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I. INTRODUCTION 

BER of theoretical analyses of printed circuit 
antenna  structures appeared recently  (for  example; [ 11). 

Many of these analyses are based on  the quasi-static model of 
printed circuit structures. One typically computes  the  resonant 

frequency of the  hypothetical closed resonator derived from 
the  actual  structure by placing a  magnetic side wall extending 

from  the microstrip to the  ground plane. Magnetic current 

components  computed  from  this  resonator  model are  used to 

calculate the radiation patterns.  The results so obtained indi- 

cate good  agreement with  experimental  data,  and hence the 

theory seems quite useful. 
Independent of the  efforts  on  antennas, microstrip, and 

other  printed circuit structures have been used in microwave 

and millimeterwave integrated  circuits. As the  frequency of 
operation is increased, it has been realized, and now it is 
widely known,  that  the quasi-static  analyses of microstrip 
circuit elements are not  accurate enough, and a more rigorous 
full-wave analysis is required. For instance,  as for  the analysis 
of microstrip disk resonators,  a number  of improved theoreti- 
cal analyses  appeared in  the past [ 21 -[ 41 . It has  been reported 
that  the results by  the full-wave analysis agree extremely well 

with results  measured at high  frequencies [ 41 . 
This  paper presents  a full-wave analysis of the  open  printed 

circuit structures  such as those encountered in  microstrip 

antennas as an eigenvalue problem with complex eigenvalue 
(resonant frequency). Since all the wave phenomena are  incor- 
porated in the analysis, it is believed useful for microstrip type 
antenna applications at higher frequencies. The  method is 
based on  the spectral  domain immittance  matrix  approach 

developed recently In  the  formulation process the direc- 
tions parallel t o  the  substrate surface are completely  separted 
from  the  normal direction  by the use of the equivalent net- 
work  for spectral waves. we will see shortly,  the formula- 

tion process is so simple that  it may  be  accomplished  almost 
by inspection. The  method is quite versatile and  may be 

applied to almost any  type of printed  structures including 
coplanar, slot,  and microstrip-slot resonators.  Additionally, 
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since we solve the problem for  the  Fourier  transforms of 
unknown  current  distributions  on  the  strip  or  aperture elec- 

tric fields on  the  substrate,  the far  field radiation  patterns  may 

be  simply extracted. 

11. FORMULATION OF THE PROBLEM 

Although  the  method may be applied to  other  printed 

circuit structures, we will use the simple rectangular open 
microstrip disk in Fig. 1 for  the  formulation.  The microstrip is 
located on  the  substrate of relative dielectric constant er and 
thickness d. The  standard spherical coordinate (P, 8, 4) is 
superimposed on  the y ,  z )  system so that  the  radiation 

pattern is expressed in  terms of 8 and 4. 8 is measured from 
the z axis, and 4 is the angle measured in the plane from 
the axis. The broadside of the  antenna 0, axis) is, therefore, 

given by 8 = 4 = ~ / 2 .  The  top surface of  the  substrate is taken 

to be y = 0. In conventional analysis we would derive coupled 

homogeneous integral equations  for  current  distributions 

and 2): 

z - 

z - z’> 

+ Z,,(X - z - z’)] 

= O  

1- Z,,(X - X I ,  z - 

= O  (2) 

where the  integrations  are over the  strip  and  the  equations are 
valid for z )  on  the strip. is well-known, (1) and (2) state 
that and E, are zero on  the  strip. These equations can be 

solved for  the complex  resonant frequency and the  current 
components and provided all the  dyadic Green’s func- 
tion  components Z,,, Z,, = Z,,, and Z,, are available which 
are functions of the  frequency.  In  the  radiating  structure,  this 

resonant frequency becomes complex,  and  its imaginary  part 

accounts  for  the energy loss due  to  radiation. 
Instead of (1)  and  (2), we will introduce  the spectral 

domain method.  The domain of (1) and  (2) is first extended to 
the  infinite space and  then  Fourier transforms are  taken. We 
obtain 

P) + -%&, 8) = m a ,  P , O )  (3) 

Z Z X ( , ,  8) + L ( a ,  P)  = P , O )  (4) 

where the  Fourier transform is defined via 

$(a, 8) = /I [I $(X, 
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1. Open  microstrip  resonant structure. 

Notice also t iat   the right-hand sides of (3) and (4) are no 
longer  zero because they  are  the  Fourier  transforms of and 

E, on  the  substrate surface  which are obviously nonzero ex- 
Cept-on the strip. _Although (3) and (:) contag  four  unknowns, 

and E,, two of them, E, and E, may eliminated 
later in the  solution process, and we can derive a  homogeneous 
set of equations which can be solved for  the complex resonant 

frequency. 
The impedance coefficients Z,,, Z,,, and may be 

- -  - 
obtained  by writing field distributions in the  substrate  and air 
region and applying the  interface  condition  at  the air-substrate 

surface. This process is straightforward. However, the applica- 
tion of the spectral  domain immittance  approach [ 5 ] is quite 

illustrative for  such a process as described below. These 

c_oefficierts are actually  impedance matrix  elements  that  relate 
and with E, and E,. We will make use of equivalent 

transmission lines for  the derivation. To this end,  we first 
recognize that,  from  the definition of the inverse Fourier 
transform 

all the field components are superpositions over CY and of 

inhomogeneous  (in y )  waves propagating in the direction 6 
from the z axis where 6 = cos-' (P/E), $ = d m : .  F_or 

each 6, the waves _may-be cJecomposed into TM to E,, 
g,) and to y(H,,, E,, where the  coordinates and 
are as shown in Fig. 2 and  related with z) via 

u = z s i n 6 - - x c o s 6  (7) 

z J = z c o s 6 + x s i n 6 .  (8) 

Next, we recognize that, if there were  a current  component 

it generates  only the TM fields, and only the TE  fields  are 
generated the ru. Hence it is possible to draw equivalent 
circuits for  the TM and  TE fields as shown in Fig. 3. The wave 
admittances  in each region are 

y2 

yTM2 

Y 
1 

t 

X 

U 

2. Coordinate  transformation. 

0 

= 

3. Spectral  domain  equivalent  circuits. 

where = a* + - is the propagation constant in the 

direction in the ith region. Also el = and e2 = 1. y i  is real 

for decaying wave and is imaginary for wave propagaing in the 
direction. All the  boundary  conditions  which  these and 

TM waves are  required to satisfy are  incorpated in the equiva- 
lent circuits.  Specifically, the  electric  conductor  boundary  at 

y = -d is represented by  the  short circuit conditions  in  the 
equivalent  circuits,  whereas the  radiation  condition at y + 00 

corresponds to infinitely long transmission  lines fory  > 0. The 
continuity  condition of tangential  electric  fields at = 0 can 

be  seen from  the  fact  that  the voltages on  both sides of  the 
junction y = 0 are equal, while the  discontinuity of the 
magnetic field on  both sides of the  strip is represented by  the 

equivalent current sources and for the  spectral wave. 
In these  equivalent  circuits, the voltages, and E, at y = 0 
are  related to  the  current sources via 

Z"(a:, P, 0) = P) ( 1 1 )  

P, 0) = nJ>J,(a:, 0). (1 2) 

It  is easy to see that and are input impedances look- 
ing into  the equivalent  circuits at y ='O and  hence  are  expressed 
as 

1 
i o h  = 

Y+h + Y_* 

where Y+= and are  input  admittances looking down and 
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up  at y = 0 in the TM equivalent circuit,  and and are 
corresponding quantities in the TE  circuit: 

The final step of the  formulation consists of the mapping from 

the cordiante  for  spectral waves corresponding to each?. 

Becatse of the  coordinate  transform  rgations (7) an$ (8), 

and E, are  linearly  related t c E u  and E,. Similarly, and 
are  superposition of and When these relations  are  used, 
the impedance  matrix elements  in  (3)  and (4) are given by 

where and are transforming ratios given by 

(Y P 
= s i n 6 , N z =  

dGTjF 
= cos 6. (20) 

Notice  that f o e  and f o h  are functions of CY? + -P2,  and the 
ratio of (Y to P enters  only  through and 

111. DERIVATION OF  THE EIGENVALUE EQUATION 

We now have two ways to solve the original open  microstrip 
problem. The conventional one is to use the integral equations 
(1) and (2)  in the  spectral  impedance  matrix  elements given in 
(17)-(19). Another  approach is the direct use  of algebraic 

equations (3) and (4) as all the necessary quantities have been 
derived in  the previous  section. As discussed earlier, (3) and 

(4) contain  four  unknowns.  Two of them, and E,, how- 
ever, are eliminated in the  solution process based on  the 

Galerkin's mehod.  To this end,  the  unknown spectral current 
components J ,  and  are expanded  in  terms  of linear  combi- 

nations of known basis functions 

M 

m= 1 

N 

In selecting basis functions, we ensure that  they are-Fourier 

t_ransforms of functions  with  finite  support.  That is, and 
are Fourier transforms of z) and z) which 

are nonzero  only  on  the  strip.  Let  us now substitue  (21) and 
( 2 2 )  into  (3) and (4) and  take  the  inner  products of the 

resulting equations  with each of basis function as the  standard 
Galerkin's procedure calls for.  The result is the following 
homogeneous  matrix  equation 

N 

2 + = 0, p = 1 ,2 ,  - 0 ,  M 
_. 

m= 1 

M N 

1 

where the  typical matrix element is given by 

(24) 

Since etc., are functions  of a frequency, a  nontrivial 

solution of (23) is derived by seeking  a  complex frequency 

that makes the  determinant of the coefficient matrix of (23) 
zero. The corresponding  eigenvector (e,, d,) specifies the cur- 

rent  distributions  on  the strip. 

Notice that  the right-hand  side of (23) is zero. This is 

explained  by  writing  a more specific  process  in the Galerkin's 

procedure. When a basis function is multiplied with  (3)  or  (4), 

we typically have 

by virtue of the Parseval's relation.  The right-hand  side van- 

ishes because and E, are nonzero  only over regions of z) 

complementary to each other,  that is, J,  is zero  outside  the 
strip  and E, is zero on the  strip. 

Equation  (23) is exact if M = N-+ 03. However, in  practice, 
M and must be finite,  and such tmncatio_n introdyes an 

approximation. If individual basis functions and J,, are 
chosen  such that their inverse Fourier transforms  include 

qualitative natures of the  true  unknown  current  distributions, 

it is possible to use only a few basis functions to obtain good 

results, and  the  computation  time can be reduced.  Another 
important  feature  for  time saving is to choose the basis func- 

tions which are expressed  in closed forms.  Although  this is not 

always possible with strips  that have general  shapes,  in the 

present rectangular strip  one may use z) and z) 

which reasonably  represent  qualitative natures of the  true 
components  and still whose Fourier  transforms are  analytically 

obtainable. Choice of the basis functions have been studied in 
a number of recent  publications [6] , [ 71 . One possible choice 
for and is 

where r = 1, 2 ,  -.. and s = 1, 2 ,  -.. Any  combination of r and s 

provides a  specific basis function.  Therefore,  the index rn for 
the basis function is given by a combination of r and s. For 
instance, we can choose rn = 1 for r = s = 1.  The  Fourier 

transforms of ( 2 6 )  and  (27) are  readily available as  combina- 
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tions of the Bessel function of order  zero. Notice also that  the 
correct singularities of the  current  distribution at the edges are 

incorporated in (26) and ( 2 7 ) .  The  current becomes singular of 
order l/& at  the edges parallel to  the  current  and zero of 
fi at  the edges normal  to  it, where is the distance from  the 

edge. 

IV. FEATURES OF THE METHOD 

The present method  incorporates a number of unique 

features.  Let us describe numerical  aspects  first and  then go to 
more  important analytical  aspects. It has been proven in a 

number of papers on microstrip and  other  printed line struc- 
tures  that  the spectral  domain method is numerically quite 
efficient [4] , For instance, accurate solutions are ob- 
tained by using a relatively small size matrix (23) such as 

M = = 1 or  2.  In  contrast in many space domain analyses 
which  typically  deal  with the coupled  integral equations  (1) 

and ( 2 ) ,  the size of the  matrix  to be  inverted is quite large if, 
for instance, the  point matching is used.  On  the  other  hand, if 

Galerkin type procedures  are used in  the space domain,  it is 

necessary first to perform the inverse Fourier  transforms, 
which  are extremely time  consuming, to get the Green’s 
functions and then to carry out  the convolution integrals. 

The time saving feature of the  spectral domain method is 

caused essentially by  two elements. First,  it is possible to use 

basis functions which incorporate certain  qualitative natures of 
the  true  current  distributions such as the edge condition. This 

eliminates use  of a large numberof basis functions to accurately 

represent unknown  current distributions. Second, in the 
spectral domain approach, we deal with algebraic rather  than 
integral equations.  It is not necessary to  carry out  the convolu- 
tion integrals, and  the  spectral domain impedance  functions 

are given in closed forms. Of course, the price we have to pay 
for  such  features is that  the inner products to compute  matrix 
elements etc., are infinite integrals. However, the 

integrands of these  integrals  decay as fast  as and 
when  the basis functions like those  obtained from (26)  and 

(27) are  used, and  hence  the  inner  products can be computed 
without  much  difficulty. Nevertheless, the  number of itera- 
tions  for seeking a root should be minimized. Often,  this can 

be as small as five to ten when a good subroutine is used. 
Besides, since the basis functions are not  functions of the 
frequency,  they need to be  evaluated only  once,  contributing 
to  the  reduction of computation  time. 

Let us now turn  our  attention  to  more.analytica1  features 
of the  method. We go back to-( 17)-( 1%) and  study  their con- 
struction. We recognize that and Zo* are obtained from 
the equivalent  circuits  which extend in the y direction.  The 
$formation  in the and z direction come in and 

only through  the transforming ratios and Also 
the  information on the microstrip is contained only in the 

basis functions. This is not special at all because Z,,, etc., are 
the  Fourier transform of the Green’s functions which are 

independent of the source  shapes and related  only to  the 
location  and  the direction of the source. 

When t_he reson_ances in the  y-direction  occur,  the denomi- 
nator  of or becomes zero as a  surface wave pole is 

encountered.  The radiation phenomena are associated with  the 
imaginary part of 72. Therefore,  the visible region (a2 + 0’ < 

of the ab plane is responsible for  radiation, and the sur- 

face wave poles  occur on circles with  radius d w - b e t w e e n  

and The invisible region C? + O2 > is respon- 
sible for  the stored  energy in the near region. The equivalent 

circuits do  not, however, tell  any  directional  information in 

t_he plane.  Such is provided by the weighting functions 

J ,  and J,. 

What is presented in  the previous paragraph is rather well- 
known. In the present eigenvalue problem, it is necessary to 
consider  complex because only the complex frequency 

w, = w, -I- joi can satisfy the system which loses  energy by 
radiation. In  the  computation, we keep 01 and p t o  be real. 

Therefore, surface wave poles are  not crossed. However, 
since they are located near the  integration surface, their 

effects are contained  in  the  formulation. 

Once the problem-is solved, far field radiation  patterns are 
given from and as they  are  Fourier transforms of the 
electric  field: 

0)  a sin 0) 

e )  a COS Q COS e.E,(O, p) + sin Q ~ , ( Q I ,  0) 

with 

CY = sin 0 cos Q 

0 = cos 0 (29) 

and ,?,, 2, given by (3), (4), and  (21), ( 2 2 ) .  In the  E-plane 
(e = n/2)  

Eo 0: x d,Z,,(o, COS e)Jan(O, cos e )  (30) 
n 

and in the H-plane (19 = ~ / 2 )  

Eo 0: sin Q COS Q, O)J,n(k COS @,O). (31) 
n 

V. NUMERICAL RESULTS 

A Fortran program has been  made to perform  the calcula- 
tions described above. The  integration oveLthe CY - 0 plane has to 

be done  numerically.As& 0: l/@andZ,, o:p2/d-for 
krge agreements QI and 0 (and similar relations are valid for 

and?,,), the  integration converges with l / ( c $ ? d m .  

Numerical and  experimental evaluations have been done 
with RT-Duriod substrates  with = 2.35 and a  thickness of 

d = 1.58 mm. Table I  summarizes computed  resonant fre- 
quencies for  two different  microstrip sizes. For a  narrow 
element = 1 cm, w = 0.2 cm), the real part of the  computed 
resonant frequency does not change much by using different 
number of basis functions.  The imaginary part indicating the 

energy lost by radiation is extremely small. 
Experiments have been performed for  the  patch  antenna 

made of a  microstrip of = 1 cm and w = 1.5 cm. First,  the 
antenna element was fed by a lOO-.Q microstrip  line connected 

directly (or inductively) to  the  element.  The measured reso- 
nant  frequency was 8.75 GHz. Next, we created  a gap 
between the  antenna element and the feed line to get  a weak 
capacitive coupling. The measured resonant  frequency then 

was 8.29 GHz which results in a  differenc of 1.4 percent, 

compared with_ the  theoretical value obtained by using two 
and one that is, 8.41 GHz. This can  be due to  the 

uncertainty of (k2  percent)  or  the  substrate  thickness d. 

In any case, it is felt that more basis functions have to be 

taken  into  account  for this very wide element. 
The bandwidth of the capacitively coupled  element was 0.6 
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TABLE 

Structure Resonant frequency No. of basis functions 
a t 4  44 Jz 

1 0.2 9.616 + 0.171 1 a 

1 1 9.608 + (1.128 x lo4  

1 0 8.586 + 0.28 

1 1.5  8.05 + j 0.21 1 1 

2* 1 8.41 + 0.272 

E= = 2.35 , d = 1.58 mn 

different x-dependences 
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4. Radiation  patterns. - theory, --- measured.  (a) EAane. (b) 
H-plane. 

GHz in  the  experiment compared with  the  theoretical  one of 

0.54 GHz. The  latter was derived from  the  definition of Q: 

e=-. U P  

( 3 2 )  

The difference  between the resonant  frequencies in the 

inductive and capacitive coupling cases seems to be due mainly 

to  the relatively high inductance of the impedance step  when 

the element is coupled  directly to  the feed line. This shows the 
necessity of getting more  information  on  the  discontinuity 

effects involved in  microstrip antenna circuits. 

The radiation patterns in the and H-planes were meas- 
sured  with the capacitively coupled  element at 8.29 GHz. Fig. 

4, shows the measured and  computed  (with  two Jzm and  one 
patterns.  The  experimental E-plane pattern  contains 

large ripples caused by  the small substrate size and radiation 
from  the feed. 

CONCLUSION 

We have presented  a full-wave method  for analyzing open 
printed  circuit  structures. The  formulation is based on  the 

spectral  domain immittance matrix derived from  the  spectral 

domain  equivalent  circuits. In  the  solution process, Galerkin’s 

method is  used. The  method  contains several attractive fea- 

tures  from  both analytical  and  numerical points of view. 

Although a  microstrip structure is treated in the  paper,  the 

method itself is quite general and is applicable to  other  types 
of printed  structures  such as the coplanar and slot lines. Also, 
it  is quite straightforward to extend  the  method  to  structures 

involving stratified  substrates, several radiating elements,  and 
even those  containing conductor elements  at different  inter- 

faces of stratified  substrate [5] . It will be constructive to  test 
the present method  with simpler basis functions.  Such  studies 
may be useful for  more complicated strip  structures  for which 
less sophisticated basis functions need to be used. 
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I. INTRODUCTION 

T HE RECENT  advent of the microstrip antenna has  aroused 

interest in both  the  experimental  and  theoretical analysis 

of the  antenna [ 11 -[ 81. Due to  the  inherent narrow bandwidth 
of the microstrip antenna,  it is desirable to find methods to 
increase the  bandwidth.  It is well-known that, by increasing 
the thickness of the dielectric substrate,  the  bandwidth of the 
antenna can be increased [ 71, [ 81.  From a theoretical  point 

Manuscript received May 1, 1980; revised August  10,  1980.  This 
was supported by Schlumberger-Doll Research  Center  and the 

Joint Services Electronics Program under  Contract  DUG-29-78C-0020. 
The  authors are with  the  Research  Laboratory of Electronics, D e  

partment of Electrical Engineering and  Computer Science, Massachu- 
setts  Institute of Technology, Cambridge, MA 02139. 

of view it is important  to analyze both thin- and thick-sub- 

strate microstrip antennas and to investigate their respective 
regions of validity in theory  and applicability.  Existing tech- 
niques for calculating the  input  impedance of microstrip 
disk antennas  are  only valid for  thin dielectric substrates 

[2] ,  [4], [ 8 ] .  This is partly  due to the use of the free-space 

Green’s function in calculating the  radiation loss and  thus 

neglecting the dielectric effects [2] ,  [4], and  partly to  the 
perturbative arguments employed [ 81. In  the  perturbative 

approach  the  microstrip disk antenna is thought of as a per- 

turbation of a  magnetic wall cavity,  implying its high-Q fac- 
tor.  The high-Q factor allows the  approximation  of  the field 

inside the microstrip antenna  with single mode. 
In this paper we shall present  a method to calculate the in- 

impedance  of a circular  microstrip under a probe ex- 

citation which is viable beyond  the range of validity of the 
single-mode approximation in [ 81. We shall make use of vec- 

tor Hankel transforms (VHT’s) in our formulation.  The VHT 
is devised by the  authors in [ 71 where its associated properties 

are also derived. It is found  that  the use of simplifies 

the otherwise  complicated analysis. 

11. FORMULATION 

We wish to  obtain  the field solution of a  circular printed- 
circuit antenna  under a probe  excitation. To  do  this we first 
have to  obtain  the field in the  upper half-space due  to a  finite- 
radius vertical probe  embedded in the first  layer of a stratified 
half-space as shown in Fig. 1. 

Using the dyadic Green’s function formalism we can show 
that  the 2 component of the electric  field, due  to a vertical 

probe of length and  radius R with  uniform  current in an 

0018-926X/81/0100-0068$00.75 0 1981 IEEE 


