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Abstract

In this paper, we first present a brief infeasible interiaript method with full-Newton step for solving linear comple
mentarity problem (LCP). The main iteration consists of asfhility step and several centrality steps. First we prése
a full Newton step infeasible interior-point algorithm legison the classic logarithmical barrier function. After tha
specific kernel function is introduced. Then the feasib#itep is induced by this kernel function instead of the @ass
logarithmical barrier function. The results of complexégincides with the best bound known for infeasible intepoint

methods for LCP.
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1. Introduction

The linear complementarity problem (LCP) is to find
a vector(z, s) € R?" such that
(P)

whereq € R™, and M € R"*"™ is positive semidefi-
nite. It is well known that many important problems in

s=Mx+q, x,5>0, xs=0,

and other literature about IIPMs for LCPs can be found
in [14,19]. In Roos [17], a full Newton-step infeasible
interior-point algorithm for LO was proposed and he
also proved that the complexity of the algorithm coin-
cides with the best known iteration bound for 1IPMs.
Some extensions on LO were carried out by Liu and
Sun[7], Mansouri and Roos [9], on LCP by Mansouri
et al. [8], and on semidefinite optimization by Kheirfam

economics, control and game theory can be formulated [3,4].

as LCP. For a comprehensive study, the reader is re-

Recently, Peng et al. [11-13] proposed a new variant

ferred to [1]. There are a variety of solution approaches of IPMs based on self-regular kernel functions for LO

for LCP which have been studied extensively. Among
them, the interior-point methods (IPMs) gained much
attention for LCP than other methods. For a compre-
hensive learning about IPMs, we refer to [2,18,20]. A
close look at the IPM litterarure tells us that the first
IPM for LCP was due to Kojima et al. [5] and their al-
gorithm originated from the primal-dual IPMs for lin-
ear optimization (LO). Later on, Kojima et al. [6] set
up a framework of IPMs for tracing the central path of
a class of LCPs.

One may distinguish between feasible IPMs and
infeasible IPMs (lIPMs). Feasible IPMs start with a
strictly feasible interior point and maintain feasibil-
ity during the solution process. IIPMs start with an
arbitrary positive point, and feasibilty is reached as
optimality is approached. Potra [14] analyzed a gen-
eralization to LCPs of the Mizuno-Todd-Ye predictor
corrector method [10] for infeasible starting points,
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and proved the best complexity for large-update meth-
ods with some specific self-regular kernel function.

Motivated by this series of work, we consider full
Newton-step IIPM for LCP based on a specific kernel
function. In our algorithm, we use a barrier function
based on the simple kernel function

o(1) = 56— 1%, @)

instead of classical logarithmic barrier function to calcu
late the search directions. The complexity result shows
that the full Newton-step IIPM for LCP based on this
kernel function enjoys the best known iteration bound
for LCP.

The paper is organized as follows: In the next Section,
we present briefly primal-dual infeasible interior-point
algorithm with a proximity of iterategz, s) to the u-
center of the perturbed problem. In Section 3, we give
some technically results. Section 4 is devoted to the
analysis of the new feasibility step, which is the main
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part of the paper and then, iteration bound is derived.
Finally, we end the paper in section 5.

2. The statement of the algorithm

Without loss of generality [6], we assume that LCP
satisfies the interior point condition (IPC), i.e., there
exists a vectofz?, s°) € R?" such that;

9= Mz +q, 2° >0, s° > 0.
We assume that, andpg are such that

H«T*”oo < Pp> maX{HS*HooappH]\/[e”OO’ HQHOO} < pd;

for some optimal solutiorjz*, s*) of the problem (P)
and start the algorithm with

0

¥ = ppe, " = pae, 1° = pppa.

For anyrv with 0 < v < 1, we consider the perturbed
problem

(P) s—Mzx—q=uvr’ (z,5)>0,

where,

0 0

0 =s"— Ma® —q.

Note that ifv = 1, then (z,s) = (2°,5°) yields a
strictly feasible solution of P,). We conclude that if
v = 1, then(P,) satisfies the IPC. More generally, one
has the following result (see [8], Lemma 4.1).
Lemma 1. If the original problem (P) is feasible then
the perturbed problen(P,) satisfies the IPC for each
O0<v <l

Assuming that (P) is feasible, it follows from Lemma
1 that the problenfP, ) satisfies the IPC, for each<
v < 1. Then, its central path exists, meaning that the
system

s—Mz—q=uvr’, 2>0,5>0,

Ts = pe,

(2)
3)

has a unique solution, for any> 0. For0 < v < 1and
= vu’, we denote this unique solution in the sequel
by (z(v), s(v)), where is theu-center of(P,). In this
notation, if we takes = 1, then(x(1), s(1)) = (29, s°).
We measure the proximity of iterate, s) to the u-
center of the perturbed problef®,) by the quantity

O, 8 ) = (4)
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where
xrs
V= ,]—

Initially, we haved(z, s; 1) = 0. In the sequel, we as-
sume that at start of each iteratioiy, s; 1) < 7 with

7 > 0. This certainly holds at the start of the first iter-
ation.

We now describe one main iteration of the algorithm
given by Mansouri et al. [8]. The algorithm begins with
an infeasible interior pointz, s) such thafz, s) is fea-
sible for the perturbed problet®, ), z7's < (n+§%)n
and §(z, s;u) < 7, wherepy = vu®. Each main it-
eration consists of one so-called feasibility steps-a
update, and a few centering steps. First we find a new
point (x/, s/) which is feasible for the perturbed prob-
lem with v+ (1 — @)v. Then y is decreased to
pt = (1 — 0)u. Generally, there is no guarantee that
§(zf,s’;ut) < 7. So a limited number of centering
steps are applied to produce a new pgint, s*) such
thaté(z*,st; u™) < 7, wherep™ = v+ 0. This pro-
cess is repeated until the algorithm terminates.

We now describe the search directions used in the
feasibility and centering steps. For the feasibility step,
the search directiofA’z, A’ s) defined by the system

(5)
(6)

where,f € (0,1). If (z, s) is feasible for the perturbed
problem(P, ), then after the feasibility step the iterates
satisfies the affine equation in (2), with= v*. As-
suming thabt(z, s; 1) < 7 holds before the step, and by
taking 6 small enough, it can be guaranteed that after
the step the iterates

MMz — As = 0ur?,
s @+ a2 s = pe — ws,

o =+ N, sf =54+ N, (7

1

are positive and (zf, s/; u) <

In the centering step, starting at the iterates) =
(xf, s7) and targeting at thg-center, the search direc-
tion (Az, As) is the usual primal-dual Newton direc-
tion, defined by

As = MAx,

sAx + x/A\s = pe — xs. (8)

Denoting the iterate after a centering step by and
sT, we recall the following result from [8].

Lemma 2. ([8], Lemma 3.5, corollary 3.6 ) If
§ = 6(z,s;u) < 1, thenz™ and st are positive,
(xF)Tst < (n + 6%)u. Moreover, ifé < then
S(xt,stip) <62

\/51
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Define

vAfs

S

@ A

/.
T x

= ; 9)
where,v defined as (4). By using (9), we can rewrite
(5)-(6) as follows

MS=tXd] — df = Gvvs~1rY,

(10)
df +df =v7! — v,

whereX = diag(z), S = diag(s).

Note that the right-hand-side in the second equation of
system (10)p~! — v, equals the negative gradient of
the classical logarithmic barrier function

Zw(vi), v = |22

whose kernel function is

P(t)

1
5(1%2 —1) —logt.

The main contribution of this paper is a modification of
the feasibility step. We present a slightly algorithm, ob-
tained by changing the definition of the feasibility step
via replacing the second equation of (10)dfy+ df =
—V¢(v), where the kernel function af(v) defined as
(1). Therefore, the system of the new feasibility step
becomes

MS™rXd! — dl = vvs™ 10,
df +dl = -Ve(v).

Since¢’ (t) =t — 1, the second equation in the system
can be written as

df +dl =e—w. (11)
We define

1
oz, s;p) = 0(v) := ﬁlle — . (12)

It is obvious thatz(v) = 0 if and only if v = e, thus
o(v) is also a suitable proximity. We now give a more
formal description of Algorithm 1 below.
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Algorithm1 :Primal — Dual Infeasiblel PM
Input :
Accuracy parametere > 0;
barrier update parameter 6, 0 < 0 < 1;
feasible (x°,s%) with (x°)Ts? = ny,
6(x0,8%p) <7 =3.
begin
z:=2% s:= 5% p:=pu°
while max(nu, ||7]]) > € do
begin
feasibility step :(z,s) := (z,s) + (Afz, Afs);
pw— update :p:= (1 — 0)y;
centering steps :
while §(x, s; 1) > 7 do
begin
(x,8) := (z,8) + (Azx, As);
end
end
end.

3. Technical results

We now give some lemmas which are used in the
analysis later.
Lemma 3. (Lemma 3 in [21]) Suppose thaf(z) =
Y1 () +1pa (z), bothepy () andps () are strictly mono-
tone increasing in a given interval. The roots/af(z)
0 and v (x) = 0 are z; and z, respectively. Then the
root z* of ¢ (z) = 0 satisfies that

x> min{xy, z2}.

Lemma 4. ([9], Lemma A.1) Fori = 1,2,...,n, let

fi : Ry — R denote a convex function. Then, for any
nonzero vector € R, the following inequality

holds.

Lemmab. (Lemma5.6in [8]) The iterateg:/, s/) are
certainly strictly feasible if

Z fi(zi) < % Z zj (fj(eTZ) +> £:(0)

i#]

q(6)

where

<wv; <gq(0), i=1,2,...,n (13)

q(0) = §5+\/%52+1.
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Lemma6. (Lemma5.8in [8]) Letz, s) be feasible for
the perturbed probleni?, ) and (z°, s°) = (ppe, pae).
Then
]l < (2+a(8)*)npp,
where,q(¢) is defined in Lemma 5.
The following lemma shows the effect on the prox-
imity measure ifv is replaced by := , /1%5.

Lemma 7. Let (x,s) be a primal-dual Newton step
and i > 0 such thatz”'s < (n + 6%)u. Moreover let
1

d(v) :=6(x,s; ) andv := \/fz_o Then
§(9)2 <2(1—6)6% + 9(12__99) n(n+ 62)

Proof. By using||v||? < n + §% and Holder inequality,
one has

n n
lo3[* =D v < (ny_vf)? <
i=1 i=1
By following definition §(v) and the clear inequality,
lt=2 —t2| < |t~ — ¢, for t > 0 we have
1

- —F _1 V2
25(1})2 = H 1—6v2 — \/1—”2

n(n + §2).

1

- V=t -t 2
11 6%||v= |
= — 3 — 22 -
=1 =0)v ;H t4 0
—29(1)_% —v%) V3
2 2
<2(1 - 0)§(v) + %
+20( 0?2~ n)
2
<2(1—9)5(v)2—|—9 1( ;6)
—|—29(\/ (n+42) —n)
§2(1—9)62+9(2 n(n +062).
1—9
O
4. Analysis

Let(z, s) denote the iterate at start of an iteration with
2Ts < p(n+62%) andd(x, s; u) < 7. Recall that at the

start of the first iteration this certainly holds, because

O(x,s;u) =0.
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4.1. Effect of the feasibility step

According to Lemma 2, we need to show that
S(zf,shut) < % after the feasibility step, that is,
that the new iterates are within the region, where the
Newton process targeting at the -center of(P,+) is
quadratically convergent. Using (9), (11) and= pv?,
we obtain

wfsf = xs 4+ (sATx + xATs) + AfzATs
= p? + po(df + d?) + pdld!
= p(v +didl). (14)
The next lemma gives conditions for strict feasibility of
the full Newton-step.

Lemma 8. The iterategz/, s/) are strictly feasible if
and only ifv + dfdf > 0.

Proof. Note that ifz/ and s/ are positive then (14)
makes clear that + d{d! > 0. For the proof of the
converse, introduce a step lengthvith 0 < o < 1 and
define

2=z +arz, s*=s+aAls.

We thus have’ = z, 2! = 2/, s = s ands' = s7.
Note thatz"s® = zs > 0. We may write
%% = (z + aATz)(s + aAls)

=zs+a(sAlz +2ATs) + o?ATzATs. (15)
From (9), we deduce\/zA's = pudfdl. Using this
andzA’s + sATz = po(df + df) = pv(e — v) and
uv? = s, we obtain
2%s* = p((1 — a)o® + a(v + adldl)).
If v+ dfd! > 0, thend/d! >
(16), we get

(16)

—v. Substituting into

¥ >
p((1—a)o? + (v — av) = p(l — a)(v? + av).

Sincep(1 — a)(v? 4+ av) > 0, it follows thatz®s* > 0
for 0 < a < 1. Hence, none of the entries of* and
s vanish for0 < o < 1. Sincez® = z > 0 and
s = s > 0, andz® and s“ depend linearly onv,
this implies thatz® > 0 ands® > 0 for 0 < o < 1.
Hencez! and s' must be positive, and the proof is
complete. O

In the sequel, we denote

1
SVl + 1L,

w; = w;(v) =
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and Using Lemma 7, we obtain
w:=w() = ||(wy,ws, ..., w,)|| " oy n " Lo
These imply, by Cauchy-Schwartz inequality, Z(l - s+t - 2) = Z (1 - gt~ 2)
i) ! i=1 ¢
(@)’ al <[l l|af]| < §(||de|2 +ldl|?) < 2w?, ( v 1-96 2)
1 f 2 f 2 1-6 (%
< (P + 1l ) < 20 , 0(2-6)
< — 2
§2w, 1=1,2,...,n 2(1-6)0" + 1-6 (n +6%)
Theorem 9. If v+d/d! > 0and1—2¢(§)w? > 0, then _( Yj -+ 1-6 2)'
1-— v;
w2 2(1 — Owq(s)? !
20(v1)? <2(1 — )62
6(v")" <2( )6% + =g " 1= 2024(0) Therefore,
0(2 —0) 5 1 «— v; + 2w? 1-46
e Sl . 2~ 2 J
+ =5 Vn(n +0) 26(v”) g2w222wj (= —.7 2
Proof. Using (14), after division of both sides hy" = =
(1 — 6); we obtain (Y 1-0 —9)
faf I af =0 v
(vf)Q _ M(U+d$d8) _ v+dwds n
N ut 1-6 R 2 _o\s2
] 5z O 2] (200-0)s
ence j=1
n 6(2—6
25(07)? =) ((Uf)2 +(v]) 72 - 2) g vnln s 52))
i=1 n
"t dd dl 1—0 ! ou? | 20 1-0 1—9]
— Ti " Sq _ 2 = —F w .
2 ( 1—9¢ + vt déldé ) 2?2 ; I 11 0 — 2w? Vj
vi + 2w? 1-90 +2(1 — )6 + n(n + 42)
< d -2). —
_Zl( 1-06 +vi—2wi2 2) ) 11 0
= w?
, (1-0)) 20—+
Define T1-06 Z ’ v; (vj — 2w? )
f»(2w2)—vi+2wi2+ Ly i—12,....n 9(2—9)
T -0y —2w? T T +2(1 — )6 + - (n+62)
Using L(_emma 5 and the hypothesdis- 2¢(5)w? > 0, (1 - By q(d)
we obtain =1_9 1—2uw2q(5)
2
This implies thatf; (2w?) is convex in2w?. Therefore, +2(1-0)0" + 1—-0 (n +62).
by Lemma 4, This completes the proof. O
2< Z fi( 2w % Z (f7 2uw?) We conclude this section by presenting a value that
=1 we do not alloww to exceed. Needing(v/) < % it
+ Z fi(0) ) follows from Lemma 9 that it is sufficient to have
7]
202 2(1 — 0)w?q(d)?
1 & 4 2w? 16 2(1 - 6)6?
= o > 2L A e R ey
2w = 1-0 v; — 2w? 02— )
i 1-9 T vn(n+62) <1

itj 2 Now,
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2t 2(1 —0)q(6)*t

w(t)zl_o T 24(0) +2(1 — 6)6*
+9(12__;) n(n+462) — 1,
and
Py (t) = 12%9—1-2(1 0)6%+ 9(12_ ;) n(n +62)—=
B q(9)° 1
valt) =20 - )t
Note thati(t) = v1(t)+12(t), and that both), (¢) and

12 (t) are monotonically increasing ih By Lemma 3,
the roott* of ¢(t) = 0 satisfieg* > min{t}, t5}, where
t7 andt} are the roots of);(t) = 0 ands(t) = 0,
respectively.

Sincey (t7) = 0,

. (1 , 6(2-0) ~\1-0
tl—(§—2(1—9)6 - n(n+5))T,
and fromys(t5) = 0,

1

= T 0)q0 + 240

At this stage, we choose

Then forn > 2 andé < 7, it can easily be verified that

a 62 n+52
t*>———\/ bl —1/ 17
1—2 sVt T3 _256()

ty > 3—1 (18)

Using (17) and the assumption that 2¢(5)w? > 0,
it is easily verified that if

) 25 4 4, 25

< bl
wh < min{oes 3150 = 9560 (19)
then )
S(vf) < —.
o<

4.2. Upper bound for ||df||% + ||df||?

In this section, we obtain an upper bound ffaf ||? +
|ldZ||?, which enables us to find a default value for
We consider the following system:

MS='Xdf — df = Ovvs~!r

dl +df =e—v, (20)

whereX = diag(z) andS = diag(s). By eliminating
d! from (20), we have

dl = (I—i—MS’_lX)_l(e—v+91/vs_17°0). (21)
Sincel + M S~'X is positive definite, it follows
) < |le — v + Oros—1r0. (22)

Hence, by using (20), Cauchy-Schwartz inequality and

positive semidefiniteness 87 S~ X we have

L% + 1111 = l|df + df|1> — 2(d])"d]
= lle—v|?
— 2(d£)T(MS_1Xd£ — Huvs_lro)
= el

~2(d)TMST X d! + 20v(d])Tvs™ 0
< lle = oll* + 2l [[[|vos ™).
Using (22), we get
1211 + 141>
< lle=v|* +2[[(e — v+ Grvs r0) ||| frvs™ 0|
< lle = vll* +2(lle = v]| + [0rvs~ 0 ) [Orvs™1|

30 360
< 262 +2(\/§5+ Hx||1)

pVUmin

— =]l
'p Umin

By using Lemmas 5 and 6, we obtain
| + N1l )1 <
26 + 6n9(\/§5 + 3n0q(6) (2 + q(5)2)) 4(8) (2 + q(6)2).

4.3. Value for 6

At this stage, we choose

_Sir:sceé <7= % andq(d) is monotonically increasing
in 4,

L |” + [|df1? < 267

+6n9(\/§5 + 3n0q(6) (2 + q(5)2)) 4(8) (2 + q(6)%)
<2(3)?

w0 (L2 4 3000(1) 2+ o1 )a(D) 2 + a(2)?)
< 3—12 + (018 + 104670 20.92n6.

Usingf = 83, the above inequality reads
n
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1df)2 + |1df )% < 1 1 (0.18 4 1.310)2.620.  (24) reduced by the factor — 6. Hence, the total number of
32 main iterations is bounded above by

From (19), we know thatv? < 2%‘)6 is needed to guar-
antee that(v/) < % By (24), this holds if(0.18 +
1.31)2.62a < 0.36. This means if we take

! iog Xl @),
€

By multiplying the number of inner iterations by the

a = 0.25, (25) number of main iterations, the total number of iterations

then it is guaranteed thatv/) < . is bounded above by
4. max{(z%)"s’ [|r°]]}

4.4, Complexity analysis 9 log p ,

We have seen that if the iterates satisfy, s; i) < 7 whered = 51, by (25), and hence we obtain the upper
at the start of an iteration, withas defined in (23),then  pound

i e @ : 0\T 0 ||,.0

after the feasibility step, with = & anda as defined 1280 log max{ (z")* ", ||r H}.
in (25), the iterates satisfy(z/, s/; ut) < % €

After the feasibility step, we preform some centering 0

steps in order to make the itergtet, sT) that satisfies
§(zt,st;ut) < 7, wherer is smaller than\/%. This
process is repeated until the maximum of the norm of

the residual andz™)" s is less thare. In this paper we extended the full Newton-step infea-
The next theorem gives an upper bound for the total sjple interior-point algorithm to LCP. After that we used

number of iterations, which this bound coincides with 5 new kernel function to induce the feasibility step and

the Currently best bound of infeasible IPMs for LCP we ana|yzed the a|gorithm based on this kernel func-

except a factor [15,16]. tion. The same results of complexity are obtained.
Theorem 10. If (P) has optimal solutior{z*, s*) such

that ||2*||cc < pp and||s*||oc < pa, then after at most

5. Conclusion
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