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Abstract

In this paper, we first present a brief infeasible interior-point method with full-Newton step for solving linear comple-
mentarity problem (LCP). The main iteration consists of a feasibility step and several centrality steps. First we present
a full Newton step infeasible interior-point algorithm based on the classic logarithmical barrier function. After that a
specific kernel function is introduced. Then the feasibility step is induced by this kernel function instead of the classic
logarithmical barrier function. The results of complexitycoincides with the best bound known for infeasible interior-point
methods for LCP.
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1. Introduction

The linear complementarity problem (LCP) is to find
a vector(x, s) ∈ R2n such that

(P ) s =Mx+ q, x, s ≥ 0, xs = 0,

whereq ∈ Rn, andM ∈ Rn×n is positive semidefi-
nite. It is well known that many important problems in
economics, control and game theory can be formulated
as LCP. For a comprehensive study, the reader is re-
ferred to [1]. There are a variety of solution approaches
for LCP which have been studied extensively. Among
them, the interior-point methods (IPMs) gained much
attention for LCP than other methods. For a compre-
hensive learning about IPMs, we refer to [2,18,20]. A
close look at the IPM litterarure tells us that the first
IPM for LCP was due to Kojima et al. [5] and their al-
gorithm originated from the primal-dual IPMs for lin-
ear optimization (LO). Later on, Kojima et al. [6] set
up a framework of IPMs for tracing the central path of
a class of LCPs.

One may distinguish between feasible IPMs and
infeasible IPMs (IIPMs). Feasible IPMs start with a
strictly feasible interior point and maintain feasibil-
ity during the solution process. IIPMs start with an
arbitrary positive point, and feasibilty is reached as
optimality is approached. Potra [14] analyzed a gen-
eralization to LCPs of the Mizuno-Todd-Ye predictor
corrector method [10] for infeasible starting points,
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and other literature about IIPMs for LCPs can be found
in [14,19]. In Roos [17], a full Newton-step infeasible
interior-point algorithm for LO was proposed and he
also proved that the complexity of the algorithm coin-
cides with the best known iteration bound for IIPMs.
Some extensions on LO were carried out by Liu and
Sun[7], Mansouri and Roos [9], on LCP by Mansouri
et al. [8], and on semidefinite optimization by Kheirfam
[3,4].

Recently, Peng et al. [11–13] proposed a new variant
of IPMs based on self-regular kernel functions for LO
and proved the best complexity for large-update meth-
ods with some specific self-regular kernel function.

Motivated by this series of work, we consider full
Newton-step IIPM for LCP based on a specific kernel
function. In our algorithm, we use a barrier function
based on the simple kernel function

φ(t) =
1

2
(t− 1)2, (1)

instead of classical logarithmic barrier function to calcu-
late the search directions. The complexity result shows
that the full Newton-step IIPM for LCP based on this
kernel function enjoys the best known iteration bound
for LCP.

The paper is organized as follows: In the next Section,
we present briefly primal-dual infeasible interior-point
algorithm with a proximity of iterates(x, s) to theµ-
center of the perturbed problem. In Section 3, we give
some technically results. Section 4 is devoted to the
analysis of the new feasibility step, which is the main
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part of the paper and then, iteration bound is derived.
Finally, we end the paper in section 5.

2. The statement of the algorithm

Without loss of generality [6], we assume that LCP
satisfies the interior point condition (IPC), i.e., there
exists a vector(x0, s0) ∈ R2n such that;

s0 =Mx0 + q, x0 > 0, s0 > 0.

We assume thatρp andρd are such that

‖x∗‖∞ ≤ ρp, max{‖s∗‖∞, ρp‖Me‖∞, ‖q‖∞} ≤ ρd,

for some optimal solution(x∗, s∗) of the problem (P)
and start the algorithm with

x0 = ρpe, s0 = ρde, µ0 = ρpρd.

For anyν with 0 < ν ≤ 1, we consider the perturbed
problem

(Pν) s−Mx− q = νr0, (x, s) ≥ 0,

where,
r0 = s0 −Mx0 − q.

Note that if ν = 1, then (x, s) = (x0, s0) yields a
strictly feasible solution of(Pν). We conclude that if
ν = 1, then(Pν) satisfies the IPC. More generally, one
has the following result (see [8], Lemma 4.1).
Lemma 1. If the original problem (P) is feasible then
the perturbed problem(Pν) satisfies the IPC for each
0 < ν ≤ 1.

Assuming that (P) is feasible, it follows from Lemma
1 that the problem(Pν) satisfies the IPC, for each0 <
ν ≤ 1. Then, its central path exists, meaning that the
system

s−Mx− q = νr0, x ≥ 0, s ≥ 0, (2)

xs = µe, (3)

has a unique solution, for anyµ > 0. For0 < ν ≤ 1 and
µ = νµ0, we denote this unique solution in the sequel
by (x(ν), s(ν)), where is theµ-center of(Pν). In this
notation, if we takeν = 1, then(x(1), s(1)) = (x0, s0).
We measure the proximity of iterate(x, s) to the µ-
center of the perturbed problem(Pν) by the quantity

δ(x, s;µ) =
1√
2
‖v−1 − v‖, (4)

where

v =

√

xs

µ
.

Initially, we haveδ(x, s;µ) = 0. In the sequel, we as-
sume that at start of each iteration,δ(x, s;µ) ≤ τ with
τ > 0. This certainly holds at the start of the first iter-
ation.

We now describe one main iteration of the algorithm
given by Mansouri et al. [8]. The algorithm begins with
an infeasible interior point(x, s) such that(x, s) is fea-
sible for the perturbed problem(Pν), xT s ≤ (n+ δ2)n
and δ(x, s;µ) ≤ τ , whereµ = νµ0. Each main it-
eration consists of one so-called feasibility step, aµ-
update, and a few centering steps. First we find a new
point (xf , sf ) which is feasible for the perturbed prob-
lem with ν+ := (1 − θ)ν. Then µ is decreased to
µ+ := (1 − θ)µ. Generally, there is no guarantee that
δ(xf , sf ;µ+) ≤ τ . So a limited number of centering
steps are applied to produce a new point(x+, s+) such
that δ(x+, s+;µ+) ≤ τ , whereµ+ = ν+µ0. This pro-
cess is repeated until the algorithm terminates.

We now describe the search directions used in the
feasibility and centering steps. For the feasibility step,
the search direction(∆fx,∆fs) defined by the system

M△fx−△fs = θνr0, (5)

s△fx+ x△fs = µe− xs, (6)

where,θ ∈ (0, 1). If (x, s) is feasible for the perturbed
problem(Pν), then after the feasibility step the iterates
satisfies the affine equation in (2), withν = ν+. As-
suming thatδ(x, s;µ) ≤ τ holds before the step, and by
taking θ small enough, it can be guaranteed that after
the step the iterates

xf = x+△fx, sf = s+△fs, (7)

are positive andδ(xf , sf ;µ+) ≤ 1√
2
.

In the centering step, starting at the iterate(x, s) =
(xf , sf ) and targeting at theµ-center, the search direc-
tion (∆x,∆s) is the usual primal-dual Newton direc-
tion, defined by

△s =M△x,
s△x+ x△s = µe− xs.

(8)

Denoting the iterate after a centering step byx+ and
s+, we recall the following result from [8].
Lemma 2. ([8], Lemma 3.5, corollary 3.6 ) If
δ := δ(x, s;µ) < 1, then x+ and s+ are positive,
(x+)T s+ ≤ (n + δ2)µ. Moreover, if δ ≤ 1√

2
, then

δ(x+, s+;µ) ≤ δ2.
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Define

dfx :=
v∆fx

x
, dfx :=

v∆fs

s
, (9)

where,v defined as (4). By using (9), we can rewrite
(5)-(6) as follows

MS−1Xdfx − dfs = θνvs−1r0,

dfx + dfs = v−1 − v,
(10)

whereX = diag(x), S = diag(s).
Note that the right-hand-side in the second equation of
system (10),v−1 − v, equals the negative gradient of
the classical logarithmic barrier function

Ψ(v) :=

n
∑

i=1

ψ(vi), vi =

√

xisi

µ
,

whose kernel function is

ψ(t) =
1

2
(t2 − 1)− log t.

The main contribution of this paper is a modification of
the feasibility step. We present a slightly algorithm, ob-
tained by changing the definition of the feasibility step
via replacing the second equation of (10) bydfx + dfs =
−∇φ(v), where the kernel function ofφ(v) defined as
(1). Therefore, the system of the new feasibility step
becomes

MS−1Xdfx − dfs = θνvs−1r0,

dfx + dfs = −∇φ(v).

Sinceφ
′

(t) = t− 1, the second equation in the system
can be written as

dfx + dfs = e− v. (11)

We define

σ(x, s;µ) := σ(v) :=
1√
2
‖e− v‖. (12)

It is obvious thatσ(v) = 0 if and only if v = e, thus
σ(v) is also a suitable proximity. We now give a more
formal description of Algorithm 1 below.

Algorithm1 :Primal −Dual InfeasibleIPM

Input :
Accuracy parameterǫ > 0;
barrier update parameter θ, 0 < θ < 1;
feasible (x0, s0) with (x0)Ts0 = nµ,
δ(x0, s0;µ) < τ = 1

2
.

begin

x := x0; s := s0; µ := µ0;
while max(nµ, ‖r‖) > ǫ do

begin

feasibility step :(x, s) := (x, s) + (△fx,△fs);
µ− update :µ := (1 − θ)µ;
centering steps :
while δ(x, s;µ) ≥ τ do

begin

(x, s) := (x, s) + (∆x,∆s);
end

end

end.

3. Technical results

We now give some lemmas which are used in the
analysis later.
Lemma 3. (Lemma 3 in [21]) Suppose thatψ(x) =
ψ1(x)+ψ2(x), bothψ1(x) andψ2(x) are strictly mono-
tone increasing in a given interval. The roots ofψ1(x) =
0 andψ2(x) = 0 are x1 andx2 respectively. Then the
root x∗ of ψ(x) = 0 satisfies that

x∗ ≥ min{x1, x2}.

Lemma 4. ([9], Lemma A.1) Fori = 1, 2, . . . , n, let
fi : R+ → R denote a convex function. Then, for any
nonzero vectorz ∈ R

n
+, the following inequality

n
∑

i=1

fi(zi) ≤
1

eT z

n
∑

j=1

zj

(

fj(e
T z) +

∑

i6=j

fi(0)

)

holds.
Lemma 5. (Lemma 5.6 in [8]) The iterates(xf , sf ) are
certainly strictly feasible if

1

q(δ)
≤ vi ≤ q(δ), i = 1, 2, . . . , n (13)

where

q(δ) =

√
2

2
δ +

√

1

2
δ2 + 1.
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Lemma 6. (Lemma 5.8 in [8]) Let(x, s) be feasible for
the perturbed problem(Pν) and(x0, s0) = (ρpe, ρde).
Then

‖x‖1 ≤
(

2 + q(δ)2
)

nρp,

where,q(δ) is defined in Lemma 5.
The following lemma shows the effect on the prox-

imity measure ifv is replaced bỹv :=
√

v
1−θ

.

Lemma 7. Let (x, s) be a primal-dual Newton step
andµ > 0 such thatxT s ≤ (n + δ2)µ. Moreover let

δ(v) := δ(x, s;µ) and ṽ :=
v

1
2

√
1− θ

. Then

δ(ṽ)2 ≤ 2(1− θ)δ2 +
θ(2− θ)

1− θ

√

n(n+ δ2)

.

Proof. By using‖v‖2 ≤ n+ δ2 and Holder inequality,
one has

‖v 1
2 ‖2 =

n
∑

i=1

vi ≤ (n

n
∑

i=1

v2i )
1
2 ≤

√

n(n+ δ2).

By following definition δ(v) and the clear inequality,
|t− 1

2 − t
1
2 | ≤ |t−1 − t|, for t > 0 we have

2δ(ṽ)2 = ‖
√
1− θv−

1
2 − v

1
2

√
1− θ

‖2

=
∥

∥

∥

√
1− θ(v−

1
2 − v

1
2 )− θv

1
2

√
1− θ

∥

∥

∥

2

= (1 − θ)‖v− 1
2 − v

1
2 ‖2 + θ2‖v 1

2 ‖2
1− θ

− 2θ
(

v−
1
2 − v

1
2

)T
v

1
2

≤ 2(1− θ)δ(v)2 +
θ2
√

n(n+ δ2)

1− θ

+ 2θ
(

‖v 1
2 ‖2 − n

)

≤ 2(1− θ)δ(v)2 +
θ2
√

n(n+ δ2)

1− θ

+ 2θ
(

√

n(n+ δ2)− n
)

≤ 2(1− θ)δ2 +
θ(2 − θ)

1− θ

√

n(n+ δ2).

4. Analysis

Let (x, s) denote the iterate at start of an iteration with
xT s ≤ µ(n+ δ2) andδ(x, s;µ) ≤ τ . Recall that at the
start of the first iteration this certainly holds, because
δ(x, s;µ) = 0.

4.1. Effect of the feasibility step

According to Lemma 2, we need to show that
δ(xf , sf ;µ+) ≤ 1√

2
after the feasibility step, that is,

that the new iterates are within the region, where the
Newton process targeting at theµ+-center of(Pν+) is
quadratically convergent. Using (9), (11) andxs = µv2,
we obtain

xfsf = xs+ (s∆fx+ x∆fs) + ∆fx∆fs

= µv2 + µv(dfx + dfs ) + µdfxd
f
s

= µ(v + dfxd
f
s ). (14)

The next lemma gives conditions for strict feasibility of
the full Newton-step.
Lemma 8. The iterates(xf , sf) are strictly feasible if
and only ifv + dfxd

f
s > 0.

Proof. Note that if xf and sf are positive then (14)
makes clear thatv + dfxd

f
s > 0. For the proof of the

converse, introduce a step lengthα with 0 ≤ α ≤ 1 and
define

xα = x+ α∆fx, sα = s+ α∆fs.

We thus havex0 = x, x1 = xf , s0 = s ands1 = sf .
Note thatx0s0 = xs > 0. We may write

xαsα = (x+ α∆fx)(s+ α∆fs)

= xs+ α(s∆fx+ x∆fs) + α2∆fx∆fs. (15)

From (9), we deduce∆fx∆fs = µdfxd
f
s . Using this

andx∆fs + s∆fx = µv(dfx + dfs ) = µv(e − v) and
µv2 = xs, we obtain

xαsα = µ
(

(1− α)v2 + α(v + αdfxd
f
s )
)

. (16)

If v + dfxd
f
s > 0, thendfxd

f
s > −v. Substituting into

(16), we get

xαsα >

µ
(

(1− α)v2 + α(v − αv
)

= µ(1− α)(v2 + αv).

Sinceµ(1−α)(v2+αv) ≥ 0, it follows thatxαsα > 0
for 0 ≤ α ≤ 1. Hence, none of the entries ofxα and
sα vanish for0 ≤ α ≤ 1. Sincex0 = x > 0 and
s0 = s > 0, and xα and sα depend linearly onα,
this implies thatxα > 0 andsα > 0 for 0 ≤ α ≤ 1.
Hencex1 and s1 must be positive, and the proof is
complete.

In the sequel, we denote

wi := wi(v) :=
1

2

√

|dfxi
|2 + |dfsi |2,
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and
w := w(v) := ||(w1, w2, . . . , wn)||.

These imply, by Cauchy-Schwartz inequality,

(dfx)
T dfs ≤ ||dfx|| ||dfs || ≤

1

2
(||dfx||2 + ||dfs ||2) ≤ 2w2,

|dfxi
dfsi |= |dfxi

||dfsi | ≤
1

2

(

|dfxi
|2 + |dfsi |

2

)

≤ 2w2
i

≤ 2w2, i = 1, 2, . . . , n.

Theorem 9. If v+dfxd
f
s > 0 and1−2q(δ)w2 > 0, then

2δ(vf )2 ≤ 2(1− θ)δ2 +
2w2

1− θ
+

2(1− θ)w2q(δ)2

1− 2w2q(δ)

+
θ(2 − θ)

1− θ

√

n(n+ δ2).

Proof. Using (14), after division of both sides byµ+ =
(1− θ)µ we obtain

(vf )2 =
µ
(

v + dfxd
f
s

)

µ+
=
v + dfxd

f
s

1− θ
.

Hence

2δ(vf )2 =

n
∑

i=1

(

(vfi )
2 + (vfi )

−2 − 2
)

=

n
∑

i=1

(vi + dfxi
dfsi

1− θ
+

1− θ

vi + d
f
xi
d
f
si

− 2
)

≤
n
∑

i=1

(vi + 2w2
i

1− θ
+

1− θ

vi − 2w2
i

− 2
)

.

Define

fi(2w
2
i ) =

vi + 2w2
i

1− θ
+

1− θ

vi − 2w2
i

−2, i = 1, 2, . . . , n.

Using Lemma 5 and the hypothesis1 − 2q(δ)w2 > 0,
we obtain

vi − 2w2
i > 0.

This implies thatfi(2w2
i ) is convex in2w2

i . Therefore,
by Lemma 4,

2δ(vf )2 ≤
n
∑

j=1

fj(2w
2
j ) ≤

1

2w2

n
∑

j=1

2w2
j

(

fj(2w
2)

+
∑

i6=j

fi(0)
)

=
1

2w2

n
∑

j=1

2w2
j

[

(
vj + 2w2

1− θ
+

1− θ

vj − 2w2
− 2)

+
∑

i6=j

(
vi

1− θ
+

1− θ

vi
− 2)

]

.

Using Lemma 7, we obtain

∑

i6=j

(
vi

1− θ
+

1− θ

vi
− 2) =

n
∑

i=1

( vi

1− θ
+

1− θ

vi
− 2
)

−
( vj

1− θ
+

1− θ

vj
− 2
)

≤ 2(1− θ)δ2 +
θ(2 − θ)

1− θ

√

n(n+ δ2)

−
( vj

1− θ
+

1− θ

vj
− 2
)

.

Therefore,

2δ(vf )2 ≤ 1

2w2

n
∑

j=1

2w2
j

[

(vj + 2w2

1− θ
+

1− θ

vj − 2w2
− 2
)

−(
vj

1− θ
+

1− θ

vj
− 2)

]

+
1

2w2

n
∑

j=1

2w2
j

(

2(1− θ)δ2

+
θ(2 − θ)

1− θ

√

n(n+ δ2)
)

=
1

2w2

n
∑

j=1

2w2
j

[

2w2

1− θ
+

1− θ

vj − 2w2
− 1− θ

vj

]

+2(1− θ)δ2 +
θ(2 − θ)

1− θ

√

n(n+ δ2)

=
2w2

1− θ
+ (1− θ)

n
∑

j=1

2w2
j

1

vj

(

vj − 2w2

)

+2(1− θ)δ2 +
θ(2 − θ)

1− θ

√

n(n+ δ2)

≤ 2w2

1− θ
+ 2(1− θ)w2 q(δ)2

1− 2w2q(δ)

+2(1− θ)δ2 +
θ(2 − θ)

1− θ

√

n(n+ δ2).

This completes the proof.

We conclude this section by presenting a value that

we do not alloww to exceed. Needingδ(vf ) ≤ 1√
2

, it

follows from Lemma 9 that it is sufficient to have

2(1− θ)δ2 +
2w2

1− θ
+

2(1− θ)w2q(δ)2

1− 2w2q(δ)

+
θ(2− θ)

1− θ

√

n(n+ δ2) ≤ 1.

Now,
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ψ(t) =
2t

1− θ
+

2(1− θ)q(δ)2t

1− 2q(δ)t
+ 2(1− θ)δ2

+
θ(2− θ)

1− θ

√

n(n+ δ2)− 1,

and

ψ1(t) =
2t

1− θ
+2(1−θ)δ2+θ(2− θ)

1− θ

√

n(n+ δ2)−1

2
,

ψ2(t) = 2(1− θ)t
q(δ)2

1− 2tq(δ)
− 1

2
.

Note thatψ(t) = ψ1(t)+ψ2(t), and that bothψ1(t) and
ψ2(t) are monotonically increasing int. By Lemma 3,
the roott∗ ofψ(t) = 0 satisfiest∗ ≥ min{t∗1, t∗2}, where
t∗1 and t∗2 are the roots ofψ1(t) = 0 andψ2(t) = 0,
respectively.

Sinceψ1(t
∗
1) = 0,

t∗1 =
(1

2
− 2(1− θ)δ2 − θ(2− θ)

1− θ

√

n(n+ δ2)
)1− θ

2
,

and fromψ2(t
∗
2) = 0,

t∗2 =
1

4(1− θ)q(δ)2 + 2q(δ)
.

At this stage, we choose

τ =
1

8
, θ =

α

8n
, α ≤ 1.

Then forn ≥ 2 andδ ≤ τ , it can easily be verified that

t∗1 ≥ 5

32
− α

8

√

1 +
δ2

n
+

α2

132

√

n+ δ2

n3
≥ 25

256
, (17)

t∗2 ≥ 4

31
. (18)

Using (17) and the assumption that1−2q(δ)w2 > 0,
it is easily verified that if

w2 ≤ min{ 25

256
,
4

31
,
4

9
} =

25

256
, (19)

then

δ(vf ) ≤ 1√
2
.

4.2. Upper bound for ‖dfx‖2 + ‖dfs‖2

In this section, we obtain an upper bound for‖dfx‖2+
‖dfs‖2, which enables us to find a default value forθ.
We consider the following system:

MS−1Xdfx − dfs = θνvs−1r0

dfx + dfs = e− v,
(20)

whereX = diag(x) andS = diag(s). By eliminating
dfs from (20), we have

dfx =
(

I +MS−1X
)−1(

e − v + θνvs−1r0
)

. (21)

SinceI +MS−1X is positive definite, it follows

‖dfx‖ ≤ ‖e− v + θνvs−1r0‖. (22)

Hence, by using (20), Cauchy-Schwartz inequality and
positive semidefiniteness ofMS−1X we have

‖dfx‖2 + ‖dfs‖2 = ‖dfx + dfs‖2 − 2(dfx)
Tdfs

= ‖e− v‖2

− 2(dfx)
T (MS−1Xdfx − θνvs−1r0)

= ‖e− v‖2

−2 (dfx)
TMS−1Xdfx + 2θν(dfx)

T vs−1r0

≤ ‖e− v‖2 + 2‖dfx‖‖θνvs−1r0‖.
Using (22), we get

‖dfx‖2 + ‖dfs‖2

≤ ‖e− v‖2 + 2‖
(

e− v + θνvs−1r0
)

‖‖θνvs−1r0‖
≤ ‖e− v‖2 + 2

(

‖e− v‖+ ‖θνvs−1r0‖
)

‖θνvs−1r0‖

≤ 2δ2 + 2
(√

2δ +
3θ

ρpvmin

‖x‖1
) 3θ

ρpvmin

‖x‖1.

By using Lemmas 5 and 6, we obtain

‖dfx‖2 + ‖dfs‖2 ≤
2δ2 + 6nθ

(√
2δ + 3nθq(δ)

(

2 + q(δ)2
)

)

q(δ)
(

2 + q(δ)2
)

.

4.3. Value for θ

At this stage, we choose

τ =
1

8
. (23)

Sinceδ ≤ τ = 1

8
andq(δ) is monotonically increasing

in δ,

‖dfx‖2 + ‖dfs‖2 ≤ 2δ2

+6nθ
(√

2δ + 3nθq(δ)
(

2 + q(δ)2
)

)

q(δ)
(

2 + q(δ)2
)

≤ 2(
1

8
)2

+6nθ
(

√
2

8
+ 3nθq(

1

8
)
(

2 + q(
1

8
)2
)

)

q(
1

8
)
(

2 + q(
1

8
)2
)

≤ 1

32
+
(

0.18 + 10.46nθ
)

20.92nθ.

Usingθ =
α

8n
, the above inequality reads
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‖dfx‖2 + ‖dfs‖2 ≤ 1

32
+ (0.18 + 1.31α)2.62α. (24)

From (19), we know thatw2 ≤ 25

256
is needed to guar-

antee thatδ(vf ) ≤ 1√
2
. By (24), this holds if(0.18 +

1.31α)2.62α ≤ 0.36. This means if we take

α = 0.25, (25)

then it is guaranteed thatδ(vf ) ≤ 1√
2
.

4.4. Complexity analysis

We have seen that if the iterates satisfyδ(x, s;µ) ≤ τ

at the start of an iteration, withτ as defined in (23), then
after the feasibility step, withθ =

α

8n
andα as defined

in (25), the iterates satisfyδ(xf , sf ;µ+) ≤ 1√
2
.

After the feasibility step, we preform some centering
steps in order to make the iterate(x+, s+) that satisfies
δ(x+, s+;µ+) ≤ τ, whereτ is smaller than 1√

2
. This

process is repeated until the maximum of the norm of
the residual and(x+)T s+ is less thanǫ.

The next theorem gives an upper bound for the total
number of iterations, which this bound coincides with
the currently best bound of infeasible IPMs for LCP
except a factor [15,16].
Theorem 10. If (P) has optimal solution(x∗, s∗) such
that ‖x∗‖∞ ≤ ρp and‖s∗‖∞ ≤ ρd, then after at most

128n log
max{(x0)T s0, ‖r0‖}

ǫ
,

iterations the algorithm finds anǫ-optimal solution of
(P).

Proof. Let k denote the number of centering steps. By
Lemma 2, afterk centering steps, the iterate(x+, s+)
is still feasible for(Pν+) and satisfies

δ(x+, s+;µ+) ≤
( 1√

2

)2
k

.

From this inequality, one can easily deduces that
δ(x+, s+;µ+) ≤ τ will hold after at most

log2

(

log2
1

τ2

)

= log2(log2 64) = 3, (26)

centering steps. So each iteration consists of at most 4
so-called ‘inner’ iterations, in each of which we need to
compute a new search direction. In each main iteration
both the value ofxT s and the norm of residual are

reduced by the factor1− θ. Hence, the total number of
main iterations is bounded above by

1

θ
log

max{(x0)T s0, ‖r0‖}
ǫ

.

By multiplying the number of inner iterations by the
number of main iterations, the total number of iterations
is bounded above by

4

θ
log

max{(x0)T s0, ‖r0‖}
ǫ

,

whereθ = 1

32n
, by (25), and hence we obtain the upper

bound

128n log
max{(x0)T s0, ‖r0‖}

ǫ
.

5. Conclusion

In this paper we extended the full Newton-step infea-
sible interior-point algorithm to LCP. After that we used
a new kernel function to induce the feasibility step and
we analyzed the algorithm based on this kernel func-
tion. The same results of complexity are obtained.
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