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Abstract: The propagation of pulses through waveguides with sub-

wavelength features, inhomogeneous transverse structure, and high

index contrast cannot be described accurately using existing models in

the presence of nonlinear effects. Here we report the development of

a generalised full vectorial model of nonlinear pulse propagation and

demonstrate that, unlike the standard pulse propagation formulation, the

z-component of guided modes plays a key role for these new structures,

and results in generalised definitions of the nonlinear coefficient γ, Ae f f ,

and mode orthognality. While new definitions reduce to standard definitions

in some limits, significant differences are predicted, including a factor of

∼ 2 higher value for γ, for emerging waveguides and microstructured fibers.
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1. Introduction

Nonlinear optical processes in optical fibers and waveguides have attracted significant interest

because of the unique environment that they provide for nonlinear interactions, including tight

confinement (high intensity), long interaction lengths, and control of propagation constants

(see [1-3] and references therein). Recent and rapid progress in design and manufacturing of

complex structured microstructured fibers and planar waveguides with subwavelength features

(including both subwavelength inclusions and voids) has further extended the opportunities

for guided-wave nonlinear optics and nonlinear devices by enabling extreme nonlinearity to

combine with tailorable chromatic dispersion [1-4].

The nonlinear optical phenomena that occur in waveguides are determined through two main

factors; the linear and nonlinear properties of the constituent bulk materials, and the optical

properties of the waveguide. Two recent advances, as indicated below, have provided great

potential to accelerate the field of guided-wave nonlinear optics: 1) the design and fabrication of

complex structured waveguides with high contrast linear refractive indices and inhomogeneous

cross sections, especially through postprocessing techniques. 2) the design and fabrication of

waveguides with subwavelength features have opened up extensive opportunities for tailoring

the nonlinear processes in waveguides.

While the characterisation of the nonlinear properties of bulk materials is indeed a rich and

established field, the possibility of using postprocessing techniques to fill or coat complex struc-

tured waveguides with highly nonlinear materials has provided extended flexibilities in tailor-

ing the nonlinear effects in waveguides and hence has opened new horizons for applications of

nonlinear optical phenomena. The propagation of guided modes in waveguides with inhomoge-

neous cross sections are affected by their structure both directly, through the linear part of the

refractive index which determines the modal characteristics, and indirectly, since the waveguide

modes, under propagation through the structure, experience different losses, nonlinearity etc.

Examples of such structures include liquid-filled [5-8] , gas-filled [9-13] , silicon nanocrystals-

filled [14], atomic vapor-filled [15-18] , or surface-functionalised recently attracted significant

interest, both in planar waveguides, [3, 20-29] and fibers [30-33]. For such waveguides, it has
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been shown that a high intensity layer forms at the low refractive index side of the interface

between two dielectric media due to the discontinuity of the normal component of the electric

field. The intensity enhancement is proportional to the refractive index contrast of the two me-

dia. For the case of subwavelength voids in dielectrics, the enhanced intensity region forms at

the surface of the void in the air side and extends over the whole void region since negligible

evanescent decay of the field can occur within a subwavelength void. This key characteristic

of the subwavelength features, when deployed within high intensity regions within the mode

cross-section, can be used to achieve arbitrary distributions of high-intensity regions within

waveguides, see for example [33]. We refer to this new class of optical waveguide, with high

index contrast, inhomogeneous and complex structure, or subwavelength features, as ’Emerg-

ing waveguides’ throughout this document.

Despite the importance and growing interest, applications, and publications in the field of

nonlinear processes in these emerging waveguides, linear and nonlinear pulse propagation mod-

els for these structures still mainly rely on the well-known scalar Helmholtz equation [1, 25,

27, 28, 34-42]. This equation is based on the weak guidance approximation, and assumes that

the waveguide cross-section is homogeneous structure. However, even a cursory inspection of

the key characteristics of these emerging waveguides (i.e. inhomogeneous, high index contrast

transverse structure incorporating subwavelength features) reveals that these waveguides oper-

ate far from the weak guidance regime. Indeed, one can argue that the emerging waveguides

considered here exhibit strong guidance. For example, it is observed that no Helmholtz wave

equation can be obtained for the emerging waveguides since ∇ .D = 0 in Maxwell’s equation

does not result in ∇ .E = 0 because of the inhomogeneous nature of susceptibility tensor ε(x,y)
[4]. Also, it has been pointed out that for subwavelength structures, such as optical nanowires,

pulse propagation based on scalar theory does not give a good approximation [37].

There have been some reports of new models of nonlinear pulse propagation that take into

account the inhomogeneous and vectorial solutions of Maxwell’s equations [4, 43-47]. How-

ever, [4, 43, 44, 45, 47] ignored the contribution due to the coupling between different modes

including the two polarisations of one mode (in the case of single mode waveguides), which as

we will show later, is a key characteristic of linear and nonlinear pulse propagation when the

full vectorial solutions of Maxwell’s equations are considered. In fact, we demonstrate here for

the first time that there are parameter regimes for which this modal coupling makes a signifi-

cant contribution to both the predicted nonlinear and dispersive effects. Also, in some reports,

[43, 44, 46], no consideration is given to the possibility of using an inhomogeneous cross-

section which, as mentioned above, is a key feature of emerging waveguides. In addition, one

vital aspect of the vectorial formulation of nonlinear pulse propagation is the impact of the lon-

gitudinal component of the modal fields [the component along the propagation direction, (z)]

on the dispersion, nonlinear, and modal/polarisation coupling behaviour of a pulse propagating

through an emerging waveguides. This has not been fully investigated to date, to the best of

our knowledge, although [47] recognises the contribution of the longitudinal component of the

electric field to the effective nonlinearity of a waveguide γ. One reason why the z-component

of the fields has not been considered before, especially in studies that report high nonlinearity

in waveguides e.g., [4, 48], could be the fact that for slot waveguides TE modes, for which the

z-component of the electric field is zero, have higher nonlinearity than those of TM modes.

Here a general vectorially-based Nonlinear Schrödinger Equation (VNSE), is derived for

pulse propagation through waveguides with complex transverse structure including inhomoge-

neous refractive index profiles and subwavelength features. We demonstrate that in the strong

guidance regime, the propagating modes have significant components along the direction of

propagation, which causes the propagating modes to be non-transverse. As a result, this for-

malism predicts that a range of new tempo-spatial effects should be observable within emerging
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waveguides, such as dispersion-induced depolarisation.

Based on this VNSE, we derive a new and generalized equation for the Ae f f , the parame-

ter that defines the effective mode area, and γ, the parameter commonly used to describe the

effective nonlinearity of an optical fiber [42]. These new definitions take into account both an

inhomogeneous refractive index profile and subwavelength features. We apply these definitions

to nanowires, and show that in some regimes, the value of γ can be a factor of two higher than

that obtained using the standard definition. We provide an analysis of the value of γ predicted

by this new generalised model. The new model also predicts new coupling terms between dif-

ferent modes or polarisations of propagating modes, which are due to non-transverse nature of

the modes. Some preliminary results of the concept of the new model was presented in [49].

Here, we present the extension of our theoretical model and detailed results. We develop the

theory of vectorially-based Nonlinear Schrödinger Equation (VNSE) in Sections 2, in which

we derive new definitions for γ, Ae f f , and mode orthogonality. We apply the new model to step

index cylindrical waveguides and analyse and compare the results of the new model with those

of the standard model in section 3. Concluding remarks are given in Section 4.

2. Theory

We start with Maxwell’s equations for electric, magnetic and induced polarization fields, Ẽ, H̃,
and P̃ in the Fourier domain as

∇ × Ẽ(r,ω) = iµ0ωH̃(r,ω) (1)

∇ × H̃(r,ω) = −iε0ωẼ(r,ω)− iωP̃(r,ω), (2)

where the Fourier transformation is given by

F(r,t) =
1

2π

∫
F̃(r,ω)e−iωtdω, (3)

and F = E, H, or P. By considering a perturbative expansion P̃(r,ω) = ∑∞
n=1 P̃(n)(r,ω),

where (n) represent the order of induced polarization, P̃(1)(r,ω) = ε0χ (1)(−ω;ω)Ẽ(r,ω), and

P̃NL(r,ω) = ∑∞
n=2 P̃(n)(r,ω) in which the second rank tensor χ (1)(−ω;ω) is assumed to be a

scalar and related to refractive index n through n2(r,ω) = 1 + χ (1)(−ω;ω), we find

∇ × Ẽ(r,ω) = iµ0ωH̃(r,ω) (4)

∇ × H̃(r,ω) = −iε0n2(r,ω)Ẽ(r,ω)− iωP̃NL(r,ω). (5)

Next we consider Eqs. (4) and (5) for two sets of fields; unperturbed fields Ẽ0(r,ω0) and

H̃0(r,ω0), which represent the electromagnetic fields of narrowband pulses at frequency ω0

for which the dispersion, loss, and nonlinearity terms are zero, and perturbed fields Ẽ(r,ω) and

H̃(r,ω), representing electromagnetic fields of frequency ω associated with wideband pulses

centred at ω0, where the dispersion, loss and nonlinearity terms are nonzero. Vectorial solu-

tions of Maxwell’s equation for the unperturbed fields results in a complete orthonormal set of

forward, backward and radiation propagating modes (labeled µ) with the propagating constants

of βµ (evaluated at ω0) and forward modal fields of; [50]

êν =
eν (x,y,ω0)√

Nν
eiβν z (6)

ĥν =
hν (x,y,ω0)√

Nν
eiβν z, (7)
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where
∫

eµ(x,y,ω)×h∗
ν (x,y,ω).ẑdA = Nµδµν (8)

Nµ =
1

2

∣∣∣∣
∫

eµ(x,y,ω)×h∗
µ(x,y,ω).ẑdA

∣∣∣∣ .

The propagation constant βν (ω0) and modal field distributions, eν (x,y,ω0) and hν (x,y,ω0),
of propagating modes of a waveguide, in general, can be obtained through various numeri-

cal methods including Finite Element methods [51], the Multipole Method [52, 53], etc. Our

formalism, similar to those reported in Refs. [43, 45], is based on constructing a function FC

defined as

FC = Ẽ0 × H̃∗+ Ẽ∗× H̃0,

and using the reciprocal theorem [50]

∂
∂ z

∫
FC.ẑdA =

∫
∇ .FCdA, (9)

to relate the perturbed and unperturbed fields. Using Eqs. (4) and (5) for perturbed and unper-

turbed fields, we find [50]

∇ ·FC = −iµ0(ω−ω0)H̃
∗.H̃0 − iε0[ωn2(r,ω)−ω0n2(r,ω0)]Ẽ

∗.Ẽ0 + iωẼ0.P̃
∗
NL(r,ω). (10)

Next we expand the perturbed fields Ẽ and H̃ according to the orthonormal and complete modal

set of forward, backward, and radiation modes of the unperturbed field as [50]:

Ẽ(r,ω) = ∑
µ

ã′µ(z,ω)
eµ(x,y,ω0)√

Nµ
eiβµ z + ã′−µ(z,ω)

e−µ(x,y,ω0)√
N−µ

e−iβµ z + Radiation Modes,

(11)

H̃(r,ω) = ∑
µ

ã′µ(z,ω)
hµ(x,y,ω0)√

Nµ
eiβµ z + ã′−µ(z,ω)

h−µ(x,y,ω0)√
N−µ

e−iβµ z + Radiation Modes.

(12)

Here index −µ refers to backward propagating modes and both forward and backward modes

are orthogonal to radiation modes. Here, we only consider unidirectional pulse propagation for

which we neglect the back scattering of a forward propagating laser beam and the nonlinearity

associated with it [43, 54]. This is not strictly true, especially for nonlinear and coupling pro-

cesses where counter-propagating fields exist in the fiber. It can be shown that the backscattered

field affects the overall nonlinearity for the forward modes but we leave the full investigation

of this effect to future publications. Therefore, we only consider the first term in Eqs. (11) and

(12) for expanding perturbed fields and hence ignore the coupling between the unperturbed

field with the backward and radiation modes of the perturbed field. This will be discussed fur-

ther later in this section. Unlike other reports that consider the modal expansion only for the

nonlinear term [4, 43, 45], we consider the modal expansion in Eqs. (11) and (12) for both

dispersion and nonlinear effects. A direct consequence of the modal expansion in Eqs. (11) and

(12) is the contributions due to the coupling of different modes (or the two polarisations of one

mode in single mode waveguides) in the pulse propagation equation, which has not been con-

sidered in [4, 43, 44, 45, 47]. It should also be noted that the frequency dependence of perturbed

fields is totally contained within the coefficients ã′µ(z,ω). Assuming that the unperturbed fields
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Ẽ0(r,ω) and H̃0(r,ω) are one of the propagating modes (e.g., mode ν ) of unperturbed case i.e.,

Ẽ0(r,ω0) =
eν (x,y,ω0)√

Nν
eiβν z (13)

H̃0(r,ω0) =
hν (x,y,ω0)√

Nν
eiβν z, (14)

results in

∂
∂ z

ã′ν(z,ω) =
1

4
∑
µ

[Aνµ + Bνµ ]ã′µ −
iωe−iβν z

4
√

Nν

∫
e∗ν .P̃NL(r,ω)dA. (15)

Here,

Aνµ =
iµ0e−i(βν−βµ )z

√
Nν Nµ

(ω−ω0)

∫
hµ .h∗

ν dA (16)

Bνµ =
−iε0e−i(βν−βµ )z

√
Nν Nµ

∫
[ωn2(x,y,ω)−ω0n2(x,y,ω0)]eµ .e∗ν dA. (17)

Eq. (15) is a general first order differential equation that describes the propagation of ampli-

tudes of the coupling coefficient of the perturbed field based on unperturbed one. This equation

is similar to those reported in Refs. [43, 46], except that the dispersion terms in Eq. (15) include

the coupling between different modes.

Although, ã′νs are the coefficients of the perturbed fields, Eq. (15) is exact in the sense that

no perturbation has been considered for dispersion and nonlinearity and hence this equation

can be applied to describe, in general, any nonlinear or dispersion-based processes in an optical

waveguide. The first and the second terms on the right hand side of the equation represent

the dispersion and nonlinearity, respectively. Next, we perform a Taylor series expansion for

the dispersion term in Eq. (15), around ω0. Depending on the bandwidth of the pulse around

ω0, higher orders in the Taylor series can be considered to achieve better approximation for

dispersion terms. For some cases, such as supercontinuum generation where extra wideband

pulses propagating along the waveguide, however, it may be more appropriate to work with Eq.

(15) directly. We separate the sum over the modes in Eq. (15) into self and cross terms to find;

∂
∂ z

ã′ν(z,ω) = i
∞

∑
n=1

(∆ω)n

n!
β (n)

ν ã′ν + i ∑
µ 6=ν

∑
n

(∆ω)n

n!
β (n)

νµ ã′µ (18)

− iωe−iβν z

4
√

Nν

∫
e∗ν .P̃′

NL(r,ω)dA

where

β (1)
ν =

1

4Nν

∫ [
µ0 |hν |2 + ε0

∂
∂ω

(ωn2)|ω=ω0
|eν |2

]
dA (19)

β (n)
ν =

∂ n

∂ωn β1
ν (20)

β (1)
νµ =

e−i(βν−βµ )z

4
√

Nν Nµ

∫ [
µ0hµ .h∗

ν + ε0
∂

∂ω
(ωn2)|ω=ω0

eµ .e∗ν

]
dA (21)

β (n)
νµ =

∂ n

∂ωn β1
νµ . (22)
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Here, to avoid confusion, superscripts (1) and (n) correspond to the first and higher order

dispersion of the propagating modes, respectively, and subscripts µ label the mode number. It

is straightforward to show that β (1)
ν in Eq. (19) is in fact β (1)

ν = 1/Vg where Vg is the group

velocity as given in [50]. One important aspect of Eq. (18), which has not been reported before,

is the existence of cross dispersive terms β (1)
νµ , Eq. (21), and their derivatives, Eq. (22). Such

terms can only become significant if they are phase matched, i.e., βν = βµ , otherwise fast

oscillations of the e−i(βν−βµ )z average to a negligible value.

Equations (21) and (22) result in a new process when the µ and ν refer to the two polar-

isations of 1 and 2 of one mode. It is well known that waveguides with three or higher-fold

symmetries are not birefringent [55] i.e., for these waveguides β1 = β2. In this case, the phase

terms in Eqs. (21) and (22) are equal to unity and hence do not average to a negligible value

as in the non phase matched case. The cross dispersive terms, β (1)
12 and β (n)

12 in Eqs. (21) and

(22) are basically modifications to the group velocity β (1)
1 and higher order dispersion terms

β (n)
1 of the polarisation 1. They have non-zero values which, as it will be shown later, is mainly

due to the fact that in the strong guidance regime the dot product of the two polarisations of

one mode i.e., e1.e
∗
2 and h1.h

∗
2 are non-zero because of strong z-component of the fields which

results in non-transversality of the modes. This key finding is discussed in more detail later

in this section. The physical consequence of this is dispersion-induced depolarisation of the

guided mode, i.e., a polarised guided mode depolarises even if the incident beam is initially

coupled perfectly to one of the polarisation axes of the waveguide. For instance, assuming that

the incident beam is perfectly launched along the polarisation 1, then it can be deduced from

Eq. (18) that the amplitude of the field along the polarisation 2, i.e., ã′2 inside the fibre grows

through ∑n
(∆ω)n

n!
β (n)

21 ã′1.

Next, we develop the time domain equivalent of Eq. (18). We multiply both sides of Eq. (18)

by e−i(ω−ω0)t , integrate with respect to ω, consider the following definitions

a′ν(z,t) ≡ 1/2
[
aν(z,t)e−iω0t + c.c

]

P′
NL(r,t) = 1/2

[
PNL(z,t)e

−iω0t + c.c
]
,

where a′ν (z,t) and P′
NL(r,t) are the inverse Fourier transforms of ã′ν (z,ω) and P̃′

NL(r,ω), re-

spectively, to find

∂
∂ z

aν (z,t) = i
∞

∑
n=1

(i∂/∂ t)n

n!
β (n)

ν aν + i ∑
µ 6=ν

∞

∑
n=1

(i∂/∂ t)n

n!
β (n)

νµ aµ (23)

− iω0
e−iβν z

4
√

Nν
(1 + τshock∂/∂ t)

∫
e∗ν .PNL(r,t)dA,

where τshock = i/ω0. Equation (23) is a general equation that describes the nonlinear pulse

propagation in the time domain. The first two terms on the right hand side of this equation

describe the dispersion of a pulse propagating through a waveguide. The last term includes all

the nonlinear effects and considers a shock term of (1 + τshock∂/∂ t) which is responsible for

self phase modulation and self steeping of the pulse. This term, in various forms, has been

considered in many publications [34, 38, 40, 55-61].

A few points should be noted here about the shock term: 1) similar to [43], it is naturally

derived through the (∂/∂ t)PNL in the Maxwell’s equations without any approximation of a

second order time derivative in the scalar wave equation (Helmholtz equation) which is usually

used to describe the nonlinear pulse propagation [34, 55-57]. 2) The whole frequency depen-

dence of the perturbed field is inherently included through the expansions Eq. (11) and (12)
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and is contained completely within ã′2 coefficients. Thus there is no need to include the fre-

quency dependence of the propagating modes in the shock term, through Ae f f , as has been

done in Refs. [34, 38, 42, 56, 57]. 3) There is no dispersive term associated with χ (3), i.e.,

(∂/∂ω)χ (3) = 0 since assuming a delta function form for the response function of Kerr non-

linearity results in frequency independence of χ (3). For the nonlinear term in Eq. (23), since

χ (2) = 0 for isotropic medium such as glasses, we only consider the third order Kerr nonlin-

earity for which we approximate PNL(r,t) ≈ P(3)(r,t) and assume that the nonlinear response

function can be expressed in terms of delta functions and hence P(3)(r,t), for Kerr nonlinearity,

can be written as [63]

P(3)(r,t) = (3/4)ε0χ (3)(−ω0;ω0,ω0,−ω0)|E(r,t)E(r,t)E∗(r,t), (24)

where χ (3) is a rank four tensor and | indicates tensorial multiplication. Other third order

nonlinear effects such as Raman scattering, for which the response function is not an in-

stantaneous function of time will be a subject of future publications. Also it is assumed that

PNL(r,t) ≈ P(3)(r,t) is a small perturbation compared to the linear induced polarisataion

PL = ε0χ (1)(−ω;ω)Ẽ(r,ω), and higher order nonlinear effects are negligible. This is usually a

valid approximation at low intensity fields and typical optical glasses due to their relatively low

nonlinear properties. However, for some materials such as semiconductor-doped glasses [63-

67] and some organic materials such as paratoloune sulphonate (PTS) [65, 68] optical processes

based on higher order nonlinearity can be observed, due to their higher order nonlinear suscep-

tibilities, at moderate pulse intensity. For such materials, higher order terms must be considered

in the nonlinear polarisation field P̃NL(r,ω) = ∑∞
n=2 P̃(n)(r,ω).

The components of χ (3) depends on the class symmetry of the crystal. Silica glasses have

isotropic crystal structure [42] and silicon crystal, which is usually used in waveguides, have

m3m point-group symmetry [1]. For isotropic materials, it can be shown that among 81 ele-

ments of χ (3)
i jkl (i, j,k, l = x,y,z) only 21 are nonzero, which depend on only three independent

quantities [69] i.e.;

χ (3)
i jkl = χ (3)

xxyyδi jδkl + χ (3)
xyxyδikδjl + χ (3)

xyyxδilδjk, (25)

where

χxxxx = χyyyy = χzzzz = χ (3)
xxyy + χ (3)

xyxy + χ (3)
xyyx. (26)

Considering Eqs. (25), Eq. (24) can be written as;

P(3)
i (r,t) = (3/4)ε0

[

∑
j

χ (3)
xxyy

∣∣E j
∣∣2

Ei +∑
j

χ (3)
xyxy

∣∣E j
∣∣2

Ei +∑
j

χ (3)
xyyx(E j)

2E∗
i

]
, (27)

where i and j refer to x,y,z. For Kerr nonlinearity with the choice of frequencies in Eq. (24), i.e.,

χ (3)(−ω0;ω0,ω0,−ω0), the condition of permutation symmetry requires that χ (3)
xxyy = χ (3)

xyxy. The

magnitude of the terms in the right hand side of Eq. (26) depends on the origin of the nonlinear

term. In the case of silica and other glasses they are mainly nonresonant electronic origins for

which χ (3)
xyxy ≈ χ (3)

xyyx [42, 69] and hence Eq. (27) can be simplified to

P(3)(r,t) = (1/2)ε0χ (3)
xxxx [(E.E∗)E+(1/2)(E.E)E∗] . (28)

For silicon, however, the third order nonlinearity can be expressed based on four independent

values as

χ (3)
i jkl = χ (3)

xxyyδi jδkl + χ (3)
xyxyδikδjl + χ (3)

xyyxδilδjk + χdδi jkl, (29)

where χd ≡ χxxxx − χxxyy − χxyxy − χxyyx represent the nonlinearity isotropy. Similar to Silica,

for the choice of frequencies in the third order susceptibility and photon energies h̄ω well above
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Eg χxxyy(−ω;ω,−ω,ω) = χxyyx(−ω;ω,−ω,ω)≈ χxyxy(−ω;ω,−ω,ω) [1]. As a result, χi jkl

becomes

χ (3)
i jkl = χxxxx[

ρ
3

(δi jδkl +δikδjl +δilδjk)+ (1−ρ)δi jkl],

where ρ ≡ 3χxxyy/χxxxx characterizes the nonlinear anisotropy and its value in the telecom band

is real and close to 1.27 [1]. Using this, Eq. (24) can be written for silicon as

P(3)(r,t) = (ρ/2)ε0χ (3)
xxxx[(E.E∗)E+(1/2)(E.E)E∗]+(3/4)ε0(1−ρ)χ (3)

xxxxE.E.E∗, (30)

where E.E.E∗ ≡∑i EiEiE∗
i vi (vi is a Cartesian unit vector). It should be mentioned that in Eq.

(18) there is no reference to any particular Cartesian system of coordinates. It is only assumed

that the waveguide is translationaly invariant along the z direction. Inspection of Eq. (18) re-

veals that all the vector quantities appear as scalar-product terms and hence are invariant under

rotation of the system of coordinate. Hence, Eq. (18) can in general be employed for any sys-

tem of coordinate regardless if it is aligned along the crystallographic or principal axes of the

waveguide. In the view of this, the nonlinear contribution in Eq. (18), i.e., e∗ν .PNL(r,t), which

is a scalar, can be written in any system of coordinate, i.e. e∗ν .PNL(r,t) = e
′∗
ν .P

′
NL(r,t), where

′

indicates a rotated system of coordinate. The rotated nonlinear polarisation P
′
NL(r,t) is related

to the electric fields E
′
through the rank 4 tensor χ ′(3)

i jkl , which is related to χ (3)
i jkl by 4 rotation

matrices [1]. χ (3)
i jkl in Eq. (29) has isotropic, the first three terms, and anisotropic parts, the last

term. While the isotropic parts are invariant under rotation, i.e., their values don’t change, the

anisotropic part changes under rotation [1].

Within the rest of this paper we ignore the last term of Eq. (30), which in fact affects

the polarization dependence of nonlinear phenomena inside silicon waveguides, and thus Eq.

(30) becomes the same as Eq. (28) except for the factor ρ. Considering the expansion in

Eq. (11) and using Eq. (28) we can evaluate the integrand in the last term of Eq. (23), i.e.,

(1/
√

Nν )e−iβν ze∗ν .PNL(r,t) as;

(1/
√

Nν )e−iβν ze∗ν .PNL(r,t) = (1/2)ε0χ (3)
xxxx ∑

µ,η ,ζ
(31)

[(1/
√

Nµ Nη Nζ Nν )aµa∗η aζ (eµ .e∗η )(e∗ν .eζ )e−i(βν−βµ+βη−βζ )z

+(1/2
√

NµNη Nζ Nν )aµaη a∗ζ (eµ .eη )(e∗ν .e∗ζ )e−i(βν−βµ−βη +βζ )z]

where, Greek indices µ ,ν ,η ,ζ represent different modes of the waveguide. The terms on the

right hand side of this equation, once integrated over the waveguide cross section, are overlap

integrals representing how different propagating modes of the fiber couple to each other through

the nonlinearity. Equation (31) can be expanded as sum of terms with and without phase terms
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as:

(1/
√

Nν )e−iβν ze∗ν .PNL(r,t) = (3/4)ε0χ (3)
xxxx × (32)

{( |aν |2 aν
3N2

ν
)
[
2 |eν |4 +

∣∣e2
ν
∣∣2

]

+ ∑
µ 6=ν

(
2aν

∣∣aµ
∣∣2

3
√

N2
ν N2

µ

)
[∣∣eν .e∗µ

∣∣2
+

∣∣eν .eµ
∣∣2

+ |eν |2
∣∣eµ

∣∣2
]

+ ∑
µ 6=ν

(
a∗µa2

ν

3

√
N3

ν Nµ

)
[
2 |eν |2 (e∗µ .eν )+ (eν)2(e∗µ .e∗ν )

]
e−i(βµ−βν )z

+ ∑
µ 6=ν

(
2aµ |aν |2

3

√
N3

ν Nµ

)
[
2 |eν |2 (eµ .e∗ν )+ (e∗ν)2(eµ .eν )

]
e−i(βν−βµ )z

+ ∑
µ 6=ν

(

∣∣aµ
∣∣2

aµ

3

√
N3

µ Nν

)
[
2
∣∣eµ

∣∣2
(eµ .e∗ν )+ (eµ)2(e∗µ .e∗ν )

]
e−i(βν−βµ )z

+ ∑
µ 6=ν

(
a2

µa∗ν

3
√

N2
ν N2

µ

)
[
2(eµ .e∗ν )2 +(eµ)2(eν )2

]
e−2i(βν−βµ )z

+ ∑
µ 6=η 6=ζ 6=ν

other phase terms}.

The first two terms on the right hand side of Eq. (32) are automatically phase matched while

the rest of the terms require phase matching in order to make significant contributions. The

phase terms are responsible for nonlinear-induced depolarisation or four-wave-mixing [42].

They can be phased match, depending on ∆βνµ = βν −βµ . This can be achieved by employing

the flexibility in controlling the dispersion properties of MOfs through structure design and

glass choice.

By substituting Eq. (32) into Eq. (23), a first order differential equation is obtained which

describes the nonlinear pulse propagation in a multimode waveguide. An important aspect of

our formalism is related to the orthogonality of the waveguide propagating modes. Contrary to

the standard formalism [42, 69, 70], for which eν s are approximated to be transverse modes

and
∫

e∗ν .eµdA =
∫

e∗νt .eµtdA = 0, or in the case of different polarizations eν .eµ = 0, in our

formalism
∫

e∗µ .eν dA 6= 0 (or eν .eµ 6= 0 if µ and ν are the two polarizations of the same mode)

because the modes are non-transverse, i.e., they have non-zero z-component. The generalized

orthogonality condition, which is valid even in the strong guidance regime is
∫
(̂eν × ĥ∗

µ).ẑdA =
δνµ inherently includes the z−component of the fields. Considering that

(̂e× ĥ∗).ẑ = (̂et × ĥ∗
t ).ẑ, (33)

and [50]

ĥt = (
ε0

µ0

)1/2 1

k
ẑ× [β êt + i∇ t êz], (34)

one can show that
∫

(̂eν × ĥ∗
µ).ẑdA = (

ε0

µ0

)1/2 1

k

∫
(̂eνt ×{ẑ× [β ê∗µt − i∇ te

∗
µz]}).ẑdA, (35)

= (
ε0

µ0

)1/2 1

k

∫
(β êνt · ê∗µt − îeνt · ∇ t ê

∗
µz)dA
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which considering the general orthogonality relation
∫
(̂eν × ĥ∗

µ).ẑdA = δνµ results in

∫
êνt · ê∗µtdA = (

µ0

ε0

)1/2 k
β

δνµ +(
i
β

)

∫
(̂eνt · ∇ t ê

∗
µz)dA, (36)

where subscript t refers to transverse component of fields and operators. Eq. (36) clearly shows

that
∫

êνt · ê∗µtdA 6= 0 in the parameter regime where z−component of electromagnetic fields are

non zero. It should also be noted that Eq. (32) has been obtained by ignoring the backward and

radiation terms in Eqs. (11) and (12). Considering these two terms in the expansion Eqs. (11)

and (12) results in coupling between forward-backward and forward-radiation modes, which are

represented by dot products of forward modes with backward and radiation modes in Eq. (32).

These terms describe the power coupling between a forward propagating mode and backward

and radiation modes due to nonlinearity. We leave the full investigation of these coupling effects

to future publications.

In the case of single mode fibers, where two independent polarizations exist in the waveguide,

µ and ν refer to the two polarizations 1 and 2 and ∆βνµ is the linear birefringence of the

waveguide. For waveguides with strong birefringence, the beat length LB = 2π/∆β is short, and

hence for fiber lengths L >> LB the phase terms oscillate very fast and hence have negligible

contributions. However, for waveguides with weak birefringence, for which L < LB the phase

terms are not negligible and should be taken into account. In the following sections we develop

a model for nonlinear pulse propagation in single mode waveguides for both weak and strong

birefringence.

2.1. Single mode highly birefringent waveguides

In the case of single mode waveguides with high birefringence, where only the first two terms

in Eq. (32) are significant, substituting Eq. (32) into Eq. (23), considering [1, 42] ε0cn2n2 =

(3/4)Re χ (3)
xxxx, where n2 is the nonlinear refractive index of the material measured in m/W ,

and ignoring nonlinear Two Photon Absorption we find:

∂
∂ z

aν(z,t) = i∑
n

(i∂/∂ t)n

n!
β (n)

ν aν+ (37)

−ik
4

(
ε0

µ0

)(1 + τshock∂/∂ t){ 1

3N2
ν
|aν |2 aν

∫
n2(x,y)n2(x,y)

[
2 |eν |4 +

∣∣e2
ν
∣∣2

]
dA

+
2

3Nν Nµ

∣∣aµ
∣∣2

aν

∫
n2(x,y)n2(x,y)

[∣∣eν .e∗µ
∣∣2

+
∣∣eν .eµ

∣∣2
+ |eν |2

∣∣eµ
∣∣2

]
dA},

where µ ,ν = 1,2 and µ 6= ν refer to the two polarisations of the fundamental mode. This

equation can finally be written in a simple form;

∂
∂ z

aν (z,t) = i∑
n

(i∂/∂ t)n

n!
β (n)

ν aν− (38)

(1 + τshock∂/∂ t)[iγν |aν |2 aν + iγµν
∣∣aµ

∣∣2
aν ],

(C) 2009 OSA 16 February 2009 / Vol. 17,  No. 4 / OPTICS EXPRESS  2310



where

γν = k(
ε0

µ0

)

∫
n2(x,y)n2(x,y)[2 |eν |4 +

∣∣e2
ν
∣∣2

]dA

3 |
∫
(eν ×h∗

ν ).ẑdA|2
, (39)

γµν = γ(1)
µν +γ(2)

µν = k(
ε0

µ0

)[(
2

∫
n2(x,y)n2(x,y)

[∣∣eν .e∗µ
∣∣2

+
∣∣eν .eµ

∣∣2
]

dA

3
∣∣∫ (eµ ×h∗

µ).ẑdA
∣∣ |

∫
(eν ×h∗

ν).ẑdA| + (40)

2
∫

n2(x,y)n2(x,y)
∣∣eµ

∣∣2 |eν |2 dA]

3
∣∣∫ (eµ ×h∗

µ).ẑdA
∣∣ |∫ (eν ×h∗

ν).ẑdA| ].

Eqs. (38) is the final form of nonlinear pulse propagation inside a single mode birefringent

waveguide, which in form is similar to the commonly used equation (see [42]) but with the

effective nonlinear coefficients of the waveguide are now given by the generalized forms as in

Eq. (39) and (40). By generalizing the definition of the Ae f f as

Ae f f =
|
∫
(eν ×h∗

ν ).ẑdA|2
∫ |(eν ×h∗

ν ).ẑ|2 dA
(41)

the nonlinear coefficient γν can be rewritten as

γν =
2π
λ

n2

Ae f f
(42)

n2 = k(
ε0

µ0

)

∫
n2(x,y)n2(x,y)[2 |eν |4 +

∣∣e2
ν
∣∣2

]dA

3
∫ |(eν ×h∗

ν ).ẑ|2 dA
,

where n2 can be viewed as nonlinear refractive index averaged over an inhomogeneous cross

section weighted with respect to field distribution. The advantages of writing γ as in Eq. (42)

over the other reported form [4] is that it allows the analysis of γ to be separated into parts

describing linear (geometry and n(x,y) =⇒ Ae f f ) and nonlinear (mode profile and n2(x,y) =⇒
n2) characteristics, providing a more intuitive analysis of γ. In our formalism, Ae f f has its

standard interpretation as the effective area of the propagating modes, which can be determined

purely based on the geometry and the linear refractive index of the waveguide n(x,y), and does

not require to be considered as the ”effective nonlinear interaction area” as in [4]. Considering

Eqs. (33) and (35), we find that Eq. (41) can be written as

Ae f f =

∣∣∣
∫
[β |et |2 + i(et .∇ tez)]dA

∣∣∣
2

∫ ∣∣∣β |et |2 + i(et .∇ tez)
∣∣∣
2

dA
. (43)

This equation in the limit of small z-component of electric field, where ∇ tez can be ignored in

comparison with βet , simplifies as

Ae f f =

∣∣∣
∫ |et |2 dA

∣∣∣
2

∫
|et |4 dA

, (44)

which is the standard definition of Ae f f [42].

Comparing Eqs. (38)-(42) with the expression commonly used for nonlinear birefringent

terms [42], shows 1) the vectorial-based γ developed here (referred to hereafter as γV) in Eq.
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(42) includes both the inhomogeneous waveguide structure and vectorial nature of electromag-

netic fields and 2) an extra term that induces the depolarisation of an initially polarised beam

through a non-zero coupling term γ(1)
µν ∝

∫
n2(x,y)n2(x,y)(

∣∣eν .e∗µ
∣∣2

+
∣∣eν .eµ

∣∣2
)dA 6= 0. The non-

zero nature of this term, especially in the strong guidance regime as will be shown in Sec. 3,

is the direct result of two facts; 1) the two different polarizations are not perpendicular to each

other in the common sense, i.e., eµ .eν = 0 or
∫

eµ .e∗ν dA = 0 because of the strong z−component

of the fields and 2) the transverse integral, due to transverse dependence of n2(x,y) and n2(x,y),
can be evaluated over different regions with different n and n2.

2.2. Single mode non-birefringent waveguides

For waveguides with perfect three or higher fold symmetry, the fundamental mode of the

waveguide is degenerate or non-birefringent [55], i.e., β1 = β2 where 1 and 2 refer to the two

polarisations. Therefore, the phase factors in Eq. (32) are equal to 1 for the pair of fundamental

modes of these waveguides and hence Eq. (32) and Eq. (23), result in :

∂
∂ z

aν(z,t) = i
∞

∑
n=1

(i∂/∂ t)n

n!
β (n)

ν aν + i
∞

∑
n=1

(i∂/∂ t)n

n!
β (n)

νµ aµ (45)

− ik
4

(
ε0

µ0

)(1 + τshock∂/∂ t)× (46)

{ 1

3N2
ν
|aν |2 aν

∫
n2(x,y)n2(x,y)

[
2 |eν |4 +

∣∣e2
ν
∣∣2

]
dA

+
2

3Nν Nµ

∣∣aµ
∣∣2

aν

∫
n2(x,y)n2(x,y)

[∣∣eν .e∗µ
∣∣2

+
∣∣eν .eµ

∣∣2
+ |eν |2

∣∣eµ
∣∣2

]
dA

+
1

3

√
N3

ν Nµ

a∗µa2
ν

∫
n2(x,y)n2(x,y)

[
2 |eν |2 (e∗µ .eν )+ (eν)2(e∗µ .e∗ν )

]
dA

+
2

3

√
N3

ν Nµ

aµ |aν |2
∫

n2(x,y)n2(x,y)
[
2 |eν |2 (eµ .e∗ν )+ (e∗ν)2(eµ .eν )

]
dA

+
1

3

√
N3

µ Nν

∣∣aµ
∣∣2

aµ

∫
n2(x,y)n2(x,y)

[
2
∣∣eµ

∣∣2
(eµ .e∗ν )+ (eµ)2(e∗µ .e∗ν )

]
dA

+
1

3
√

N2
ν N2

µ

a2
µa∗ν

∫
n2(x,y)n2(x,y)

[
2(eµ .e∗ν )2 +(eµ)2(eν )2

]
dA},

where µ ,ν = 1,2 and µ 6= ν and refer to the two polarisations of the fundamental mode. Eq.

(45) is the vectorial generalisation of the common nonlinear pulse propagation for the two

polarisations of single mode fiber [42]. The main differences are the extra contributions from

the different combinations of eµ .eν . These terms, as indicated in the previous section, have

nonzero values in the regime of high index and subwavelength core diameters.

3. Results and discussion

The formalism developed in the previous section is general, and can be applied to an arbitrary

waveguide. However, here we apply the above formalism to a simple step-index rod waveguide

(i.e. a nanowire) and demonstrate that its nonlinear behaviour is predicted to be significantly

different in the regime of high index contrast and subwavelength features than the predictions

made using the standard formalism [42]. It should be pointed out that, throughout this paper

we use the unit of W−1m−1 for γ instead of the commonly used unit W−1km−1 [42]. This is
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justified considering the fact that small core structures in high index silicon or glasses can now

provide access to waveguides with extremely large γ values [4, 27, 39, 71].

A comparison between γV developed here and the standard definition given by Agrawal [42];

γS = (2πn2/λ )

∫ |F |4 dA
(∫ |F|2 dA

)2
(47)

where F(x,y) = et(x,y) is the scalar transverse electric field, indicates that γV accounts for both

inhomogeneous waveguide cross section and full vectorial nature of the propagating modes of

the waveguide, especially the z-component of the modes. Figure 1 shows the effective non-

linearity for the two definitions of γ as a function of core diameter for three step-index rods

with different host materials of silica [42] ( n = 1.45, n2 = 2.6× 10−20 m2/W ), bismuth [72]

(n = 2.05, n2 = 3.2× 10−19 m2/W ), and silicon [73] (n = 3.45, n2 = 4.5× 10−18 m2/W ).

While the γV based on VNSE approaches γA in the limit of large core diameter, it is signifi-

cantly higher for small core diameters. For example, in Fig. 1c γV is a factor of 2 higher than the

γA for silicon at the core diameter of D = 0.19 µm. Figure 1 also indicates that the difference

between the γ values increases as the index contrast of the core and cladding increases. Here,

we have also considered another definition of γ, given by Foster et. al. [20], as;

γF = (2π/λ )

∫
n2[(eν ×h∗ν).ẑ]2dA
[
∫
(eν ×h∗ν).ẑdA]2

. (48)

Foster et. al. [20] refer this equation to Agrawal [42]. It seems that Foster et. al. have just simply

replaced |F(x,y)|2 = |et(x,y)|2 in Eq. (47) with the Sz = (eν × h∗ν ).ẑ , arguing that Sz is the

intensity of light propagating down the waveguide. However, this replacement is only valid for

the transverse mode approximation where |F(x,y)|2 = |et(x,y)|2 is proportional to (eν ×h∗ν ).ẑ
and interpreted as the intensity of the light, see Eq. (35). In general, for full vectorial formalism,

the nonlinear-induced polarisation is expanded in terms of different powers of electric field

strength, see theory section, which for the χ (3) nonlinearity has the form given in Eq. (30),

which in turn results in the new definition of γV as in Eq. (39).
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Fig. 1. Three definitions of γ, black is γV based on VNSE, blue is γF reported by Foster

et. al., and red is γS by Agrawal, as a function of core diameter and for three different

materials silica ( n = 1.45, n2 = 2.6×10−20 m2/W ), bismuth (n = 2.05, n2 = 3.2×10−19

m2/W ), and silicon (n = 3.45, n2 = 4.5×10−18 m2/W ). The wavelength is λ = 800 nm,
and the cladding is air with n = 1.0 in a) and b) and is silica, n = 1.45 in c). Plus signs and

solid lines show the actual calculated data and the lines of best fit, respectively.
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Fig. 2. Transversality versus core diameter for two glasses silica (n = 1.45 ) and bismuth

(n = 2.05 ) and silicon (n = 3.45 ). The structure is a simple rod in the air for the glasses

and a rod within the substrate of silica for silicon.

In Fig. 1, we have also plotted the values of γF as a function of core diameter for different

glass materials. While for silica, with the lowest index, γV and γF curves are on the top of each

other for silicon with highest index, there is a maximum difference of 40% between the two

curves at D = 0.15 µm. Also there is a difference of about 14% between the maximum values

of γV and γF.
The differences between γV developed here and γS and γF are attributed to the fact that prop-

agating modes of a waveguide are not transverse in strong guidance regime. In order to demon-

strate this, we have defined the transversality [74] of a mode as Tν = 1− ∫ ∣∣e2
νz

∣∣dA/
∫ ∣∣e2

ν
∣∣dA

and plotted it as a function of core diameter for different materials, as shown in Fig. 2. It in-

dicates that in the regime of large core diameter, the transversality approaches 100%, i.e., the

modes become essentially transverse as expected. However, in the limit of small cores, the

transversality is reduced, indicating that a large fraction of electric field power is contained

within the z-component of the field. This effect is more profound for the waveguides made

from high index glass than the low index ones.

Figure 3 shows a 2D plot of the z-component, ez, and transverse electric field

√
e2

r + e2
θ ,

normalised to the power as in Eq. (6) for two different core diameters of D = 0.4 µm and

D = 1.8 µm at the wavelength of λ = 1550 nm. It is evident from Figs. 3a and c that for

large and small cores, the ez field is strongly localized at the edge of the fiber. For the core

diameter D = 0.4 µm, however, the value of ez is one order of magnitude larger than that

of the core diameter of D = 1.8 µm. Contrary to this, the distribution of the transverse field

changes widely from a completely confined beam at large diameter, Fig. 3 d to a beam with

high intensity regions at the fiber interface in Fig. 3b.

The first term in Eq. (40), γ(1)
µν , is proportional to

∫
n2(x,y)n2(x,y)(

∣∣eν .e∗µ
∣∣2

+
∣∣eν .eµ

∣∣2
)dA,

which contributes to the overall nonlinearity of mode ν , and is due to the overlap of the two

different modes (two different polarizations in the case of single mode waveguide). This term

does not appear in formalisms [42] where fully-transverse propagating modes and homogenous

cross section are assumed since either
∫

eν .e∗µdA = 0, due to orthogonality of transverse modes
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Fig. 3. 2D plot of Ez (a,c) and

√
E2

r +E2
θ (b,d) for two step index rods with core diameters

0.4 µm (a,b) and 1.8 µm (c,d) at the wavelength 1550 nm.The material is Bismuth with

refractive index of n = 2.05.

or eν .eµ = 0 if the modes are the two polarizations of a single fundamental mode.

In our formalism, however, this term appears because of the non-zero z-component of the

fields which result in
∫ ∣∣eν .e∗µ

∣∣2
dA 6= 0 for any two propagating modes of a waveguide or

eν .eµ 6= 0 even when the two modes are the polarizations of the fundamental mode of a single

mode waveguide. Figure 4 shows the magnitude of γ(1)
µν relative to γν , i.e., γ(1)

µν /γν where µ
and ν are the two polarizations of a simple step index rod, as a function of core diameter. It

demonstrates that indeed in the limit of large core, the relative value of γ(1)
µν approaches zero

but for small core diameters its value is enhanced significantly. Comparing the ratio γ(1)
µν /γν

for three different materials silica (n = 1.45) and bismuth (n = 2.05) and silicon (n = 3.45)

demonstrates that the value of γ(1)
µν is more significant in subwavelength regime and for large

index contrast host materials. The behaviour of the nonlinear coefficient γV as a function of

wavelength also shows a significant difference between the usual definitions γS and the one

based on our VNSE. Fig. 5(a)) shows the behaviour of γ as a function of core diameter for

different wavelengths; λ = 532, 633, 800, 1064, 1310 , and 1550 nm. As it is also evident from

Fig. 5(b), the γ values decreases as the wavelength increases, but the decrease in the maximum

value of γ is much faster for the γV of our model compared to that of common definition

γA. It is also evident from Fig. 5(a)) that the position of maximum of γ shifts to larger core

diameters as the wavelength increases. Very high values of γ at short wavelengths are due

to the tighter confinement of the propagating mode of the waveguide and hence their higher

intensities. The possibility of achieving γ values of 150 W−1m−1, see Fig. 5(b), suggest that

order of π nonlinear phase shift should be achievable for input powers of order of 20 mW and

for effective fibre length of 1 m in the visible spectrum.
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Fig. 4. Ratio of nonlinear coefficients γ(1)
µν and γν , see Eq. (40) and (39), as a function of

core diameter for step index rods with host materials Silica (n = 1.45), Bismuth (n = 2.05),

and Silicon (n = 3.45). The cladding material for glasses is air and for silicon is silica.

Signs and the solid lines are the calculated data and lines of best fit, respectively.
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Fig. 5. a) γ as a function of core diameter of a step index rod for different wavelengths.

The solid lines are γV and the dashed lines are γA. In b) the maximum of γ in a) have been

plotted as a function of wavelength. The host material is Bismuth 6 ( n = 2.05).
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Fig. 6. γV (solid lines) and γS (dashed lines) vs wavelength for different core diameters for

a step index rod with host material of Bismuth glass (n = 2.05).

The dispersion properties of the γ values can be better compared by examining Fig. 6 in

which the wavelength behaviour of γ at constant core diameters are shown. While for large core

diameter, e.g. D = 1.6 µm, the γ (λ = 1550 nm) increases by a factor 3.5 to γ (λ = 532 nm)
and the two definitions of γ are very close, for small core diameter D = 0.5 µm the difference

between the γ values at λ = 1550 nm and λ = 532 nm is the order of 20 times and a large

difference between the two definitions of γ is observed. This indicates higher dispersion of γ at

small core diameters than that of large core diameters.

4. Discussion and conclusion

A new frontier in the field of optical waveguides is the design and fabrication of waveguides,

referred to here as ”emerging waveguides” with three main characteristics; 1) complex and

inhomogeneous structure, 2) high index contrast, and 3) subwavelength features. A direct con-

sequence of these features is that the common nonlinear Schrödinger equation which is based

on weak guidance approximation does not provide accurate description of nonlinear processes

in these waveguides. Here, we developed a vectorial based Nonlinear Schrödinger equation

(VNSE), without relying on weak guidance approximation, which can be applied to these

emerging waveguides.

An important feature of these waveguides is the fact that their propagating modes have much

bigger z-component (z; direction of propagation) in comparison with those waveguides for

which the weak guidance approximation is valid. As a result, the modes of these waveguides

are not fully transverse and hence different orthogonality conditions govern them. Nonlinear

and dispersion processes can be associated to this third ”direction of propagation polarisation”,

which can also couples the transverse polarisations through dispersion and nonlinear processes.

Our model provides a platform for generalising nonlinear processes such XPM, Modulation

Instability, Soliton formation and propagation, Four Wave Mixing, Parametric Processes and

Raman and Brillouin Scattering for emerging waveguides. The model also predicts new tempo-

spatial processes such as dispersion-induced depolarisation of the guided modes. Despite the

complexity that this new concept brings into guided-wave nonlinear optics, early redevelop-

ment of Kerr and Raman processes indicates the great flexibility for ”Engineering” nonlinear

processes.

Based on the model developed here, we provided a new vectorially-based definition for the
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effective nonlinear coefficient of waveguides (γV). Although the developed model is general,

we have applied it to a simple step index cylindrical waveguide and shown that even for such

a simple structure, γV can be a factor of two higher than the common definition of γ, in the

regime of high index contrast and subwavelength dimensions. However the full extent of the

model in terms of exploring the rich physics behind the new pulse propagation model and the

new definitions of effective nonlinearity γ, effective mode area Ae f f , and cross-mode effec-

tive nonlinearity γµν , especially for waveguides with inhomogeneous structures, is yet to be

explored.

The pulse propagation model developed here [see Eqs. (38) and (45)] adds some complexity

in terms of numerical solutions in comparison with the standard model [42]. It includes calcu-

lations of different overlap integrals of the propagating fields and the linear and nonlinear index

distribution, see Eqs. (38) and (45). These integrals, however, are numerically easy to take and

need to be evaluated only once, for any given fibre, before numerically solving the pulse propa-

gation equations. The model also implies that coupled pulse propagation equations of different

modes, either different polarisations of the mode of a single mode waveguide or different modes

of a multimode waveguide, must be solved to give an accurate picture of Kerr nonlinear process

for a propagating pulse, especially in the parameter regime for which our formalism gives very

distinct result in comparison with the standard model, i.e, high index contrast, inhomogeneous

structure, and subwavelength features.

Experimental measurement of the effective nonlinearity in the parameter regime where there

is a distinct difference between the new model and the standard model, will be crucial to confirm

the results of new model. It should also pointed out that within this paper, Kerr nonlinearity has

been considered for waveguides with inhomogeneous structure assuming instantaneous nonlin-

ear response (i.e., response time much shorter than the pulse width τR << τP) of the materials

everywhere in the waveguide. The case of finite and inhomogeneous nonlinear response time

will be considered in future publications.
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