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Abstract

We propose the first fully-adaptive algorithm
for pure exploration in linear bandits—the
task to find the arm with the largest ex-
pected reward, which depends on an un-
known parameter linearly. While existing
methods partially or entirely fix sequences
of arm selections before observing rewards,
our method adaptively changes the arm se-
lection strategy based on past observations at
each round. We show our sample complex-
ity matches the achievable lower bound up
to a constant factor in an extreme case. Fur-
thermore, we evaluate the performance of the
methods by simulations based on both syn-
thetic setting and real-world data, in which
our method shows vast improvement over ex-
isting ones.

1 Introduction

The multi-armed bandit (MAB) problem (Robbins,
1985) is a sequential decision-making problem, where
the agent sequentially chooses one arm out of K arms
and receives a stochastic reward drawn from a fixed,
unknown distribution related with the arm chosen.
While most of the literature on the MAB focused on
the maximization of the cumulative rewards, we con-
sider a pure-exploration setting called the best arm
identification problem (Bubeck et al., 2009). Here, the
goal of the agent is to identify the arm with the max-
imum expected reward.

The best arm identification problem has recently
gained increasing attention, and a considerable
amount of work covers many variants of it. For exam-
ple, Audibert and Bubeck (2010) considered the fixed
budget setting, where the agent tries to minimize the
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misspecification probability in a fixed number of tri-
als, and Even-Dar et al. (2006) introduced the fixed
confidence setting, where the agent tries to minimize
the number of trials until the probability of misspeci-
fication becomes smaller than a fixed threshold.

An important extension of the MAB is the linear ban-
dit (LB) problem (Abe and Long, 1999; Auer, 2002).
In the LB problem, each arm has its own feature
x 2 R

d, and the expected reward can be written as
x>θ, where θ 2 R

d is an unknown parameter and x>

is the transpose of x. Although there are a number
of studies in the LB (Abbasi-Yadkori et al., 2011; Li
et al., 2010), most of them aim for maximization of
the cumulative rewards, and only a few consider the
pure-exploration setting.

In spite of the scarce literature, the best arm identifi-
cation problem in the LB has a wide range of applica-
tions. For example, Hoffman et al. (2014) applied the
pure exploration in the LB to the optimization of a
traffic sensor network and automatic hyper-parameter
tuning in machine learning.

The first work that addressed the best arm identi-
fication problem for the LB was by Hoffman et al.
(2014). They studied the best arm identification in
the fixed-budget setting with correlated reward dis-
tributions and devised an algorithm called BayesGap,
which is a Bayesian version of the gap based explo-
ration algorithm (Gabillon et al., 2012).

Although BayesGap outperformed algorithms that ig-
nore the linear correlation of rewards, there is a draw-
back that it never pulls arms turned out to be sub-
optimal. As studied in Soare et al. (2014) and Lat-
timore and Szepesvari (2017), ignoring sub-optimal
arms can significantly harm the performance in the
LB. For example, consider the case where there are
three arms and their features are x1 = (1, 0)>, x2 =
(1, 0.01)>, and x3 = (0, 1)>, respectively. Now, if
θ = (θ1, θ2)

> = (2, 0.01)>, then the expected reward
of arms 1 and 2 are close to each other, hence it is
hard to figure out the best arm just by observing the
samples from them. On the other hand, pulling arm 3
greatly reduces the number of samples required, since
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it enhances the accuracy of estimation of θ2. As illus-
trated in this example, pulling a sub-optimal arm can
give valuable insight for comparing near-optimal arms
in the LB.

Soare et al. (2014) constructed the first algorithm that
pulls sub-optimal arms for exploration in the best arm
identification. They studied the fixed-confidence set-
ting and derived an algorithm based on transductive
experimental design (Yu et al., 2006), called XY-static
allocation. The algorithm employs a static arm selec-
tion strategy, in the sense that it fixes all arm selec-
tions before observing any reward. Therefore, it is not
able to focus on estimating near-optimal arms, thus
the algorithm can only be the worst-case optimal.

In order to develop more efficient algorithms, it is nec-
essary to pull arms adaptively based on past observa-
tions so that most samples are allocated for compari-
son of near-optimal arms. The difficulty in construct-
ing an adaptive strategy is that a confidence bound for
statically selected arms is not always applicable when
arms are adaptively selected. In particular, a confi-
dence bound for an adaptive strategy introduced by
Abbasi-Yadkori et al. (2011) is looser than a bound
for a static strategy derived from Azuma’s inequal-
ity (Azuma, 1967) by a factor of

p
d in some cases,

where d is the dimension of the feature. Soare et al.
(2014) tried to mitigate this problem by introducing
a semi-adaptive algorithm called XY-adaptive alloca-
tion, which divides rounds into multiple phases and
uses different static allocation strategies in different
phases. Although this theoretically improves the sam-
ple complexity, the algorithm has to discard all sam-
ples collected in the previous phases to make the con-
fidence bound for static strategies applicable, which
drops the empirical performance significantly.

To discuss tightness of the sample complexity of XY-
adaptive allocation, Soare et al. (2014) introduced the
XY-oracle allocation algorithm, which assumes access
to the true parameter θ for selecting arms to pull.
They discussed that the sample complexity of this al-
gorithm can be used as a lower bound on the sample
complexity for this problem and claimed that the up-
per bound on the sample complexity of XY-adaptive
allocation is close to this lower bound. However, the
derived upper bound is not given in an explicit form
and contains a complicated term coming from XY-
static allocation used as a subroutine. In fact, the
sample complexity of XY-adaptive allocation is much
worse than that of XY-oracle allocation, as we will see
numerically in Section 7.1.

Our contribution is to develop a novel fully-adaptive
algorithm, which changes arm selection strategies
based on all of the past observations at every round.

Although this prohibits us from using a tighter bound
for static strategies, we show that the factor

p
d can be

avoided by the careful construction of the confidence
bound, and the sample complexity almost matches
that of XY-oracle allocation. We conduct experiments
to evaluate the performance of the proposed algorithm,
showing that it requires ten times less samples than ex-
isting methods to achieve the same level of accuracy.

2 Problem formulation

We consider the LB problem, where there are K arms
with features x1, . . . , xK 2 R

d. We denote the set of
the features as X = {x1, . . . , xK} and the largest l2-
norm of the features as L = maxi2{1,...,K} kxik2. At
every round t, the agent pulls an arm at 2 [K] =
{1, . . . ,K}, and observes immediate reward rt, which
is characterized by

rt = x>
at
θ + εt.

Here, θ 2 R
d is an unknown parameter, and εt repre-

sents a noise variable, whose expectation equals zero.
We assume that the l2-norm of θ is less than S and
the noise distribution is conditionally R-sub-Gaussian,
which means that noise variable εt satisfies

E
⇥

eλεt |xa1
, . . . , xat�1

, ε1, . . . , εt�1

⇤

 exp

✓

λ2R2

2

◆

for all λ 2 R. This condition requires the noise distri-
bution to have zero expectation and R2 or less variance
(Abbasi-Yadkori et al., 2011). As prior work (Abbasi-
Yadkori et al., 2011; Soare et al., 2014), we assume
that parameters R and S are known to the agent.

We focus on the (ε, δ)-best arm identification problem.
Let a⇤ = arg maxi x

>
i θ be the best arm, and x⇤ be

the feature of arm a⇤. The problem is to design an
algorithm to find arm â⇤ which satisfies

P[(x⇤ � xâ⇤)>θ � ε]  δ, (1)

as fast as possible.

3 Confidence Bounds

In order to solve the best arm identification in the LB
setting, the agent sequentially estimates θ from past
observations and bounds the estimation error. How-
ever, if arms are pulled adaptively based on past ob-
servations, the estimation becomes much more com-
plicated compared to the case where pulled arms are
fixed in advance. In this section, we discuss this dif-
ference and how we can construct a tight bound for an
algorithm with an adaptive selection strategy.
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Given the sequence of arm selections xn =
(xa1

, . . . , xan
), one of the most standard estimators for

θ is the least-squares estimator given by

θ̂n = A�1
xn

bxn
,

where Axn
and bxn

are defined as

Axn
=

n
X

t=1

xat
x>
at
, bxn

=

n
X

t=1

xat
rt.

Soare et al. (2014) used the ordinary least-squares es-

timator θ̂n combined with the following proposition on
the confidence ellipsoid for θ̂n, which is derived from
Azuma’s inequality (Azuma, 1967).

Proposition 1 (Soare et al., 2014, Prop. 1). Let noise
variable εt be bounded as ε 2 [�σ,σ] for σ > 0, then,
for any fixed sequence xn, statement

|x>θ � x>θ̂n|  2σkxkA�1

xn

s

2 log

✓

6n2K

δπ2

◆

(2)

holds for all n 2 {1, 2, . . . } and x 2 X with probability

at least 1� δ for kxkA =
p
x>Ax.

The assumption that xn is fixed is essential in Prop. 1.
In fact, if xn is adaptively determined depending on
past observations, then the estimator θ̂n is no more
unbiased and it becomes essential to consider the reg-
ularized least-squares estimator θ̂λn given by

θ̂λn = (Aλ

xn
)�1bxn

,

where Aλ
xn

is defined by

Aλ

xn
= λI +

n
X

t=1

xat
x>
at
,

for λ > 0 and the identity matrix I. For this estimator,
we can use another confidence bound which is valid
even if an adaptive strategy is used.

Proposition 2 (Abbasi-Yadkori et al., 2011, Thm. 2).
In the LB with conditionally R-sub-Gaussian noise, if
the l2-norm of parameter θ is less than S, then state-
ment

|x>(θ̂λn � θ)|  kxk(Aλ
xn

)�1Cn

holds for given x 2 R
d and all n 2 {1, 2, . . . } with

probability at least 1� δ, where Cn is defined as

Cn = R

s

2 log
det(Aλ

xn
)

1

2

λ
d
2 δ

+ λ
1

2S. (3)

Moreover, if kxat
k  L holds for all t > 0, then

Cn  R

r

d log
1 + nL2/λ

δ
+ λ

1

2S. (4)

Although the bound in (4) holds regardless of whether
the arm selection strategy is static or adaptive, the
bound is looser than Prop. 1 by an extra factor

p
d

when a static strategy is considered.

In the following sections, we use the bound in (3) to
construct an algorithm that adaptively selects arms
based on past data. We reveal that the extra factor

p
d

arises from looseness of (4) and the sample complexity
can be bounded without this factor by an appropriate
evaluation of (3).

4 Arm Selection Strategies

In order to minimize the number of samples, the agent
has to select arms that reduce the interval of the con-
fidence bound as fast as possible. In this section, we
discuss such an arm selection strategy, and in partic-
ular, we consider the strategy to reduce the matrix
norm kxi � xjkA�1

xn
, which represents the uncertainty

in the estimation of the gap of expected rewards be-
tween arms i and j.

Soare et al. (2014) introduced the strategy called XY-
static allocation, which makes the sequence of selection
xn to be

arg min
xn

max
x,x02X

kx� x0kA�1

xn
. (5)

The problem is to minimize the confidence bound of
the direction hardest to estimate, which is known as
transductive experimental design (Yu et al., 2006).
Note that this problem does not depend on the past
reward, which satisfies the prerequisite of Prop. 1.

A drawback of this strategy is that it minimizes the
largest matrix norm maxx,x02X kx�x0kAxn

for all fea-
ture pairs x, x0 2 X . However, considering that our
goal is to find the best arm a⇤, we are not interested in
estimating the gaps between all arms but the gaps be-
tween the best arm and the rest. Therefore, we should
spare more samples for estimating gaps of arms with
relatively high rewards. This cannot be achieved in the
static strategy, since we need to change arm selections
based on past rewards.

In order to overcome this weakness while using Prop. 1,
Soare et al. (2014) proposed a semi-adaptive strategy
called the XY-adaptive strategy. This strategy parti-
tions rounds into multiple phases and arms to select
are static within a phase but changes between phases.
At the beginning of phase j, it constructs a set of po-
tentially optimal arms X̂j based on the samples col-
lected during the previous phase j�1. Then, it selects
the sequence xn in phase j as

arg min
xn

max
x,x02X̂j

kx� x0kA�1

xn
, . (6)
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As it goes through the phases, the size of X̂j decreases
so that the algorithm can focus on discriminating a
small number of arms.

Although the XY-adaptive strategy can avoid the ex-
tra factor

p
d in (4), the agent has to reset the design

matrix Axn
at the beginning of each phase in order to

make Prop. 1 applicable. As experimentally shown in
Section 7, we observe that this empirically degrades
the performance considerably.

In contrast, our approach is fully adaptive and pulls
arms based on all of the past observations at every
round. More specifically, at every round t, our algo-
rithm chooses (but not pulls) a pair of arms, it and jt,
the gap of which needs to be estimated. Then, it pulls
an arm so that the sequence of selected arms becomes
close to

x⇤
n(it, jt) = arg min

xn

kxit � xjtk(Aλ
xn

)�1 . (7)

Although Prop. 1 is no longer applicable to our strat-
egy, it can focus on the estimation of the gaps between
the best arm and near-optimal arms.

5 LinGapE Algorithm

In this section, we present a novel algorithm for (ε, δ)-
best arm identification in LB. We name the algo-
rithm LinGapE (Linear Gap-based Exploration), as it
is inspired by Unified Gap-based Exploration (UGapE,
Gabillon et al., 2012).

The entire algorithm is shown in Algorithm 1. At each
round, LinGapE first chooses (but does not pull) two
arms, the arm with the largest estimated reward it
and the most ambiguous arm jt. Then, it pulls the
most informative arm to estimate the gap of expected
rewards (xit � xjt)

>θ by Line 9 in Algorithm 1.

The algorithm for choosing arms it and jt is presented
in Algorithm 2, where we denote the estimated gap by
∆̂t(i, j) = (xi � xj)

>θ̂λt and the confidence interval of
the estimation by βt(i, j) defined as

βt(i, j) = kxi � xjkA�1

t
Ct, (8)

for Ct given in (3).

5.1 Arm Selection Strategy

After choosing arms it and jt, the algorithm has to
select arm at, which most decreases the confidence
bound βt(it, jt), or equivalently, kxit � xjtkA�1

t
. As

in Soare et al. (2014), we propose two procedures for
this.

Algorithm 1: LinGapE

Input: accuracy ε, confidence level δ, noise level R,
norm S of unknown parameter θ,
regularization parameter λ

Output: the arm â⇤ which satisfies stopping
condition (1)

1 Set A0  λI, b0  0, t 0;
// Initialize by pulling each arm once

2 for i 2 [K] do
3 t t+ 1;

4 Observe rt  x>
i θ + εt, and update At and bt;

5 Loop

// Select which gap to examine

6 (it, jt, B(t)) Select-direction(t);
7 if B(t)  ε then

8 return it as the best arm â⇤;

// Pull the arm based on the gap

9 Pull the arm at+1 based on (9) or (12) ;
10 t t+ 1;

11 Observe rt  x>
at
θ + εt, and update At and bt;

Algorithm 2: Select-direction

1 Procedure Select-direction(t):

2 θ̂λt  A�1
t bt;

3 it  arg maxi2[K](x
>
i θ̂

λ
t );

4 jt  arg maxj2[K](∆̂t(j, it) + βt(j, it));

5 B(t) maxj2[K](∆̂t(j, it) + βt(j, it));
6 return (it, jt, B(t));

One is to select arms greedily, which is

at+1 = arg min
a2[K]

kxit � xjtk(At+xax>
a )�1 . (9)

We were not able to gain a theoretical guarantee of
the performance for this greedy strategy, though our
experiment shows that it performs well.

The other is to consider the optimal selection ratio of
each arm for decreasing kxit�xjtkA�1

t
. Let p⇤k(it, jt) be

the ratio of arm k appearing in the sequence x⇤
n(it, jt)

in (7) when n ! 1. By the discussion given in Ap-
pendix C, we have

p⇤k(it, jt) =
|w⇤

k(it, jt)|
PK

k=1 |w
⇤
k(it, jt)|

, (10)

where w⇤
k(it, jt) is the k-th element ofw⇤(it, jt) defined
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as follows.

w⇤(it, jt) = arg min
w2Rd

kwk1

s.t. xit � xjt =

K
X

k=1

wkxk, (11)

where kwk1 is the l1-norm of w. The optimization is
easier compared with Soare et al. (2014), which solved
(5) and (6) via nonlinear convex optimization.

We pull the arm that makes the ratio of arm selections
close to ratio p⇤k(it, jt). To be more precise, at+1 is
decided by

at+1 = arg min
a2[K]: p⇤

a(it,jt)>0

Ta(t)/p
⇤
a(it, jt), (12)

where Ta(t) is the number of times that arm a is pulled
until the t-th round. This strategy is a little more
complicated than the greedy strategy in (9) but enjoys
a simple theoretical characteristic, based on which we
conduct analysis.

LinGapE is capable of solving (ε, δ)-best arm identi-
fication, regardless of which strategy is employed, as
stated in the following theorem.

Theorem 1. Whichever the strategy in (9) or (12) is
employed, arm â⇤ returned by LinGapE satisfies con-
dition (1).

The proof can be found in Appendix D.

5.2 Comparison of Confidence Bounds

A distinctive character of LinGapE is that it consid-
ers an upper confidence bound of the gap of rewards,
while UGapE and other algorithms for the LB, such
as Optimism in the Face of Uncertainty Linear bandit
algorithm (OFUL, Abbasi-Yadkori et al., 2011), con-
sider an upper confidence bound of the reward of each
arm. This approach is, however, not suited for the
pure exploration in the LB, where the gap plays an
essential role.

The following example illustrates the importance
of considering such quantities. Consider that
there are three arms, features of which are x1 =
(�10, 10)>, x2 = (�9, 10)>, and x3 = (�1, 0)>. As-

suming that we have θ̂λt = (θ̂λ
t,(1), θ̂

λ

t,(2))
> = (�1, 0)>,

thus the estimated best arm is it = 1. Now, let us
consider the case where we have already been confi-
dent that θ̂λ

t,(1) ⇡ �1 but still unsure of θ̂λ
t,(2) ⇡ 0.

In such a case, algorithms considering an upper con-
fidence bound of the rewards of each arm, such as
UGapE, choose arm 2 as jt, since it has a larger esti-
mated expected reward and a wider confidence interval

than arm 3. However, it is not efficient, since arm 2
cannot have a larger expected reward than arm 1 when
θ1 = �1. On the other hand, LinGapE can avoid this
problem, since the confidence interval for (x1�x3)

>θ̂λt
is wider than (x1 � x2)

>θ̂λt .

6 Sample Complexity

In this section, we give an upper bound of the sample
complexity of LinGapE and compare it with existing
methods.

6.1 Sample Complexity

Here, we bound the sample complexity of LinGapE
when arms to pull are selected by (12). Let the prob-
lem complexity Hε be defined as

Hε =

K
X

k=1

max
i,j2[K]

p⇤k(i, j)ρ(i, j)

max
⇣

ε, ε+∆i

3 ,
ε+∆j

3

⌘2 , (13)

where ∆i is defined as

∆i =

(

(xa⇤ � xi)
>θ (i 6= a⇤),

arg minj2[K](xa⇤ � xj)
>θ (i = a⇤),

(14)

and ρ(i, j) is the optimal value of problem (11), de-
noted as

ρ(i, j) =

K
X

k=1

|w⇤
k(i, j)| = kw⇤(i, j)k1. (15)

Now, the sample complexity can be bounded depend-
ing on the value of λ as follows.

Theorem 2. Assume that at is determined by (12). If

λ  2R2

S2 log K2

δ
, then the stopping time τ of LinGapE

satisfies

P



τ  8HεR
2 log

K2

δ
+ C(Hε, δ) +K

�

� 1� δ,

(16)

where C(Hε, δ) is

C(Hε, δ) = 4HεR
2d log

✓

1 +
4ML2

λd

◆

for M =
16H2

ε
R4dL2

λ
+
⇣

8HεR
2 log K2

δ
+K

⌘2

.

Theorem 3. If λ > 4HεR
2L2 and at is determined

by (12), then

P



τ 
✓

8HεR
2 log

K2

δ
+ 4HελS

2 + 2K

◆�

� 1� δ.

(17)
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The proofs can be found in Appendix D. These theo-
rems state that there are two types of sample complex-
ity. The first bound (16) is practically more applicable,

since the condition λ  2R2

S2 log K2

δ
can be checked by

known parameters. On the other hand, we cannot en-
sure whether the condition λ > 4HεR

2L2 is satisfied,
since we cannot know Hε in advance. However, the
second bound in (17) can be tighter than the first one
in (16) when Hε ⌧ d.

6.2 Discussion of Problem Complexity

The problem complexity (13) has an interesting rela-
tion with that of the XY-oracle allocation algorithm
introduced by Soare et al. (2014). They considered the
case where the agent knows the true parameter θ when
selecting an arm to pull, and tries to confirm arm a⇤

is actually the best arm. Then, an efficient strategy is
to let the sequence of arm selections xn be

arg min
xn

max
i2[K]\{a⇤}

kxa⇤ � xikA�1

xn

∆i

. (18)

An upper bound of the sample complexity of XY-
oracle allocation was proved to be O(Horacle log(1/δ))
in Soare et al. (2014), where problem complexity
Horacle is defined as

Horacle = lim
n!1

min
xn

max
i2[K]\{a⇤}

nkxa⇤ � xik2A�1

xn

∆2
i

.

This is expected to be close to the achievable lower
bound of the problem complexity (Soare et al., 2014).
Here, we prove a theorem that points out the relation
between Horacle and our problem complexity Hε.

Theorem 4. Let H0 be the problem complexity of Lin-
GapE (13) when ε is set as ε = 0. Then, we have

H0  72H 0
oracle  72KHoracle,

where H 0
oracle is defined as

H 0
oracle =

X

i2[K]\{a⇤}

ρ(a⇤, i)

∆2
i

.

The proof of the theorem can be found in Ap-
pendix D.3. This result shows that our problem com-
plexity matches the lower bound up to a factor of K,
the number of arms. Furthermore, if ∆i for some i is
very small compared with {∆i0}i0 6=i, that is, if there
is only one near-optimal arm, then Horacle becomes
close to H 0

oracle, and hence our problem complexity H0

achieves the lower bound up to a constant factor.

Soare et al. (2014) claimed that XY-adaptive alloca-
tion achieves this lower bound as well. To be pre-
cise, they discussed that the sample complexity of XY-
adaptive allocation is O(max(M⇤, N⇤)), where N⇤ is

the sample complexity of XY-oracle allocation. Nev-
ertheless, they did not give an explicit bound of M⇤,
which stems from the static strategy employed in each
phase. Our experiments in Section 7 show that M⇤

can be as large as the sample complexity of XY-static
allocation, the problem complexity of which is proved
to be Ω(4d/∆2

a⇤) and can be arbitrarily larger than
Horacle in the case of d ! 1 (Soare et al., 2014).
Therefore, LinGapE is the first algorithm that always
achieves the lower bound up to a factor of K.

We point out another interpretation of our problem
complexity. If set of features X equals the set of canon-
ical bases (e1, e2, . . . , ed), then the LB problem is re-
duced to the ordinary multi-armed bandit problem. In
such a case, p⇤k(i, j) and ρ(i, j) are computed as

ρ(i, j) = 4, p⇤k(i, j) =

(

1
2 (k = i or k = j),

0 (otherwise),

Therefore, if the noise variable is bounded in the in-
terval [�1, 1], which is known as 1-sub-Gaussian, the
problem complexity becomes

Hε =

K
X

k=1

2

max
�

ε, ε+∆i

3

�2 
9

8
HUGapE

ε ,

where HUGapE
ε is the problem complexity of UGapE

(Gabillon et al., 2012). This fact suggests that Lin-
GapE incorporates the linear structure into UGapE
from the perspective of the problem complexity.

Lastly, we mention one drawback of our algorithm,
which is that the sample complexity is O(K log 1

δ
),

since Hε = O(K). This is problematic when K � d,
though, with a slight modification, we can derive an-
other algorithm whose sample complexity is bounded
by O(d

p
d log 1

δ
) (see Appendix B for the details).

7 Experiments

In this section, we compare the performance of Lin-
GapE with the algorithms proposed by Soare et al.
(2014) through experiments in two synthetic settings
and simulations based on real data. All codes are avail-
able online1.

7.1 Experiment on Synthetic Data

We conduct experiments in two synthetic settings.
One is the setting where an adaptive strategy is suit-
able, and the other is where pulling all arms uniformly
becomes the optimal strategy. We set the noise distri-
bution as εt ⇠ N (0, 1) and run LinGapE with parame-
ters ε = 0 and δ = 0.05 in both cases. We tried various

1https://github.com/liyuan9988/LinGapE
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Figure 1: The number of samples required to estimate
the best arm in the synthetic setting introduced by
Soare et al. (2014).

values of regularization parameter λ and different arm
selection strategies in (9) and (12), but they had very
little impact on the performance. Hence, we plot the
results only for the greedy strategy (9) and λ = 1. We
repeated experiments ten times for each setting, the
average of which is reported.

7.1.1 Setting Where the Adaptive Strategy

is Suitable

The first experiment is conducted in the setting where
the adaptive strategy is favored, which is introduced
by Soare et al. (2014). We set up the LB problem with
d + 1 arms, where features consist of canonical bases
x1 = e1, . . . , xd = ed and an additional feature xd+1 =
(cos(0.01), sin(0.01), 0, . . . , 0)>. The true parameter is
set as θ = (2, 0, . . . , 0)> so that the expected reward of
arm d+ 1 is very close to that of the best arm a⇤ = 1
compared with other arms. Hence, the performance
heavily depends on how much the agent can focus on
comparing arms 1 and d+ 1.

Figure 1 is a semi-log plot of the average stopping time
of LinGapE, in comparison with the XY-static alloca-
tion, XY-adaptive allocation and XY-oracle allocation
algorithms, all of which are introduced by Soare et al.
(2014). Their arm selection strategies are given in (5),
(6) and (18), respectively. The result indicates the
superiority of LinGapE to the existing algorithms.

The difference is due to the adaptive nature of Lin-
GapE. To illustrate it, we present the number of times
that each arm is pulled when d = 5 in Table 1. From
the table, we can see that XY-static allocation pulls
all arms almost equally, while LinGapE and XY-oracle
allocation pull arm 2 more frequently. In fact, this is
an efficient strategy, since pulling arm 2 significantly
reduces the norm kx1 � xd+1kA�1

xn
. From this result,

we can infer that LinGapE figured out two potentially
best arms, 1 and d+1, and changed the arm selection
for focusing on comparing these arms.

Table 1: An example of arm selection when d = 5.

XY-static LinGapE XY-oracle

Arm 1 1298590 2133 13646
Arm 2 2546604 428889 2728606
Arm 3 2546666 19 68
Arm 4 2546666 34 68
Arm 5 2546666 33 68
Arm 6 1273742 11 1

Although XY-adaptive allocation has adaptive nature
as well, it performs much worse than XY-static alloca-
tion in this setting. This is due to the limitation that it
has to reset the design matrix Axn

at every phase. In
fact, the algorithm succeeds in finding X̂j = {1, d+1}
in the first few phases. However, in the next phase,
the agent only pulls arms 1, 2 and d+1 for estimating
(x1 � xd+1)

>θ, thus it cannot discard the sub-optimal
arms any longer. Therefore, it handles all arms in the
last phase, which requires as many samples as XY-
static allocation. We observed that the same happened
in the two subsequent experiments and XY-adaptive
performed at least five times worse than XY-static al-
location. Hence, we omit the result for XY-adaptive
allocation in the following for highlighting differences
of other methods.

It is somewhat surprising that LinGapE outperforms
XY-oracle allocation, given that the latter assumes ac-
cess to the true parameter θ. The main reason for this
is that our confidence bound is tighter than that used
in XY-oracle allocation. As discussed in Section 3, our
confidence bound βt(i, j) is looser by a factor of

p
d in

the worst case where det(At) = O(td). Nevertheless,
det(At) grows almost linearly with t in this setting,
where LinGapE mostly pulls the same arm as pre-
sented in Table 1. Therefore, the confidence interval
is much narrower than the worst-case scenario. This
suggests room of improvement in sample complexity
(16), given that we only considered the worst-case in
the derivation (see Prop. 3 in Appendix D).

7.1.2 Setting Where the Static Strategy is

Optimal

We conduct another experiment in a synthetic setting,
where XY-static allocation is almost optimal. We con-
sider the LB with K = d = 5, where the feature set
X equals the canonical set (e1, e2, . . . , e5). We set the
parameter θ as θ = (∆, 0, . . . , 0)>, where ∆ > 0, hence
arm 1 has a larger expected reward by ∆ than all other
arms. As ∆! 0, we need to estimate all arms equally
accurately, therefore the optimal strategy is to pull all
arms uniformly, which corresponds to XY-static allo-
cation.
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Figure 2: The number of samples required to estimate
the best arm in the synthetic setting where the arm
selection strategy in XY-static allocation is almost op-
timal.

The result for various value gaps ∆ is shown in Fig-
ure 2. We observe not only that LinGapE performs
better than XY-static allocation but also that the gap
of the performance increases as ∆ ! 0, where XY-
static allocation approaches the optimal strategy. This
is because the XY-static allocation considers all arms
until the stopping condition is satisfied, while Lin-
GapE only considers arms that have not been turned
out to be sub-optimal.

7.2 Simulation Based on Real Data

We conduct another experiment based on a real-world
dataset. We use Yahoo! Webscope Dataset R6A2,
which consists of features of 36 dimensions accompa-
nied with binary outcomes. It is originally used as
an unbiased evaluation benchmark for the LB aiming
for cumulative reward maximization (Li et al., 2010),
and we slightly change the situation so that it can be
adopted for pure exploration setting. We construct
a 36-dimensional feature set X by random sampling
from the dataset, and the reward is generated by

rt =

(

1
�

w.p. (1 + x>
at
θ⇤)/2

�

,

�1 (otherwise),

where θ⇤ is the regularized least-squares estimator
fitted for the original dataset. Although x>

at
θ⇤ is

not necessarily bounded in [�1, 1], we observe that
x>θ⇤ 2 [�1, 1] for all features x in the dataset. There-
fore, (1+ x>

at
θ⇤)/2 is always a valid probability in this

case. We compare the performance with the XY-static
allocation algorithm, where the estimation is given by
the regularized least-squares estimator with λ = 0.01.
The detailed procedure can be found in Appendix A.

2https://webscope.sandbox.yahoo.com/

Figure 3: The number of samples required to estimate
the best arm on Yahoo! Webscope Dataset R6A.

The average number of samples required in ten simula-
tions is shown in Figure 3, in which LinGapE performs
roughly five times better than the XY-static strategy,
and the gap of performances increases as we consider
more arms. This result shows the superiority of our
algorithm.

8 Conclusions

In this paper, we studied pure exploration in an linear
bandits. We first reviewed a drawback in an existing
work, and then introduced a novel fully-adaptive algo-
rithm, LinGapE. We proved that the sample complex-
ity of LinGapE can match the lower bound and con-
firmed its superior performance in experiments. Since
LinGapE is the first algorithm that achieves the lower
bound, we will consider its various extensions and de-
velop computationally efficient algorithms in our fu-
ture work. In particular, pure exploration in the fixed
budget setting is a promising direction of extension,
since LinGapE shares many ideas with UGapE, which
is known to be applicable in the fixed budget setting
as well (Gabillon et al., 2012). Furthermore, as ex-
plained in Section 7.1, the derived sample complexity
may be improved since evaluation of the determinant
in Prop. 3 given in Appendix D is still loose. A bound
based on tight evaluation of the determinant is left for
future work.
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