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A Fully Autonomous Indoor Quadrotor
Slawomir Grzonka Giorgio Grisetti Wolfram Burgard

Abstract—Recently there has been an increased interest in the
development of autonomous flying vehicles. Whereas most of the
proposed approaches are suitable for outdoor operation, only
a few techniques have been designed for indoor environments,
where the systems cannot rely on GPS and therefore have to
use their exteroceptive sensors for navigation. In this paper
we present a general navigation system which enables a small-
sized quadrotor system to autonomously operate in indoor
environments. To achieve this, we systematically extend and
adapt techniques which have been successfully applied on ground
robots. We describe all algorithms and present a broad set of
experiments illustrating that they enable a quadrotor robot to
reliably and autonomously navigate in indoor environments.

Index Terms—UAV, Quadrotor, SLAM, Navigation

IN recent years, the robotics community has shown an

increasing interest in autonomous aerial vehicles, espe-

cially quadrotors. Low-cost and small-size flying platforms

are becoming broadly available and some of these platforms

are able to lift relatively high payloads and provide an in-

creasingly broad set of basic functionalities. This directly

raises the question of how to equip them with autonomous

navigation abilities. Whereas most of the proposed approaches

for autonomous flying [14], [32] focus on systems for outdoor

operation, vehicles that can autonomously operate in indoor

environments are envisioned to be useful for a variety of

applications including surveillance and search and rescue [10].

In such settings and compared to ground vehicles, the main

advantage of flying devices is their increased mobility.

As for ground vehicles, the main task for an autonomous

flying robot consists in reaching a desired location in an

unsupervised manner, i.e., without human interaction. In the

literature, this task is known as navigation or guidance. To

address the general task of navigation one is required to tackle

a set of problems ranging from state estimation to trajectory

planning. Several effective systems for indoor and outdoor

navigation of ground vehicles are nowadays available [1], [2].

Whereas the general principles of the navigation algorithms,

which have been successfully applied on ground robots, could

in principle be transferred to flying vehicles, this transfer is

not straightforward for several reasons. Ground robots are

inherently stable, in the sense that by issuing a zero velocity

command results in the robot to smoothly decelerate until it

stops. The same does not apply for flying robots that need

to be actively stabilized even when they are already in the

desired location. Furthermore, due to the fast dynamics of a

flying vehicle compared to a ground one all the quantities

necessary to stabilize the vehicle should be computed within

a short time and with an adequate level of accuracy. Thus,

porting navigation systems for ground robots to aerial vehicles

requires to fulfill more stringent constraints on both accuracy

and efficiency.

In this work, we present the enabling technology for

Fig. 1. Autonomous flight of our quadrotor in a cluttered office room. The
free space around the robot is seriously confined, imposing high demands on
pose stability, localization, and control. The image in the (bottom left) shows
the office room from a similar view point as the snapshot.

autonomous quadrotor navigation in indoor environments

and describe a navigation system including key functionali-

ties namely localization, planning, surface estimation, map-

learning, and control. Whereas a flying vehicle moves in

3D, indoors there is usually enough structure to describe

the environment with 2D representations. Instead of using

a full 3D representation we rely on a 2D one for the walls

augmented with the elevation of the floor. The advantage of

this choice compared to the full 3D representation is that

we can operate in a large class of indoor environments by

using efficient variants of 2D algorithms that work on dense

grid maps instead of space and time consuming 3D methods.

Having these functionalities adapted for the 3D case would be

either too slow or not accurate enough given the limited time

constraints to make the system stable. This paper extends our

previous work [17] by introducing improved algorithms for

simultaneously estimating the altitude of the vehicle and the

elevation of the underlying surface. We furthermore provide

quantitative results of our SLAM approach and discuss the

effect of different modes of the incremental scan-matching on

the pose stability of the robot. We also describe our algorithms

for path planning, obstacle avoidance and provide additional

details and experiments.

Our system is a result of an integrated hardware/software

design which meets several of the challenging constraints

imposed by small size flying vehicles while preserving a large

degree of flexibility. It further can be operated at different

levels of autonomy. It can be used to assist a pilot by prevent-

ing collisions with obstacles and keeping the position of the

vehicle when no commands are given. It can construct a map

on-line while flying in an unknown environment, or it can be

instructed to autonomously reach given locations in a known
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map. We evaluated our system on an open source quadrotor,

the so-called the Mikrokopter [3]. Figure 1 visualizes our

quadrotor system and its internal state while autonomously

flying within an highly cluttered office room.

I. RELATED WORK

In the last decade, flying platforms received an increasing

attention from the research community. Many authors focused

on the modeling and on the control of these vehicles [8],

[11], [25], [29], with a particular emphasis on small or micro

helicopters [10]. Hoffmann et al. [19] presented a model-

based algorithm for autonomous flying with their STARMAC-

quadrotor. Their system flies outdoors and utilizes GPS and

IMU measurements. Ng and colleagues [14] have developed

algorithms for learning controllers for autonomous helicopter

navigation. Their approach allows helicopters to perform

impressive maneuvers in outdoor environments. Scherer et
al. [28] describe algorithms for flying fast among obstacles

at low altitude using a laser scanner. Tempelton et al. [30]

demonstrate how to use vision for outdoor terrain mapping and

autonomous landing. Tournier et al. [33] and Bourquardez et
al. [12] used vision to estimate and stabilize the current pose

of a quadrotor. Thrun et al. [32] used a remotely controlled

helicopter to learn large-scale outdoor 3D models. There also

has been some work that addressed the navigation of flying

vehicles in indoor environments and in absence of the GPS

signal. Several authors used vision to control or assist the

control of an indoor quadrotor [7], [20], [21]. Roberts et
al. [26] used ultrasound sensors for controlling a flying vehicle

in a structured testing environment, while He et al. [18]

presented a system for navigating a small-size quadrotor

without GPS. Here, the pose of the vehicle is estimated by

an unscented Kalman filter. Whenever the robot has to reach

a given location, a path which ensures a good observation

density is computed from a predefined map. These highly

dense observations minimize the risk of localization failures.

In parallel to our work, Achtelika et al. [6] developed an indoor

autonomous quadrotor equipped with a laser range scanner and

cameras enabling autonomous hovering in a constraint indoor

environment. Recently, Celik et al. [13] presented their system

for indoor simlutaneous localization and mapping (SLAM)

using a monocular camera and ultrasound. Our work is orthog-

onal to a recent work of Bachrach et al, [9] where the authors

present a system for performing autonomous exploration and

map acquisition in indoor environments. They extend the 2D

robot navigation toolkit CARMEN [27] by adding a Rao-

Blackwellized particle filter for SLAM and an algorithm for

frontier-based autonomous exploration. However, they do not

provide localization, map optimization, obstacle avoidance or

mutli-level SLAM. Furthermore, we utilize a more robust

graph-based SLAM algorithm in our system allowing for map

optimization and present our algorithm for estimating the

altitude of the surface underlying the robot. This enables a

quadrotor equipped with our system to fly over surfaces whose

height is piecewise constant.

Fig. 2. The quadrotor platform used to evaluate the navigation system is
based on a Mikrokopter and includes a Hokuyo laser range finder (1), an
XSens IMU (2), a Gumstix computer (3), and a laser mirror (4).

II. INDOOR NAVIGATION OF AN AUTONOMOUS FLYING

QUADROTOR

To autonomously reach a desired location, a mobile robot

has to be able to determine a collision-free path connecting

the starting and the goal locations. This task is known as

path planning and requires a map of the environment to be

known. Usually, this map has to be acquired by the robot itself

by processing the sensor measurements obtained during an

exploration mission. This task of generating the map is known

as simultaneous localization and mapping (SLAM). For most

of the applications it is sufficient to perform SLAM off-line

on a recorded sequence of measurements. To follow the path

with a sufficient accuracy, the robot needs to be aware of its

position in the environment at any point in time. This task is

known as localization. A further fundamental component of a

navigation system is the control module which aims to move

the vehicle along the trajectory, given the pose estimated by

the localization.

Due to the increased risk of damaging the flying platform

during testing, the user should have the possibility of tak-

ing over the control of the platform at any point in time.

Finally, the more complex dynamics of a flying platform

poses substantially higher requirements on the accuracy of the

state estimation process than for typical ground-based vehicles.

Although in outdoors scenarios, positioning errors up to 1 m

might be acceptable, they are not indoors, as the free-space

around the robot is substantially more confined.

III. HARDWARE ARCHITECTURE

Figure 2 shows a Mikrokopter [3] open source quadro-

tor equipped with sensors and computational devices. The

Mikrokopter comes with a low level controller for roll, pitch,

and yaw. Our quadrotor is similar to the one proposed by

He et al. [18] and consists of the following components: an

Hokuyo-URG miniature laser sensor for SLAM and obstacle

avoidance (1), an XSens MTi-G MEMS inertial measurement

unit (IMU) for estimating the attitude of the vehicle (2), a

Linux-based Gumstix embedded PC with USB interfaces and

a WiFi network card which communicates with the micro-

controller on the quadrotor via an RS-232 interface (3), and a
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mirror which is used to deflect some of the laser beams along

the z direction to measure the distance to the ground (4).

IV. NAVIGATION SYSTEM

Our navigation system is based on a modular architecture in

which different modules communicate via the network using a

publish-subscribe mechanism. In our current system all device

drivers are executed on-board while the more computationally

intensive algorithms run on a remote PC communicating over

wireless with the platform.

Since roll (φ) and pitch (θ) measured by the IMU are in

general accurate up to 1◦, we can directly use this information

within our navigation system. This allows us to reduce the

localization problem from 6DOF namely (x, y, z, φ, θ, ψ) to

4DOF, consisting of the 3D position (x, y, z) and the yaw

angle ψ. The only sensor used to estimate these 4DOF and

detecting obstacles is the laser range scanner.

Based on known initial calibration parameters and on the

current attitude (φ, θ) estimated by the IMU, we project the

endpoints of the laser into the global coordinate frame. Given

the projected laser beams, we estimate the (x, y, z, ψ) of

the vehicle in a 2D map containing multiple levels per cell.

To compensate for the lack of odometry measurements we

estimate the incremental movements in (x, y, ψ) by 2D laser

scan-matching. Finally, we control the altitude of the vehicle

and simultaneously estimate the elevation of the underlying

surface by fusing the IMU accelerometers and the distance

from the ground measured by the laser. Accordingly, we track

and map multiple levels within an environment, which enables

our robot to correctly maintain its height even when flying over

obstacles like tables or chairs.

A. Incremental Motion Estimation

The laser range scanner measures at time t a set of distances

rt along the x-y plane in its own reference frame. We therefore

first calculate a projection of the measured distances bt for

the beams not deflected by the mirror using the roll and

pitch estimate from the IMU. Consequently, we calculate

the points ht for all beams deflected by the mirror using a

chain of transformations from the IMU to the virtual laser

position which accounts for the effect of the mirror. Some

tasks, like pose stabilization, rely on an accurate local pose

estimate of the vehicle in its surroundings. To this end, we

can estimate the relative movement of the robot between two

subsequent scans by using a scan-matching algorithm. Since

the attitude is known from the IMU, this procedure can be

carried out in 2D, assuming structured indoor environments.

A scan-matching algorithm estimates the most likely pose of

the vehicle x̂t at time t given the previous k poses xt−k:t−1

and the corresponding laser measurements bt−k:t, as follows

x̂t = argmax
x:=(x,y,ψ)

p(xt | xt−k:t−1,bt−k:t). (1)

To solve Equation (1), we use a variant of the multi-resolution

correlative scan matcher proposed by Olson [24]. The idea

behind a correlative scan-matcher is to discretize the search

space xt = (xt, yt, ψt) and to perform an exhaustive search

in these discretized parameters around a given initial guess.

To efficiently evaluate the likelihood p(xt | xt−k:t−1,bt−k:t)
of a given solution xt, we use likelihood fields [31] obtained

by the most likely map generated from the last observations

bt−k:t−1.

The complexity of a correlative scan-matcher depends lin-

early on the resolution at which the parameters are discretized

and on the search range. A naive implementation of this

algorithm is not adequate for our application that demands

both high accuracy and efficient computation. To overcome

this problem, we employ a multi-resolution approach. The idea

is to perform the search at different resolutions, from coarse

to fine. The solutions found at a coarse level are then used to

restrict the search at a higher resolution.

In our implementation we use a constant velocity model to

compute the initial guess for the search and we perform the

correlative scan matching at three different resolutions (i.e.,

4 cm×4 cm×0.4◦, 2 cm×2 cm×0.2◦, and 1 cm×1 cm×0.1◦).

We set the search area r depending on the maximum speed

vmax of the vehicle and on the frequency f of the scanner as

r = vmax/f .

We control the position of the vehicle based on the velocities

estimated by the scan-matcher. Accordingly, the performances

of the scan-matcher play a major role in the stability of the

robot. In particular, we want to have a fast, accurate but still

smooth (i.e., less oscillations) estimate. To get an intuition

about the desired accuracy, consider an error in the position

estimate of ±2cm. Assuming a sensor frequency of 10Hz this

error leads to a variation of 20 cm
s in the velocity estimate

between two laser scans. This in turn can generate wrong

commands by the controller reducing stability.

In our hierarchical scan-matcher, the high-resolution esti-

mate is affected by frequent oscillations due to the limited

resolution of the likelihood field. Although these oscillations

could in general be filtered out by a low-pass filter, this type of

filtering would introduce a phase shift in the pose and velocity

estimate (the estimated pose is past in time). To obtain both, an

accurate position estimate and a smooth signal, we compute

the final solution as the weighted mean of the estimates of

all scan-matchers in the hierarchy. The weights of the sum

lie on a Gaussian centered at the finest resolution estimate.

In several experiments we found that the weighted average

of the estimates is better for control as each single estimate

as shown in Table I. The table contains experimental results

comparing the effect on the pose stability using the estimate

of the individual scan-matchers versus our weighted mean

approach. All runs reflect experiments where the goal of the

quadrotor was to hover at the same spot at 0.5m height for

as long as the battery holds. To quantitatively evaluate our

approach, we compare the mean and standard deviation in

both, position and absolute velocity. As can be seen, using

a weighted average of the different resolutions has a positive

affect on the control loop. This originates from the fact that

the weighted averaging has a smoothing effect on the pose

estimate but does not include any phase shift into the system.

Since we use a simplistic model of our quadrotor (constant

velocity model), using the output of the weighted mean (with

the prediction used as the initial guess for the search) is
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approach → 4 cm 2 cm 1 cm weighted mean unit

mean(x) 0.107 0.105 0.149 0.066 [m]
mean(y) -0.045 0.060 -0.04 -0.05 [m]
std(x) 0.145 0.148 0.165 0.123 [m]
std(y) 0.081 0.088 0.087 0.076 [m]
mean(|vx|) 0.146 0.095 0.084 0.075 [m/s]
mean(|vy |) 0.159 0.106 0.09 0.072 [m/s]
std(|vx|) 0.118 0.071 0.065 0.058 [m/s]
std(|vy |) 0.117 0.083 0.072 0.057 [m/s]

TABLE I
EFFECT OF MATCHING ALGORITHM ON POSE STABILITY OF THE ROBOT.

equal to run a Kalman filter having a large uncertainty on

the prediction. Whereas including a more sophisticated model

for the prediction would lead to better estimates, using this

simplistic strategy was sufficient for our purposes.

B. Localization and SLAM

If a map of the environment is known a priori, pure

localization (in contrast to SLAM) is sufficient for estimating

the remaining 4DOF of the quadrotor. We estimate the 2D

position (x, y, ψ) of the robot in a given grid-map by Monte-

Carlo Localization [15]. The idea is to use a particle filter

to track the position of the robot. Here, we sample the next

generation of particles according given the relative movement

estimated by the scan matcher and evaluate the current particle

using likelihood fields [31].

Our system can acquire models of unknown environments

during autonomous or manual flights by simultaneous localize

and map the environment. The goal of a SLAM algorithm is

to estimate both the vehicle position and the map of the envi-

ronment by processing a sequence of measurements acquired

while moving in the environment. Even when a map is known

a-priori, a local map is needed until the robot is localized

if the robot is running autonomously. In our system we use a

popular graph-based SLAM algorithm. The idea of these types

of algorithms is to construct a graph from the measurements

of the vehicle. Each node in the graph represents a position

of the vehicle in the environment and a measurement taken

at that position. Measurements are connected by pairwise

constraints encoding the spatial relations between nearby robot

poses. These relations are determined by matching pairs of

measurements acquired at nearby locations. Whenever the

robot reenters a known region after traveling for long time in

an unknown area, the errors accumulated along the trajectory

become evident. These errors are modeled by constraints

connecting parts of the environment that have been observed

during distant time intervals and are known in the SLAM

community as loop closures. To recover a consistent map we

use a stochastic gradient descent optimization algorithm that

finds the position of the nodes which maximizes the likelihood

of the edges. The optimization approach is discussed in

detail in [16], and an open source version is available on

OpenSLAM [4].

Again, we restrict our estimation problem to 4DOF, since

the attitude provided by the IMU is sufficiently accurate for our

mapping purposes. Furthermore, we assume that the vehicle

flies over a piecewise constant surface and that the indoor

environment is characterized by vertical structures, like walls,

doors, and so on. Although trash bins, office tools on a table

or the table itself are violating this assumption using a 2D map

is still sufficient for accurate mapping and localization. This

arises from the fact that clutter in general is only visible in a

small portion of the current measurement, whereas mapping

f.e. the desk improves localization since there is a clear

difference in x-y between a desk and a nearby wall. Thus

we restrict our approach to estimate a 2D map and a 2D

robot trajectory spanning over 3DOF, (x, y, ψ), i.e., we map

all objects if they had an infinite extend. The estimate of the

trajectory is the projection of the 6DOF robot motion on the

ground plane, along the z axis. We estimate the altitude of

the platform once the 2D position and the attitude are known,

based on the procedure described in the next section.

C. Altitude Estimation

Estimating the altitude of the vehicle in an indoor envi-

ronment means determining the global height wrt. a fixed

reference frame. Since the vehicle can move over non-flat

ground, we cannot directly use the the beams h deflected

by the mirror. Our approach therefore concurrently estimates

the altitude of the vehicle and the elevation of the ground

under the robot. In our estimation process, we assume that the

(x, y, ψ) position of the robot in the environment is known

from the SLAM module described above. We furthermore

assume that the elevation of the surface under the robot is

piecewise constant. We call each of these connected surface

regions having constant altitude a “level”. The extent of each

level is represented as a set of cells in a 2D grid sharing the

same altitude.

Since our system lacks global altitude sensors like barome-

ters or GPS to determine the altitude of the vehicle, we track

the altitude of the vehicle over the ground and map different

elevations by using a two-staged system of Kalman filters.

Algorithm 1 describes our approach in an abstract manner.

In the first stage, a Kalman filter is used to track the

altitude z and the vertical velocity vz of the vehicle by

combining inertial measurements, altitude measurements and

already mapped levels under the robot. In the second stage, a

set of Kalman filters is used to estimate the elevation of the

levels currently measured by the robot. To prevent drifts in the

elevation estimate, we update the altitude of a level only when

the robot measures the level for the first time or whenever the

robot reenters it (i.e., enters or leaves that particular level).

In detail, the first Kalman filter estimates the height state

z = (z, vz) and the corresponding uncertainty Σz . First, we

predict the current altitude and velocity (ẑt) given the previous

estimate, zt−1,Σzt−1
, and the acceleration measured by the

IMU (see line 4 of Algorithm 1).

The beams deflected by the mirror can measure more than

one level simultaneously. For instance, when flying over a table

it can happen that one fraction of the beams is fully reflected

by the table, some beams are partially reflected by the table

and partially by the floor, whereas the remaining beams are

fully reflected by the floor. We therefore search in the local

vicinity of the current multilevel-map for all levels which

could have generated one of the measured altitudes h ∈ ht

(assuming the robot’s altitude is ẑt). This step is indicated in

line 5.
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If we found at least one correspondence, we use them to

calculate a virtual measurement to the ground (see line 7).

We use the matched levels from the current map and the

corresponding beams to calculate a single measurement. In

other words, we calculate the measurement we would obtain

if no obstacles were present underneath the robot and use this

information for the measurement update of the Kalman filter

as shown in line 8.

However, when the robot explores the environment, it can

happen that none of the current beams h ∈ ht falls into a

confidence region of a level in the current map, i.e., E = ∅.

In this case, we cannot create a virtual measurement and thus

are unable to perform a measurement update of the filter. The

prediction, therefore, is then the best estimate of the robot’s

altitude as described in line 10.

Given the estimated altitude of the robot, we can now update

the current multilevel map. Recall that the beams deflected by

the mirror can measure more than one level simultaneously.

We therefore cluster them into neighboring sets. Each of

these sets is assumed to originate from a single level and

it is parameterized by the mean and the covariance matrix

calculated by the beams in the set. The outcome of this process

is the set L consisting of the estimated levels as indicted in

line 13.

We assume measurements not falling into a confidence

region of existing levels in the local neighborhood to be

generated by a new floor level. These new floor levels can

be directly included into the map, as shown in line 14 in

algorithm 1. For all measurements, falling into the confidence

region of a level in the map, there exist two possibilities. Either

this level has been already seen in the previous time-step, i.e.,

the robot is flying over the table and thus it has seen the

corresponding level before, or it is currently entering or leaving

this particular level. In the latter case, we can use the current

altitude estimate in order to update the altitude of the level in

the map (line 15). The elevation of each level is tracked by

an individual Kalman filter.

Since we explicitly store objects in 2D with an extend in x-y
rather than individual levels per cell, we seek for those levels

present in the neighborhood of the map, that are explained by

one of the measurements currently obtained. If such a level is

found and not present at the current location, we extend this

level to the current cell, as shown in line 16.

Note that the robot observes only a limited portion of

the underlying surface. Thus it may also happen that the

robot “joins” the surfaces of different levels to form a new

one. Figure 3 illustrates this situation. Initially two levels

corresponding to a chair (Level 1) and a table (Level 2) are

identified (a). The robot then left the table behind, makes a

turn, and flies over a different area of the same table. Since

Level 2 is not mapped in the neighborhood of the current pose,

our system creates a new level (for the same table), noted as

Level 3 in (b). Finally, the quadrotor continues to the originally

covered area of the table which introduces an intersection of

the current Level 3 and the previously generated Level 2. As

a consequence, it joins Levels 2 and 3 (see (c) and (d)).

When two levels, L′

j and L′

k, having altitudes hj and hk
and covariances σ2

j and σ2
k are merged, the Gaussian estimate

〈

h, σ2
〉

of the joint level has the following values:

〈

h =
σ2
khj + σ2

jhk

σ2
j + σ2

k

, σ2 =
σ2
jσ

2
k

σ2
j + σ2

k

〉

. (2)

This step is indicated in line 17 of Algorithm 1.

Algorithm 1 Multilevel-SLAM

Input: beams deflected by mirror at time t: ht
Input: previous multilevel map: M̂

Input: elapsed time: ∆t
Input: current pose: xt = (xt, yt) // output of SLAM module

Input: previous height state zt−1 = (zt−1, vzt−1
)

Input: previous height state uncertainty Σzt−1

Input: z-acceleration and uncertainty: az, σz // from IMU

Output: current height state: zt,Σzt
Output: current multilevel map: M

1: function Multilevel-SLAM

2: // ———— 1st stage: update height estimate ————

3: // KF is short for Kalman Filter

4: (ẑt, Σ̂zt) = KF(zt−1,Σzt−1
).predictionStep(∆t, az, σz)

5: E = M̂.at(xt ±∆x).getExistingLevelsMatching(ht, ẑt)
6: if E 6= ∅ then

7: (m̃, σ̃m) = createVirtualHeightMeasurement(ht,E)

8: (zt,Σzt) = KF(ẑt, Σ̂zt ).measurementUpdate(m̃, σ̃m)

9: else

10: (zt,Σzt) = (ẑt, Σ̂zt)
11: end if

12: // —————— 2nd stage: update map ——————

13: L = estimateLevels(ht, zt)
14: M = M̂.addNewLevels(L,xt)
15: M = M.updateExistingLevels(L,xt)
16: M = M.extendExistingLevels(L,xt)
17: M = M.searchForLoopClosures(xt)

18: return zt,Σzt ,M
19: end function

To summarize, we store a level as a set of 2D grid cells

representing the area covered by the corresponding object.

First, we estimate the current height of the robot given the

known levels in the multi-level map. In a second step we

update the map, given the estimated altitude of the robot.

Here, a level is constantly re-estimated whenever the vehicle

enters or leaves this specific level, and the data association

is resolved by the known (x, y, ψ) position of the vehicle.

Finally, measurements not explained by any level present in

the map are assumed to be generated by new levels which are

then included in the map.

D. High-Level Control for Pose and Altitude

The high level control algorithm is used to keep the vehicle

in the current position. The output of the control algorithm

are variations in the roll, pitch, yaw, and thrust, denoted

respectively as uφ, uθ, uψ and uz . The input are the position

and the velocity estimates coming from incremental scan-

matching. A variation of the roll translates in a motion along
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Fig. 3. Example of level joining during the estimation of the altitude of the vehicle and of the elevation of the underlying surfaces. Each level is represented
as a set of contiguous cells in the 2D grid that share the same elevation. The robot starts exploring an office environment. Initially it recognizes two levels
(Level 1, and Level 2), corresponding to a chair and a table (a). Subsequently it flies away from the table, turns back and flies over a different region of the
same table (a). This results in the creation of the new Level 3. Then the robot keeps on hovering over the table until it approaches the extent of Level 2
which has the same elevation of Level 3, being originated by the same table. This situation is shown in (c). Finally the robot enters Level 2 from Level 3.
Our system recognizes these two Levels to have the same elevation. Accordingly it merges them and updates the common elevation estimate (d).

the y axis, a variation in the pitch results in a motion along

the x axis and a variation of the thrust results in a change

in the vertical velocity. We separately control the individual

variables via PID or PD controllers. Since in our case all

control commands are dependent on the current pose estimate,

our high level control module runs at a 10Hz, since the laser

scanner provides measurements at exact this rate.

Note, that the Mikrokopter (and most of commercial avail-

able platforms) comes with low level controllers for roll, pitch,

and yaw, thus we do not have to take care about the control

of the individual motors, but of the control of commands

resulting in a desired angle. In our particular case, the low

level controller of the Mikrokopter quadrotor runs at 500Hz.

Since commands for the yaw on common platforms result in

how fast the quadrotor should turn and not how far, these

parameters reflect the users wish of the robots aggressiveness

wrt. the yaw rotation. In contrary to this, commands for roll

and pitch result in a desired angle for which independent

mapping functions must be learned. In order to learn the

mapping for our quadrotor, we fixed one axis of the vehicle to

an external frame allowing the vehicle to rotate along the other

axis only. We learned the mapping function by monitoring

the current angle measured by the IMU compared to the sent

command. Our test bench for learning this mapping is shown

Fig. 4. Our test bench for learning a mapping between the command and
the corresponding angle. This simple device allows for fixing one axis of the
quadrotor and monitoring the other one using the IMU.

in Figure 4.

The calculated commands are sent directly to the micro-

controller via RS232 which is in charge of the low level control

(roll, pitch, and yaw) of the platform. For safety reasons, the

user can always control the vehicle via a remote control and

our system mixes the user and the program commands. During

our experiments, we allow the programs to perturb the user

commands by ±20%. In this way, if one of the control modules

fails the user still has the possibility to safely land the vehicle

without any loss of time since he does not need to press any

button first.

In particular, we control the pitch and the roll by two

independent PIDs that are fed with the x and the y coordinates
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of the robot pose. The control function in x is the following:

uφ = Kp · (x− x∗) +Ki · ex +Kd · vx, (3)

Here x and x∗ are the measured and the desired x-positions,

vx is the corresponding velocity, and ex denotes the error

integrated over time. The control in the y is analogous to

the control in x. Note, that the integral part could be omitted

(i.e., Ki = 0), but we have encountered an improved hovering

behavior if a small Ki is used. This originates from the fact

that in our case only integer values can be transmitted to the

micro controller although the desired command is a float value.

We control the yaw by the following proportional controller:

uψ = Kp · (ψ − ψ∗). (4)

Here ψ and ψ∗ are the measured and desired yaw and uψ is

the control input.

The altitude is controlled by a PID controller which utilizes

the current height estimate z, the velocity vz , and the current

battery voltage Ut respectively. The control uz is defined as

uz = C(Ut) +Kp · (z − z∗) +Ki · ez +Kd · vz, (5)

with Kp,Ki and Kd being the constants for the P, I, and D

part and C(Ut) being the thrust command offset given the

current battery voltage Ut respectively. Here z∗ denotes the

desired height and ez denotes the integrated error. Including

a thrust command offset C(Ut) allows us to treat the system

as stationary, and therefore to use constant coefficients for

the PID. We learned C(Ut) by monitoring the thrust and the

battery level of the vehicle in an expectation-maximization

fashion. We started with a PID control without C(Ut) and

computed the average thrust command required to keep the

current altitude using several test flights. For each battery level

Ut we computed the average thrust command required to keep

the current altitude. In subsequent flights we used this offset

as an initial guess for C(Ut) and repeated the experiments

resulting in an refinement for C(Ut) until no major change in

the estimated offset appeared.

E. Path Planning and Obstacle Avoidance

The goal of the path planning module is to compute

a path from the current location to a user specified goal

location which satisfies one or more optimality criteria and

is safe enough to prevent collisions even in the case of

small disturbances. Safety is usually enforced by choosing

a path that is sufficiently distant from the obstacles in the

map. Finally, due to the increased degrees of freedom of a

flying vehicle compared to a ground robot, the path should

be planned in 4DOF space instead of 3DOF. In our system

we use D* lite [22], a variant of the A∗ algorithm that can

reuse previous solutions to correct an invalid plan rather than

recomputing it from scratch. Since directly planning in 4DOF

is too expensive for our system, we compute the path in

two consecutive steps. First, we use D* lite to compute a

path in the x − y − z space, but we only consider actions

that move the robot in the 2D space x − y. For each (x, y)
location we know from the multi-level map the elevation of the

surface underneath the robot. This known elevation is used to

determine a possible change in altitude the robot would have

to take when moving to a nearby cell. A change in altitude is

reflected by increased traversability costs proportional to the

distance in the z-direction. Furthermore, the cost function of

a state (x, y, z) of the robot depends on the distance of that

location to the closest vertical obstacle in the map.

Once we have the 2.5D trajectory calculated with D* lite we

augment it with the ψ component. Since the laser scanner is

heading forwards, it is desirable that the robot turns towards

the direction of flight first to avoid collisions. On the other

hand, we want the quadrotor to perform small maneuvers, like

flying 10 cm backwards, without turning first. To achieve this

behavior we calculate the desired angle which would result in

flying forwards wrt. the local frame of the quadrotor. Trading

off the costs of rotation versus costs of moving to the desired

cell without rotating first allows the robot to perform pure

sidewards or even backwards movements and thus prevents

the vehicle from performing unnatural maneuvers.

Instead of switching to a new plan at every point in time,

we try to re-use the existing solution whenever possible. A

new plan is generated only when the actual plan is not valid

anymore due to dynamic obstacles or when a certain period

of time has been reached (∆t = 500 ms). The latter constraint

enables us to correct for detours in the trajectory that have

been introduced to avoid obstacles that are no longer present.

In our implementation, we use a grid resolution of 4 cm. With

these settings, the planner requires about 50-80 ms to compute

a typical 10 m path from scratch. Re-planning can be done

in less than 10 ms. Dynamic obstacles are detected by the

planner by considering the endpoints of the laser beams that

are not explained by the known map (background subtraction).

Additionally, we run a reactive obstacle avoidance module on-

board in parallel based on potential fields [23].

V. EXPERIMENTS

In this section we present experiments that show the per-

formances of each of the modules presented in the previous

section, namely: localization, SLAM, multi-level mapping,

autonomous pose stabilization, path planning, and obstacle

avoidance. Videos of a series of different flights can be found

on the Web [5].

A. Localization

Using 2D grid maps for localization enables our system

to operate with maps acquired by different kinds of robots

and not necessarily built by the flying vehicle itself. In

this section we present an experiment in which we perform

global localization of the flying quadrotor in a map acquired

with a ground-based robot. This robot was equipped with

a Sick LMS laser scanner. The height of the scanner was

80 cm. Throughout this experiment, the UAV kept a height

of 50 cm ±10 cm and the particle filter algorithm employed

5,000 particles. Given this number of particles, our current

implementation requires 5ms per iteration on a Dual-Core

2 GHz laptop, while scan matching requires 5ms on average.

Figure 5 shows three snapshots of the localization process

at three different points in time. The top image depicts the
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Fig. 5. Global localization of our quadrotor in a map previously acquired by
a ground-based platform. The blue and the green circle highlight the current
estimate of the particle filter and the true pose respectively. Particles are shown
as black dots within the free space. Top: initial situation. Middle and bottom:
after about 1 m and 5 m of flight. In the latter case, the quadrotor is localized.

initial situation, in which the particles were sampled uniformly

over the free space. After approximately 1m of flight (middle

image), the particles start to focus around the true pose of the

vehicle. After approximately 5m of flight the quadrotor was

globally localized (bottom image). The blue circle indicates

the current estimate of the filter.

B. SLAM

We also evaluated the mapping system by letting the quadro-

tor fly four loops (approximately 41 m each) in a rectangular

shaped building of approximate corridor size 10 m×12 m. The

result of our SLAM algorithm is shown in Figure 6. To

quantitatively evaluate the accuracy of our mapping system we

placed markers on the floor (labeled 1, . . . , 4) and manually

landed the quadrotor close to the markers. Since we never

perfectly landed on those we manually moved the quadrotor

the remaining centimeters to match the predefined spots. This

enables us to measure three types of errors: the re-localization

error, the absolute positioning error and the error in open-

loop. The re-localization error is the difference between the

current estimate and the estimate of the same real world

pose in the previous loop. The error in open-loop is the re-

localization error without enabling graph optimization. The

absolute error is the difference between the estimated pose and

the ground truth. To measure the absolute error we manually

measured the relative locations of the markers and compared

it to the positions estimated by the robot when landing to the

Fig. 6. Map of on office building built with our approach using the quadrotor.
The labels 1-4 reflect the locations of individual markers used for evaluating
the accuracy of our mapping approach. Red triangles indicate the pose of the
corresponding camera images. The clutter in the bottom of the map originates
from the seating containing horizontal slots (see bottom right image).

marker loop 1 loop 2 loop 3 loop 4 ground-truth

x1 1.11 m 1.11 m 1.11 m 1.10 m 1.11 m
y1 -7.50 m -7.51 m -7.50 m -7.50 m -7.50 m

x2 -6.21 m -6.21 m -6.21 m -6.21 m -6.21 m
y2 -9.21 m -9.21 m -9.21 m -9.21 m -9.21 m

x3 -7.85 m -7.85 m -7.85 m -7.85 m -7.85 m
y3 -3.83 m -3.83 m -3.83 m -3.82 m -3.82 m

x4 -0.01 m -0.01 m -0.01 m -0.01 m 0.00 m
y4 -0.00 m -0.00 m -0.00 m -0.00 m 0.00 m

TABLE II
ESTIMATED AND MANUALLY MEASURED LOCATIONS OF THE MARKERS

FOR THE FLIGHT CONTAINING FOUR LOOPS IN TOTAL.

corresponding markers. Table II shows the manually measured

and the estimated poses of the markers for all loops. As can be

seen, both, the relative error between the individual loops and

the global pose estimation wrt. the manually measured ground-

truth have a maximum error of 1 cm. In this experiment,

the incremental mapping during the first loop was accurate

enough (<1 cm error) thus no optimization was needed since

all subsequent loops were also re-localized in the existing

map. We therefore also evaluated each loop independently of

each other without enabling graph optimization. The results of

the individual loop flights for marker 4 (origin) are shown in

table III (first row). The worst flight (2nd loop) resulted in an

error of approximately 0.37 m total distance to the origin. The

remaining rows in table III show the effect of using different

grid resolutions at the finest level of our hierarchical mapping

approach on the accuracy of the individual loops.

marker loop 1 loop 2 loop 3 loop 4 finest resolution

x4 -0.01 m -0.35 m -0.08 m -0.17 m
0.01 m

y4 -0.00 m 0.12 m -0.07 m 0.04 m

x4 -0.42 m -0.59 m -0.36 m -0.64 m
0.02 m

y4 0.20 m 0.23 m 0.11 m 0.33 m

x4 -0.91 m -0.59 m -0.54 m -0.60 m
0.04 m

y4 0.28 m 0.38 m 0.29 m 0.29 m

TABLE III
COMPARISON OF SINGLE LOOPS FOR DIFFERENT GRID RESOLUTIONS.

C. Multi-Level SLAM and Altitude Estimation

In the following we show the typical behavior of our altitude

estimation module. In this experiment, we let the robot fly
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Fig. 7. Estimation of the global height of the vehicle and the underneath
floor level. Whenever the quadrotor moves over a new level, the innovation
is used to determine a level transition. The estimate of the height of each
level is refined whenever the robot reenters that particular level. Top: the
office environment. Middle: the corresponding map after autonomously flying
over the vertical objects with a desired altitude of 150 cm. Bottom left: a
plot showing the estimated altitude of the vehicle over time versus the raw
measurement. The corresponding estimated levels are depicted in the bottom
right plot. Note, that Level 3 is merged with Level 2 after the loop closure.

autonomously in a typical office containing chairs, tables and

lots of clutter. The chairs have a height of 48 cm and the

tables are arranged next to each other having a height of

77 cm. During this mission the system flew once over the

chair and several times over the tables where it also flew in a

loop. Figure 7 shows a snapshot of our multi-level mapping

system during this mission. As can be seen from this figure,

our algorithm correctly detected the objects at corresponding

levels. The estimated heights of the chair and the tables were

48.6 cm±2.7 cm and 74.9 cm±2.8 cm respectively.

D. Pose control

Since the system is stabilized by independent controllers,

we discuss the result of each individual controller.

a) Yaw control: For testing the yaw controller we set a

desired yaw of 0◦ and once in a while, we turned the helicopter
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Fig. 8. Experiments for the autonomous stabilization of yaw (a) and pose
(b). During the yaw stabilization experiment, the quadrotor was required to
rotate to 0◦, while the user manually turned the robot once in a while to a
random orientation. Within the pose stability experiment the quadrotor was
set to hover at (0, 0), but was manually moved backwards once in a while
and required to fly autonomously back to the initial pose.

via the remote control. When the user released the remote

control, the vehicle always returned back to its desired yaw

with an error of ±2◦. Figure 8(a) plots the outcome of a typical

run for yaw stabilization.

b) Altitude control: Similar to the experiment regarding

the yaw, we ran an experiment to assess the behavior of

the altitude control. In this test we set the desired altitude

to 150 cm. In the beginning the vehicle was hovering over

the ground. After enabling the stabilization the vehicle started

climbing to the desired altitude. The desired height was kept

by the vehicle up to an error of ±10 cm. The results are shown

in Figure 7. Note, that this experiment was performed while

flying over different elevations.

c) x, y control: Finally we show an experiment for the

pose stabilization only. Note, that the pose stability is strongly

affected by the latency of the system (i.e., the time needed

to calculate the command given the laser data). Although

incremental motion estimates take only 5 ms in average (with

a maximum of 15 ms) we have to deal with a latency of

120 ms in average due to the wireless transmission and due

to the sensor buffer. A typical run including autonomous pose

stabilization is shown in Figure 8(b). Here, the quadrotor was

set to keep the initial pose of (0, 0) and once in a while, the

user used the remote control to move the quadrotor around 1 m

backwards. The quadrotor then autonomously moved back to

the desired position. Depending on the latency in the system

the pose oscillations are typically around ±20 cm.

E. Path Planning and Obstacle Avoidance

In this section we present an experiment demonstrating our

algorithms for path planning and dynamic obstacle avoidance.

The quadrotor was given a goal point approximately 5 m in

front of it. A person was standing on the left (see the shaded

area in Figure 9 entering the corridor when the quadrotor

moved to its desired goal. The second image shows the

situation when the person is completely blocking the robot’s

path. In this case the quadrotor hovered around the last valid

way point since there was no valid plan to the goal anymore.

When the person moved to the left again, the quadrotor was

able to follow a de-tour as shown in the right image of

Figure 9. Note, that the snapshots show the endpoints of the

laser only. Although it looks like the quadrotor might have the
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Fig. 9. Experiment for path planning and dynamic obstacle avoidance. The
quadrotor is given a goal point 5 m in front of it. The planned path is shown
in the left image. A person enters the corridor (shaded area) and blocks the
robot’s path, which results in an invalid plan. The quadrotor therefore hovers
around the last valid way point (second image). In the third image the person
moved back leaving the quadrotor enough space for a de-tour.

space to fly around the person in the second image, there is

no valid plan due to the safety margins around the walls.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a navigation system for au-

tonomous indoor flying utilizing an open-hardware quadrotor

platform. We described a complete navigation solution that

approaches the different aspects of localization, mapping, path-

planning, height estimation, and control. Since we do not

rely on special characteristics of the flying platform like the

dynamics model, we believe that our system can easily be

adapted to different flying vehicles. All modules in our system

run on-line. However, due to the relatively high computational

cost of some algorithms only a part of the software runs on-

board on the ARM processor whereas the other part runs off-

board on a laptop computer. Some preliminary tests make us

confident that the whole system can run on-board using the

next generation of embedded computers based on the Atom

processor. We provided a wide range of experiments and some

videos that highlight the effectiveness of our system. In future

work we plan to add a time of flight camera into our system.

We believe that this technology can be effectively integrated

and will allow us to relax the assumption that the vehicle

moves over a piecewise planar surface.
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