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ABSTRACT

Context. The WMAP satellite has made available high quality maps of the sky in five frequency bands ranging from 22 to 94 GHz,
with the main scientific objective of studying the anisotropies of the Cosmic Microwave Background (CMB). These maps, however,
contain a mixture of emission from various astrophysical origin, superimposed on CMB emission.
Aims. The objective of the present work is to make a high resolution CMB map in which contamination by such galactic and extra-
galactic foreground emissions, as well as by instrumental noise, is as low as possible.
Methods. The method used is an implementation of a constrained linear combination of the channels with minimum error variance,
and of Wiener filtering, on a frame of spherical wavelets called needlets, allowing localised filtering in both pixel space and harmonic
space.
Results. We obtain a low contamination low noise CMB map at the resolution of the WMAP W channel, which can be used for a
range of scientific studies. We obtain also a Wiener-filtered version with minimal integrated error.
Conclusions. The resulting CMB maps offer significantly better rejection of galactic foreground than previous CMB maps from
WMAP data. They can be considered as the most precise full-sky CMB temperature maps to date.
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1. Introduction

The WMAP satellite is one of the most successful experi-
ments dedicated to mapping the Cosmic Microwave Background
(CMB). The all-sky maps obtained in the WMAP five frequency
bands, in temperature and polarisation, offer the best data set to
date for making a sensitive all-sky map of the CMB anisotropies.

The CMB, however, is not the only source of emission at
WMAP frequencies. Diffuse galactic emission from several pro-
cesses contaminates the maps with an amplitude roughly pro-
portional to the cosecant of the galactic latitude, compromis-
ing the observation of the CMB close to the galactic plane. In
addition, a background of radio and infrared compact sources,
galactic or extra-galactic, contributes to the total emission even
at high galactic latitudes. Component separation consists of sep-
arating one or more of these sources of emission from the others
in the data.

One of the main objectives of CMB experiments is the mea-
surement of the CMB angular power spectrum Cℓ which, with
the assumption of statistical isotropy, describes the second order
distribution of the CMB and can be estimated on a fraction of
the sky. For this reason, many ground-based and balloon-borne
experiments have concentrated their observations in “clean” re-
gions of the sky, where galactic emission is low enough to neg-
ligibly impact the observations. For power spectrum estimation
from full-sky observations, a safe approach consists of masking

regions at low galactic latitude, and estimating power spectra
on the cleanest regions of the sky. The impact of extragalactic
point sources (evenly spread on the sky) on power spectrum es-
timates can be evaluated and corrected for using ancillary data
(catalogues of known point sources and priors on the statistical
distribution of sources).

Besides the power spectrum, the CMB map itself is interest-
ing for several additional purposes:

– as a CMB template, to be subtracted from millimetre-wave
observations when the scientific focus is on other emissions,
or to be used for the calibration of other instruments;

– to assess the statistical isotropy of the CMB and check the
homogeneity and isotropy of the Universe on the largest
scales;

– to search for signatures of non-trivial topology, such as that
of a multi-connected universe (Aurich et al. 2006; Caillerie
et al. 2007; Niarchou & Jaffe 2007);

– to search for correlations of the CMB map with other emis-
sions (Nolta et al. 2004; Fosalba & Gaztañaga 2004; Cabré
et al. 2006; Cao et al. 2006; Pietrobon et al. 2006; McEwen
et al. 2007; Rassat et al. 2007);

– to search for signatures of a non Gaussian distribution in
the CMB (Mukherjee & Wang 2004; Vielva et al. 2004;
Cayón et al. 2005; Cabella et al. 2006; McEwen et al. 2006b;
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Tojeiro et al. 2006; McEwen et al. 2006a; Wiaux et al. 2007;
Yadav & Wandelt 2007).

Several CMB maps obtained with the WMAP data are avail-
able for such research projects. The WMAP team has released
part-sky foreground-reduced maps in the Q, V and W bands,
and maps obtained by an Internal Linear Combination (ILC) of
all WMAP channels (Hinshaw et al. 2007; Gold et al. 2008).
Tegmark et al. (2003) have produced CMB maps with WMAP
one year data, and subsequently with three year data, based on
a harmonic space ILC method. Eriksen et al. (2004) presented
an alternate version of the ILC CMB map at 1 degree resolu-
tion on one year data. Eriksen et al. (2007) used a Gibbs sampler
to draw 100 realisations of the CMB under the posterior likeli-
hood of a model of CMB and foregrounds; their estimated CMB
map is the average of these realisations for three year data. On
three year data again, Park et al. (2007) use an ILC technique
on 400 different pixel ensembles, selected by the spectral index
of the foreground emission as estimated by the WMAP team us-
ing a Maximum Entropy Method (MEM). More authors have
addressed component separation on WMAP three year data and
produced versions of a “clean” CMB map (Maino et al. 2007;
Saha et al. 2007; Bonaldi et al. 2007). More recently, Kim et al.
(2008) produced a CMB map from WMAP five year data.

All available maps suffer from limitations, some of which
result from specific choices in the way the CMB map is pro-
duced. Several of these maps, for instance, do not fully exploit
the resolution of the original observations. Some focus on clean-
ing the CMB of foreground at high galactic latitude, and are
significantly contaminated by foreground in the galactic plane.
Some are not full sky CMB maps. Finally, not all of the available
maps have well characterised noise and effective beam. All these
limitations impact on their usefulness for accurate CMB science.

In this paper, we address the problem of making a CMB tem-
perature map which has the following properties:

– full sky coverage;
– being as close as possible to the true CMB (minimum vari-

ance of the error) everywhere on the sky, and on all scales;
– having the best resolution possible;
– having a well-characterised beam and noise.

In the following, we review these requirements and their impact
on a CMB cleaning strategy (Sect. 2). We then review and com-
pare available maps in Sect. 3. In Sect. 4, we describe and ex-
plain our ILC needlet method. The approach is tested and val-
idated on realistic simulated data sets (Sect. 5) before applying
it to WMAP data (Sect. 6). We then compare our CMB maps to
the other existing maps, discuss the results, and conclude.

This paper considers only temperature maps.

2. General considerations

2.1. Requirements

We start with a review of the requirements above, and on the
implication on the method to be used.

2.1.1. Full sky?

WMAP data are full sky. We wish to devise a method which
allows recovery of an estimate of CMB emission everywhere,
including in the galactic plane, and even (as much as possible)
in the galactic centre as well as in pixels strongly contaminated
by compact sources.

The large scale correlation properties of the CMB make
it possible to estimate the CMB emission even in unobserved
regions, by some kind of interpolation. This is what is also
obtained with the Gibbs sampling technique of Eriksen et al.
(2007). Equivalent in spirit although quite different in imple-
mentation is the use of an “inpainting” method such as that of
Elad et al. (2005) and Abrial et al. (2008). Such interpolation
methods alone are not fully satisfactory, as they discard informa-
tion. In particular they do not allow the recovery of small scale
CMB features in the mask. This is obvious, for instance, in the
Gibbs-sampling average map of Eriksen et al. (2007).

At the opposite extreme, one may try to separate components
in the galactic plane independently of what is done at higher
galactic latitudes, since levels and properties of foreground emis-
sion depend strongly on sky direction. Hinshaw et al. (2007) and
Tegmark et al. (2003) divide the sky into several independent
regions, perform component separation independently in these
regions, and then make a composite map by stitching together
these independent solutions. Such approaches discard informa-
tion (zone-to-zone correlations) and require careful treatment at
the zone borders to avoid discontinuities and ringing.

A good method should perform well on both counts: lo-
calised processing and full exploitation of large scale correla-
tions of the CMB and of galactic foreground emissions. This
can be achieved with a spherical wavelet or needlet analysis of
the maps (using the tools developed in Marinucci et al. 2008 and
Guilloux et al. 2008), which is our approach in the present work.

2.1.2. Minimum variance?

Recovery of a CMB map can be conducted following various ob-
jectives, quantified by different “figures of merit”. In this work,
we choose, as do most authors, to minimise the variance of the
difference between true and recovered CMB (this is the overall
error; it includes additive noise, foreground emissions, and even
multiplicative errors affecting the CMB itself).

This choice alone does not fully characterise the method to
be used. The best theoretical solution also depends on the model
of the data. An overview of existing methods can be found in the
review by Delabrouille & Cardoso (2007).

In this paper, contrarily to other approaches which rely
heavily on the structure of the data as described by a model,
for instance a noisy linear mixture of independent components
(Delabrouille et al. 2003), we assume as little as possible about
the foreground emissions and the noise. In fact, we assume noth-
ing except the following:

– the WMAP data are well calibrated, and have a known beam
in each channel;

– the instrumental noise in all WMAP maps is close to be-
ing Gaussian and uncorrelated; its pixel-dependent level is
approximately known;

– the CMB anisotropy emission law is known to be the deriva-
tive with respect to temperature of a T = 2.725 K black-
body;

– to first order, the template of CMB anisotropies is well rep-
resented by a Gaussian stationary random field, the spectrum
of which is given by the WMAP best fit (as will be seen later,
this last assumption is needed only to derive the Wiener fil-
ter; it is not necessary for our needlet ILC map).

These assumptions lead us to consider an “Internal Linear
Combination” (ILC) method, followed by a Wiener filter to min-
imise the error integrated over all scales.
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2.1.3. Best resolution?

The WMAP data comes in five frequency channels with vary-
ing resolution. To make the best of the data, we need a method
which uses the smallest scale information from the W band, and
information from additional bands (V, then Q, then Ka, and fi-
nally K) at increasingly larger scales. Multi-scale tools are well
suited for this purpose.

The “best possible resolution” is not a well defined con-
cept (and not necessarily the resolution of the W band). Indeed,
there is a conflict between best possible resolution and minimum
variance, as one can smooth or deconvolve a map arbitrarily in
harmonic space, reducing or increasing the total noise variance
in the process. Here, we make a map at the resolution of the
W channel over the full sky, leaving open the option to filter this
map if needed to reduce the noise – or deconvolve it for better
angular resolution. Note that additional global filtering or decon-
volution does not change the signal to noise per mode (only the
integrated S/N).

The minimum variance map is obtained with a Wiener filter,
which smoothes the map depending on the signal to noise ratio.
As the noise and the contaminants are inhomogeneous, there is
a strong motivation for the smoothing to depend on the location
on the sky (the optimal solution to the resolution-variance trade-
off depending on the contamination level, which is local). If we
relax the constraint about beam homogeneity, again, spherical
needlets offer a natural way to obtain such location-dependent
smoothing. In the present, however, in order to preserve the con-
stancy of the effective beam over the sky, we implement the
Wiener filter in harmonic space.

2.1.4. Accurate characterisation?

A fully accurate characterisation of the beam and noise is not
straightforward, in particular because of the limited knowledge
about the original frequency maps, which automatically prop-
agates into the final CMB map. This work makes several ap-
proximations about beams and noise. Beams are assumed to
be symmetric and therefore described by the bℓ transfer func-
tions provided by the WMAP team. The instrumental noise is
assumed uncorrelated, although non stationary. Analyses and
Monte-Carlo simulations are used to characterise the residual
noise of the final map, as well as to estimate the contribution of
residual foregrounds, and biases if any. This is detailed further
below.

2.1.5. Noise

Throughout this paper, the term “noise” refers to all sources of
additive error, i.e. instrumental noise and foreground emissions.

2.2. Evaluation and comparison of reconstructed CMB
temperature

We briefly discuss here the tools used for characterising and
comparing CMB temperature maps.

2.2.1. Map description

A pixelised map is fully characterised by the specification of:

– a set of temperature values yp in a number of pixels (here
indexed by p);

– the effective beam at each pixel p, which in the most general
case is a function bp,p′ ;

– the noise np, the statistical properties of which, in the
Gaussian case, are fully described by a noise covariance ma-
trix Np,p′ .

The map value yp is then linked to the true signal value sp by:

yp =
∑

p′

bp,p′ sp′ + np. (1)

The full characterisation of a given CMB map requires the spec-
ification of the additive noise np and of the response bp,p′ . When
the beam is stationary over the sky and symmetric, which we as-
sume in this work, it is fully specified by the coefficients bℓ of
the expansion of the beam in Legendre polynomials.

2.2.2. Assumptions

Throughout this paper, the beam is assumed symmetric.
Although this is an approximation, most pixels of the
WMAP map are “visited” by any particular detector through a
wide range of intersecting scans. The average beam in that pixel
then is an average of the physical beam over many orientations,
which makes the symmetry assumption reasonable.

In addition, in the absence of any specific localised process-
ing, the beam is assumed to be invariant over the sky.

With the above two assumptions, the effect of beam convo-
lution is best represented in harmonic space, with a multiplica-
tive coefficient bℓ, independent of m, applied to the harmonic
coefficients aℓm of the map. We assume perfect beam knowledge
as well as perfect calibration, so that no multiplicative uncer-
tainty is attached to the map description (the beam integral, ap-
proximated as

∑
p′ bp,p′ , is equal to unity independently of p, or,

equivalently, the value of bℓ for ℓ = 0 is assumed to be exactly
unity).

The noise np of the original WMAP maps, for each fre-
quency channel and each differencing assembly, is assumed un-
correlated from pixel to pixel, i.e. Np,p′ = 〈npnp′〉 = δpp′σ

2
p. The

variance σ2
p is pixel dependent because of uneven sky coverage.

Noise is non-stationary, but assumed to be Gaussian distributed.

2.2.3. Comparison of maps at different resolution

The comparison of CMB maps is meaningful only if the maps
are at the same resolution. As long as the beam transfer func-
tion does not vanish at any useful ℓ (which is always the case for
Gaussian beams), the resolution of any map can be changed to
anything else by harmonic transform and multiplication by the
ratio of the beam transfer functions. In the present work, we ap-
proximate WMAP beams by their symmetric fit (i.e. azimuthally
averaged beams), which is justified by the large range of scan-
ning directions at any point in the sky.

This convolution – deconvolution property is widely used
throughout this paper.

2.2.4. Masking

We define “tapered” regions of the sky for map comparison at
varying galactic latitude. In particular, we define a Low Galactic
Latitude (LGL) region and a complementary High Galactic
Latitude (HGL) region. The LGL region, used to evaluate re-
sults in the galactic plane, completely excludes all data above
30 degrees galactic latitude (and below −30 degrees), and has a
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15 degree transition zone with a cosine square shape. All pix-
els at absolute galactic latitudes below 15 degrees are kept with
a coefficient of 1. The HGL region is the complementary, i.e.
HGL= 1−LGL. These “tapered” regions allow the computation
of local power spectra with negligible spectral leakage of large
scale power into small scales.

2.2.5. Power spectra comparison

For a given beam (i.e. multiplicative response as a function of ℓ),
the comparison of the total map power as a function of ℓ (i.e. of
the power spectra of the maps) is a direct figure of merit. The
lower the power spectrum, the better the map.

Indeed, for fixed bℓ, two distinct maps contain the exact same
contribution from CMB, but different noise levels. CMB and
noise being assumed to be uncorrelated, power spectra are the
sum of a CMB term (b2

ℓ
Cℓ) and a noise term (Nℓ). The CMB term

being the same for both spectra, any difference in total power
spectrum can be interpreted as a difference in noise level.

Power spectra are computed independently for different re-
gions of the sky (e.g. inside or outside the galactic plane). To
minimise aliasing due to sharp cuts, we use masks with smooth
transitions, defining the LGL and HGL regions described above.

The power spectrum of a map is evaluated as:

Ĉℓ =
1

(2ℓ + 1)α

ℓ∑

m=−ℓ

|aℓm|
2; (2)

α is a normalising factor computed as the average value of the
squared masking coefficients1.

Power spectra estimated directly in this way from a masked
sky are unreliable for modes corresponding to angular sizes
larger than the typical size of the zone of the sky retained for
computation.

2.3. Methods

We now give a brief introduction to the two main methods used
in this paper (ILC and Wiener filtering). Many other methods
exist for CMB cleaning (or component separation in general),
which assume varying degrees of prior knowledge about sky
emission, and model the data in different ways. These meth-
ods are not discussed nor used in this paper. For a review, see
Delabrouille & Cardoso (2007).

2.3.1. The ILC

The data are modelled as

x = as + n (3)

where x is the vector of observations (e.g. five maps), a is the re-
sponse to the CMB for all observations (e.g. a vector with 5 en-
tries equal to 1 if WMAP data only are considered) and n is the
noise. Here it is assumed that all observations are at the same
resolution.

The ILC provides an estimator ŝILC of s as follows:

ŝILC =
a

t R̂−1

at R̂−1 a

x (4)

1 The masking coefficient is simply 1 in regions kept for power spec-
trum computations, 0 in regions masked, and between 0 and 1 in the
transitions.

where R̂ is the empirical covariance matrix of the observations
(e.g., a 5×5 matrix when 5 channels are considered). The biggest
concern with the ILC (and the source of all problems of bias) is
that this empirical covariance matrix has to be estimated on the
data themselves. This will be discussed further in Sect. 4.

Note that the ILC solution of Eq. (4) is the linear filter which
minimises the total variance of the output map, under the condi-
tion that the filter has unit response to the signal of interest (the
signal with the emission law given by vector a).

The details of the method for its implementation in the con-
text of this work are further discussed in Sect. 4.

2.3.2. Wiener filtering

Given a single CMB map of known beam (assumed to be con-
stant over the sky), it is possible to minimise the contamination
by noise and foreground by (one-dimensional) Wiener filtering.
The data is modelled as x = s + n, where now x is a single map,
s the true CMB and n the noise. The Wiener filter gives to in-
dividual “modes” a weight proportional to the fraction of signal
power in that mode, i.e.

ŝℓm =
b2
ℓ
Cℓ

b2
ℓ
Cℓ + Nℓ

xℓm (5)

where b2
ℓ
Cℓ and Nℓ are the power spectra of the (smoothed) CMB

and of the noise (including smoothed foreground or foreground
residuals) respectively, and xℓm is the original noisy CMB map.
It should be noted that if the CMB and the noise are uncorre-
lated, then b2

ℓ
Cℓ+Nℓ = Xℓ is the power spectrum of the map xℓm,

and the Wiener filter can be estimated directly using only a prior
on the CMB power spectrum (assuming Cℓ is known), and esti-
mating Xℓ on the map itself.

Wiener filtering in harmonic space minimises the variance of
the error in the map if signal and noise are Gaussian and station-
ary. For non-stationary contaminants, the Wiener filter (5) is still
meaningful, but is no longer optimal. Here, the Wiener filtering
is applied after the ILC. Foreground contamination, strongly re-
duced by the ILC, is no longer dominant. Instead, instrumental
noise is the major source of error on all scales where the Wiener
filter is useful (departs from 1). A harmonic space implementa-
tion of the Wiener filter disregards this non-stationarity, applying
the same coefficient to a given scale, whether it is in a region of
deeper integration or not.

Better efficiency may be obtained by an implementation in
another domain than the harmonic space (e.g. needlets), but this
is not investigated further in this paper, as the consequence is a
non stationary equivalent beam.

3. Evaluation and comparison of available maps

Before describing how to make yet another CMB map from
WMAP data, we review the existing maps and evaluate in what
respects they can be improved.

We start with a discussion of the existing methods, iden-
tifying for each of them the strengths and weaknesses of
the approach, and their foreseeable consequences. Available
CMB maps obtained from WMAP data are compared in terms of
resolution, of the estimated contamination by foreground emis-
sion, and of noise level. In the absence of an absolute reference,
discrepancies between available maps are also evaluated. This
comparison permits an estimate of typical uncertainties, and to
outline the “difficult regions” for CMB cleaning (which, unsur-
prisingly, are mostly located close to the galactic plane). We also
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look specifically for residuals of galactic contamination by com-
paring the power spectrum of the reconstructed CMB map at
high and at low galactic latitudes. Significant discrepancies be-
tween the two are interpreted as indicative of a residue of fore-
ground emission.

3.1. Available maps

3.1.1. The WMAP ILC

The ILC maps obtained by the WMAP team (denoted as WILC1,
WILC3 and WILC5 hereafter, depending on whether they are
obtained using one year, three year or five year data) are de-
scribed in Bennett et al. (2003), Hinshaw et al. (2007), and Gold
et al. (2008) respectively.

For the three year and five year maps, the original frequency
maps are smoothed to a common resolution of one degree. The
sky is subdivided into 12 regions. One large region covers most
of the sky at moderate to high galactic latitudes. The rest of
the sky, concentrated around the galactic plane, is divided into
11 regions of varying galactic emission properties (amplitude
and colour). An internal linear combination (ILC) is performed
independently in each of these regions. A full sky composite
map is obtained by co-adding the maps of the individual regions
(with a ≃1 degree transition between the zones to avoid sharp
edge effects). Finally, a bias (inevitable consequence of empir-
ical CMB-foreground correlation) is estimated by Monte-Carlo
simulations, and subtracted from the composite map, to yield the
final CMB map.

The three year and five year ILC maps differ from the one
year map in several respects. The most significant is the recog-
nition of the existence of a bias, and the attempt at correcting
it using simulations. The limitations of the maps include their
resolution (one degree), and the use of small regions in the ILC,
which is bound to cause more bias than necessary on large scales
(comparable to patch sizes)2, as well as edge effects. This results
in discontinuities between regions, obvious for instance in the
estimated bias map shown in Hinshaw et al. (2007).

In the method used by the WMAP team, the coefficients
of the linear combination used over most of the sky (region 0,
which corresponds to the largest part of the sky at high galactic
latitudes and a few low galactic latitude patches, and region 1,
in the galactic plane but away from the galactic center) are set
using only a small subset of the data inside the Kp2 cut (where
the galactic emission is the strongest). This choice favours the
rejection of galactic contamination, at the price of sub-optimal
weighting of the observations in regions where the error is dom-
inated by noise. It also assumes that the emission laws and rel-
ative power of the different foregrounds are the same in these
regions, which is a strong (and probably wrong) assumption.

Furthermore, the ILC weights are set by minimising the vari-
ance of the map at one degree resolution. Modes at higher ℓ get
very sub-optimal weighting, as they do not contribute signifi-
cantly to the total variance of the one degree map. The K and
Ka bands, in particular, contribute respectively about 0.156 and
−0.086 to region 0 (the largest one) for WILC3. As a conse-
quence, the final ILC map cannot be meaningfully deconvolved
to better resolution than about 1 degree (because this would am-
plify dramatically small scale noise coming from the lowest fre-
quency channels).

2 Small patches contain few modes, hence empirical correlations are
stronger, as discussed in Appendix A.

Finally, there is also an unsatisfactory degree of arbitrariness
in the choice of the regions, which depend on priors about fore-
ground emission, and are somewhat elongated across the galactic
plane for no particular reason. Although none of these choices is
unreasonable, the impact of this arbitrariness on the final map is
difficult to evaluate.

For all these reasons, the WILC maps leave considerable
margin for improvement. We aim, in particular, at obtaining a
CMB map with better angular resolution, and with a better han-
dling of non-stationarity and scale dependence of the contami-
nation (foregrounds and noise).

3.1.2. The WMAP foreground-reduced maps

For temperature power spectrum analysis, the WMAP team
has used part-sky foreground-reduced maps. The processing for
foreground removal for the three year and five year releases is
described in Hinshaw et al. (2007). Model templates for galactic
emission are fitted to the Q, V and W WMAP channels outside
of the Kp2 mask. A linear combination of synchrotron, free-free
and dust, based on this fit, is then subtracted from the full sky Q,
V, W maps.

In this procedure, a first galactic template, supposed to cor-
respond to a linear combination of synchrotron and free-free
emission, is obtained from the difference between the K and
Ka bands. This template is produced at one degree resolution.
An additional free-free template is obtained from Hα emis-
sion (Finkbeiner 2003) corrected for dust extinction (Bennett
et al. 2003). A dust template is obtained from model 8 of
Finkbeiner et al. (1999). “Clean” Q, V and W maps are obtained
by decorrelation of these templates from the original Q, V and
W observations.

The main limitation of this approach is that the model used is
insufficient to guarantee a good fit of the total foreground emis-
sion simultaneously inside and outside of the Kp2 mask. As a
consequence, the maps produced are heavily contaminated by
foreground emissions in the galactic plane, the priority being
given to higher galactic latitudes, with the objective of obtain-
ing a part-sky high quality map on which high multipole CMB
power spectra could be estimated reliably.

In addition, the maps are likely to depend significantly on
the prior model assumed. Here, the WMAP team chooses dust
model number 8 of Finkbeiner et al. (1999), and also ignores
the plausible existence of anomalous dust emission. The ex-
act impact of these a priori decisions is difficult to evaluate.
Anomalous dust emission will come into the foreground reduced
maps chiefly as a contaminant in the K-Ka synchrotron template,
and hence lead to an erroneous extrapolation of this template to
higher frequencies. Assumptions about the emission laws of the
template correlated to H-alpha, and of the dust template, if in-
accurate, will also result in inaccurate subtraction of free-free
and dust. These errors in the estimate of foregrounds are bound
to leave, after template subtraction, foreground residuals in the
foreground reduced maps.

As an additional drawback, we note that the method gener-
ates correlated noise in the foreground-reduced maps, originat-
ing either from K and Ka channel noise or from a background
of radio sources (see, e.g., Huffenberger et al. 2007; and Wright
et al. 2008, for discussions on radio sources in WMAP data and
their impact on the analysis of CMB observations with WMAP).
Finally, on supra degree scales, the K and Ka bands, which are
the most sensitive ones, are used only to subtract foreground
emissions, whereas in the cleanest regions of the sky they would
be more usefully used to estimate the CMB emission.
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For all these reasons, WMAP foreground-reduced maps are
not good CMB maps according to the criteria listed in the intro-
duction.

3.1.3. The ILC by Eriksen et al.

Eriksen et al. (2004) have obtained a CMB map at 1 degree res-
olution with another implementation of the ILC. The map, de-
noted here EILC1, uses only one year data.

An interesting remark from Eriksen et al. is that the amount
of residual dust is high in the ILC maps – the method being able
to subtract only about half of the dust present in the W band.
At scales larger than 1 degree, this lack of performance is likely
to be due to the part of dust emission uncorrelated to low fre-
quency galactic foreground. On the smallest scales, the situation
is worse, as the low frequency WMAP channels do not have the
resolution to help remove small scale dust emission from W band
observations.

For this reason, in the present work, we improve on dust re-
moval by using, as an additional measurement, the IRIS 100 mi-
cron dust template obtained from a combination of DIRBE and
IRAS maps (Miville-Deschênes & Lagache 2005). As compared
to the map of Eriksen et al., we also aim at better angular reso-
lution – and, obviously, better sensitivity, achieved by using five
year data sets.

3.1.4. The Gibbs-sampling map by Eriksen et al.

Recently, Eriksen et al. (2007) have produced a low resolution
(3 degree) CMB map from WMAP three year data, using a
Gibbs sampling technique to explore the likelihood of a para-
metric model of CMB and foreground emissions. A CMB map
is obtained as the average of 100 sample CMB maps each drawn
at random according to the posterior distribution of the model
parameters given the observations.

The free parameters in the model are spherical harmonic co-
efficients aℓm of the CMB map, the CMB harmonic power spec-
trum Cℓ, monopole and dipole amplitudes in each WMAP band,
the amplitude a(ν) of a dust template in each band, and ampli-
tudes f (p) and spectral indices β(p) of a low-frequency fore-
ground component, for each map pixel p.

The model is constrained by fixing the dust template at
94 GHz according to Finkbeiner et al. (1999), by a prior on the
low-frequency foreground spectral index, assumed to be close to
that of synchrotron radiation (−3 ± 0.3), and by the constraint
that the monopole and dipole coefficients are orthogonal to the
(noise-weighted) pixel-averaged foreground spectrum.

In spite of a good fit of the assumed model to the data at
high galactic latitudes, there are some strong limitations to the
resulting CMB map, and hence to its usage:

– the result of the sampling is obtained assuming a parametric
model of foreground emission. There is no possible way of
validating the systematic errors due to mismodelling, except
marginalising over all possible model skies. This would re-
quire a Monte-Carlo simulation which takes into account all
uncertainties in the modelling, not only values of the param-
eters for a given parametric model, but also the choice of the
parameter set to be used to model the foreground emissions
(varying the dust template according to uncertainties, assum-
ing a different foreground model, etc.). This is not presently
available;

– the resulting map is at 3 degree resolution and HEALPix
nside= 64, considerably worse than WMAP can do;

– the data sets are cut with the Kp2 mask. Although a CMB
is recovered in the mask by the average of the sample maps,
the effective resolution inside the mask is lower than in the
rest of the sky. In some sense, the Gibbs sampling technique
(as implemented here) allows us to recover in the mask what
is predictable from the outside map (assuming stationarity
of the CMB anisotropy field). It allows only for a limited
prediction of the CMB signal in the masked zone.

For all of these reasons, the Gibbs-sampling map of Eriksen et al.
(hereafter EGS3) is not a good “best CMB” map according to
our criteria.

3.1.5. The ILC by Park et al.

Park et al. (2007) provide their own version (hereafter the PILC3
map) of a one degree resolution CMB map obtained by an ILC
on WMAP three year data. The originality of their approach lies
in the fact that they cut the sky into 400 pixel ensembles, selected
from a prior on their spectral properties. The 400 ensembles are
defined from 20 × 20 spectral index bins (20 for K-V spectral
index, and 20 for V-W). This approach is motivated by the fact
that ILC weights are expected to vary with varying foreground
properties.

There is a weak point to this approach. The authors use,
to define their pixel “bins”, the MEM solution derived by the
WMAP team. If the MEM solution is wrong for a given pixel,
that pixel will automatically be classified in the wrong pixel en-
semble, and be weighted using the weights of the wrong popula-
tion of pixels. To some extent then, this binning forces the result
of the ILC to match the prior assumptions given by the MEM re-
sults. In turn, the MEM solution uses as a prior the result of the
WMAP ILC, which is subtracted from the WMAP observations
prior to using the MEM method to separate galactic foreground
emissions.

As a consequence, the connection of the CMB map of Park
et al. to the original WMAP data is far from direct. The map is
bound to bear the signature of any arbitrary choice made before,
in particular the choice of WMAP ILC regions, the 3-component
model for galactic emission, and the MEM priors. For instance,
discontinuities at the boundaries between the 12 regions of the
WMAP ILC are clearly visible in the map of K-V spectral index
used by the authors, as well as their group index (see Figs. 3a
and 4a of their paper).

Park et al. then investigate the error in their reconstructed
map by Monte-Carlo simulations. However, they use as an
input galactic emission template the very model obtained by
the MEM. This means that in the simulations, the spectral index
maps are “exact”. Therefore, the simulations accurately inves-
tigate the errors only if the MEM solution is correct, which is
not likely to be the case – at least not to the level of precision
required to produce a CMB map useful for precision cosmology.

Our method described in Sect. 4 uses as little prior infor-
mation as possible, and aims at better angular resolution than
1 degree.

3.1.6. The “clean” map of Tegmark et al.

The approach of Tegmark et al. (2003), on both one year and
three year data, is the only work to date which aims at produc-
ing a CMB map with both full sky coverage and best possible
resolution.

Tegmark et al. (2003) have performed a foreground analysis
of the WMAP one year maps, producing two high resolution
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Table 1. Available CMB maps.

Name resolution data used Reference URL

WILC1 1◦ 1-yr Bennett et al. (2003) http://lambda.gsfc.nasa.gov/product/map/dr1/imaps_ILC.cfm

TILC1 W channel 1-yr Tegmark et al. (2003) http://space.mit.edu/home/tegmark/wmap/cleaned_map.fits

EILC1 1◦ 1-yr Eriksen et al. (2004) http://www.astro.uio.no/~hke/cmbdata/WMAP_ILC_lagrange.fits

WILC3 1◦ 3-yr Hinshaw et al. (2007) http://lambda.gsfc.nasa.gov/product/map/dr2/ilc_map_get.cfm

EGS3 3◦ 3-yr Eriksen et al. (2007) http://www.astro.uio.no/~hke/gibbs_data/cmb_mean_stddev_WMAP3_n64_3deg.fits

PILC3 1◦ 3-yr Park et al. (2007) http://newton.kias.re.kr/~parkc/CMB/SILC400/SILC400_bc.fits

TILC3 W channel 3-yr http://space.mit.edu/home/tegmark/wmap/cleaned3yr_map.fits

WILC5 1◦ 5-yr Gold et al. (2008) http://lambda.gsfc.nasa.gov/product/map/dr3/ilc_map_get.cfm

KILC5 1◦ 5-yr Kim et al. (2008) http://www.nbi.dk/~jkim/hilc/

maps of the CMB. The first one, the “clean” map (hereafter
TILC1), is obtained by a variant of the ILC in which weights are
allowed to vary as a function of ℓ, and are computed indepen-
dently in nine independent regions. The second, the “Wiener”
map, is a Wiener-filtered version of the same map, in which the
Wiener filter is applied in harmonic space, but independently in
each zone.

This work by Tegmark et al. is an early attempt at find-
ing linear combinations of the WMAP data which vary both in
harmonic space and in pixel space. The pixel variation of the
weights is made using zones which are defined according to
the level of contamination by foreground emission, as computed
from WMAP map differences W-V, V-Q, Q-K and K-Ka. The au-
thors do not specify exactly how the frequency range is divided
into ℓ-bands. While the text seems to indicate that weights are
computed independently for each ℓ, figures hint that the weights
are actually band-averaged, in 50 logarithmic bands subdividing
the multipole range. It makes a difference for the ILC bias. For
an ILC implemented ℓ by ℓ, the number of modes at a given ℓ
is 2ℓ + 1, and thus remains small for most of the useful range of
scales, yielding significant bias (of the order of 10% at ℓ = 25,
and 1% at ℓ = 250, for a full sky ILC; for a part sky ILC, the
bias is multiplied by a factor of the order of the inverse of the sky
fraction). For band averages, the effect would be less dramatic,
because of the higher number of modes per individual ILC.

In the end, the authors obtain a CMB “clean” map with a
“beam corresponding to the highest-resolution map band”, i.e.
the beam of the W band.

The original paper describes the work done on the one year
WMAP data. However maps for three year data are available on
Max Tegmark’s web site (see Table 1). We use the three year
map (TILC3) for comparison with our own solution.

Although the approach of Tegmark and collaborators is quite
good at high galactic latitudes, we can see in Fig. 1 that it per-
forms poorly in the galactic plane. Also, the authors have not re-
moved detected point sources from the WMAP data before mak-
ing the ILC. As a result, their CMB map contains obvious point
source residuals, for instance around galactic longitude 305◦ and
latitude 57◦, where a 5 mK peak can be seen.

Our method, although bearing some similarity to that of
Tegmark and collaborators, aims at significantly improving the
error characterisation, as well as the quality of foreground clean-
ing in the galactic plane.

3.1.7. The “Wiener” map of Tegmark et al.

In addition to their TILC map, Tegmark et al. (2003) publish
a Wiener map (hereafter TW map), obtained from the TILC
map by independent Wiener filtering in the 9 regions. This re-
sults in reduced integrated error in all regions, at the price of

pixel-dependent extra smoothing. The consequence of this filter-
ing is an effective zone-dependent beam.

Because of this extra smoothing, it is difficult to compare the
TW map with other maps. The most meaningful figure of merit
for the Wiener map, though, is the actual power of the error (out-
put map minus true CMB). This is unavailable for any useful up-
to-date real data set. Additional discussion about Wiener-filtered
maps is deferred to Sect. 6.

3.1.8. The ILC map of Kim et al.

More recently, Kim et al. (2008) have made a CMB map from
WMAP five year data, using a “harmonic” ILC method (KILC5
hereafter). Their method performs an ILC in the pixel domain
but with pixel-dependent weights. The ILC weights are not con-
stant over predefined zones on the sky but are computed as
smooth weight maps defined in terms of a harmonic decom-
position (hence the qualification of the method). More specifi-
cally, the weight maps are determined by minimising the total
output CMB map variance with the constraint that these maps
have no multipoles higher than ℓcutoff . For stability reasons, the
KILC5 map is obtained with ℓcutoff = 7. Prior to computing ILC
weights, all maps are deconvolved from their beam (effectively
blowing up noise on small scales, in particular for the lowest fre-
quency channels). Then, the channels are combined using map
modes for ℓ < 300.

With the above choices, the reconstructed map cannot be
good on small scales. As the authors notice themselves, using
small scale modes results in minimisation of noise rather than
foreground (and, obviously, rejecting the low-frequency obser-
vations, which are the noisiest on small scales after deconvolu-
tion from the beam). Better results could probably be obtained
by estimating weight maps for different bands of ℓ. In essence,
this is what our needlet ILC method permits us to achieve.

Limiting the number of modes of the weight maps to ℓ ≤ 7,
apparently for reasons of singularity of the system to be solved,
results in spatial coherence of the weights on scales of about
35 degrees. The galactic ridge, however, is about 1 degree thick.
Hence, the spatial variability of the ILC weights achieved by
Kim et al. (2008) is not quite adapted to the actual scale of fore-
ground variation. The needlet ILC method presented in our pa-
per, as will be seen later on, solves this issue in a very natural
way.

3.1.9. Other maps

Other authors have performed various foreground cleaning pro-
cesses in the WMAP observations, producing a number of
CMB maps for several different models of the foreground
emission. Bonaldi et al. (2007) perform component separa-
tion on WMAP data using the CCA method described in

http://lambda.gsfc.nasa.gov/product/map/dr1/imaps_ILC.cfm
http://space.mit.edu/home/tegmark/wmap/cleaned_map.fits
http://www.astro.uio.no/~hke/cmbdata/WMAP_ILC_lagrange.fits
http://lambda.gsfc.nasa.gov/product/map/dr2/ilc_map_get.cfm
http://www.astro.uio.no/~hke/gibbs_data/cmb_mean_stddev_WMAP3_n64_3deg.fits
http://newton.kias.re.kr/~parkc/CMB/SILC400/SILC400_bc.fits
http://space.mit.edu/home/tegmark/wmap/cleaned3yr_map.fits
http://lambda.gsfc.nasa.gov/product/map/dr3/ilc_map_get.cfm
http://www.nbi.dk/~jkim/hilc/
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Fig. 1. A selection of presently available CMB maps from WMAP data. Contamination by galactic emission is visible in all of them at various
levels, except for the 3-degree resolution EGS3 map (for which a galactic cut was applied and then filled by a plausible CMB extrapolated from
higher galactic latitude data).

Bonaldi et al. (2006). Maino et al. (2007) obtain also several
CMB maps, using the FastICA method (Maino et al. 2002).
None of the CMB maps obtained is full sky, nor publicly avail-
able yet. They are not considered further in this analysis.

Finally, some foreground cleaning has also been performed
by Saha et al. (2007). Their paper also includes an interesting
analysis of the ILC bias. The primary goal of that work, however,
is to compute the CMB power spectrum, rather than producing a
CMB map.

3.1.10. Existing map summary

Figure 1 shows six available maps, all displayed on the same
colour scale. It illustrates the resolution and foreground contam-
ination of the various maps. Table 1 summarises the main prop-
erties of the maps. Only the TILC1 and TILC3 maps are high

resolution attempts at component separation everywhere, includ-
ing the galactic plane, combining all WMAP observations. All
other maps (WILC maps, EILC1, EGS3, PILC3, KILC5) are at
reduced resolution.

3.2. Map comparison

CMB maps produced from WMAP one year data have been
compared by Eriksen et al. (2004), showing quite large differ-
ences, ranging from−100 to 100 µK. Similarly, Park et al. (2007)
compare their PILC3 map with the WILC3 and TILC3 maps at
1.4 degree resolution, showing differences in excess of 40 µK.
In the following, discrepancies between these various solutions
are further investigated.

As a first step, we evaluate by how much the various maps
at one degree resolution disagree over the full sky. The top panel

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810514&pdf_id=1
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Fig. 2. Top: the standard deviation, per pixel for nside= 512, of the
EILC1, TILC3, PILC3, WILC5 and KILC5 maps, at 1◦ resolution.
Bottom: same at 3◦ resolution. Note the different color scales for the
two panels.

of Fig. 2 shows the pixel based standard deviation of five such
maps. In this evaluation, we exclude the EGS3 map (which is at
3 degree resolution, and is the source of additional variance in
the Kp2 sky mask, where the CMB is estimated at even lower
resolution).

All maps are obtained from observation of the same sky
(sometimes starting from the same data set) and are smoothed
to the same resolution (one degree) where noise is small.
Discrepancies originate essentially from systematic differences
in the methods. In the central regions of the galactic plane, dis-
crepancies are significantly higher than 50 µK (with bright spots
above 90 µK). In other sky regions, they are typically in the
10–20 µK range, except on compact spots again, where they
are above 50 µK. The latter are probably due to residuals of
the emission from strong compact sources. The discrepancy be-
tween the maps is greater in the ecliptic plane, which is a signa-
ture of the impact of the instrumental noise, uneven because of
the WMAP scanning strategy. This is due to the different atten-
tion given to minimising the contribution of instrumental noise
on small scales (rather than foreground emissions) in the final
map (and to a much lesser extent to the difference of noise level
between the various WMAP releases).

The bottom panel of Fig. 2 focuses the comparison to larger
scales (3 degree beam). At high galactic latitudes, the discrepan-
cies are below 10 µK except for a few localised regions (LMC,
Ophiuchus complex) where they reach about 30 µK. Differences
in the North Polar Spur, at the level of 10–15 µK, are also clearly
visible. Close to and inside the galactic plane, systematic dis-
crepancies significantly exceed 30 µK.

Including the EGS3 map in the comparison at high galactic
latitudes does not change these conclusions. Pairwise compar-
isons of the available maps typically show the same level of dis-
crepancies, which indicates that the variance of the solutions is
not due to one single map being in strong disagreement with the
others.

The conclusion of this comparison is that foreground resid-
uals exist in the published CMB maps at the level of about 50
to 100 µK in the galactic ridge, 20 to 50 µK at low galactic lati-
tudes, and 10 to 20 µK at higher galactic latitudes (above 30 de-
grees).

This observation calls for localised weightings, adapted to
local properties of the foreground and the noise. This, however,
is not easily compatible with the recovery of the largest modes
of the CMB map, as pointed out before by Eriksen et al. (2004),
and as demonstrated by the discontinuities observed between the
CMB solutions in the different regions when the sky is cut, as in
the TILC, EILC1, and WILC maps.

Our approach, then, will be to vary the relative weightings
on small scales for small scale CMB reconstruction, and keep
the weighting uniform over large regions of the sky for the re-
covery of the largest scales. This can be achieved quite straight-
forwardly by using the spherical needlets discussed in Sect. 4.

4. The ILC needlet method

4.1. The choice of the ILC

It is striking that all the presently available full sky CMB maps
derived from an analysis of the WMAP data have been obtained
by an implementation of the ILC method.

The ILC, indeed, has many advantages:

– the method relies only on two very safe assumptions: the
CMB emission law, and the fact that the CMB template is
not correlated to foreground emission3;

– under these assumptions, the method minimises the empiri-
cal variance of the reconstruction error;

– the ILC is very simple in implementation.

The ILC has two major drawbacks.

– As noted for instance by Hinshaw et al. (2007), Delabrouille
& Cardoso (2007), Saha et al. (2007), empirical correlations
between the CMB and the source of contamination results in
a bias; this bias is discussed in more detail below;

– In the absence of a model of the contaminants (foregrounds
and noise), it is not possible to predict the reconstruction er-
rors, which somewhat annihilates the benefit of making very
safe assumptions about the properties of the data set.

4.2. The ILC bias

The existence of a “bias” in maps obtained by an ILC method
is a well established fact. The derivation of this bias (which is,
in fact, the systematic cancelling of a fraction of the projection
of the CMB map onto the vector space spanned by the noise
realisations for all the considered input maps), is given in the
Appendix.

The order of magnitude to keep in mind is that about (m −
1) “modes” of the original CMB, out of Np, are cancelled by

3 In reality, it is likely that the CMB map actually is somewhat corre-
lated to the foreground emissions (extragalactic point sources and SZ ef-
fect), because of the ISW effect. The implication of this is not studied
further in the present paper.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810514&pdf_id=2
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the ILC, where m is the number of channels used, and Np the
number of independent pixels or modes in the regions for which
the ILC is implemented independently. Note however that when
the signal is strongly correlated between pixels, the bias can be
significantly larger – see the appendix for details.

The practical consequences are:

– a loss of CMB power, which has to be taken into account for
power spectrum estimation;

– an anti-correlation of the map reconstruction error with the
real CMB sky.

The level of the bias induced by our method is investigated
both theoretically (Appendix A), and through Monte-Carlo
simulations.

4.3. Needlets

A frame is a collection of functions with properties close to those
of a basis. Tight frames share many properties with orthonormal
bases, but are redundant (see Daubechies 1992, for details).

Needlets were introduced by Narcowich et al. (2006) as a
particular construction of a wavelet frame on the sphere. They
have been studied in a statistical context (e.g. Baldi et al. 2008;
Baldi et al. 2007) and have also been used recently for cosmolog-
ical data analysis problems (e.g. Pietrobon et al. 2006). The most
distinctive property of the needlets is their simultaneous perfect
localisation in the spherical harmonic domain (actually they are
spherical polynomials) and potentially excellent localisation in
the spatial domain.

We recall here the definition and practical implementation of
the needlet coefficents, following the generalised formulation by

Guilloux et al. (2008). Let h
( j)

ℓ
, j ∈ J be a collection of window

functions in the multipole domain, indexed by j. Suppose that

for each scale j, ξ
( j)

k
is a grid of points (indexed by k ∈ K( j))

which satisfies an exact4 quadrature condition with weights λ
( j)

k
.

The needlets are axisymmetric functions defined by

ψ
( j)

k
(ξ) =

√
λ

( j)

k

ℓmax∑

ℓ=0

h
( j)

ℓ
Lℓ
(
ξ · ξ

( j)

k

)
, (6)

where the functions Lℓ denote the Legendre polynomials.
Any square integrable function f on the sphere can be anal-

ysed by the scalar products β
( j)

k
:= 〈 f , ψ

( j)

k
〉 of the function f with

analysis needlets. All the needlet coefficients of scale j are ad-
vantageously computed in the spherical harmonic domain, as the

evaluation at points ξ
( j)

k
of a function whose multipole moment

are simply h
( j)

ℓ
aℓm. These needlet coefficients, denoted γ

( j)

k
, are

given by:

γ
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√
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k
β
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k
.

Each field of needlet coefficients can in turn be convolved with
some synthesis needlets

ψ̃
( j)

k
(ξ) =

√
λ
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using the same procedure and leading to the map X( j) whose

multipole moments are h
( j)

ℓ
h̃

( j)

ℓ
aℓm. The analysis and synthesis

operations are summed up as: Analysis:

X
SHT
−→ aℓm

×
−→ h

( j)

ℓ
aℓm

SHT
−1

=⇒ γ
( j)

k
.

4 Or almost exact, for all practical purposes.

Synthesis:

γ
( j)

k

SHT
−1

=⇒ h
( j)

ℓ
aℓm

×
−→ h̃

( j)

ℓ
h

( j)

ℓ
aℓm

SHT
=⇒ X( j) .

Double arrows denote as many transforms as scales in J . If X
is band-limited to ℓ ≤ ℓmax and if the reconstruction condition∑

j h
( j)

ℓ
h̃

( j)

ℓ
= 1 holds for all ℓ ≤ ℓmax, then the complete process

yields a decomposition of X in smooth maps, namely

∀ξ, X(ξ) =
∑

j

X( j)(ξ). (8)

Note that the existence of a fast inverse spherical harmonic trans-

form using the quadrature points ξ
( j)

k
is required in practice, and

that HEALPix pixels and weights fulfil the quadrature condi-
tion only approximately. Further details can be found in Guilloux
et al. (2008), with an extensive discussion on the choice of the
spectral window functions.

A key feature of the needlet decomposition follows from
the localisation of the analysis functions which allows for
localised processing (such as denoising, signal enhancement,
masking etc.) in the needlet coefficient domain, i.e. applying

some non-uniform transforms to the coefficients γ
( j)

k
. Other types

of wavelets (for instance, the steerable wavelets of Wiaux et al.
2008, or the wavelets, ridgelets and curvelets of Starck et al.
2006) could also be used for localised processing on the sphere,
although the quality of the localisation depends much on the de-
tails of the wavelet design. Needlets are compactly supported in
the multipole domain and can be further designed to be well lo-
calised in the direct domain according to various criteria. This
permits one to work on full sky data without real need for mask-
ing the galactic ridge.

4.4. The method

The method implemented in this work, and applied both to simu-
lations and to the real WMAP data sets (for all releases), consists
of the following steps:

– we start with the data set consisting of band-averaged tem-
perature maps from WMAP (simulated or real data), to
which we add the IRIS 100 micron map;

– WMAP-detected point sources are subtracted from the
WMAP maps;

– we apply a preprocessing mask, in which a very small num-
ber of very bright compact regions are blanked (see Table 2);
blanked regions are filled-in by interpolation; this is done
only on the real WMAP data (not on simulations);

– all maps are deconvolved to the same resolution (that of the
W channel5.); this operation is performed in harmonic space;

– maps are analysed into a set of needlet coefficients γ
( j)

k
fol-

lowing the method described in 4.3;

– for each scale, the covariance matrix R̂ of the observations
is computed locally (using an average of 32 × 32 needlet
coefficients);

– the ILC solution is implemented for each scale in local
patches;

– an output CMB map is reconstructed from the ILC filtered
needlet coefficients; this map constitutes our main CMB
product;

5 A noise weighted average beam is obtained from the W1 W2 W3 W4
beam coefficients provided by the WMAP team.
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– that map is Wiener-filtered in harmonic space, to make an al-
ternate CMB map with lower integrated error (our best guess
CMB map);

– in parallel, the actual ILC filter used on the analysed data set
is applied to 100 different simulations of the WMAP noise,
to estimate the noise contribution to the final map;

– the level of the biasing, which depends on the geometry and
not much on the actual templates of CMB and foreground
and noise, is estimated on a set of fully simulated data.

Each of these steps is described in more detail below.

4.5. Point source subtraction

Strong point sources in the input data set typically leave de-
tectable residuals in the output ILC map, and modify at the same
time the estimation of the background, leading to less rejection
of other contaminants. On the other hand, their specific shape
usually allows effective estimation and removal by other meth-
ods. For the purpose of this study we used information from the
WMAP source catalogue (Hinshaw et al. 2007) which provides
characterisation for all point sources detected above a 5σ thresh-
old away from the galactic plane.

For all sources identified, we subtract from the input maps a
Gaussian profile at the given position and with the given flux.
Conversion factors between flux density and Gaussian ampli-
tude, as well as the FWHM of the Gaussian profile are taken
from Table 5 of Page et al. (2003) for one year data, and corre-
sponding updates for the more recent releases.

For the simulated data set, the subtraction of detected point
sources is mimicked by removing from the simulation all sources
above 1 Jy (independently in all channels).

4.6. Blanking of compact regions

In addition to the point sources subtracted above, some compact
regions of strong emission (mostly in the galactic plane) exceed
the rejection capabilities of the method used in this analysis, be-
cause they are too local and/or too specific. Their contribution
in the wings of the needlets also contaminates the solution far
from the centre of the sources. Those sources cannot be satis-
factorily subtracted in the same way as the previous ones, either
because they are not strictly speaking point-like, or because they
are bright enough that small departures of actual beam shapes
from the Gaussian model used in the subtraction step leave sig-
nificant residuals. As they represent only a very tiny fraction
of the sky (we single out eleven such sources), we blank out
these regions in all WMAP channels, cutting out circular patches
adapted to the size of the beam and of the source. Table 2 gives
the list of those regions with their main characteristics.

To reduce local pollution of the needlet coefficients by the
sharp cut, the small blanked regions are filled in by a smooth in-
terpolation, so that fluctuations at a larger scale than the hole size
are at least coarsely reconstructed. More precisely, interpolation
is made by diffusion of the boundary values inside the hole.

Although this masking and interpolation has no reason to
be optimal, it is an efficient way of reducing the impact of
very strong sources on their environment. The CMB inside the
masked patches is recovered (to some extent) both by the inter-
polation of original maps (which avoids sharp discontinuities)
and by the needlet decomposition and ILC reconstruction. The
masked region is tiny: 0.058% of the sky in the K channel (the
most affected).

Table 2. List of compact regions blanked in the pre-processing step.

Name Galactic coordinates Type

Crab neb 184.5575 –05.7843 SNR
sgr A 000.064 +00.147 Radio-Source
sgr B 000.599 +00.002 Radio-Source
sgr C 359.4288 –00.0898 HII region
sgr D 001.131 –00.106 Molecular cloud

Orion A 209.0137 –19.3816 HII region
Orion B 206.5345 –16.3539 Molecular cloud

Omega neb 015.051 –00.674 HII region
Cen A 309.5159 +19.4173 QSO
Cas A 111.735 –02.130 SNR

Carina neb 287.6099 –00.8542 HII region

A circular patch centered on the source, of radius 75, 55, 45, 45, 34 and
35 arcmin for the K, Ka, Q, V, W and IRIS 100 µm bands respectively,
is masked. The masked regions are then filled with an extrapolation of
edge values.

Table 3. Spectral bands used for the needlet decomposition in this
analysis.

Band ( j) ℓmin ℓmax nside( j)

1 0 15 8
2 9 31 16
3 17 63 32
4 33 127 64
5 65 255 128
6 129 511 256
7 257 767 512
8 513 1023 512
9 769 1199 512

Needlet coefficient maps are made at different values of nside, given
in the last column.

4.7. Needlet decomposition

The original observations (WMAP and IRIS) are decomposed
into a set of filtered maps represented by their spherical har-
monic coefficients:

a
( j)

ℓm
= h

( j)

ℓ
aℓm (9)

where aℓm are the spherical harmonic coefficients of the origi-

nal map, and a
( j)

ℓm
those of the same map filtered by the window

function j. Needlet coefficients γ
( j)

k
are obtained as the value of

the filtered map at points ξk.

For each scale j, the coefficients γ
( j)

k
are computed on a

HEALPix grid at some value of nside, compatible with the
maximum value of ℓ of band j. We use for nside( j) the smallest
power of 2 larger than lmax/2, with a maximum of 512. Details
about the bands used are given in Table 3 and Fig. 3.

4.8. ILC implementation on needlet coefficients

The general idea is to independently implement the ILC on sub-

sets of the needlet coefficients γ
( j)

k
. For a given scale, these coef-

ficients come in the format of a set of HEALPix maps (one per
frequency channel). The ILC is implemented locally in space
and locally in ℓ as follows.

Covariance matrices R
( j)

k
= 〈γ

( j)

k
γ

( j)

k

T
〉 for scale j at pixel k

are estimated as the average of the product of the computed
needlet coefficients over some space domain Dk. Because of
this, there is a trade-off between localisation and accuracy of es-
timation. A better estimate of the true covariance is obtained by
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Fig. 3. The spectral bands used in this work for the definition of the
needlets.

averaging the products of needlet coefficients between all pairs
of maps over a large area, but this provides an estimate of the av-
erage covariance over that area. In practice, for the present anal-
ysis, we make use of the hierarchical property of the HEALPix
pixelisation, and compute covariance matrices as the average
in larger pixels, corresponding to a HEALPix pixelisation with
nside= nside( j)/32. This provides a computation of the statis-
tics by averaging 322 = 1024 samples, which results in a preci-

sion of the order of 3 per cent for all entries of the R
( j)

k
matrix.

It implies an ILC bias of order 5/1024 (for m = 6 channels and
Np = 1024 coefficients per domain on which the ILC filter is
estimated independently (see Appendix for details). Choosing
a smaller area results in excessive error in the covariance esti-
mates, and hence excessive bias. Choosing a larger area results in
less localisation, and hence some loss of efficiency of the needlet
approach.

We denote as R̂
( j)

k′∈Dk
the estimate of R

( j)

k
obtained by averag-

ing the value of γ
( j)

k′
γ

( j)

k′

T
in domainDk.

On the largest scales (ℓ ≤ 50), the typical angular extent of a
needlet is larger than 5 degrees, and the value of nside for the
map of needlet coefficients is less than 32. Covariance matrices
are then computed on the full sky rather than on the largest pos-
sible HEALPix grid, i.e. Dk is the complete sky, rather than one
of the 12 basis Healpix pixels.

Using these covariance matrices, the ILC is implemented us-
ing Eq. (4) for each domain. The estimated CMB needlet coeffi-
cients are:

[
γ̂

( j)

k

]
CMB
=

a
T
[
R̂

( j)

k′∈Dk

]−1

aT
[
R̂

( j)

k′∈Dk

]−1
a

γ
( j)

k
. (10)

4.9. Full map reconstruction

The full CMB map reconstructed from this set of needlet coeffi-
cients is our basic needlet ILC (NILC) CMB map.

4.10. Final Wiener filtering

For a number of purposes, in particular subtraction of an estimate
of the CMB to study other emissions, it is interesting to use, in-
stead of our ILC map at the resolution of the WMAP W channel,
a map with minimal error. Such a map is obtained from the ILC
map by one-dimensional Wiener filtering.

As a last processing step towards a minimum variance
CMB map, we thus Wiener-filter our CMB map, to get rid of
the large noise contamination at high ℓ. The Wiener filter is per-
formed in harmonic space as described in 2.3.2.

The harmonic Wiener filter is given by formula 5, i.e. wℓ =
b2
ℓ
Cℓ/(b

2
ℓ
Cℓ + Nℓ). For its implementation, we need to know the

relative power of CMB and noise. We assume that the best fit
CMB power spectrum of the WMAP team is correct, hence Cℓ
is known. The beam factor bℓ is assumed perfectly known as
well. The denominator b2

ℓ
Cℓ + Nℓ can be estimated directly as

the power spectrum of our output needlet ILC map.
In practice, we smooth the power spectra with δℓ/ℓ = 0.1 to

lower the variance of the power spectrum estimator on the output
needlet ILC map. Even with this, the filter is poorly estimated
for low modes, because of the large cosmic variance. As can be
seen in Fig. 5, the signal to noise ratio of our reconstructed map
is expected to be quite high at low ℓ. Therefore, the Wiener filter
for low modes is expected to be very close to 1. For this reason,
we set wℓ = 1 for ℓ < 200, and use a linear interpolation between
ℓ = 200 and ℓ = 250.

4.11. Noise level estimate

The level of noise contamination (variance per pixel, and average
power spectrum) in the output map is estimated by Monte-Carlo
simulations, using the average of 100 realisations of the WMAP
noise maps. For each initial set (i) of five noise maps (one noise

map per WMAP channel), a single output noise map n
(i)
p is ob-

tained by performing the needlet decomposition of the initial
noise maps, and filtering needlet coefficient maps with the same
filter as that used on the single full simulated data set.

Denoting as n
(i)
p and n

(i)

ℓm
respectively the pixel value and the

harmonic space value of the noise map number i, we compute:

σ2
p =

1

Ni

∑

i

(
n(i)

p

)2
(11)

and

σ2
ℓ =

1

Ni(2ℓ + 1)

∑

i

∑

m

(
n

(i)

ℓm

)2
. (12)

These are respectively estimates of the noise pixel variance and
of the noise power spectrum of our final map.

4.12. Bias estimates

The impact of the ILC bias is estimated by Monte-Carlo simu-
lations on simulated data sets. The corresponding error is of the
order of 2% of the CMB.

4.13. Practical implementation

The practical implementation of this processing pipeline is made
essentially using the octave language (the free software version
of Matlab). The analysis is done in the framework of the pipeline
tool developed by the ADAMIS team at the APC laboratory. This
tool provides a flexible and convenient web interface for running
our data analysis on simulations or real data with easy handling
and tracing of the various pipeline options6. Single runs of the
full pipeline require less than half an hour on a single processor

6 See http://www.apc.univ-paris7.fr/APC_CS/Recherche/

Adamis/ in the “outreach” section.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810514&pdf_id=3
http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/
http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/
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of a standard desktop computer (dominated by harmonic trans-
forms), whereas numerous pipelines on simulated data sets for
Monte-Carlo are run on the ADAMIS 88-processor cluster, op-
timised for efficient I/O.

5. Simulations

5.1. The simulated data

We start with a validation of our method on simulated data sets.
For this experiment, synthetic observations of the sky emission
are generated using the Planck Sky Model (PSM). The PSM is
a flexible software library, designed for simulating the total sky
emission in the 10–1000 GHz frequency range, and developed as
part of the foreground modelling activities of the Planck work-
ing group on component separation (Planck WG2). Sky emis-
sion comprises galactic components of four origins (free-free,
synchrotron, thermal dust, and spinning dust, with spectral emis-
sion laws for dust and synchrotron varying from pixel to pixel),
CMB, kinetic and thermal SZ effects, and the emission from
a population of galactic and extragalactic point sources which
includes radio sources, infrared sources, and an infrared back-
ground. Although not perfect, the model sky is thought to be
sufficiently representative of the complexity of the real sky emis-
sion for our simulations to be meaningful.

Sky maps are produced at WMAP central frequencies for
the K, Ka, Q, V and W band, and convolved in harmonic space
with approximate WMAP instrumental beams (Gaussian sym-
metric beams are used for these simulations). Uncorrelated, non-
stationary Gaussian noise is added, with a pixel variance de-
duced from the WMAP sensitivity per channel and effective hit
count. To mimic the subtraction of the brightest point sources
detected by WMAP, we remove from the model sky, at each fre-
quency, all sources with flux above 1 Jy (assuming they would
have been detected, and can be subtracted from the data set). The
11 compact regions listed in Table 2 however, being specific to
the real sky, are not blanked for the simulations.

Although these simulations provide only an approximation
of the real WMAP data sets, they are representative enough that
the simulated data offer a component separation challenge close
to that of the real data set. The IRIS map is used as part of the
full set of data for the ILC implementation on simulations.

5.2. Results

Figure 4 shows the input simulated CMB, the output CMB, and
the difference of the two for one particular simulation. The re-
construction is visually good except in regions of local strong
galactic emission (in the galactic ridge, for example). This is to
be expected: not only can the method not remove foreground
emission perfectly, but in addition the price to pay to remove the
foreground (even imperfectly) is more noise (because of sub-
optimal weighting of the observations as far as noise contamina-
tion is concerned).

A more quantitative estimate of the level of contamination
of the CMB map by foreground emissions and noise is obtained
by looking at power spectra. Figure 5 shows the input simu-
lated CMB power spectrum (dotted line), the spectrum of the
output CMB (solid black line), and the spectrum of the map
of residuals (difference between output and input, dashed line),
both full sky (top panel) and in the HGL region (bottom panel).
The angular power spectrum of the residual map is seen to be
small compared to the CMB power on large scales, the two be-
ing comparable at ℓ ≃ 500. Noise dominates on smaller scales.

Fig. 4. Top: the simulated input CMB map. Middle: the reconstructed
CMB. Bottom: the difference (output-input), displaying the residuals
left by the method. All three maps share the same colour scale, and are
at the resolution of the WMAP W channel.

The residuals due to the presence of galactic emission are seen
to contribute power essentially below ℓ = 400, where the power
of the difference map is seen to be slightly higher in the full sky
power spectrum than in the HGL power spectrum (this is visible,
in particular, at the top of the first acoustic peak).

5.3. Bias

As discussed in 4.2, we expect a (small) bias in the ILC map, due
to empirical correlations between the CMB emission and con-
taminants (including noise and foreground emission). This is not
particular to our approach, and is expected for any ILC method.
For better characterisation of our output map, we evaluate the
effect both theoretically (in the Appendix) and numerically.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810514&pdf_id=4
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Fig. 5. Top: for simulated data sets, full sky power spectra of the output
CMB map (plain line), and the difference map (dashed line). The CMB
model used in the simulation is over-plotted as a dotted line. Bottom:
same at high galactic latitude only (HGL region).

Although a general analytic estimate of the bias is compli-
cated, Appendix A shows that (to first order at least and for
reasonable assumptions about the CMB, foreground emissions,
and noise) the amplitude of the effect does not depend much on
what the actual foreground emissions are in detail, but is set es-
sentially by the geometry of the domains considered (through a
number of effective modes). It is then possible to estimate the
amplitude of the effect by Monte-Carlo simulations on synthetic
data sets resembling the actual WMAP observations.

Figure 6 illustrates an estimate of the bias b(ℓ) as a function
of the harmonic mode, computed as a fractional error:

b(ℓ) =

∑
m

(̂
aℓm − aℓm

)
a∗
ℓm∑

m |aℓm|
2

(13)

where aℓm are the harmonic modes of the input CMB map, and
âℓm the harmonic modes of the output CMB map. The numerator
in this equation computes the covariance of the residual map and
the input map as a function of ℓ, and the denominator is a nor-
malisation factor. For an error uncorrelated with the input, b(ℓ)
should be close to 0 on average. Analytical estimates of the effect
(see Appendix) suggest a bias of the order of 2% for our imple-
mentation (taking into account mode correlation). The numerical
estimate of Fig. 6, obtained as the average bias for 500 simu-
lated data sets, is in good agreement with this prediction, with
slight variations due to varying numbers of effective modes for
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Fig. 6. The fractional bias in the ILC map as a function of ℓ, for one
single simulation. This figure is illustrative both of the amplitude of the
effect, and on its variance for one single realisation. Bias, and standard
deviation of the bias, are of the same order of magnitude for most of
the ℓ range.

different needlet scales. The average value of b(ℓ) between ℓ = 2
and 1000 in that simulation is about −2.2%.

6. Application to WMAP data

6.1. ILC result

We now turn to the description of the results obtained on the real
WMAP data sets. In order to facilitate the comparison with exist-
ing maps, we process independently one year, three year and five
year data, to obtain three CMB maps (hereafter NILC1, NILC3
and NILC5). For each year, we use the beam estimates, noise
level, and point source catalogue provided with the correspond-
ing release.

The improvement of CMB reconstruction with consecutive
data releases is illustrated in Fig. 7, which shows the full sky
power spectra of the NILC CMB maps obtained with one year,
three year, and five year WMAP data. The power spectra dis-
played are the raw power spectra of the output map, computed
for the full sky, and smoothed with a variable window in ℓ of
10% width. While the lower part of the spectrum, cosmic vari-
ance limited and CMB dominated, does not change much, the
high ℓ spectrum of the map, dominated by noise, decreases sub-
stantially with increasing observation time – as expected. The
excellent agreement at low ℓ (up to ℓ ≃ 300) between the power
spectra and the model is striking. The bumps in the spectrum due
to the first and second acoustic peaks are clearly visible on the
five year map spectrum.

Our full-sky reconstructed CMB map for the five year obser-
vations, at the resolution of the W-channel, is displayed in the
top panel of Fig. 8.

7. Discussion

7.1. Comparison with other maps

A full comparison of our needlet ILC maps (for all data releases)
with all the other available maps would be too long for the
present discussion. Rather, we decide to compare our five year
result only with the TILC3 map on small scales (choice is moti-
vated by the fact that the TILC is the only other full sky high res-
olution map available), and with the EGS3 map on large scales.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810514&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810514&pdf_id=6
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Fig. 7. Power spectra of the NILC map for one year, three year, and five
year WMAP data.

This is of particular interest, as the EGS3 is the only map ob-
tained with a method not based on the ILC, and also is a method
specifically implemented for the recovery of the largest scales.

7.1.1. Comparison at the pixel level – small scales

On the smallest scales, we compare our needlet ILC map with
the TILC and with the WMAP foreground-reduced W band.
Figure 10 shows local regions of the foreground-reduced map,
the NILC5 map, and the TILC3 map, in the galactic plane and at
the galactic pole. Our needlet map is clearly less contaminated
by galactic emission than the other two. At high galactic lati-
tude, the NILC5 and TILC3 are visually comparable, while the
foreground-reduced map appears to be more noisy, as expected.

The power spectrum of the output map for the five year data
(NILC5 map), for three different sky coverages, is shown in the
bottom panel of Fig. 9. On the same panel, we plot the an-
gular power spectrum Cℓ corresponding to the WMAP best fit
model, corrected for the W-channel beam. On the top panel of
the same figure, we show the same power spectrum estimates
for the TILC3 map. This shows the improvement achieved by
our method close to the galactic plane. This improvement is due
both to the needlet approach and to the use of the IRIS map to
help with dust subtraction. As seen in Fig. 7, the difference in
quality between NILC5 and TILC3 cannot be explained solely
by reduced noise (NILC5 and NILC3 being very close in quality
for all scales except the smallest ones).

7.1.2. Comparison at the pixel level – large scales

Figure 11 gives a visual comparison of NILC5 (this work) and
the EGS3 (Eriksen et al. 2007), as well as of NILC5 and KILC5
(Kim et al. 2008). In the top row, we display the EGS3 and
KILC5 at a resolution of 3 degrees, and degraded to nside= 64.
The bottom row shows the difference between our needlet ILC
solution (displayed on the bottom panel of Fig. 8) and these two
maps.

The most striking difference between the five year needlet
ILC map and the EGS3 is in the galactic plane, where the EGS3
does not recover the intermediate angular scales. The difference,
however, shows no particular clear structure, as expected if it
is the random realisation of a Gaussian random field. It is thus
probably essentially due to the difference between our CMB

Fig. 8. Top: the NILC5 reconstructed WMAP CMB at the resolution
of the W channel. Middle: the harmonic Wiener NILC5 CMB map.
Bottom: the NILC5 CMB map at 3 degree resolution.

reconstruction on scales larger than 3 degrees, and the CMB on
larger scales that can be inferred from the CMB reconstructed
by Eriksen et al. outside of their galactic mask. At higher galac-
tic latitude, the two maps are in good agreement, with no obvi-
ous feature which could be correlated to foreground emissions
or to the CMB itself, with the exception of a hot spot in the
large Magellanic cloud (which might be residual emission of the
LMC in our map, as Eriksen et al. (2007) actually mask the cen-
tre of the LMC and obtain a solution in the direction of the LMC
by extrapolation from nearby pixels). Above 30 degree absolute
galactic latitude, the rms of the difference between our 3 degree
map and the EGS3 map is 5.7 µK. The two maps are in much bet-
ter agreement than the EGS3 and the WMAP MEM model maps
(see Fig. 3 in Eriksen et al.). Note however that theoretically, if
there were no foreground in the WMAP data, the noise standard

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810514&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810514&pdf_id=8
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Fig. 9. Power spectrum of the reconstructed WMAP CMB map. For
each of the two panels, the CMB best fit model is shown as a solid
black line, and power spectra computed at low galactic latitudes (using
the LGL mask), on the full sky (no mask), and at high galactic latitudes
only (HGL mask) are displayed as dashed lines. Note that the map spec-
tra plotted here are directly those of the maps, without any correction for
the beam. Top panel: ILC map of (Tegmark et al. 2003, TILC3). Bottom
panel: this work, with five year WMAP data. The power spectrum of the
needlet ILC CMB is significantly more homogeneous than the power
spectrum of the TILC3 map. We interpret this difference as an indica-
tion that the TILC3 map is significantly more contaminated by residuals
of galactic emission. Note the different scales of the y-axis, and the im-
provement on small scales, with a noise power of about 0.024 mK2 at
ℓ = 1000 for the NILC5 map at high galactic latitude, instead of about
0.040 mK2 for TILC3. As indicated by Fig. 7, this is due essentially to
the better quality of the five year release, since the NILC3 map also has
a noise power spectrum of about 0.040 mK2 at ℓ = 1000.

deviation σn on a 3 degree map obtained by noise-weighted av-
eraging using all WMAP channels would be about 3.2 µK for
three year data. If instead we assumed that only the three high-
est frequency channels are free of foreground contamination,σn

would be 4.4 µK.

The difference between our map and the KILC5 map is more
systematic with, in particular, stronger differences in the galac-
tic plane, in spite of the fact that the two methods work on the
same input data set. A careful visual inspection of the CMB
maps themselves gives the impression that the KILC5 map is
probably systematically negative towards the galactic central re-
gions. There is, however, no secure way to be certain which map
is best.

7.2. Map characterisation

7.2.1. Beam

The effective beams of the reconstructed maps are plotted in
Fig. 12, for both the full resolution five year needlet ILC map,
and for the Wiener-filtered version. The map has been recon-
structed for the range 0 ≤ ℓ ≤ 1200, with a smooth transition
of the response, between ℓ of 1024 and 1200, from the nomi-
nal W band beam value to 0. This smooth transition allows us to
avoid ringing effects which happen in the case of a sharp cut-off
in ℓ. The ratio of the Wiener beam (dashed line) and ILC beam
(solid line) gives a measure of the signal to noise ratio in each
mode.

7.2.2. Instrumental noise

Given the ILC filter computed on the real data set, the level
and properties of the instrumental noise can be straightforwardly
computed by applying the same filter to simulated WMAP noise
maps. From 100 noise realisations, we compute the average full-
sky noise power spectrum (Fig. 13), as well as the noise standard
deviation per pixel (Fig. 14). Noise properties are not as simple
as one may wish: the noise is non stationary, because of both
the uneven sky coverage and of the localised processing. It is
also somewhat correlated pixel-to-pixel, in particular close to the
galactic plane. This is unavoidable, but fortunately our pipeline
allows us to make as many Monte-Carlo realisations of the in-
strumental noise as needed for any scientific study made using
our needlet ILC map. One hundred such simulations are made
available as part of our main data products.

7.2.3. Foreground residuals

More problematic is the evaluation of the contamination of the
CMB map by foreground residuals. It requires prior information
about the foregrounds, which the ILC method avoids using. An
indication of the level of systematic uncertainty is obtained from
the comparison of the various solutions (Fig. 2). An other option
consists of checking the contamination on simulations. Figures 4
and 5 give an idea of the expected contamination from such sim-
ulations. This, however, is good only as long as the simulations
are representative enough.

The comparison of the power spectrum of the output CMB
map computed at high and low galactic latitude (Fig. 9), and a
visualisation of the output CMP map at high and low galactic lat-
itude (Fig. 10) also give an idea of the amount of galactic resid-
uals, but none of these estimates is fully satisfactory for careful
CMB science. This is, however, not particular to our map. No
published CMB map is available with a good estimate of fore-
ground contamination. Although this, clearly, is not fully satis-
factory, we leave further investigations on this question for future
work.

7.3. Final comments

7.3.1. Is our map optimal?

In the present work, we have obtained a CMB map which has
been shown to be significantly less contaminated by foreground
and noise than the other existing maps obtained from WMAP
data. A natural question is whether we can do even better.

In the following, we outline where there is margin for im-
provement, and explain why we have stopped the analysis at its
present state.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810514&pdf_id=9
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Fig. 10. CMB maps from WMAP three year data obtained with three techniques: left column: WMAP foreground reduced, W channel; middle
column: our needlet ILC map; right column: the TILC map. The top line corresponds to a patch located in the galactic plane, centred around
coordinates (l, b) = (45◦, 0◦). The bottom line shows the recovered CMB around the North Galactic Pole.

First, the present analysis uses only limited external informa-
tion and data sets: WMAP point source detections, and the IRIS
100 micron map. It is likely that something could be gained by
using additional observations to help constrain the galactic emis-
sion.

Second, there is a trade-off between localisation of the es-
timation of covariance matrices, and bias in the ILC. The esti-
mation of covariance matrices Rx over sets of Np = 32 × 32
needlet coefficents results from a compromise which has been
made based on varying Np in simulations, but has not been op-
timised in any way. In addition, the optimal solution is probably
different at high galactic latitudes, where weights given to dif-
ferent channels probably do not vary much and thus require less
localisation, and at low galactic latitudes, where the complexity
of galactic emission calls for more localisation. We have tried
to use Np = 16 × 16 (more localised ILC filters, but more bias)
and Np = 64 × 64 (less localised ILC filters, but less bias). Our
choice of Np = 32 × 32 seems, in simulations, not worse than
anything else (nor much better either). The bias error has been

verified to remain below the reconstruction error due to the con-
tribution of the noise for small scales, and below cosmic variance
uncertainty for large scales (see Fig. 13), and remains below an
acceptable level of a few percent.

Similarly, the choice of the spectral window functions used
on this data set has not been the object of specific optimisation.
At low ℓ, we follow a “dyadic” scheme, where each window
reaches an ℓmax of about twice the previous one. Wide spectral
window functions allow for more localisation in pixel space, but
narrow window functions allow for more accuracy in the har-
monic domain. At high ℓ, because of the variation of the beams
with ℓ, the relative noise levels of the different channels change
quite fast with ℓ, which calls for more localisation in ℓ space.
Here again, the optimal window functions are probably not the
same at high and at low galactic latitudes. In practice, we chose
a small number of bands to limit the number of harmonic trans-
forms in the pipeline and allow reasonable localisation of the
analysis.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810514&pdf_id=10
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Fig. 11. Top left: the EGS3 map. Top right: The KILC5 map, smoothed at 3 degree resolution. Bottom left: the difference NILC5-EGS3; we see
is a clear difference in the galactic plane with no particular structure, compatible with a smooth Gaussian field, where the EGS3 solution poorly
estimates intermediate scales; a patch in the difference map at the location of the Large Magellanic Cloud is clearly visible also. Bottom left: the
difference NILC5-KILC5; a clear structure aligned with the galactic plane is clearly visible, with a large difference towards the galactic center.

Fig. 12. Harmonic response of the beam of the NILC5 CMB map and
of the Wiener-filtered version.

The choice we have made results from the principle of sim-
plicity. We have tried to devise a pipeline which depends as little
as possible on external data, on priors, or on fine tuning. A very
simple scheme has permitted us to obtain a CMB map convinc-
ingly better than other maps available. This does not preclude
any attempt at more optimisation for future work if needed.

7.3.2. Why ILC and not ICA?

It is certainly possible to tune our pipeline, changing some of its
parameters. It would be possible also to use methods other than

Fig. 13. Plot of the power spectrum of the noise (solid line). The spec-
trum for the WMAP best fit model is shown as a solid line, for com-
parison. The dashed line is 2% of the WMAP best fit Cℓ, indicative
of the level of the expected ILC bias. The bias is seen to dominate on
large scales. There is, however, little margin for improvement, as few
independent modes (or needlet coefficients) are available on the largest
scales.

an ILC, for instance Independent Component Analysis (ICA)
methods such as SMICA (Delabrouille et al. 2003; Cardoso et al.
2008), or more generally maximum likelihood methods fitting
parametric models of the foreground emissions in the data sets.
Such methods extract information about the foreground from the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810514&pdf_id=11
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810514&pdf_id=12
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810514&pdf_id=13
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Fig. 14. Map of the standard deviation of the noise, per pixel at
nside= 512, for the five year needlet ILC map at the resolution of
the W channel. The adaptation of the filter to local contamination is
obvious from the uniform noise level in large healpix pixels, in par-
ticular in the galactic plane. These large healpix pixels correspond to
nside= 16, which is the size used to compute the average filter for the
smallest scales. This illustrates the impact of the compromise between
subtracting foreground emissions and increasing the noise with the use
of the lower frequency channels, which have poor sensitivity on small
scales.

data directly, possibly with the help of ancillary data sets, and
use this information to clean the observations in some way.

In the present case however, it is not very likely that such
attempts would give much better results than what is obtained
here, unless one uses a very significant number of additional
data sets and safe prior information. Indeed, the WMAP data
consists of five channels only, from which a component separa-
tion method based on a meaningful model of foreground emis-
sion needs to extract CMB, synchrotron, free-free, spinning dust,
thermal dust (i.e. five templates), and possibly also point sources,
and variations of the spectral indices of some of the components
– not to mention special regions of galactic emission such as cold
cores and H-II regions, nor particular objects such as nearby re-
solved galaxies or galaxy clusters. Any component separation
method based on the estimation of parameters for such a rich
model would almost certainly be confronted with indeterminacy
issues. Methods based on a precise model are expected to be ef-
fective when the data are very redundant as compared with the
number of “parameters” of the emission model, which would not
be the case here. Hence, the ILC is probably one of the best ap-
proaches for performing component separation on WMAP data.
It is not surprising, then, that all methods producing full sky
CMB maps from WMAP, or nearly so, implement some variant
of the ILC.

Incidentally, ICA methods could benefit from the needlet
framework.

8. Conclusions

In this paper, we have described a new approach to imple-
ment CMB extraction in WMAP data, using the ILC method
on a needlet frame. Tests on simulations show excellent perfor-
mance of the method, thanks to localisation both in pixel space
and in harmonic space. Localisation in pixel space allows the
ILC weights to adapt themselves to local conditions of fore-
ground contamination and instrumental noise (this is essentially
the reason why the NILC performs better than the TILC, in par-
ticular in the vicinity of the galactic plane). Localisation in har-
monic space allows us to favour foreground rejection on large

scales (where foreground emissions dominate the total error) and
instrumental noise rejection on small scales (where foreground
emissions are negligible but where, after beam deconvolution,
the relative noise level between the various WMAP channels
varies a lot as a function of scale). Needlets permit us to vary the
weights smoothly on large scales, and rapidly on small scales,
which is not possible by dividing the sky in zones prior to any
processing.

As a further improvement on previous work on WMAP data,
we include a dust template in the set of analysed observations.
This is motivated by the fact that on the smallest scales, ob-
served with reasonable signal to noise ratio by the W channel
only, dust emission contributes a significant fraction of the to-
tal reconstruction of the map. Using the IRIS 100 micron map
as an additional observation enables the ILC to reduce the final
contamination by dust –thanks to correlations of dust emission
between the W channel and the 100 micron map. Special care
was also taken to subtract a number of strong point sources from
the data prior to the ILC.

As discussed at length in the main text and in the Appendix,
the implementation of a filter (the ILC) based on empirical esti-
mates of covariance matrices leads to a bias. This is not partic-
ular to our map, but is the case for any ILC map. We have es-
timated the level of this systematic effect, both analytically and
numerically, to be at the level of a few per cent on all scales.
Our simulation tool allows us to make accurate estimates of the
amplitude of the effect, if needed for any scientific exploitation
of the NILC5 map.

The application of the method to WMAP one year and three
year data (in addition to five year data) allows us to compare the
needlet ILC solution to previous work. Our map is seen to be at
least as good as others on large scales, while being significantly
less contaminated by residual foreground and noise than others
on small scales, in particular in the vicinity of the galactic plane.
The application of the method to WMAP five year data yields a
CMB map which we believe to be the cleanest full sky map of
the CMB to date. Contamination by noise, and the power loss
due to the use of the ILC method, are characterised by means of
Monte Carlo simulations. The map is available for download on
the ADAMIS web site7, and can be used for a variety of science
projects relying on accurate maps of the CMB.

Acknowledgements. The ADAMIS team at APC has been partly supported by
the Astro-Map and Cosmostat ACI grants of the French ministry of research,
for the development of innovative CMB data analysis methods. We acknowl-
edge the use of the Legacy Archive for Microwave Background Data Analysis
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Science. The results in this paper have been derived using the HEALPix pack-
age (Górski et al. 2005). The authors acknowledge the use of the Planck Sky
Model8 , developed by the Planck working group on component separation, for
making the simulations used in this work. Our pipeline is mostly implemented
in octave (http://www.octave.org).

Appendix A: Derivation of the ILC bias

In this appendix, we compute the error made after CMB recon-
struction with the ILC and some of its statistical properties. In
particular, we derive the correlation of the error with the true
CMB signal, which yields a non unit effective “response” of the
ILC filter – and hence a bias in the reconstructed map and in
the CMB power spectrum computed from it. This bias has to

7 http://www.apc.univ-paris7.fr/APC_CS/Recherche/

Adamis/cmb_wmap-en.php
8 http://www.apc.univ-paris7.fr/APC_CS/Recherche/

Adamis/PSM/psky-en.php

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810514&pdf_id=14
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be accounted for properly for further use of the reconstructed
CMB map.

We model the data as:

xp = asp + np (A.1)

where sp are the coefficients of the map of interest over some
domainD (e.g. needlet coefficients of the CMB map for a given
scale and a given patch of the sky, or pixel values in a certain
region of the sky, or values of the harmonic coefficients in some
band of ℓ). p indexes the coefficient (i.e. pixel, or harmonic
mode, or needlet coefficient). xp are the observations of coef-
ficient p for the set of available observed maps, and np the cor-
responding “noise” terms (including foreground contaminants).

The ILC is best applied over domains of p where all coeffi-
cients have (near) uniform expected signal and noise properties,
so that the ILC weights are optimal simultaneously for all p. In
particular, the rms values of all maps do not depend (much) on p
in a given domain. Hence, we concentrate on one given domain
of p for which we assume that the sequences sp and np are inde-

pendent, Gaussian random variables with distribution N(0, σ2
s)

and N(0,Rn), with σ2
s the variance of sp (the CMB) and Rn the

covariance matrix of the noise (including foreground emissions).
The ILC estimate of sp in domainD is given, for all p, by

ŝp =
a

t R̂−1
x

at R̂−1
x a

xp (A.2)

where R̂x is an estimate of the covariance matrix of the observa-
tions, obtained as:

R̂x =
1

Np

∑

p

xp x
t
p

=
1

Np

∑

p

(asp + np)(asp + np)t (A.3)

with Np the number of coefficients in domain D. In the limit

of large Np, R̂x approaches its expectation (ensemble average)

value E(R̂x) = Rx. For finite Np, we have instead

R̂x = Rx + ∆x (A.4)

where ∆x is a correction term corresponding to the departure of
the empirical correlation from its ensemble average due to the
finite sample size Np. From now on, we assume that Np is large
enough that this correction is small: we investigate effects at first
order in 1/Np.

A.1. First order expansion of the reconstruction error

We are interested in the reconstruction error:

dp = ŝp − sp . (A.5)

The first and second moments of dp, i.e. the mean value E(dp)

of the reconstruction error, as well as its variance E(d2
p), are of

particular interest for the interpretation of the reconstructed map.
In particular, we have

E(ŝ2
p) = E(s2

p) + E(d2
p) + 2E(spdp). (A.6)

In our case, E(ŝ2
p) can be used to estimate E(s2

p). In the case
where domain D is a harmonic domain, p indexes harmonic
modes (ℓ,m), and E(s2

p) is a term of the CMB power spectrum.

In our needlet approach, E(s2
p) is also directly connected to the

CMB power spectrum. For this reason, it is important to char-
acterise in the best way we can the “noise bias” E(d2

p) and the
covariance of the error with the CMB, E(spdp).

The ILC being constructed so that the response to the signal
of interest is unity, only the filtered noise term contributes to the
error dp, which can then be written as:

dp =
a

t R̂−1
x

at R̂−1
x a

np (A.7)

=
a

t [Rx + ∆x]−1

at [Rx + ∆x]−1
a

np (A.8)

where ∆x is a small perturbation to Rx. We use the first order
expansion:

[R + ∆x]−1 ≃ R−1 − R−1
∆x R−1 (A.9)

which yields

dp =
a

t
[
R−1

x − R−1
x ∆xR

−1
x

]
np

at
[
R−1

x − R−1
x ∆xR−1

x

]
a
· (A.10)

Writing:

1

at
[
R−1

x − R−1
x ∆xR−1

x

]
a
=

1

atR−1
x a

1

(1 − ǫ)

≃
1

atR−1
x a

(1 + ǫ)

where ǫ is

ǫ =
a

tR−1
x ∆xR

−1
x a

atR−1
x a

(A.11)

we get

dp ≃
a

t
[
R−1

x − R−1
x ∆xR

−1
x

]
np

atR−1
x a

(1 + ǫ) . (A.12)

Keeping only first order terms in (∆x) yields:

dp =
a

tR−1
x np

atR−1
x a
−

a
tR−1

x ∆xR
−1
x np

atR−1
x a

+

[
a

tR−1
x np

] [
a

tR−1
x ∆xR

−1
x a

]

[
atR−1

x a
]2 · (A.13)

The first term on the right hand side, proportional to n, is the
“ideal” ILC error, i.e. the error we would get if we knew per-
fectly the “true” covariance matrix Rx of the observations. The
second and third terms, proportional to ∆x, are corrections due
to the fact that this covariance matrix is actually obtained empir-
ically from the observations themselves.

From Eqs. (A.3) and (A.4), we can write ∆x in the form:

∆x = δsaa
t + ∆n + Ĉ (A.14)

where

δs = σ̂
2
s − σ

2
s (A.15)

∆n = R̂n − Rn (A.16)

Ĉ =
1

Np

∑

q

(
nqsqa

t + asqn
t
q

)
. (A.17)



J. Delabrouille et al.: A full sky, low foreground, high resolution CMB map from WMAP 855

These three quantities correspond respectively, in pixel (or
mode, or needlet coefficient) p, to the uncertainty in CMB vari-
ance estimates due to “cosmic” (or sample) variance, to the er-
ror in the estimation of the “noise” covariance matrix alone (if
maps of noise+ foreground alone were available), and to a cross
term, originating from the empirical covariance between CMB
and noise due the finite sample size Np.

The two last terms (small correction terms) in Eq. (A.13), be-
ing proportional to ∆x, can be decomposed each into the sum of

three terms, proportional to (δsaa
t), ∆n, and Ĉ respectively. The

signal and noise realisations enter the (δsaa
t) term as products

of terms of the form (aa
t sq sqnp) only, the ∆n term as products

of terms of the form (nqn
t
qnp). On the contrary, signal and noise

realisations enter the Ĉ term as the product of terms in the form
(asqn

t
qnp), i.e. products of s and the second power of n. Index q

runs over domainD.
Assuming that s and n are centred variables, the mean value

of the error is immediately seen to vanish:

E(dp) = 0. (A.18)

The main contribution to the variance comes from the first term
on the right hand side of Eq. (A.13). The second and third terms
are small corrections to this variance estimate, so that to first
order, we get:

E(d2
p) ≃

a
tR−1

x RnR−1
x a

[
atR−1

x a
]2 · (A.19)

Recalling that Rx = Rn + σ
2
aa

t, where σ2 is the variance of the
CMB, and making use of the inversion formula:

[
Rn + σ

2
aa

t
]−1
= R−1

n − σ
2 R−1

n aa
tR−1

n

1 + σ2 atR−1
n a

(A.20)

we finally obtain:

E(d2
p) ≃

1[
atR−1

n a
] · (A.21)

The most interesting terms are those connecting the error to the
signal of interest, E(spdp), which is necessary to compute the

power spectrum of the output map according to A.69.
As mentioned previously, under the assumption that the sig-

nal of interest is not correlated to the noise and the foregrounds,
the first term (main term) of the r.h.s. of Eq. (A.13) does not
give rise to multiplicative errors (or correlation of dp with sp).
Similarly, the corrective term proportional to δsaa

t + ∆n, mul-
tiplied by s, gives terms which contain an odd power of s and
an odd power of n, and does not give rise to correlations. This
assumption is correct, to excellent accuracy, when the signal of
interest is CMB anisotropies10. We are left with:

E(spdp) = E

⎛⎜⎜⎜⎜⎜⎜⎝
∑

q

sp sq

Np

[
a

tR−1
x np

] [
a

tR−1
x (nqa

t + an
t
q)R−1

x a

]

[
atR−1

x a
]2

⎞⎟⎟⎟⎟⎟⎟⎠

−E

⎛⎜⎜⎜⎜⎜⎜⎝
∑

q

sp sq

Np

a
tR−1

x (nqa
t + an

t
q)R−1

x np

atR−1
x a

⎞⎟⎟⎟⎟⎟⎟⎠ · (A.22)

9 We warn the reader that some authors fail to make a clear distinction
between the statistical (ensemble average) correlation, which is a deter-
ministic quantity, and the “empirical correlations” computed, assuming
some kind of ergodicity, as averages over finite sets of samples as in
Eq. (A.3).
10 Certainly the CMB is not correlated to galactic components. Small
correlations with large scale structure, and hence with SZ effect and
emission from outer galaxies, may exist because of the integrated
Sachs-Wolfe effect. We neglect this effect in the present discussion.

Multiplying the numerator and denominator of the second term
by a

tR−1
x a and expanding numerators, two terms cancel and two

remain. If we assume in addition that signal and/or noise coef-
ficients are independent, i.e. E(spsq) = σ2

sδqp and/or E(npn
t
q) =

Rnδqp, only the pp term is non vanishing, and we get

E(spdp)=
σ2

s

Np

⎛⎜⎜⎜⎜⎜⎜⎝
E
(
(a

tR−1
x np)2

)
− (a

tR−1
x a) E

(
n

t
pR−1

x np

)

[
atR−1

x a
]

⎞⎟⎟⎟⎟⎟⎟⎠ · (A.23)

We compute

E

((
a

tR−1
x np

)2)
= a

tR−1
x RnR−1

x a

= a
tR−1

x

[
Rx − σ

2
s aa

t
]
R−1

x a

=
[
a

tR−1
x a

] [
1 − σ2

s a
tR−1

x a

]
(A.24)

and

E
(
n

t
pR−1

x np

)
= Tr

(
R−1

x Rn

)

= Tr
(
R−1

x

[
Rx − σ

2
s aa

t
])

= Tr (Id) − σ2
s Tr
(
R−1

x aa
t
)

= m − σ2
s

(
a

tR−1
x a

)
(A.25)

where m is the number of channels used for the ILC (here, 5
WMAP channels + 1 IRIS map, for a total of 6). Substituting
the results of Eqs. (A.24) and (A.25) into Eq. (A.23), we get the
simple final result:

E(spdp) =
σ2

s(1 − m)

Np

· (A.26)

The error in the reconstructed CMB map comprises a term pro-
portional (on average) to the CMB. In our application, m = 6
and Np = 1024, so that if indeed all needlet coefficients were
independent, the amplitude of the effect should be E(spdp) ≃

5 × 10−3σ2
s , i.e. a bias of about half a percent in the CMB

reconstruction.

A.2. A geometric interpretation

Although allowing the statistical derivation of the (anti-) correla-
tion of the reconstruction error with the original CMB, the above
derivation is not very illuminating about the mechanism giving
rise to this CMB power loss. A geometrical reasoning gives bet-
ter insight into what is actually going on.

For a given data set, the ILC works on one single realisa-
tion of all random fields. For an independent implementation of
the ILC on Np pixels (or modes, or needlet coefficients) of the
observations, each data set is represented by a vector in an Np-
dimensional vector space W. The CMB s, the observation xi for
each channel i, and each of the noise realisations ni (including
foreground emissions) are elements of W.

The collection of vectors ni defines an m-dimensional sub-
space V of W. This is true irrespective of the nature of the fore-
ground contaminants: indeed, although in principle vectors ni

could be linearly dependent, this happens in practice with van-
ishing probability (in particular if the observations are noisy).

Vector space W can thus be decomposed in two orthogonal
subspaces, U and V , where V is the m-dimensional sub-space
spanned by all vectors ni, and U = V⊥ is a (Np −m) dimensional
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K

S (dim.=m-1)

V (dim.=m)

U (dim.=N
p
-m)

True CMB
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Output CMB
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Fig. A.1. Geometric illustration of the ILC bias. The true CMB (blue)
and the output CMB (red) are elements of W = U ⊕ V . The differ-
ence between the two can be decomposed into the sum of two elements
of V : a bias (green), which is an element of K, and a noise contribution
(black), which is an element of H, the orthogonal of K in V .

vector space. The CMB itself can be decomposed into two com-
ponents, one in U, and one in V:

s = sU + sV (A.27)

where sU is the orthogonal projection of s onto U, and sV its
orthogonal projection onto V .

What happens when the ILC is made is the following: we
look for weights wi for all channels, that minimise the variance
of the reconstructed map, i.e. minimise the norm of vector ŝ =∑

i wixi, under the constraint that
∑

i wi = 1. We have:

ŝ = sU +

⎛⎜⎜⎜⎜⎜⎝sV +
∑

i

wini

⎞⎟⎟⎟⎟⎟⎠

= ŝU + ŝV (A.28)

where the first term is a vector of U and the second term a vector
of V , and the second line of the equation defines ŝU and ŝV . Since
these two subspaces of W are orthogonal, the norm of ŝ is the
sum of the norms of the two vectors ŝU and ŝV . The norm of ŝ

thus depends on wi only through the norm of the projection of ŝ

on subspace V .
The noise contribution to ŝ appears as a linear combination

of vectors ni. For varying values of wi such that
∑

i wi = 1,
this linear combination spans an affine subspace S of V . S is
of dimension m − 1 (an hyperplane). Defining K as the vector
subspace of V spanned by linear combinations

∑
i wixi such that∑

i wi = 0, we obtain S as:

S = p+ K (A.29)

where p is any element of S .
We note that the vector subspace K depends only on noise

realisations, and not on s nor on the final ILC weights (the lat-
ter only defining a single point on S – and on K by orthogonal
projection). Hence, the direction of the one-dimensional vector
subspace H of V orthogonal to K is also independent of s and of
the final ILC weights.

For any element ŝV = sV +
∑

i wini of affine space S the norm
of ŝV is the sum of the norms of its projections onto K and H.
Allowing weights wi to vary, vector ŝV spans S , and hence only
the norm of the projection of ŝV onto K varies (and not its pro-
jection on H). The minimum is reached when the projection of
of ŝV onto K vanishes. When this happens, the ILC has cancelled
completely the linear combination of projections of s and ni onto
the m − 1-dimensional space K, and left untouched the projec-
tions of s and ni onto the Np − m + 1 dimensional vector space
U ⊕ H.

Assuming the CMB to be Gaussian and statistically
isotropic, its coefficients in any orthogonal basis are Gaussian
distributed random variables with varianceσ2/Np (since the sum

must have total variance σ2). It follows straightforwardly that
the correlation of the recovered CMB map with the input CMB
map is (Np − m + 1)/Np, and that the “bias” is due to the loss
of m − 1 modes of the original CMB, which have been unlucky
enough to “live” in the (m − 1) dimensional space K.

A.3. Comment on coefficient independence

The above derivation in Sect. A.1 assumes the independence of
coefficients np and/or of coefficients sp, i.e. E(np n

t
q) = Rnδqp

and/or E(spsq) = σ2
sδqp. When this assumption does not hold,

we have:

E(spdp) =
1

Np

∑

q

E

(
sp sq

(a
tR−1

x np)(a
tR−1

x nq)
[
atR−1

x a
]

)

−
1

Np

∑

q

E
(
sp sq

(
n

t
pR−1

x nq

))
. (A.30)

Assuming that the noise and the CMB are independent, we have:

E(spdp) =
1

Np

∑

q

E
(
sp sq

) E
(
(a

tR−1
x np)(a

tR−1
x nq)

)

[
atR−1

x a
]

−
1

Np

∑

q

E
(
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)
E
(
n

t
pR−1

x nq

)
(A.31)

where

E
(
(a

tR−1
x np)(a

tR−1
x nq)

)
= a

tR−1
x E
(
npn

t
q

)
R−1

x a (A.32)

and

E
(
n

t
pR−1

x nq

)
= Tr
(
R−1

x E
(
npn

t
q

))
. (A.33)

When p and q index needlet coefficients as in the present work,
we have:

E
(
sp sq

)
=
∑

ℓ

2ℓ + 1

Ntot

h2
ℓCℓPℓ(cos θqp) (A.34)

where sp and sq are needlet coefficients of the CMB map, eval-
uated at two different points p and q, Cℓ is the angular power
spectrum of the CMB, θqp is the angle between q and p, and
Ntot is the total number of pixels of the needlet coefficient map.
For noise maps (including foreground emissions), which are not
stationary Gaussian random fields on the sphere, the analogous
formula is just an approximation, which can be written as:

E
(
npn

t
q

)
≃
∑

ℓ

2ℓ + 1

Ntot

h2
ℓ Rn(ℓ) Pℓ(cos θqp) (A.35)

where np and nq are needlet coefficients of all noise maps, eval-
uated at two different points p and q, Rn(ℓ) is the covariance of
the noise needlet coefficients (an m × m matrix for each ℓ), and
θqp and Ntot are defined as above.

Assuming that neither the noise level nor the CMB power
vary much over the spectral window hℓ, Rn(ℓ) and Cℓ are ap-
proximately independent of ℓ, and can be taken out of the inte-
gral. We get:

E
(
sp sq

)
= Cℓ k(θqp) (A.36)
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and

E
(
npn

t
q

)
= Rn k(θqp) (A.37)

with

k(θqp) =
∑

ℓ

2ℓ + 1

Ntot

h2
ℓPℓ(cos θqp). (A.38)

Hence, plugging this result, together with Eqs. (A.32)
and (A.33), into Eq. (A.31) we get:

E(spdp) =
(1 − m)

Np

Cℓ

∑

q

k2(θqp). (A.39)

Finally, noting that σ2
s = Cℓk(0), we get

E(spdp) =
(1 − m)

Np

σ2
s

k(0)

∑

q

k2(θqp). (A.40)

Equation (A.40) is the same as Eq. (A.26), except for a coeffi-
cient, which measures the correlation between signal and noise
coefficients p and coefficients q in domain D. In particular, the
result is, again, independent of Rn.

Hence, we define an effective number of modes, Neff
p = Np/α,

where

α =

∑
q k2(θqp)

k(0)
(A.41)

and we get

E(dpsp) =
σ2

p(1 − m)

Neff
p

· (A.42)

An approximation (and upper bound) for α is easily obtained in
the special case where hℓ is a square spectral window, and when
domainsD over which the ILC is implemented are small regions
of the sky, so that h2

ℓ
= 1, and Pℓ(cos θqp) ≃ 1. In this case, we

have:

k(θqp) ≃
1

Ntot

(
(ℓmax + 1)2 − ℓ2min

)
(A.43)

and we have

Neff
p ≃

Np

Ntot

(
(ℓmax + 1)2 − ℓ2min

)
. (A.44)

We note that
(
(ℓmax + 1)2 − ℓ2

min

)
simply is the number of har-

monic coefficients selected by the spectral window hℓ, and that
Np/Ntot = fsky is a coefficient which takes into account the effect
of partial sky coverage for the (local) calculation of the statis-
tics of the data set, well in line with Neff

p being understood as an
effective number of modes.
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