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In steel fiber reinforced concrete, steel fibers are randomly oriented in the concrete
host. This article presents a full-wave homogenization technique for the computation
of the effective permittivity of perfectly conducting wires embedded in a dielectric
host. The technique is illustrated with numerical examples and is compared with
predictions from a classical mixing formula.

Keywords random media, effective permittivity, electromagnetic homogenization,
method of moments, concrete

Introduction

Steel fiber reinforced concrete (SFRC) is obtained by mixing steel fibers with the fresh
concrete, e.g., in a truck mixer. This type of reinforcement has excellent isotropic mechan-
ical properties and is mainly used for slabs on grade such as industrial floors. Depending
on the application, the length ! and diameter d of the fiber typically are chosen in the
ranges 10 mm </ < 80 mm and 0.1 mm < d < 1 mm. The fiber content determines the
strength and ranges from 20 kg/m?3 to 80 kg/m?, which corresponds to a volume fraction
Sv between 0.002 and 0.01. At present an inspection of the fiber content accross the
slab is done in a destructive way by drilling out cores, crushing them, and counting the
number of fibers (Taerwe et al., 1999). Recently a nondestructive microwave measure-
ment technique to determine the fiber content was developed (Van Damme et al., 2004).
This technique combines an open-ended coaxial probe reflectometry method, in order to
measure the effective permittivity of the SFRC, with a Maxwell-Garnett type of mixing
formula, in order to derive the fiber content from the measured effective permittivity. Al-
though classical mixing formulas have their merits, their applicability in terms of volume
fractions, inclusion geometry, and frequency is limited.

In this paper a full-wave homogenization technique is presented. It is then possible
to study the relationship between the effective permittivity and the fiber content in an
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exact way. The SFRC is considered as a uniform distribution of identical perfectly elec-
trically conducting (PEC) wires, which are randomly oriented in a dielectric host. The
effective permittivity of this wire medium is obtained by first computing the scattered
field for a volume of wire medium surrounded with the homogeneous dielectric host and
next by fitting to these data the permittivitty of a homogeneous volume with the same
shape and dimensions and surrounded with the same dielectric host. In this paper cylin-
drically and spherically shaped volumes are considered. Similar approaches have been
proposed by Sarabandi and Siqueira (1997) and Siqueira and Sarabandi (2000) for the
homogenization of dense random media of dielectric spherical particles. The character-
ization of a two-dimensional plane composed of randomly distributed conducting sticks
is reported in Nguyen and Mazé-Merceur (1998).

In the following sections, the homogenization approach and the full-wave solution
technique are described, the analytical solutions and the Maxwell-Garnett mixing rule
are given, and numerical results are discussed.

Homogenization Approach

A uniform distribution of randomly oriented identical straight PEC wires with length !
and diameter d is considered. The wires are embedded in a homogeneous host medium
with relative permittivity &, 5. The relative effective permittivity &, o5 of the wire medium
is defined by

(D) = &0ty (E), oy
where &g is the permittivity of vacuum and where { ) denotes a spatial averaging of
the macroscopic electric field E and electric induction D over a volume that contains
a sufficiently large number of wires. Let V; be the smallest such volume. In order to
determine &, ., a finite volume of wire medium V > V; is surrounded with the homo-
geneous relative permittivity &,5. In this paper V is a cylinder with radius a and height
H > a (Figure 1a) or a sphere with radius a (Figure 1b), where a is sufficiently large
with respect to I. The position and orientation of wire i, i = 1,..., N, are determined by
its midpoint my, elevation angle ¢;, and azimuth angle ¢;, where N is the total number
of wires in V (Figure 2). The uniform distribution of the positions m; is numerically
realized by distributing a number of points, which corresponds to a given volume fraction
fv of the wires, uniformly within a cube that contains V and by keeping those points that
lie within or on the surface of V. The random orientation of the wires is obtained with
a sphere point picking method (Weisstein, 1999), which generates ‘a uniform distribution
of points on a spherical surface. It is well known that the elementary area element of a
unit sphere in spherical coordinates, d2 = sin6dfdyp, depends on 8. In order for any
d<2 to contain the same density of points, the orientation angles ¢; and 6; are chosen
according to '

o = 2ru, @
6 =cos”!2v - 1), (3)
where u and v are uniformly distributed on the interval [0,1].

Next consider the same volume V, but filled with a homogeneous medium with
relative permittivity &, , and also surrounded with the relative permittivity &,p. In the
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Figure 1. Wire medium cylinder (a) and sphere (b).

following, these volumes will be referred to as Vi, and Vy,,, respectively. Both V. and
Viom are illuminated with the same given time-harmonic incident field E’ (r)—the time
dependence exp(jwt) will be omitted—and the respective scattered fields E;,; (r) and

fl om(r, &r.x) are computed in a number of observation points ry, ¢ = 1,..., Q, exterior
to V. The relative permittivity &, x of Vpop which minimizes the root-mean-square error
between E;  (r, &) and EJ,; (r) over the set of observation points can be considered as
the relative effective permittivity &, ¢ of the wire medium. Due to the statistical nature
of Viire, some kind of averaging has to be performed in order to obtain the coherent
part of ES._(r). This is typically done by taking the average scattered field for different
random realizations of Vi, (Siqueira & Sarabandi, 2000). In this paper the rotational
symmetry of V is exploited, hence just one random realization of Vi is rotated to P

different angles around the symmetry axis, with the incident field remaining unchanged.
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Figure 2. Wire coordinates.
The average scattered field is then given by
1k
Erire,p E))p = 5 D B p (K. @
p=1

The relative effective permittivity thus is obtained by minimizing a cost function

Q
Flera) = Y Wi p(Tg))p — By (g, 2r.0)1 G)
g=1

In this paper, the incident field is a plane wave and the observation points r, are regularly
spaced on a circle with radius b > a surrounding V, either in the near or in the far field
of V. Details on the numerical computation of the scattered fields Ej. , and Ej  are
given in the following sections. The cost function (5) is minimized with a Levenberg—
Marquardt algorithm (Press et al., 1988).

Note that the average scattered field (4) is obtained equivalently by keeping Vi
fixed and by rotating the incident field around the symmetry axis. Such a description,

with P incident plane waves, will be adopted in the following:
E),(r) = Eg exp(—jknu, - 1), ©)

where Ey is a linearly polarized complex vector, u,, is the direction of propagation, and
kn = ko./€rn and kg are the wavenumbers of the host medium and vacuum, respectively.

The following conventions are adopted for the respective configurations of the cylin-
der and sphere. The axis of the cylinder is along z. The incident field propagation di-
rections are parallel to the xy-plane and are defined by u, = (—cosgy, —sing,, 0),
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with ¢, = (p — D2n/P, p = 1,..., P. The polarization is parallel to z, hence
E¢ = Epu,. The observation points are on a circle in the xy-plane; their coordinates
are rg = (bcos gy, bsing,, 0), with ¢, = (g - 1)27/Q, g =1, ..., Q. For the sphere,
the incident field propagation directions are parallel to the yz-plane and are defined by
u, = (0,sin6p, cosdp), with 8, = (p — 1)2n/P and with op = %, p=1...,P.
The polarization is parallel to x, hence Eg = Egu,. The observation points are on a
circle lying in a plane defined by the vectors u, and wu,. Their coordinates are given by
rg = (bsiny, bsinfp cos &y, beosby, cos&y), with &, = (g — 1)2n/Q, ¢ =1,..., Q.

Full-Wave Solution for the Wire Medium Volume

For the computation of the field E{ ; _(r) scattered by the PEC wire medium volume Vi,
an electric field integral equation formulation is applied. Since the aspect ratio I /d of the
wires is large, a thin wire approximation can be used. This assumes that (i) the current
on the surface of the wire is in the axial direction and does not show a circumferential
variation, (ii) this current can be represented by a filamentary current I(s) on the wire
axis, with 5 a distance parameter along this axis, and (iii) the boundary condition of the
electric field needs to be enforced in the axial direction only. The following equation in

the unknown filamentary current I (s) is obtained for one wire (Burke and Poggio, 1981):

. i 7 1 92 —jkplr—r'|
—E'(r) u; = —’k—h" X 1(s") [k,% - ] (e ds’, @)

as'ds | \4n|r — 1’|

where r is an observation point on the surface of the wire, 1’ is a source point on the wire
axis, uy is the unit vector tangent to the wire axis, and Zp = Zg/ N is the impedance
of the host medium, with Zp = /0/€0. The corresponding equation for the N wires in
Viwire 18 given by

N

; iZp l 92 o~ Jknlri—rjl
—E') v, = -1 Z/(; 1;(s" [k;z,“s,i Uy j — as'as] ( ds', (8)

PR /.
ky, ot 4 |r; — )]

where r; is an observation point on the surface of wire i and r’; is a source point on
the axis of wire j. Equation (8) is discretized with a Galerkin method of moments
(Harrington, 1968) with sinusoidal basis and testing functions. The unknown current
I;(s") on wire j is expanded as

, 2 & . [nms'
Ii(s") = 7217*"5"1 - ) )
n=1

where Nj, is the number of basis functions and I; , are the unknown current coefficients.
Testing (8) along all wires r;, i = 1,..., N, with functions /2/1sin(mns/l), m =
1,..., Np, then leads to a matrix equation

Z1=V, (10

where I={Ily1---Iiny - INy--- IN,N,,]T is the vector of unknowns and V={V; ;---
Ving VN1 VN, Nb]T is the excitation vector, which depends on the choice of the



306 S. Van Damme and A. Franchois

incident field. Since there are P incident fields, as specified in the previous section,
(10) is to be solved for P right-hand sides V7, where

I
io; . mimws
VP = Kip /0 ¢J%.p5 sin (-l—) ds, a1
with
K; p= \/?EO cos 9,‘ejk"[c°s¢p(mi"‘_% sin 6; COS(Pi)+Siﬂ(pp(mi‘y—% sin 6; sin ¢;)] (12)
, ] ,

o;,p = kplcos @p sin 6; cos p; + sin @, sin §; sin ¢;] 13)

for the cylinder and
2 e Tsi L cin sinos L cosd:
Ki,p — \/;EO sin 9; cos (pie—]kh[SIHOP(m"y_? sin 6; sin g;)+cos Op (m; ;— 3 cose,)]’ (14)

a; p = —kp[cos B, cosb; + sin 8, sin §; sin ;] (15)

for the sphere. With 8, = mm /I, (11) finally is expressed as

K; j(ai,p+ﬂm)l j(“i,p—ﬁm)l 1 1

VP = -=he )l ¢ - + . (16)

’ 2 ®i.p+ Bm o‘i,p_,Bm ai,p‘i‘.Bm o‘i,p_lgm
The elements of the interaction matrix Z are given by
7 jZy2 /‘l /’l in nrs’\ . (mnS)
im,jn = —— i sin{ —
PRI ke Lo Jo ! !
17

62 e—jkhll','-l'ﬂ

) 7

% ["h“s-i U5 3s’35] (4”‘“ =)
J

For the mutual interactions, i.e., interactions between different wires i # j, the inte-
grations in (17) are performed with 9- and 10-point Gaussian quadrature formulas. The

elements of Z corresponding to the self interactions, hence i = j, can be written as

2
2 hr! nws’ mms e_jkh (s_s,)h—(%)
Zimin= thkh—/ / sin { —— sin( ) ds’ ds
l 0 Jo l l d 2
VA, (s — )2 + (5)

TR CF) [ o (7)o ()
e—jkh,/(s—s')2+(%)2
X ds' ds.

2
47t\/(s -5+ (%)
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The numerical integration of (18) is difficult due to the quasi-singular behavior around
s = s’. Therefore, a transformation of variables is applied (Milovanovi & Velikovi, 2001):

5s=1, a9

d
s—s' = > sinh 1y, (20)

leading to the following expressions for the integrals in (18):

d
/ /Slnh sin nn(t — E sinh ‘L'1)
sinh~! ’ cos )

siny ymrry\ _..d
(_)e Jkn% coshty dr dv.
cos )

3y

The integrands are now well behaved and are computed as with the mutual interactions.

The computation of the interaction matrix elements (17) is time consuming, espe-
cially when the number of wires is large. Therefore, an approximation is introduced for
the interactions between wires i # j that are sufficiently distant from each other. It con-
sists of replacing the distance jr; —r}l in (17) with the constant distance R; ; = |m; —m|
between the midpoints of both wires, yielding

2\? 1 e MuRij
Ztm;n—.]zhkh‘l'(""') —;1_“ 5,0t g, j for m and n odd
w) nm 4nR;; 22)

=0 otherwise.

Numerical experiments showed that this approximation can be used for R; ; > 7/ at
frequencies below 1 GHz. The relative error between the exact and the approximate inte-
gration is then smaller than 1%. In this paper, (10) is solved with a direct backsubstitution
method with multiple right-hand sides from MATLAB.

Once the current coefficients 17 are solved, the scattered field is computed with

N Nb i\ ,—Jknle—r’|
nns'\ e j

EL(r) = —_]a)/l,o‘/ sin — ds' g, ;
I J4mjr—r']|
j=ln= 1 J

(23)
/ al Nb mt nus' ¢~ Jnlr=rj|
]a)£h ln . wr —r

Analytical Solutions for the Homogeneous Cylinder and Sphere

The field EZ om (L) scattered by the homogeneous cylinder Vi, with radius a and height
H is approximated by the analytical solution for the two-dimensional infinitely long
cylinder. For a cylinder with relative permittivity &, in a host medium &, (Figure 3a)
that is illuminated with a linearly polarized plane wave Ef = Ege/***u,, the scattered
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Figure 3. Homogeneous cylinder (a) and sphere (b).

field on a circle with radius b > a is given by (Harrington, 2001)

00

Ej (b, 9g) = Eo Y j"anHP (knb)e™s, (24)

n=—00
with

o, = kth(kxa)l(Jz,ﬁ)(kha)—kxlngha)l,ﬁ(kxa) ’

knJn(kza)Hy ™ (kna) — kx Hy™ (kna) J; (kxa)

(25)



Homogenization Technique for SFRC 309

where k; = ko./Erx and J,(x) and H\> (x) are the Bessel function of the first kind and
the Hankel function of the second kind, of order #, respectively. As is shown further, this
two-dimensional approximation yields satisfactory results provided that H 3> a and that
b is not much larger than a.

For a homogeneous dielectric sphere Vp,, with radius a and relative permittivity
&r,x in a host medium &, ;, (Figure 3b), that is illuminated with a linearly polarized plane
wave Ef = Ege~/%2u,, the scattered field in a point (p, 6, @) with p > a is given by
(Van Bladel, 1985)

E'(p,0,¢) = V x V(v°pu,) — jouV x (w’pu,), (26)
. O
j o 2n+1 .
o= g—;)”m cos @ P, (cos ) Ljn(knp) — anhP(knp)l,  (27)
w' = 3 2L G P cos ) intlnp) — bahD )], 28)
wpo Fg 7 n 1 " ! o ’

&rhjnlkna) ji(kxa) — &r.x ju(kxa) ji (kna)

n = , (29)
ernh$? (k@) ji (k@) — &r.x jn(kxa)) (k)
Jn(kx@) i (kna) — ju(kna)jl(kea) 0)

" jnlea)n® (na) — KD (kpa) ji (exa)’

where v* and w® are the Debye potentials, a, and b, are the scattering coefficients,
Pn1 (x) are associated Legendre polynomials, and j,(x) and hf,z)(x) are the spherical
Bessel functions of the first kind and the spherical Hankel functions of the second kind,
of order n, respectively. The scattered field on a circle with radius b > a in the xz-plane
is obtained from (26) by putting ¢ =0 and p = b.

Maxwell-Garnett Formula

The effective permittivity obtained with the full-wave homogenization technique as de-
scribed in the previous sections can be compared with values predicted by mixing formu-
las from the classical homogenization approach, which generally are valid for sufficiently
low frequencies and volume fractions (Sihvola, 1999). A Maxwell-Garnett formula for
randomly oriented PEC spheroids in a dielectric host is given by (Van Damme et al.,
2004)

_ _bH 1T 1
Fref = rh [” 30— f) (N1 M Ns)]' Gl

For a prolate spheroid with semi-axes a; > ap = as, the depolarization factors are given
by

1—¢? 1+e
Ni = 1 —2el, 32
! 2e3 (nl—e e) 32)
1-N
Ny =N;3 = ! (33)
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where ¢ = /1 -1 /A? is the eccentricity and A; = aj/az is the aspect ratio of the
spheroid (Sihvola, 1999; Durand, 1966). In Van Damme et al. (2004), the simple ex-
pression (31) is used to invert experimental permittivity data for the fiber content of a
few SFRC slabs. This inversion strongly depends on the aspect ratio A; of the spheroid,
which is chosen to model the fiber shape and is actually a cylinder with tiny bends at
the ends. In Van Damme et al. (2004) this spheroid is chosen to have the same length
and volume as the fiber,

a = (34)

E’
Uspheroid = Vfiber (35)

hence the volume fraction f, is not modified but the aspect ratio of the spheroid
A, = /2/31/d is smaller than that of the fiber I/d. With the full-wave homogeniza-
tion technique proposed in this paper, it is possible to examine the validity range of (31)
and to further optimize the choice of the spheroid geometry.

Numerical Results

In this section the homogenization approach is tested with numerical examples and the
influence of various parameter choices on the fitted effective relative permittivity is il-
lustrated, such as the dimensions of V., the illumination frequency, and the radius of
the observation circle. Unless specified otherwise, the wires have a length [ = 30 mm
and a diameter d = 0.55 mm, hence I/d = 54.55 and they are embedded in lossless
dry concrete with relative permittivity &, , = 5.45. The number of plane waves incident
on Vi is P = 16 and the number of observation points on the circle is @ = 16.
For the frequencies that are considered, the wavelength in the host medium A is suffi-
ciently large with respect to I to use only one basis function, Np = 1, in the moment
discretization (9). The maximum number of wires is then N = 5000 with a Pentium III
1133 MHz, 2 GByte RAM. The approximation (22) for the interaction matrix elements
is applied.

Figure 4 shows the influence of the radius of the observation circle on &, .7, when
Viwire is a finite cylinder or a sphere. The frequency is 500 MHz, hence X5 = 257 mm.
In the lower curves (plain lines) the volume fraction is f, = 5.925 10~* (5 kg/m?).
The crosses there are obtained from a cylinder with radius ¢ = 87.5 mm and height
H = 2.5 m, containing N = 5000 wires, and the circles are obtained from a sphere
with radius ¢ = 100 mm, containing N = 349 wires. With the cylinder, a stable value
e = 6.14 is obtained when a < b < 4Ay; for larger values of b deviations appear,
which result from an increasing discrepancy between the fields scattered by the three-
dimensional Vi and two-dimensional Vj,,, cylinders. With the sphere the same stable
value g, = 6.14 is obtained for all values of b. In the higher curves (dashed lines)
the volume fraction is doubled, or f, = 1.185 1073 (10 kg/m3). The crosses there are
obtained from a cylinder with the same radius a = 87.5 mm but with half the height
H = 1.25 m as the previous cylinder, containing N = 5000 wires, and the circles are
obtained from a sphere with radius ¢ = 100 mm, containing N = 698 wires. It can be
seen that with this shorter cylinder, the range of b values that yield a stable value for &, .
is reduced to a < b < 2X;. Results for the sphere are again very stable for all b values. A
typical cost function (5) is depicted in Figure 5, which shows a well-pronounced unique
minimum.
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Figure 4. The effective permittivity as a function of the normalized radius of the observation circle
for the cylindrical (x) and spherical (O) volumes, and for two volumes fractions, f, = 5.925 10~4
(—) and f, = 1.185 1073 (——).

Figure 6 shows &, .4 as a function of the radius of the sphere, for different volume
fractions (f, = 5.925 1074, 1.185 1073, 2.37 1073, 4.7 10~3) and different frequencies
between 100 MHz and 1 GHz. Due to the limitation on the maximum number of wires,
the maximum possible radius decreases from 0.24 m to 0.1 m with the increasing volume
fractions. For f, = 5.925 10~*4, a constant relative effective permittivity value is obtained
for radii between 0.06 m and 0.24 m (the diameters of the spheres then range from 0.1,
to 1.124;) and for frequencies between 100 MHz and 300 MHz. The mean value and
standard deviation over these radii and frequencies are given by &, .4 = 6.12 & 0.02.
At 500 MHz and 1 GHz, the values are &, .4 = 6.16 £ 0.02 and Ereff = 6.34 +£0.02,
respectively. The result thus deteriorates when the wavelength A is not sufficiently large

250

200+
1501
100+

501

§ 6 7 8 9 10 11 12 13 14 15
Erx

Figure 5. Typical cost function.
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Figure 6. &, . as a function of the radius of the sphere a for (i) different volume fractions:
fo = 5925 1074 (O), f, = 1.185 1073 (), f, = 2.37 1073 (0), fy = 4.7 1073 (V); and
(i) different frequencies: 100 MHz (—), 300 MHz (——), 500 MHz (— - —).

with respect to [ and when the radius is smaller than 0.06 m. With the volume fractions
fv = 1.185 1073 and f, = 2.37 1073 the results are &ref = 6.81 £0.03 and &, .5 =
8.324+0.17, respectively. With the higher volume fractions, variations on the permittivity
thus become somewhat larger. It can be concluded that spheres need not be large to reach
good results. For the highest volume fraction f, = 4.7 1073, the effective permittivity
is not constant within the ranges that are considered. This behavior will be studied in
future work.

12 g T T T T

Ereff

Figure 7. &, .7 as a function of the volume fraction: full-wave homogenization (—), Maxwell-
Garnett with choice (34), (35) for spheroids (——), Maxwell-Garnett such that Ereff coincides with

the full-wave solution for f, = 5.925 10~ (—--).
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In Figure 7 a comparison between the full-wave homogenization and the Maxwell—
Garnett formula (31) is given. The plain line shows &, .4 as a function of the volume
fraction, obtained with the full-wave homogenization using spheres with radius a =
0.1 m at 100 MHz. The dashes show the permittivity obtained with the Maxwell-Garnett
formula and with dimensions of the spheroids according to (34)—(35). It can be seen
that Maxwell-Garnett yields lower values than the full-wave homogenization. For the
volume fraction f, = 1.185 1073, for example, the relative difference is 2%. For the
lowest volume fraction f, = 5.925 10~4, &rep = 6.07 with Maxwell-Garnett and
Ere = 6.11 with the full-wave homogenization. The relative difference here is only
0.7%. A different choice than (34)~(35) for the dimensions of the spheroids is obtained
by taking Zf':l 1/N; = 614.5 in (31). In this case, &4 = 6.11 also with Maxwell-
Garnett, for f, = 5.925 107%, yielding the dash-dot line in Figure 7. The discrepancy
between the two effective permittivities has dropped to 0.7% for the volume fraction
fu = 1.185 1073,

Finally, some additional verifications are performed for a sphere with f, = 2.37 1073,
It follows that &, o = 8.2921 when using the exact expression (17) and &, 5 = 8.2921
when using the approximation (22), but &, .4 = 8.5805 when interactions are neglected
altogether. It also follows that the results remain stable when repeating the computations
for different random realizations, e.g., Ere = 8.32 4 0.13 for 10 realizations. When
reducing the size of the fibers to | = 15 mm, d = 0.275 mm, while keeping the aspect
ratio A; and volume fraction f, unchanged, &5 = 8.29 remains close to a previously
obtained result of &, o5 = 8.35.

Conclusion

A full-wave technique for the homogenization of steel fiber reinforced concrete was pre-
sented. The relative permittivity of a homogeneous volume, such as a two-dimensional
cylinder or a sphere, was fitted to scattered field data of a wire medium volume, such as
a three-dimensional cylinder or a sphere, respectively. With the two-dimensional cylinder
the analytical solution is simple, but the dimensions of the finite wire medium cylinder
and the locations of the scattered field data need to be chosen with care. Therefore, the
sphere is the preferred geometry. For volume fractions corresponding to a fiber density
of 20 kg/m> or lower, constant values for the effective permittivity are obtained inde-
pendent of the frequency and of the radius of the sphere, provided that the wavelength
is sufficiently large with respect to the length of the fiber and that the radius is at least
twice the length of the fiber. It may then be computationally advantageous to select the
smallest possible sphere and the lowest frequency. These values also show a satisfactory
agreement with a Maxwell-Garnett mixing rule for randomly oriented perfectly conduct-
ing prolate spheroids. The proposed method can be used to derive improved mixing rules,
e.g., to invert measured effective permittivity data for the fiber content.
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