


complex tasks have to be performed by the aerial robot with-

out human supervision as more complex decision-making

algorithms are required. The aforementioned constraints are

present in most of the SAR scenarios, where the aerial

robot usually requires to perform high-level tasks such as

exploration of unknown scenarios, navigation with colli-

sion avoidance, target recognition and interaction, among

others. In this paper, we focus our efforts on the develop-

ment of an autonomous aerial robot capable of perform-

ing such high-level missions in an unsupervised manner

(i.e. without human intervention) with a special interest

in the versatility and ease of adaptation of the algorithms

developed for object recognition and interaction.

Regarding the object recognition problem, classical com-

puter vision algorithms are generally very dependent on

the conditions of the environment where they operate (e.g.

lighting conditions, variety of backgrounds, presence of

clutter, etc.) which implies the need to readjust the parame-

ters of the algorithm for each new environment in order to

obtain a precise detection of the object and remove possible

false positives in the image plane. Furthermore, this adjust-

ing procedure can become an onerous task as it is usually

carried out by trial and error tests. The use of machine learn-

ing techniques, when trained on meaningful datasets, allows

overcoming these limitations, providing more versatile solu-

tions which can be executed in a wide range of environments

[7]. However, some of the recent machine learning mod-

els for object recognition [22, 30, 40] consist of consid-

erably deep models with a large amount of parameters that

have not been designed for operating onboard a robotic

platform with hard computational constraints such as a UAV.

With respect to the task of interacting with the target for

rescue operations, in this paper we characterize these tasks

by means of IBVS methods which allow the interaction

with targets in a wide variety of SAR missions. Within

these missions, operation in SAR disaster scenarios has

a special interest as it usually involves the interaction

with the detected target by means of delivering some

required items such as medicines, food, etc. [14, 21], where

IBVS techniques can provide versatile and computationally

efficient solutions. In this direction, classical IBVS methods

usually require a tedious tuning stage of their parameters

when changing to different operating conditions. This fact

can eventually appear in SAR scenarios where different

aerial robotic platforms may be used depending on the

environment. Furthermore, classic IBVS methods can suffer

from convergence and stability problems [10, 12].

Inspired by the aforementioned limitations, in this

paper we propose a fully-autonomous UAV featured with

learning-based techniques which can provide flexible and

versatile solutions to indoor SAR missions. The main con-

tributions of the proposed system are summarized here:

i) A custom UAV has been built with a flexible system

architecture which allows the efficient coordination

between the planning, situation awareness, feature extrac-

tion and executive systems for solving complex SAR mis-

sions. ii) This flexibility has allowed the integration of

learning-based techniques for object recognition and object

interaction. Concretely, several supervised learning clas-

sifiers, including computationally-efficient CNN models,

have been trained and evaluated for target/background clas-

sification. In addition, a novel IBVS algorithm based on

Deep Deterministic Policy Gradients (DDPG) [29] has been

implemented and validated for solving IBVS tasks in rescue

operations, comparing its performance with classic IBVS

techniques. iii) An extensive evaluation of the previous

learning-based components and the whole system in clut-

tered indoor SAR scenarios has been conducted in both

simulated and real flights.

In order to obtain a reliable testbed for experimentation

in SAR scenarios, in this paper we have adopted as the main

use case the missions proposed for the 2016 International

Micro Air Vehicle Competition1 (IMAV), where several

SAR problems had to be addressed. In the IMAV 2016

indoors competition, challenging high-level missions were

designed, ranging from autonomous building entering and

exiting, indoor exploration of unknown scenarios, object

recognition, etc. In addition, UAVs were required to perform

object interaction tasks, such as grasping a cylindrical item

and releasing it into a cylindrical bucket, with the option of

pre-loading the items previous to the takeoff maneuver. The

latter scenario has been extensively studied in this work in

order to provide our previous system [43] with more high-

level functionalities through learning-based techniques.

The remainder of this paper is organized as follows:

Section 2 introduces the related work; Section 3 describes

the hardware configuration adopted in our aerial robotic

platform. The system description is presented in Section 4.

Section 5 presents the experiments performed in simulated

and real scenarios, with their respective results, before we

discuss them in Section 6 and finally, Section 7 concludes

the paper, and points out future research directions.

2 RelatedWork

In the following paragraphs, some of the most relevant

solutions for the autonomous operation of UAVs in SAR

missions are covered in chronological order [1, 5, 14, 16, 41,

46, 48, 49]. We also refer to articles in which the delivery of

specific items from UAVs in emergency situations has been

studied [19, 21, 50]. Right after, we cover other relevant

developments aimed towards the execution of autonomous

1IMAV 2016 official website: http://www.imavs.org/2016/



UAV missions outside the field of SAR applications [2,

3, 23, 53]. We conclude by referring to other works

applying vision-based deep reinforcement learning to UAV

navigation [38, 42] as well as other relevant uses of deep

reinforcement learning in visual control tasks [28, 51, 52].

There is an increasing number of recent studies aiming

at UAVs as a potentially useful complement to SAR

applications. Early developments in high-level artificial

intelligence applied to aerial robotics were introduced in

Doherty et al. [14]. In particular, UAV autonomous missions

were implemented for the SAR of injured civilians, with

robots being able to scan designated areas, trying to identify

injured civilians and attempting to deliver medical and other

supplies to identified victims in realistic urban scenarios.

The specific techniques from this work, used to detect

humans at a high frame rate onboard an autonomous UAV,

were described in detail in [41]. These techniques were

applied in a real-world outdoor environment using visible

and thermal infrared cameras. In their work, detected human

positions were geolocated and a map of points of interest

was built. The resulting map is proposed to plan medical

supply delivery during a disaster relief effort.

In the context of SAR technology developments, the

UAV Challenge-Outback Rescue has been established as

an important international competition, where participants

have been required to perform UAV SAR missions, which

typically have involved executing autonomous take-off,

navigation for an aerial search, and landing maneuvers.

These exercises had associated image processing and con-

trol tasks needed to identify and deliver an emergency medi-

cal package to a mannequin simulating a lost person, placed

in a 4 km × 6 km area. Among the solutions provided, one

of the most relevant presented in [16] proposed a fixed-wing

UAV featuring GPS-based navigation, ground image acqui-

sition, and payload delivery, all implemented in a low-cost

platform.

The work by Tomic et al.[49] introduced a modular

and extensible software and hardware framework designed

for the autonomous execution of SAR missions using

aerial robots, which was successfully tested on a quadrotor

platform. However, while using multiple sensors (four

cameras and a laser scanner) the proposed system did not

feature any collision avoidance capabilities.

In 2015, a pilot study was conducted by Abrahamsen [1]

to assess the concept and feasibility of using a remotely

piloted aircraft (RPA) system to support remote sensing

in simulated major incident exercises. A custom-made,

remotely controlled UAV with vertical takeoff and landing

was equipped with visible and thermal infrared cameras,

a laser beam, a mechanical gripper arm and an avalanche

transceiver. Successful missions were executed for five

simulated exercises, demonstrating that UAVs are suitable

for carrying small payloads as well as useful tools to support

situation assessment and information exchange at major

incident scenarios.

In [46], Scherer et al. tested another interesting mod-

ular architecture of a UAV system for SAR missions in

an outdoor environment. The objective of the mission

was to detect a ground target by means of color, text or

shape, and to provide a live aerial video stream for remote

monitoring. Their proposal consisted of a swarm of multi-

copters coordinated to operate as a communications relay

using a distributed control system. The system was

implemented using the Robot Operating System (ROS) [39]

and was capable of providing a real-time video stream

from a UAV to one or more base stations using a wireless

communication infrastructure. The proposed system sup-

ported a heterogeneous set of UAVs and image sensors and

allowed the operator to select different levels of autonomy.

In the study published by Sun et al., a camera-based

target detection and positioning system was developed and

integrated into a fully autonomous fixed-wing UAV [48].

The system was capable of onboard and real-time target

identification, post-target identification and localization,

and aerial image collection for further mapping applica-

tions. Its performance was assessed using several simulated

SAR missions, demonstrating its reliability and efficiency.

Deep learning was applied for supporting UAV SAR

operations in [5]. In this work, a sequence of images of

avalanche debris captured by a UAV was processed with

a pretrained CNN model to extract discriminative fea-

tures. A trained linear Support Vector Machine (SVM) was

integrated at the output of the CNN to detect objects of

interest. Moreover, they introduced a preprocessing method

to increase the detection rate and a postprocessing method

based on a Hidden Markov Model to improve the pre-

diction performance of the classifier. Experimental results

conducted on two different datasets at different levels of

resolution showed that the detection performance increased

when incrementing the resolution, at the cost of raising the

computation time.

Developments for drone delivery of emergency items in

search and rescue missions have as well been analyzed in the

literature. Examples include: drug shipments [21], delivery

of defibrillators [19] and life rings [50].

Other recent developments focused on providing UAVs

with high levels of autonomy outside the field of appli-

cation of SAR missions are discussed next. In the work

of Bacharach et al. [3], a quadrotor helicopter equipped

with a laser rangefinder was designed and implemented to

autonomously explore and map unstructured and unknown

indoor environments. The paper highlighted the difficulties

of applying to UAVs algorithms that were originally devel-

oped for Unmanned Ground Vehicles (UGVs). Interesting

solutions were described in this work, such as a mul-

tilevel sensing and control hierarchy, a high-speed laser



scan-matching algorithm, an Extended Kalman Filter (EKF)

for data fusion, a high-level SLAM implementation, and

an exploration planner. The manuscript showed experi-

mental results demonstrating the helicopter’s ability to

navigate accurately and autonomously in unknown environ-

ments. Algorithms originally conceived for UGVs were also

exploited by Grzonka et al. [23] to increase UAV autonomy.

In this case, they proposed a general navigation system that

enabled a small-sized quadrotor platform to autonomously

operate in indoor environments. A similar work was pub-

lished by Achtelik et al. [2], which presented a software

architecture providing a quadrotor helicopter with the capa-

bilities to autonomously navigate, explore and locate objects

of interest in unknown, unstructured indoor environments.

Results specific to autonomous navigation in indoor cor-

ridors were presented by Zingg et al. [53]. In their approach

for wall collision avoidance, a depth map based on optical

flow from images captured by an onboard omnidirectional

fisheye camera was used. Inertial Measurement Unit (IMU)

data was also used for compensating rotational effects of the

optical flow.

Several implementations of visual control for UAVs can

be found in the literature, but very few presenting it as

one capability among several other ones in the context

of an autonomous mission. Some of the aforementioned

developments make use of computer vision geometry to

determine navigation waypoints, but only [49] used visual

information to provide control feedback in real time.

There are as well very few developments exploiting

vision-based deep reinforcement learning for UAV navi-

gation. In particular, Sadeghi et al. [42] introduced the

CAD2RL learning method, which allows collision-free

navigation in a real indoor environment using synthetic data

from 3D CAD models as the only training data. Another

example is the work by Polvara et al. [38], who made

use of Deep Q-Networks for the autonomous landing of a

quadrotor.

Other interesting applications of deep reinforcement

learning for solving visual control tasks outside the field of

aerial robotics are mentioned next. Lee et al. [28] proposed

to perform a visual servoing task by extracting deep features

instead of using pixels or keypoints. The best features to

solve the task were then selected using a Q-iteration algo-

rithm. Also Zhang et al. [51] proposed to use vision-based

deep reinforcement learning for controlling the motion of

a three-joint robot manipulator. Finally, Zhu et al. [52]

presented an efficient algorithm for visual navigation in

indoor scenes using deep reinforcement learning. The algo-

rithm was trained using high-quality 3D scenarios allowing

for physical interaction with the objects in the scene.

In contrast to all the aforementioned developments, our

work proposes a fully-autonomous UAV that is not only

capable of autonomously navigating in indoor cluttered

environments with situational awareness, but can also inter-

act with static and moving targets, which can be automat-

ically detected and followed to precisely deliver items for

rescue purposes. Furthermore, while much of the discussed

literature focuses on accomplishing specific tasks only,

and many developments are evaluated in computer simula-

tions only, the solution proposed here focuses on complex

missions involving multiple heterogeneous tasks and has

been evaluated in detail in both simulated and real flights.

3 Hardware Configuration

Search and Rescue missions in indoor scenarios usually

involve hard constraints relative to the clearance within

indoor passages and the necessity of carrying items for

rescue purposes. These constraints were also present in the

IMAV 2016 competition, where the minimum clearance of

the passages within the indoor environment was 1 m wide

and the aerial robot was required to preload several items of

100 g each. Considering these limitations, it was necessary

to build a custom UAV (see Fig. 1) relatively small in size

with the adequate capacities for carrying the sensors and

actuators required for localization, navigation, and object

recognition and interaction.

Based on the aforementioned constraints, a custom UAV

with relatively small dimensions (62 cm × 62 cm × 40 cm,

including propellers of 28 cm) has been designed and built

with a total takeoff weight of 3.2 kg, a maximum payload

capacity of 1 kg and a maximum flight time of 12 min.

The onboard computer consists of an Intel NUC6i5SYK

featuring a 2.9 GHz Intel Core i5-6260U CPU. The avionics

of the UAV are managed by a Pixhawk [34] autopilot,

which integrates an Inertial Measurement Unit (IMU), a

barometer and a magnetometer. The exteroceptive sensors

mounted onboard consist of a Hokuyo laser rangefinder

UTM-30LX with a horizontal field of view of 270◦ and an

angular resolution of 0.25◦ with a maximum range of 30

m, an Intel Realsense R200 camera with an RGB image

size of 640 × 480 pixels, a standard RGB 180◦ fisheye-lens

bottom-looking camera with an image size of 640 × 480

pixels, and a Lightware SF10/A altimeter with a maximum

range of 25 m (see Fig. 1a). The communication between

the autopilot, proprioceptive, exteroceptive sensors and the

onboard computer is performed over USB connections. In

addition, appropriate electronic components and holding

devices have been designed and integrated for object

interaction tasks. For this purpose, two small curved hooks

have been integrated into the UAV framework (see Fig. 1b).

These hooks are controlled by two servo motors which

are actuated via an Arduino board when a signal of target

locked is commanded in order to release the items preloaded

onboard the UAV.





a human operator (e.g. find a target, explore, etc.).

Additional inputs in this mode comprise the dimensions

of the area to be explored as well as the number of

mission points. Using these inputs, the GMP is able

to automatically generate mission points by applying

a K-means clustering over points randomly distributed

over the area to be explored. For a detailed explanation

of this functionality we refer the reader to [44]. Once

the global mission is prepared, it is distributed through

the agent or agents in the swarm and received by the

AMP.

One important functionality implemented in the

GMP is its capability of concatenating several missions

[43]. Based on this, the GMP has an active list of

missions per agent. Once the last mission in the list is

accomplished, the GMP is able to recover the previous

mission in its corresponding state (i.e. current task).

This functionality acquires an utmost importance in

SAR missions, where the system has to react to the wide

range of events that may occur during the execution of

this type of missions.

2. Agent Mission Planner (AMP). This component is

located at the agent’s level and is responsible for

scheduling task by task the received mission. For this

purpose, the AMP acts as an interface between the GMP

and the rest of components in the architecture.

Since the area to be explored is unknown a priori,

the mission points generated by the GMP can fall

within an obstacle. In order to address this problem,

the AMP is capable of generating safety points when

the current mission point falls within an obstacle. In

order to generate a safety point, the AMP implements

an iterative method in which random points lying

on a safety circumference of predefined radius are

generated. After several iterations of the algorithm,

and if no safety point has been obtained in the

current circumference, its radius is incremented and the

iterative method continues. In this iterative procedure,

the AMP communicates with the Path Planner in each

iteration, until an obstacle-free point is obtained.

4.1.2 Path Planner

The path planner component relies both on the use

of a precise lidar sensor and a robust localization and

mapping algorithm. The path planning algorithm utilized

in the proposed architecture is based on an existent ROS

navigation package [33], which was originally designed

for differential-drive and holonomic-wheels robots, and has

been adapted in this work to the Aerostack architecture,

enabling its operation with multirotor UAVs. Furthermore,

the original 2D functionality of the mentioned ROS

planner package has been extended in order to provide

3D navigation capabilities by adding the remaining altitude

coordinate as a constant value (by default) to each

intermediate point in the path. However, the AMP can

dynamically modify its value within the execution of a

mission in order to fulfill specific requirements relative to

the current environment.

The Path Planner component requires a 2D occupancy

grid map (see Section 4.2.1) as well as a mission point

generated by the AMP (in world frame of reference)

for its normal operation. The 2D occupancy grid map is

subsequently translated into a 2D cost map in which cost

values are propagated out of occupied cells based on an

inflation radius parameter. A detailed explanation of the

algorithm and its components can be reviewed at [33].

4.1.3 Yaw Planner

The yaw planner is in charge of associating a yaw angle

to each waypoint within a 2D path based on the direction

towards the commanded mission point or considering the

AMP directives. Taking into consideration normal mission

conditions, a specific policy has been defined:

– Middle waypoints: Orientation is set to a constant value

according to the direction of navigation at each time

step towards the commanded mission point.

– Last waypoint: Orientation is derived from the AMP

directives extracted from the current task within the

mission. This can be utilized for exploration purposes,

in which different yaw angles can be specified at each

mission point.

Following this policy, a UAV is considered to maximize

the area covered by both the lidar and the image sensor’s

field of view, in order to plan throughout the optimum path

and to avoid blind zones which can lead to a collision.

4.2 Situation Awareness System

4.2.1 2D Localization and Mapping

In this work, localization and mapping capabilities have

been integrated by means of a state-of-the-art 2D SLAM

algorithm [25], which has been extensively tested for

ground robots in Urban Search and Rescue (USAR)

missions, and can be also utilized in platforms that exhibit

roll/pitch motion by transforming the laser scan into a

local stabilized coordinate frame. Using the information

coming from a 2D lidar sensor, in this algorithm a fast

approximation of map gradients, and a multi-resolution grid

map representation for mitigating local minima problems,

are utilized in order to obtain a stable mapping and a robust

scan matching. The latter can be further improved if a source

of 3D pose is available and projected into the xy-plane



in order to initialize the optimization process of the scan

matcher. The 2D pose obtained from the scan matching

includes the xy-position of the aerial robot and its yaw

angle referred in the world frame of reference. Finally, the

map representation is encoded into a 2D occupancy grid

map, including occupied, non-occupied and non-explored

cell types, which is used by the Path Planner component for

navigation purposes.

4.2.2 Multi-sensor Fusion State Estimation

The objective of this component is to provide a full 6 DOF

pose and the respective velocities of the UAV, enabling

navigation using the Path Planner component described in

Section 4.1.2. In this direction, our proposed architecture

integrates two separate state estimation components which

can be combined in order to provide a higher level

situational awareness functionality or be used separately

depending on the requirements of the mission.

Flight Altitude State Estimator: The 2D SLAM algorithm

explained in Section 4.2.1, provides a 2D map of the

environment, enabling obstacle detection and avoidance in

a 2D plane at the given flight altitude of the UAV. Sensors

such as laser altimeters or similar range sensors can lead

to errors in the flight altitude estimation when flying above

ground obstacles, as the measurements get referred to them

instead of the ground surface.

In order to accurately estimate the flight altitude of

the UAV in the presence of several ground obstacles, we

propose an EKF-based algorithm which is able to estimate

the flight altitude of the UAV as well as the elevation of the

ground obstacles (more details can be found in [4]). This

is achieved by fusing the measurements coming from the

IMU, the barometer, and the laser range altimeter sensors.

The proposed state estimator considers a state vector

x ∈ R
10 based on the combination of four main compo-

nents: xR , xG, xI , and xB , which represent the state of

the robot, ground object, IMU sensor and barometer sen-

sor respectively. The corresponding state of the aerial robot

is defined by xR =

(

�T
xy ω

T
xy tzR

vzR
azR

)

, where

�T
xy = (φ, θ)T are the roll and pitch Euler angles, ω

T
xy =

(

ωx, ωy

)T
represent the x and y angular velocities of the

aerial robot in the UAV frame, and tzR
, vzR

and azR
are

the vertical coordinates of the position, velocity and accel-

eration of the aerial robot in the world frame of reference.

Assuming that the robot changes its vertical acceleration

and angular velocity slowly, we adopt a constant vertical

acceleration and constant angular velocity as process model.

The ground object state is defined by xG = tzG
, where tzG

is

the altitude of the ground object in the world frame. Obsta-

cles are set so that they always have positive altitude with

respect to the ground plane. Finally, the IMU and the barom-

eter sensors contribute to the state with their corresponding

biases, thus xI = baz and xB = bbz , where baz and bbz

are the biases in the vertical acceleration and flight altitude

measurements respectively.

Robot State Estimator This component is able to combine

the measurements from the 2D SLAM (see Section 4.2.1)

with the flight altitude estimator (see Section 4.2.2) or the

IMU sensor in order to provide complete pose and velocity

estimates of the UAV in the world frame of reference.

The Robot State Estimator is a standard ROS package

[35] which implements an EKF-based estimator with state

vector xR ∈ R
12, being xR =

(

�T pT vT
)

, where

�T = (φ, θ, ψ)T are the roll, pitch and yaw Euler angles,

pT =
(

px, py, pz

)T
represents the position of the robot,

and vT =
(

vx, vy, vz, ωx, ωy, ωz

)

is the vector containing

the linear and angular velocities of the aerial robot.

It includes a non-linear measurement model able to fuse

any robot pose or velocity measurements, provided by any

number of sensors. In contrast to the Flight Altitude State

Estimator, this EKF model does not incorporate in its state

vector any biases present in the sensor measurements nor

the altitude of the ground obstacles.

Our system integrates the previously described compo-

nents for multi-sensor state estimation in a versatile manner,

so they can be employed in different configurations depend-

ing on the selected hardware and mission requirements at

hand.

4.2.3 Perception Manager

The Perception Manager component is in charge of

managing and centralizing the perception events that can

occur during the execution of a mission (e.g. object

recognized, picked and released).

In order to obtain a proper management of the perception

events, this component integrates the information regarding

the current situation of the states of the different objects

which the UAV can interact with, together with the own

internal state of the Perception Manager (e.g. Exploring,

Going For Picking Item, Going For Releasing Item). An

example of the initial configuration of such states for a

SAR mission applied to the use case of IMAV 2016 is

provided in Table 1. When a perception event is detected by

the Perception Manager, (e.g. target recognized) the current

state of the objects as well as its internal state are evaluated

and updated. Based on this evaluation, the Perception

Manager can request a mission adaptation event to the

GMP. As an example, and taking the initial configuration

presented in Table 1, if a bucket object is recognized in the

current time instant, and since both corresponding items are

already picked up, the Perception Manager will generate a





approaches, where the ROI can be slightly away from the

object contour.

4.3.2 Model-Based Object Recognizer

Object detectors based on predefined knowledge of the

object to be detected, such as color, shape, etc, can be very

specific and prone to false positives. In order to provide

a robust detection of the target, reducing its vulnerability

to the environment conditions (e.g. lighting conditions)

we implement this component, whose core is based

on a supervised learning classifier for target/background

segmentation.

The objective of this component is to recognize and

locate the object of interest (target) within the image plane,

by providing its corresponding ROI, and in addition it is

responsible for the recognition of the target in terms of its

3D location with respect to the frame of reference of the

camera. For achieving the aforementioned capabilities, the

Model-Based Object Recognizer is composed of four main

blocks:

– Object proposal: this block is in charge of generating

the candidates within the image to be introduced to the

classifier. In this work, we have utilized the candidates

generated by the Shape and Color-Based Object

Detector (see Section 4.3.1), which can implement an

independent object detector component itself or be a

part of a higher level recognizer, which is the case when

the Model-Based Object Recognizer is operating.

– Feature Extractor: This module is only used in the

case of the supervised learning classifiers considered

in this work which are not CNN-based models, as

CNNs perform an unsupervised feature extraction in

the convolution layers. In each candidate ROI generated

by the Object Proposal module, Histogram of Oriented

Gradients (HOG) [13] features are computed, obtaining

a descriptor vector of size 1728. The configuration of

the HOG feature extractor is summarized here:

– Window Size: 56 × 72 pixels.

– Cell Size: 8 × 8 pixels.

– Block Size: 16 × 16 pixels (2 × 2 cells).

– Block Stride: 8 pixels (50% of block overlap-

ping).

– Histogram configuration: 9 bins, 20◦ each

(unsigned gradient).

– Classifier: this block implements a supervised learning

classifier that has been trained for bucket/background

classification. In this work, three supervised learning

classifiers have been evaluated: L2 Regularized Logistic

Regression (L2R-LR), Support Vector Machines (SVMs)

with linear kernel (L-SVM), and CNNs models.

The formulation of the L2R-LR follows the imple-

mentation in [18], whose loss function is given by Eq. 2.

min
ω

1

2
ω

T
ω + C

l
∑

i=1

log(1 + e−yiω
T
xi ) (2)

where ω are the parameters to be learned by the

classifier. C is the regularization parameter, and (xi, yi)

is the instance-label pair of the ith training sample.

The SVM classifier formulation has been defined

using the implementation provided in [9] for the primal

form (see Eq. 3).

min
ω,b,ξ

1

2
ω

T
ω + C

l
∑

i=1

ξi,

subject to : yi(ω
T φ(xi) + b) ≥ 1 − ξi,

ξi ≥ 0 (3)

where ω (weights), b (intercept term) and ξi (slack

variables) are the parameters to be learned by the SVM

classifier. C is the regularization parameter, (xi, yi) is

the instance-label pair of the ith training sample, and

φ(xi) is a feature mapping function.

In the analogous dual form of the formulation

presented in Eq. 3, a kernel function can be defined as:

K(xi, xj ) = φ(xi)
T φ(xj ) (4)

where (xi, xj ) are points in the input feature space, and

φ is a feature mapping function.

The kernel function can lead to different type of

SVM classifiers. In this paper, we consider the SVM

classifier with a linear kernel computed using Eq. 5.

K(xi, xj ) = x
T
i xj (5)

Regarding the CNN classifier, its architecture con-

sists of 7 layers: 2 convolutional layers, 2 max pooling

layers and 3 fully-connected with one hidden layer of

256 units, using ReLU activation function [36] in each

layer except the final one, in which a softmax activation

function is utilized, being the input to the CNN model

an image of 56 × 72 pixels. After the evaluation con-

ducted in Section 5.2.2, the selected supervised learn-

ing classifier is based on the architecture presented in

Fig. 4.

– Pose estimator: In order to compute the relative pose

of the target with respect to the frame of reference

of the camera, the Pose Estimator block uses a PnP

algorithm taking as input the corners of the previous

computed ROI of the detected target (image plane), a

set of object points (object frame of reference), and

the intrinsic camera parameters. The final computed

pose is selected so that it minimizes the reprojection

error between the detected points in the image and







the roll and pitch information in the aerial robot frame of

reference expressed in the camera frame.

Additionally, in order to provide invariance to the UAV’s

yaw angle during the mission, a 2D rotation based on

the actual yaw angle is applied to the state before being

introduced to the actor network (see Eq. 9).

s
′
=

[

cos(ψ) sin(ψ)

− sin(ψ) cos(ψ)

]

s (9)

where s
′ is the transformed state introduced to the actor

network, and ψ represents the UAV’s yaw angle.

The implementation details for training and evaluating

the RL-IBVS are provided in Section 5.3, where in all the

experiments the frequency of the RL-IBVS has been set to

20 Hz.

5 Experiments and Results

The aim of this section is to present the experiments that

have been conducted in order to evaluate the different

components that integrate the proposed system. To this aim,

five main experiments have been designed. Two of these

experiments are conducted in order to train and evaluate

the proposed learning-based algorithms for performing

object recognition and IBVS tasks. The remaining three

experiments are focused on the evaluation of the proposed

system in SAR scenarios. For this purpose, the first of

these experiments is aimed towards the evaluation of the

whole system in a SAR simulated scenario. Subsequently, a

second real flight experiment is designed in order to evaluate

separately the rescue strategy on a moving target, and

finally, the last experiment is conducted in order to validate

the whole proposed system in a real flight SAR mission

inside a cluttered indoor scenario. A video demonstration of

the reported experiments and results is provided with this

manuscript in: https://vimeo.com/235929544.

5.1 Experimental Setup

All the developed algorithms have been integrated into

the Aerostack architecture and implemented in C++ and

Python, using ROS as the communication middleware.

Deep learning models for object classification have been

trained using Keras2 library on a 2.6 GHz CPU Intel Core

i7-6700HQ, whereas models utilized for reinforcement

learning purposes have been trained using TensorFlow3 on

a GPU Nvidia GeForce GTX 970. Regarding the simulated

flight experiments, the proposed setup uses RotorS Gazebo

for evaluating the IBVS algorithms, and on the other hand,

2https://faroit.github.io/keras-docs/1.2.2/
3https://www.tensorflow.org/

the PX4 Software-In-The-Loop is integrated with Gazebo in

order to provide a realistic evaluation of the whole system

for SAR missions. Regarding the real flight experiments,

two indoor scenarios have been designed. The scenario for

the first real flight experiment consists of a 3 m × 4 m

area conceived for evaluating the rescue strategy, in which

an OptiTrack motion capture system has been utilized for

recording the ground truth data relative to the UAV and

the moving target. The second scenario covers a 11 m ×

7 m area used for evaluating the whole system in a SAR

mission. In all the presented experiments, no tethers or

external power supplies were utilized. In addition, in all real

flight experiments, the UAV was carrying preloaded items

of 100 g each, which substantially increased the complexity

of the missions.

5.2 Training and Evaluation of the Supervised
Learning Classifiers for Object Recognition

5.2.1 Image Dataset

In the SAR missions proposed for evaluating our system,

the targets consist of cylindrical buckets of different colors

positioned at random locations in the scenario. Currently,

there are no publicly available datasets containing images

of cylindrical buckets that could be used for training a

deep learning classifier. For this purpose, a custom dataset

has been created containing images from background (non

bucket) class and bucket class. After a large process of data

acquisition, a total of 875 images for the bucket class and

2250 images for the background class were collected.

From this original dataset, several data augmentation

techniques have been applied in order to increase the

number of images used for training and evaluating the

classifier and to prevent overfitting problems. The data

augmentation process consisted in the application of three

main techniques: random cropping, horizontal flipping,

and noise addition. The random cropping strategy was

similar to the one presented in [26], obtaining four cropped

images per original image, by selecting a random offset

starting from each of the four corners in the original image.

The horizontal flipping strategy consisted in mirroring the

original image from left to right direction, which allowed

doubling the number of images. Finally, the last data

augmentation technique was based on adding a Gaussian

noise to the original image with zero mean and a standard

deviation of 10 pixels. From the 875 images of bucket

class, we performed data augmentation over 375 of these

images obtaining a total of 4500 images. The remaining 500

images were added to the augmented dataset, providing a

total amount of 5000 images for bucket class. From the 2250

images belonging to background class, data augmentation

was conducted over 550 of these images, obtaining a total







Table 4 Average test results

obtained for the 6 evaluation

tests of Fig. 7b

Classifier Precision Recall F1score Test

C1 C2 C1 C2 C1 C2 time

(ms/image)

CNN1 0.973 0.996 0.996 0.973 0.985 0.984 3.830

CNN2 0.978 0.993 0.993 0.977 0.985 0.985 3.956

CNN3 0.985 0.993 0.993 0.985 0.989 0.989 5.136

CNN4 0.973 0.998 0.998 0.972 0.985 0.985 3.027

CNN5 0.978 0.996 0.996 0.978 0.987 0.987 2.075

CNN6 0.963 0.989 0.989 0.962 0.976 0.975 1.921

CNN7 0.974 0.998 0.998 0.973 0.986 0.985 4.123

CNN8 0.980 0.996 0.996 0.980 0.988 0.988 5.830

L2R-LR 0.958 0.965 0.965 0.957 0.961 0.961 0.984

L-SVM 0.966 0.964 0.964 0.966 0.965 0.965 4.187

classifier and the processing time. Thus, we take into con-

sideration the average F1 score and the test time presented

in Table 4, which are plotted in Fig. 8 for a better visualiza-

tion. Taking into account the results presented in Fig. 8 and

considering that the best possible classifier is the one lying

on point [0, 1] (i.e. minimizing the processing time while

maximizing the F1 score), we have selected CNN5 as the

most appropriate classifier for our purposes. This configu-

ration provides the lower Euclidean distance (in normalized

coordinates) to the desired point.

5.3 Training and Evaluation of the Reinforcement
Learning agent for Image-Based Visual Servoing

5.3.1 RL-IBVS Training Methodology

For training the agent in order to perform IBVS tasks, we

use the RL-IBVS component (see Section 4.4.2) in training

mode to command an AscTec Hummingbird quadrotor in

the Gazebo environment presented in Fig. 9.

In the RL-IBVS training mode, the environment is

designed in an episodic RL setting, where the agent’s

experience is divided into a series of episodes, each one

composed of several training steps. In each training step,

the agent takes an action with added noise according to an

Ornstein-Uhlenbeck distribution, and receives an observa-

tion and a reward from the environment (see Fig. 5). The

current 4-dimensional observation is fed into the actor net-

work, which generates a continuous 2-dimensional action

in the range [−0.5, 0.5] m/s.

For stabilizing and accelerating the training process,

the ex, ey variables from the state are measured taking

into account the difference between the center of the ROI

obtained by the projection into the image plane of the known

3D points of the target (see the cyan rectangle in Fig. 9)

with respect to the reference defined in the image plane

(see the blue rectangle in Fig. 9). During experimentation,

we have found that this procedure is critical for allowing

the convergence of the training process, as it removes

large displacements of the detection of the target in the

Fig. 8 Average F1 score and

processing time of the different

supervised learning classifiers

from the results presented in

Table 4. The processing time has

been measured on the Intel

NUC6i5SYK onboard computer



















model. This fact is even more relevant in the field of aerial

robotics, where directly training a reinforcement learning

algorithm in a real scenario is very complicated and to

the authors’ knowledge has not been yet addressed in

the literature. Another important feature of the proposed

RL-IBVS algorithm is its simplicity and versatility as

the functionality of the RL-IBVS is independent of the

object to be recognized, being the only required input the

center of the ROI corresponding to the detected object in

the image. The comparison results of the proposed RL-

IBVS with respect to a classic IBVS approach shown in

Figs. 11 and 12 and Table 5 demonstrate that the RL-IBVS

can be utilized as an alternative to state-of-the-art IBVS

approaches, which usually require a long tuning process of

their parameters. The results presented in Table 5 reveal

the outstanding precision of the RL-IBVS with steady-state

errors lower than 0.5 pixels in both x and y directions.

This precision is critical in the presented SAR missions

where a high precision rescue operation for delivering

preloaded items is required. Moreover, as shown in Fig. 10,

the convergence in the training process of the RL-IBVS is

achieved relatively fast (7.5 hours on a GPU Nvidia GeForce

GTX 970) where the Q-value starts to settle around episode

1250.

This fast convergence was mainly obtained owing to

the training strategy presented in this work, consisting in

using as the detected ROI the known 3D points of the

target projected into the image plane, which provides a more

stable state of the target, removing the effects of sudden

roll and pitch movements of the UAV. The main limitation

of the proposed RL-based algorithm is its dependency on

the stability of the detected object in the image, which is

efficiently solved in this work at test time by an image

stabilization technique. The inclusion of this stabilization

technique in the training process of the agent will be further

studied in future works.

Using the aforementioned learning-based capabilities,

the proposed system has been evaluated in complex SAR

real flight experiments involving the rescue operation on

static and moving targets. The latter scenario was presented

in Section 5.4.2, where the proposed system was able to

efficiently deliver a preloaded 100 g item on a remotely

controlled moving target. The efficient behavior of the RL-

IBVS during the experiment is evidenced by the temporal

evolution of the error signal shown in Fig. 15a, where

the error decreases from more than 100 pixels in the first

instants of the mission (e.g. time instant 14 s) to less than 7

pixels when the release operation is commanded (e.g. time

instant 41.6 s). Furthermore, the stable behavior of the RL-

IBVS can be derived from the low control actions (0.04

m/s) that the RL-IBVS is able to maintain when the UAV is

exactly above the target, what permitted the precise release

operation of the item.

A similar behavior of the RL-IBVS allowed the

correct rescue operation on the static targets presented in

the experiment of Section 5.4.3, which shows a fully-

autonomous SAR mission in a cluttered indoor scenario.

In this mission, the accurate detection of the object in the

image plane represents a critical step for pose estimation

purposes and the subsequent rescue operation on both

targets. The pose estimation of the targets has been

addressed in this paper by means of a PnP algorithm, which

provides an acceptable pose estimation using monocular

information. During the execution of the real flight SAR

mission of Fig. 16, the average errors in the position

estimation of both targets were [x : 0.19 m, y : 0.08 m,

z : 0.062 m], highlighting the low errors obtained in the

estimation of the y and z coordinates, both under 8 cm.

The error in the x coordinate is slightly higher, which can

be caused by sudden roll movements of the UAV while

detecting the target. These errors are adequate for SAR

missions and have low effect on our system as a fisheye-

lens bottom-looking camera with a considerable field of

view is utilized. This field of view allows the detection

of the target within an area of 4 m × 4 m at the flight

altitude of 1.2 m. Furthermore, the proposed RL-IBVS

can handle quite big errors in the detection as shown in

Fig. 12a.

Finally, it should be remarked that the success in the

SAR missions presented in this work is mainly achieved due

to the flexible mission planning system which allows the

mission adaptation in real-time, switching from exploration

to rescue mode and vice-versa when required. In addition,

the learning-based techniques presented in this work can be

easily adapted to other types of SAR missions as they are

based on training models which can be retrained based on

other requirements.

7 Conclusions and FutureWork

In this paper, a fully-autonomous aerial robotic system for

executing Search and Rescue (SAR) missions in cluttered

indoor environments has been presented. The aerial robotic

system developed in this work is based on the combination

of a complete hardware configuration and a flexible system

architecture which provide the appropriate capabilities for

performing very high-level missions in a fully unsupervised

manner. These capabilities include a dynamic mission

planning system that allows mission re-planning in real-

time, a reactive collision avoidance navigation system

based on laser information, a complete multi-sensor fusion

system for accurate pose estimation and altitude filtering,

an accurate object recognizer component based on a

Convolutional Neural Network (CNN) model, and a novel

Image-Based Visual Servoing (IBVS) algorithm using deep



Reinforcement Learning (RL) for object interaction in

rescue operations, among others.

Regarding the SAR problem, in this paper we have

focused on object recognition and object interaction tasks,

which we consider still as an open field of research in SAR

missions and have been addressed in this work by means of

learning-based techniques. For object recognition purposes,

several supervised learning classifiers have been extensively

evaluated for target/background segmentation. The final

selected model consists of a 7-layer CNN which exhibits

a good compromise between accuracy and computational

cost, tackling the hard computational constraints of a real-

time aerial robot. With respect to object interaction and

following for rescue operations, a recent deep reinforcement

learning algorithm, named Deep Deterministic Policy

Gradients (DDPG), has been adapted in order to perform

IBVS tasks. For training and evaluating the RL-IBVS

algorithm, our own reinforcement learning framework has

been developed. The proposed RL framework integrates a

deep RL agent (e.g. DDPG) with a simulation environment

for aerial robotic platforms (e.g. RotorS Gazebo simulator).

After a thorough evaluation of the proposed RL-IBVS

taking as baseline a classic IBVS controller, it has been

demonstrated that reinforcement learning techniques can be

efficiently trained and used for solving several tasks in SAR

scenarios such as the object delivering maneuvers studied in

this work.

The proposed system has been thoroughly evaluated by

means of several simulated and real flight experiments.

The RL-IBVS algorithm has been validated both on

simulated and real scenarios with static and dynamic targets.

Additionally, another set of experiments has been designed

for validating the whole system on a complete SAR mission

conducted in a cluttered indoor scenario, revealing its

appropriate capabilities for the accomplishment of such

high-level missions without the necessity of having a prior

map of the scenario. One of the key capabilities of our

system for the accomplishment of such missions is the

versatile coordination between the mission planner and

the perception components, providing high-level decision-

making capabilities to the system, which is able to

efficiently respond to different events that can occur during

SAR missions (e.g. target recognized).

The development of the proposed system has motivated

several future research directions that are summarized

here. One of these directions is aimed towards the

accomplishment of SAR missions using a swarm of aerial

robots. We believe that an appropriate coordination of a

team of UAVs can lead towards the execution of SAR

missions in a more optimized manner. As it has been

stated throughout this document, object interaction is one

of our major concerns. For this reason, another future

line of research will be focused on the exploration of

additional deep reinforcement learning techniques applied

to object interaction tasks such as object release, object

grasping, etc., which will increase the functionalities

of the proposed system in SAR scenarios. Taking into

account the outstanding results obtained in this document

by using learning-based techniques, the extension of the

capabilities of other components in the architecture (e.g.

reactive navigation) using learning-based approaches will

be considered.
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