0163, in part by the Natural Science Research 

Program of Anhui Province Higher Education Promotion 

Plan under Grant TSKJ2017B23, in part by the Scientific 

Research Starting Foundation for the Introduction of 

Talents of Anhui Polytechnic University under Grants 

2017YQQ001 and 2018YQQ007. 

References 

 [1] National Institute of Standards and Technology (NIST), 

Advanced Encryption Standard (AES) FIPS Publication 197. 

http:/csrc.nist.gov/ publications/fips/fips197/fips-197.pdf, Nov 

2001. 

 [2] M. M. Wong, et al.: “Composite field GF(((22)2)2) Advanced 

Encryption Standard (AES) S-box with algebraic normal form 

representation in the subfield inversion,” IET Circuits Dev. Syst. 

5 (2011) 471 (DOI: 10.1049/iet-cds.2010.0435). 

 [3] M. M. Wong, et al.: “Construction of optimum composite field 



 

 

IEICE Electronics Express, Vol.xx, No.xx, xx-xx 

6 

 

 

architecture for compact high-throughput AES S-boxes,” IEEE 

Trans. Very Large Scale Integr. (VLSI) Syst. 20 (2012) 1151 

(DOI: 10.1109/TVLSI.2011.2141693). 

 [4] X. Zhang, and K. K. Parhi, “Implementation Approaches for the 

Advanced Encryption Standard Algorithm,” IEEE Circuits and 

Systems Magazine, Vol.2, Issue.4, pp. 24-46, Fourth Quarter 

2002. (DOI: 10.1109/MCAS.2002.1173133). 

 [5] Y.-K. Lai, L.-C. Chang, L.-F. Chen, C.-C. Chou, C.-W. Chiu, “A 

novel memoryless AES cipher architecture for networking 

applications” in Proc. IEEE Int. Symposium on Circuits and 

Systems (ISCAS’04), 2004, pp. IV-333-336. (DOI: 10.1109/ 

ISCAS.2004.1329008). 

 [6] H. Kuo and I. Verbauwhede, “Architectural Optimization for a 

1.82Gbits/sec VLSI Implementation of the AES Rijndael 

Algorithm”, Proceedings CHES 2001, pp.51–64, Paris, France, 

May 2001. (DOI: 10.1007/3-540-44709-1_6). 

 [7] C. C. Lu and S. Y. Tseng, “Integrated Design of AES (Advanced 

Encryption Standard) Encrypter and Decrypter,” the IEEE 

International Conference on Application-Specific Systems, 

Architectures and Processors, 2002, pp. 277–285. (DOI: 

10.1109/ASAP.2002.1030726). 

 [8] X. Zhang and K. K. Parhi, “High-Speed VLSI Architectures for 

the AES Algorithm,” IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems, Vol. 12, No. 9, pp. 957-966, 

September 2004. (DOI: 10.1109/TVLSI.2004.832943). 

 [9] V. Fischer, “Realization of the Round 2 Candidates Using Altera 

FPGA”, The Third AES Conference (AES3), New York, Apr. 

2000. 

 [10] C.-Y. Li, C.-F. Chien, J.-H. Hong, and T.-Y. Chang, “An Efficient 

Area-Delay Product Design for MixColumns/InvMixColumns in 

AES,” IEEE Computer Society Annual Symposium on VLSI, 

2008. pp. 1-4. (DOI: 10.1109/ISVLSI.2008.81). 

 [11] V. Fischer, M. Drutarovsky, P. Chodowiec, and F. Gramain, 

“InvMixColumn Decomposition and Multilevel Resource 

Sharing in AES Implementations,” IEEE Transactions on Very 

Large Scale Integration (VLSI) System, Vol. 13, No. 8, Aug. 

2005, pp. 989-992. (DOI: 10.1109/TVLSI.2005.853606) 

 [12] H. Li and Z. Friggstad, “An Efficient Architecture for the AES 

Mix columns Operation, Circuits and Systems,” IEEE 

International Symposium on Circuits & Systems. IEEE, 2005, 

23-26 May 2005, pp. 4637-4640. (DOI: 10.1109/ISCAS.2005. 

1465666). 

 [13] Z. F. Zhao, D. Y. Yu, L. Li, “A Low-cost and High Efficiency 

Architecture of AES Crypto-engine,” China Communications, 

Feb. 2008, No. 02, pp. 8-15. (DOI: 10.1109/CHINACOM.2007. 

4469389). 

 [14] E. G. Ahmed, E. Shaaban, and M. Hashem. “Lightweight mix 

columns implementation for AES,” MMACTEE'09: Proceedings 

of the 11th WSEAS international conference on Mathematical 

methods and computational techniques in electrical engineering, 

September 2009 pp. 48-53. 

 [15] A. Hosangadi, et al.: “Simultaneous optimization of delay and 

number of operations in multiplierless implementation of linear 

systems,” 14th International Workshop on Logic and Synthesis-

IWLS (2005) 1. 

 [16] R. Maheshand A. P. Vinod. “New Reconfigurable Architectures 

for Implementing FIR Filters with Low Complexity,” IEEE 

Transactions on Computer-Aided Design of Integrated Circuits 

and Systems, 2010, 29(2): 275–288. (DOI: 10.1109/TCAD.2009. 

2035548). 

 [17] M. Martínez-Peiró, E. I. Boemo, and L. Wanhammar. “Design of 

High-Speed Multiplierless Filters Using a Nonrecursive Signed 

Common Subexpression Algorithm,” IEEE Transactions on 

Circuits and Systems II: Express Papers, 2002, 49(3): 196–203. 

(DOI: 10.1109/ TCSII.2002.1013866). 

 [18] F. Al-Hasani, M. P. Hayes, and A. Bainbridge-Smith. “A 

Common Subexpression Elimination Tree Algorithm,” IEEE 

Trans. Circuits Syst. I: Reg. Papers, 2013, 60(9): 2389–2400. 

(DOI: 10.1109/TCSI. 2013.2244328). 

 [19] R. Maheshand A. P. Vinod. “A New Common Subexpression 

Elimination Algorithm for Realizing Low-Complexity Higher 

Order Digital Filters,” IEEE Trans. Comput.-Aided Design Integr. 

Circuits Syst., 2008, 27(2): 217–229. (DOI: 10.1109/TCAD.2007. 

907064).  

 [20] N. Chen and Z. Y. Yan: “High-performance designs of AES 

transformations,” 2009 IEEE International Symposium on 

Circuits and Systems - ISCAS (2009) 2906 (DOI: 10.1109/ 

ISCAS.2009.5118410).  

 [21] M. M. Wong, and M. L. D. Wong. “A New Common 

Subexpression Elimination Algorithm with Application in 

Composite Field AES S-box,” Tenth International Conference on 

Information Sciences, Signal Processing and their Applications 

(ISSPA 2010), 2010: 452–455. (DOI: 10.1109/ISSPA.2010. 

5605445).  

 [22] X. Zhang, et al.: “An optimized delay-aware common 

subexpression elimination algorithm for hardware 

implementation of binary field linear transform,” IEICE Electron. 

Express 11 (2014) 20140934 (DOI: 10.1587/elex.11.20140934).  

 [23] C. Paar, Optimized arithmetic for Reed-Solomonen coders, in 

Proc. IEEE Int. Sym. Information Theory, p. 250, 1997. (DOI: 

10.1109/ISIT. 1997.613165). 

 [24] N. Chen, and Z. Y. Yan. “Cyclotomic FFTs With Reduced 

Additive Complexities Based on a Novel Common 

Subexpression Elimination Algorithm,” IEEE Trans. Signal 

Process., 2009, 57(3): 1010–1020. (DOI: 10.1109/TSP.2008. 

2009891). 

 [25] Y. Lee, H. Yoo, and I.-C. Park, “Low-Complexity Parallel Chien 

Search Structure Using Two-Dimensional Optimization,” IEEE 

Transactions on Circuits and Systems-II: Express Papers, vol.58, 

no. 8, Aug. 2011, pp. 522-526. (DOI: 10.1109/TCSII.2011. 

2158709). 

 [26] X. Zhang, et al.: “Low-delay parallel Chien search architecture 

for RS decoder,” IEICE Electron. Express 13 (2016) 20160729 

(DOI: 10.1587/ elex.13.20160729). 

 [27] J. L. Imana, et al.: “Bit-parallel finite field multipliers for 

irreducible trinomials,” IEEE Trans. Comput. 55 (2006) 520 

(DOI: 10.1109/TC.2006.69).  

 [28] X. Zhang, et al.: “Optimization of area and delay for 

implementation of the composite field advanced encryption 

standard S-box,” J. Circuits Syst. Comput. 25 (2016) 1650037 

(DOI: 10.1142/S0218126616500377). 

 [29] X. Zhang, et al.: “A low critical path delay structure for 

composite field AES S-box based on constant matrices 

multiplication merging,” IEICE Electron. Express 7 (2020) 

20200035 (DOI: 10.1587/elex.17.20200035).  

 [30] N. Petra, et al.: “A novel architecture for Galois Fields GF(2m) 

multipliers based on mastrovito scheme,” IEEE Trans. Comput. 

56 (2007) 1470 (DOI: 10.1109/TC.2007.70741). 

 [31] A. Chandrakasan, et al.: “Optimizing power using 

transformations,” IEEE Trans. Comput.-Aided Design Integr. 

Circuits Syst. 14 (1995) 12 (DOI: 10.1109/43.363126). 

 


