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Abstract

The volume of fluid method (VOF) of Hirt and Nichols' is applied in the
simulation of transient waves at coastal structures where the fluid free surface
gets mostly distorted at impact zone and important wave interactions with
external boundaries take place’. The numerical stability of a VOF based code is
maintained during the simulation of five wave periods which are generated by a
weakly reflective boundary condition (WRIB). In this paper, the VOF method
is not fully introduced but numerical techniques for solving the Poisson
equations at arbitrary boundaries are discussed with cases of wave flows in a
35. m long and 1.5m deep pool with a slope are shown.

1 Introduction

Early ‘Dam-break’ flow simulations™* show that the VOF technique is useful
for the modelling of waves which freely interact with external boundaries and
without the occurrence of numerical instability at the crucial moment of
impact with structures’. This main advantage of the VOF method leads to the
full numerical prediction of the dynamic interaction of the wave front with
external boundaries. Our interest in such numerical exercise is in building a
numerical algorithm which remains stable for a sufficiently long period of
time, say, five wave periods, and successfully converges to predicting the type
of wave interaction (or indeed, interactions) that occur at coastal zone. Such
predictions could provide more understanding in the physics of waves with
large vertical accelerations at non-porous (or porous) media and lead to more
efficient design of sea defences and walls in hydraulic engineering.
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A two-dimensional ‘Dam-break’ flow model developed by Sabeur er al °
predicts the hydrodynamic pressure time histories and jet velocities on a
vertical wall in a sloped rectangular tank. A transient wave caused by the
release of a standing column of water hits the bottom of the wall and large
vertical accelerations of fluid along the wall are computed. The simulation of
the flow is performed until the fluid reaches hydrostatic equilibrium in the tank,
and magnitude of velocities decrease towards vanishing values. This suggests
that the VOF technique has a good potential for the simulation of waves at
coastal structures and also, the study of confined flows by arbitrary boundaries
with large eddies, recirculation arising from highly distorted interface and
turbulence.

The model solves a system of Poisson equations for the dynamic
pressures which are derived from the Navier-Stokes (NS) and mass
conservation (MC) equations depending on the geometry and type of
boundaries in the flow domain. The NS and MC equations are expressed
respectively as follows:
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u and v are the velocity variables in the horizontal and vertical directions
respectively, y the kinematic viscosity and gy, the horizontal and vertical
components of the acceleration due to gravity. p is the reduced pressure which

is related to the density of the fluid o, and the dynamic pressure P:
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The Poisson equations can be derived from the combination of equations (1),
(2) and (3) which are discretised in space and time by means of finite
difference schemes. Many possible schemes can be used depending on the
desired numerical stability and/or accuracy and the authors recommend Sharif
and Bousnaina 7 for more details.
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In addition to the above, each Poisson equation should be derived in a way that
it satisfies all possible type of external boundary encountered by the fluid
during the flow simulation .

2 The Poisson equations

The model has been extended to dealing with several type of boundaries which
are necessary for the simulation of realistic wave flows that can be validated
with experimental data. For instance, the WRIB condition which generates a
progressive wave with a given wave length A and height A has been recently
implemented by the inclusion of the Poisson equations at the inflow boundary
cells, and the assumption of a horizontal free surface.

Firstly, the general discretised Poisson equation inside the fluid is simply
derived as:
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P is the discretised reduced pressure at time level n+/ and is represented at the

centre of each computational cell. 4 and B are the discretised non linear finite

difference terms of the NS equations at time time level n, 8x and Oy the

horizontal and vertical grid spacing respectively and 5t the time step. In this

case, a rectangular uniform computational grid is assumed for simplification,

however similar equations to equation (6) can be derived for a non uniform
grid without major difficulty.

The Poisson equations at the boundaries are similar to equation (5),

nevertheless special physical processes and considerations such as friction and

porosity must be taken into account for each type of boundary. We believe that

boundary cells are classified into the following five categories for the case of
incompressible flow:

e non porous
e Porous

o Free surface
e Inflow

e Outflow

The Poisson equations at non porous boundary cells can be obtained by
considering rigid free-slip or no-slip flow conditions. For example, in figure 1
which represents the case of a flow at a non-porous free-slip corner boundary,
the velocities v and u’ in the virtual cells (i+1;) and (i,j-1) must be
respectively equal to the velocities » and v in the real cell 1,).
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Figure 1: Free-slip conditions at a non-porous boundary

Cell i+2

Figure 2: Free-slip conditions at arbitrary shaped non-porous boundary
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In addition to that, the velocities at both horizontal and vertical walls must be
set to zero in order to satisfy impermeability. Hence, the corresponding Poisson
equation at cell (i,j) becomes:
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In the case of rigid no-slip conditions, the virtual velocities are simply set to:
u'=uand v'=-y (7

Furthermore, similar principles can be applied to both real and virtual
velocities in the case of arbitrary shaped boundaries8. In figure 2 and in
particular at cell (i+1,j), the velocities u2, v’ and u3 are used to derive the
Poisson equation. Had the sloped part of the boundary covered more than half
of the right hand face of cell (i+1,j), the velocity 3 would not have been used
in the calculation of the pressures. In cell (i+2,j) for instance, only v'’ and u3
are needed to derive the Poisson equation. However, the virtual velocities must
be used whenever the boundary edge clearly crosses a cell from the left hand
side face to the right hand side. (or from the bottom side to the top side)

At cell (it+1,j), the Poisson equation is:
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At other types of boundaries such as the ones classified earlier, the
Poisson equations are derived from specific conditions for the pressures, the
velocities or both. At the interface of fluid and air for example, the pressure is
maintained to a desired fixed value; thus a simple linear interpolation (or
extrapolation) can be used to represent a free surface cell pressure equation.
Also, the continuity of shear stress must be enforced by setting the tangential
and normal velocities at all mixed air/fluid cells.

The location of the interface in time is tracked by using the so-called F
function which computes the fractional volume of fluid in each computational
cell. F varies between zero and one and represents a full cell with value one,
an empty cell with value zero and a free surface cell or an air bubble with
intermediate values. The orientation of the interface is uniquely determined and
the free surface boundary conditions can be implemented, which clearly is the
main advantage of the VOF method and the key to modelling highly distorted
waves at external boundaries. Also, wall adhesion, surface tensions and contact
angle features can be added in the model for the study of supercritical flow at
structures.
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2.1 The WRIB condition and the progressive wave

The implementation of a wave maker to generate a progressive wave of period
T and height H can be efficiently simulated by the WRIB condition settings.
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Figure 3: WRIB conditions at the wavemaker

In figure 3, cell (i,j-1) is a typical inflow cell, where u/’, vI’ are imposed
velocities by the wave maker of a progressive wave. They are chosen to have
the following behaviour in space and in time:
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where £ is the wave number, dx the grid cell spacing in the horizontal direction
and A the still water depth.

The free surface at cell (i,j) is assumed to be horizontal and water
elevations 111 and 7 are simply imposed by :

N1 = H/2 sin(ot) & np =H/2 sin(kdx-wt) (11)

The wave number is computed from the wave dispersion relation theory:

@ = [gktanh kh (12)
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Also, the wave propagation into each inflow cell must satisfy flow continuity,
then the reflected wave velocities and elevations respectively satisfy the
following criteria:
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C is the wave celerity assumed for both incoming and reflected waves.
Consequently, the Poisson equation relative to the inflow cell type can be

derived by the discretisation of equations (13) and (14) in order to compute the
non linear terms A4 and B which appear in equation (5).
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The Poisson equations for an outflow boundary can be derived in a
similar way to the inflow case, providing that the right hand side terms of both
equations (13) and (14) are switched off. If, however, the wave propagates into
a porous medium, different NS equations can be derived with adequate flow
transport and friction criteria using added flow mass coefficients and filter-
discharge velocities.

3 Numerical applications

The resulting Poisson equations for the flow are solved by the Gauss-Seidel
technique which requires 1000 iterations in order to converge to the solution
for the pressures at each time step. 150x90 uniform rectangular grid cells are
used in the computation, and the time step is of the order of 0.001 sec for
stability. 2mins CPU time per time step, in a four processor sparc workstation,
is required in the computation. This suggests that the computationally
intensive task for solving such equations could be reduced substantially if one
refers to the use of parallel machines with adapted algorithm solvers?.

The simulation of a progressive wave with period 7=2.8 sec and height
H=1.m has been achieved by the WRIB condition. The numerical model is
numerically stable for more than five wave propagations in a 35.0 m long and
1.5m deep pool with a 1:4 slope boundary. However, numerical diffusion and
instability at the inflow region occur when strongly reflected waves interact
with the incoming wave and flow continuity violated.
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Figure 4: Breaking wave at a sloped boundary, t = 12.10 sec
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Figure 5: Collapsing wave at a sloped boundary, t = 12.40 sec



S@_ Transactions on Ecology and the Environment vol 12, © 1996 WIT Press, www.witpress.com, ISSN 1743-3541
Hydraulic Engineering Software 403

In figure 4, at t=12.10 sec, the breaking of the wave front is clearly seen by the
presence of velocity jets and overlaping boundary layers with trapped air
bubbles. The wave collapses back on to the slope due to energy dissipation and
gravity 0.30 sec later, as shown in figure 5.

4 Conclusion

The mathematical foundations for modelling transient waves at arbitrary
shaped structures has been discussed and adapted to the powerful VOF
technique which simulates complex flows in confined boundaries. The stability
of the method enables the numerical measurement of physical observables that
are responsible for wave interactions with external boundaries. This research is
currently in progress and more numerical results which are to be compared
with experiment will reveal the extent of the use of the VOF method.
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