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Abstract

This paper presents a fully Bayesian approach that simultaneously 
combines basic event and statistically independent higher event-level failure 
data in fault tree quantification. Such higher-level data could correspond to 
train, sub-system or system failure events. The full Bayesian approach also 
allows the highest-level data that are usually available for existing facilities to 
be automatically propagated to lower levels. A simple example illustrates the 
proposed approach. The optimal allocation of resources for collecting 
additional data from a choice of different level events is also presented. The 
optimization is achieved using a genetic algorithm.

1. Introduction
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Vesely et al. [1], the probabilistic risk assessment (PRA) procedures guide 

(Hickman [2]), and many other textbooks discuss fault tree quantification. Such 

quantification consists of three steps: (1) determining the basic event 

probabilities, (2) calculating the minimal cut set probabilities, and (3) determining 

the system (i.e., the top event) probability using either exact or approximate 

methods.

It is current and accepted practice in fault tree and accident sequence 

quantification (as implemented, for example, in the Systems Analysis Programs 

for Hands-on Integrated Reliability Evaluations [SAPHIRE (Russell et al. [3]) 

package and the Integrated Reliability and Risk Analysis System [IRRAS 

[Russell et al. [4]; Vanhorn et al. [5]])]) to use only statistical data and information 

regarding the basic events. Martz and Almond [6] directly use independent 

statistical data and information corresponding to higher-level events or gates in 

the tree. However, normal operation and testing procedures often generate data 

for many high-level gates corresponding to such events as train, subsystem, and 

system unavailability, and often even the top event itself. In quantifying the

accident sequence frequency for a proposed accident of interest at an existing 

facility, independent statistical data almost always exist at the highest level; 

namely, x occurrences of the accident (where x is usually 0) in a given exposure 

time t or in n demands.

By “independent” we mean that the higher-level data for a system are not

simultaneously providing collateral information on the basic events comprising 

that system (which would lead to double counting and thus dependency). In 

other words, we assume that the higher-level and any basic-event data are not

the result of the same set of demands or observation period. This is usually the 

case for any system test that is destructive, such as a missile fired at a target. If 

the same higher-level data provide basic event-level information, then we can 
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instead use such data to verify the structure of the fault tree. In particular, any 

higher-level failure data which is not predicted by the fault tree is an indication 

that the fault tree model is inadequate.

This paper describes a fully Bayesian approach which can simultaneously 

combine basic event and independent higher-level failure data and information in 

fault tree quantification. The obvious advantage is the associated increase in 

accuracy and precision of the probabilistic results because of the combined use 

of these data. Note that Martz and Almond [6] only approximates the fully 

Bayesian approach by utilizing the first two distributional moments.

The fully Bayesian approach can also incorporate independent industry-

wide statistical analyses that are sometimes performed on safety systems 

considered in a PRA. Such analyses represent a source of generic higher-level 

statistical information for the specific plant under consideration. For example, 

Grant et al. [7] describe an industry-wide statistical analysis of the safety-related 

performance of the high-pressure coolant injection (HPCI) system at US 

commercial boiling water reactor plants for the period 1987-1993. 

1.1 Related methods

A number of articles discuss system reliability for systems described by reliability 

block diagrams which combine both component and independent system-level 

test data. Mastran [8] and Mastran and Singpurwalla [9] consider an approximate 

Bayesian approach to the estimation of system reliability in which there exist 

pass/fail test data at both the component and system for a coherent system of 

nonidentical components. They use a top-down approach which apportions the 

posterior system reliability distribution to each component in the form of a 

component prior distribution consistent with the system configuration. Combining 

these component priors with the component level data produces component 
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posterior distributions. Propagating these component posteriors back up to the 

system level using the system model forms the final system posterior from which 

the desired inferences are obtained. 

Martz, Waller, and Fickas [10] and  Martz and Waller [11] develop an 

approximate Bayesian procedure for estimating system reliability based on a 

bottom-up approach in which only the means and variances of prior distributions 

are used, which are then combined with data, and finally propagated upward.

Johnson et al. [12] propose a fully Bayesian approach for system reliability 

as described by a reliability block diagram. This fully Bayesian approach resolves 

the upward and downward propagation problem by simultaneously modeling the 

complete set of system parameters. We generalize their procedure in this paper 

to fault tree quantification.

When both levels of data exist for the same demands or observation 

period, the above methods are inapplicable because the data are dependent. 

For example, a standby system may fail to operate upon demand (a higher-level 

system failure) which may subsequently be traced to the failure of a particular 

component in the system (a basic event-level failure). However, the above 

methods (and the method presented here as well) are still applicable if only one 

level of data is used. Using the data at the higher-level gate to form an 

aggregated posterior for the higher-level event produces an aggregate analysis. 

Using the data at the basic event-level to form a disaggregated posterior for the 

higher-level event produces a disaggregate analysis. Usually, the aggregate and 

disaggregate posteriors will disagree, in which case we say that an aggregation 

error occurs. Very large aggregation errors are grounds for suspicion of the 

structure of the fault tree model.

An outline of the paper is as follows. In Section 2, to focus attention, we 

present an example fault tree. A Bayesian approach for using independent 
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higher-level failure data in any coherent fault tree is presented in Section 3. 

Section 4 illustrates the performance of the proposed approach using the fault 

tree example. Section 5 discusses the problem of allocating additional resources 

to improve inference of the top event probability. Section 6 concludes with a 

discussion.

2. Example

Before presenting the full Bayesian approach, consider the following simple fault 

tree example as depicted in Figure 1 that was used to illustrate the IRRAS fault 

tree solution and quantification in Appendix A of Russell et al. [3,4]; it consists of 

AND and OR gates and one 2/3 gate. There are five basic events denoted by 

BE1 to BE5. One intermediate event denoted by IE is identified as well as the 

top event TE. Note the difference between a fault tree and a reliability block 

diagram in which, for our example, a basic event such as BE1 shows up in more 

than one branch of the fault tree. In this paper, we consider the situation where 

prior information and/or data are available at the basic, intermediate and top 

events.
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Figure 1: Example Fault Tree

Basic Event 1

Top Gate

Basic Event 4 Basic Event 2

Gate 3

OR Gate

BE4 BE2

Basic Event 3 Basic Event 5

Gate 4

AND Gate

BE3 BE5

BE1

Gate 1

N/M Gate

2 3

Basic Event 1 Basic Event 3

Gate 2

Intermediate Event (IE) OR Gate

BE1 BE3

Basic Event 4

BE4

Top Event (TE) AND Gate

3. A fully Bayesian approach for inference

We assume that the information about the probability of occurrence of each 

basic event can be summarized using a probability distribution. The proposed 

method will even properly handle a priori state-of-knowledge (SOK) dependence 

among the basic events; all that is necessary is the specification of their joint 

distribution.  In this paper, we describe prior information for a basic event 

probability in the form of a beta distribution denoted by Beta(a,b). If there are 

also basic event data available in the form of x failures, say, in n trials, then the 

posterior information for the basic event (combining the prior information and 

data via Bayes’ theorem) can be expressed as Beta(a+x,b+(n-x)). Thus, we 

assume that the information available, both prior and data, for a basic event can 

be described by a beta distribution.

The proposed method also requires that the higher-level event information 

be expressed as data so that the posterior distribution of the basic event 
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probability obtained from using multilevel data and information is well defined. 

Thus, we express the higher-level event information as x failures in n trials, 

although x and n need not be integers. For example, suppose that we believe a 

higher-level event probability is 0.05 with only 2 observations; thus, we would set 

x = 0.1 and n = 2. 

Following Johnson et al. [12], a key feature of the proposed method is that 

higher-level event probabilities are expressed in terms of basic event 

probabilities. For fault trees, these expressions can be obtained by determining 

the higher-level event’s minimal cut sets and using the law of total probability 

also known as the inclusion-exclusion rule. For the example in Figure 1, the top 

event has five minimal cut sets as follows:

{BE1,BE2}, {BE1,BE4}, {BE1,BE3,BE5}, {BE2,BE3,BE5}, {BE3,BE4,BE5}.

Using the law of total probability, the top event probability expressed in terms of 

the basic events is

TE(p) = p1*p2 + p1*p4 + p1*p3*p5 + p2*p3*p5 + p3*p4*p5 -

p1*p2*p4 - 3*p1*p2*p3*p5 - 3*p1*p3*p4*p5 - p2*p3*p4*p5

+4*p1*p2*p3*p4*p5,

where p1, …, p5 are the occurrence probabilities for basic events BE1, …, BE5.

Similarly, the intermediate event probability can be expressed as

IE(p) =p1 + p3 + p4 - p1*p3 - p1*p4 - p3*p4 + p1*p3*p4.

From these expressions of higher-level event probabilities, we see that higher-

level event information provides information about basic event probabilities. 
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Likewise, basic event information provides information about higher-level event 

probabilities.

As mentioned in the introduction, we rely on a Bayesian approach to 

inference for the modeling proposed above.  Bayesian methods are named for 

Bayes’ theorem

( p | x)
f (x | p) (p)

f (x | p) (p)dp
 ,                                          (1)

where )|( xpπ  is called the posterior distribution, and is the conditional 

distribution of the unknown failure probability p given the observed data.  

Furthermore, f (x | p)  is the sampling density (commonly referred to as the 

likelihood) and ( p)  represents the prior distribution for p.  This prior distribution 

can be obtained from experts, computer models, engineering or physics theory, 

or previous studies.  If there is no information about p before a study is 

conducted, a distribution which contains little or no information about p can be 

substituted, often referred to as a noninformative prior distribution.  In our 

experience, there almost always exists some prior knowledge that can and 

should be incorporated. 

Bayesian methods were relegated to obscurity for a long period of 

statistical history.  The primary reason was that the denominator in (1) was 

difficult (and sometimes impossible) to calculate.  However, Gelfand and Smith 

[13] introduced computing routines that made computation of the denominator 

possible through simulation and Monte Carlo integration; Casella and George 

[14] and Chib and Greenberg [15] provide good introductions to these computing 

routines. The broad class of modern Bayesian computation was aptly named 

Markov chain Monte Carlo (MCMC) and Gilks et al. [16] provide a nice review of 
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the basic elements of MCMC computation.  At the heart of most basic Bayesian 

computation is the complete conditional (or full conditional) distribution which is 

defined as the conditional distribution of each parameter given all other 

parameters in the model, and the data.  MCMC relies on the fact that sequential 

simulation from complete conditionals (replacing recently updated parameters 

successively) converges to the joint posterior distribution of all of the parameters.  

So, given a starting point, after a certain number of iterations (called the burn-in) 

the simulated observations will be from the desired joint posterior distribution.  

Often, simulation from a complete conditional is difficult (or seemingly 

impossible).  The Metropolis-Hastings algorithm (Chib and Greenberg [15]) is a 

method for simulating from an arbitrary distribution whose form is known up to a 

constant (as is the case with Bayesian computation).  The central idea is that a 

random variable is generated from any distribution with probability density 

function g(• ), and is accepted with probability

)
)()|(

)()|(

zhzyg

yhyzgmin(1, ,

where z  is the current value of the parameter (say, p) and y  is the proposed 

replacement value of the parameter; here h(• ) is probability density function (up 

to a constant) of the desired arbitrary distribution. As the algorithm proceeds, this 

distribution converges to the distribution of the actual complete conditional.

This is an amazing result and makes Bayesian computation available for a 

rich class of problems.  One obvious consequence of the above choice is that 

the realizations will not be independent, but will almost certainly exhibit 

autocorrelation.  In order to remedy this problem, it is often recommended that 

realizations be skipped and only every third observation, for example, be kept for 

inference.  This process of dropping observations to approximate independence 

is called “thinning”.  
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In our case inference is then obtained using Bayes’ theorem implemented by 

Markov chain Monte Carlo (MCMC); that is, we end up with a set of draws from 

the joint posterior distribution of the basic event probabilities p. 

The advantage of this fully Bayesian approach is that no approximations are 

being made (except for the Monte Carlo sampling error which is controlled by 

taking more samples). The top event posterior distribution is based on all 

available data and the basic event posterior distributions are updated based on 

all higher-level data.  We will apply the proposed procedure for the simple fault 

tree example under different scenarios in the next section.

4.  Example revisited

We consider several cases to examine the performance of the method as a 

function of two factors: the strength of the basic event-level data (strong or 

weak), the strength of the top event-level data (strong or weak). The results for 

each of these cases are compared and used as a means of assessing the 

performance of the proposed approach. 

In the following tables, BE, TE and IE refer to basic, top and intermediate 

events, respectively. First the cases considered can be classified by whether 

there is any information for the events or, in the case of information, whether it is 

weak or strong. Table 1 describes the cases in these terms.

Table 1: Various cases in terms of none, weak and strong information available

Case BE1-BE5 TE IE

1 weak weak none

2 weak strong none

3 strong weak none
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4 strong strong none

5 none strong none

6 strong none none

7 none weak none

8 weak none none

9 weak weak weak

10 weak weak strong

Recall that the basic event information is described by Beta(a,b)  and that higher-

level event information is described by the equivalent number of event 

occurrences x out of n trials. Table 2 describes the 10 cases in these terms.

Table 2: Various cases in terms of beta parameters (a,b) and data(x,n)

Case BE1 BE2 BE3 BE4 BE5 TE IE

1 0.152
15.092

0.142
6.899

0.129
4.176

0.118
2.821

0.106
2.012

0.163
162.923

2 0.152
15.092

0.142
6.899

0.129
4.176

0.118
2.821

0.106
2.012

5.141
5140.881

3 5.086
503.470

5.024
246.180

4.963
160.458

4.901
117.627

4.840
91.954

0.163
162.923

4 5.086
503.470

5.024
246.180

4.963
160.458

4.901
117.627

4.840
91.954

5.141
5140.881

5 0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

5.141
5140.881
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6 5.086
503.470

5.024
246.180

4.963
160.458

4.901
117.627

4.840
91.954

7 0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.163
162.923

8 0.152
15.092

0.142
6.899

0.129
4.176

0.118
2.821

0.106
2.012

9 0.152
15.092

0.142
6.899

0.129
4.176

0.118
2.821

0.106
2.012

0.163
162.923

0.152
15.244

10 0.152
15.092

0.142
6.899

0.129
4.176

0.118
2.821

0.106
2.012

0.163
162.923

5.086
508.556

The results for each of the above outlined ten cases are presented in Figure 2.  

For each case, the posterior distribution summaries of the BE2, BE4, IE and TE 

events are plotted; the 2.5, 50 and 97.5 percentiles are indicated by red, black 

and blue lines, respectively. Each plot indicates the effect of including various 

strengths of data. For example, compare the width of the posterior 95% credible 

intervals for case 5 (strong TE data) versus case 7 (weak TE data) in which the 

stronger data have the predictable effect of reducing variability; the same holds 

for case 6 (strong BE1-5 data) versus case 8 (weak BE1-5 data). Note that 

having weak BE1-5 data is different than having no BE1-5 (represented by 

Beta(0.5,0.5)); contrast case 2 with case 5 and case 1 with case 7.  The effect of 

adding weak TE data can depend on the type of BE1-5 data; when there are 

strong BE1-5 data, there is little effect (see cases 3 and 6). However, when weak 

TE data is added to weak BE1-5 data, the variability of the BE2, BE4 and IE 

events has actually increased; here the weak TE data do not exactly reinforce 

the BE1-5 data so that the resulting posterior from the combined data is wider. 

Also compare case 1 with case 9 and case 9 with case 10 in which wider 

posteriors arise when weak IE data or different strong IE data are added. Other 

examples of the patterns observed above can be seen in cases 1-4 in which 

weak and strong BE1-5 data and weak and strong TE data are considered in the 

four possible combinations. Thus, we see that the effect is very different 
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depending on which level is being examined and what type of data is available at 

each level. This demonstrates the value of collecting different information at 

different levels which will be further illustrated with an application of a genetic 

algorithm for optimizing additional data collection based on an overall budget 

constraint in the next section.  
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Figure 2: Posterior 95% credible intervals for the probability of events for each of 
the ten cases. The upper left panel is for the top event (TE) probability, the upper 
right is for the intermediate event (IE) probability, the lower left is for the basic 
event BE2 probability, and the lower right is for the basic event BE4 probability. 
The red line indicates the 2.5 percentile, the black line represents the posterior 

http://biostats.bepress.com/umichbiostat/paper19



15

median, and the blue line represents the 97.5 percentile. Note that the very long 
intervals extend beyond the graphs.

5. Optimal resource allocation

In this section, we consider the optimal allocation of additional tests for a fixed 

budget. In our example, how many tests should be done for each of the seven 

events? First, we specify a criterion that reflects the information gain in doing 

additional tests and use a genetic algorithm (GA)  (Goldberg [17], Michalewicz 

[18]) to find the optimal allocation that maximizes the information gain. 

We assume that there is a cost for collecting additional event data and 

that higher-level event data are more costly than basic event data. Consider the 

following costs as an example which are the costs of a single observation 

(event): 

BE1: $1

BE2: $1

BE3: $1

BE4: $1

BE5: $1

 TE:   $10

IE:            $3

We define the maximum information gain in terms of the maximum 

reduction in uncertainty of the top event probability. That is, we consider the 

maximum reduction in the relative length of the central 90% credible interval from 

the top event posterior distribution before and after taking additional data. Note 

that this interval itself has a distribution and we are concerned with the ratio of 
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the  “after” new data and “before” new data posterior lengths. Here we take the 

0.75 quantile of this distribution as the criterion we want to minimize.

Briefly, we describe how a GA can be used to find a nearly optimal 

allocation. A GA operates on a “population” of candidate “solutions” to the 

optimization problem. Here, each solution is a string of seven sample sizes 

corresponding to additional tests to be done regarding events BE1-BE5, TE and 

IE, respectively.

 First we construct an initial population of M solutions by randomly 

generating solutions that do not exceed the given fixed budget. Subsequent 

populations of solutions are obtained by using the genetic operators of crossover 

and mutation which we will describe next.

The information gain criterion for each of the solutions in the initial 

population is evaluated and the solutions are ranked from smallest to largest, 

i.e., the smallest ratio is the best solution in the initial population.

The second (and subsequent) GA generations are now populated using 

the two genetic operations: crossover and mutation. First consider genetic 

crossover. Two parent solutions are randomly selected without replacement from 

the initial population with probability inversely proportional to their rank among 

the M solutions. A new solution is obtained from the parent solutions by 

randomly picking one of the two parents and taking its sample size and doing 

this for each of the seven events. The two parents are then returned to the initial 

population before the next crossover operation is performed. In this way, an 

additional M solutions are constructed using the crossover operator. Note that 

the solutions are checked to make sure they do not exceed the budget, so that 

solutions are generated until there are M such feasible solutions. The information 

gain criterion is also evaluated for each of these new solutions.
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For each of the initial M solutions, we next apply genetic mutation to each 

of the event sample sizes. We also incorporate relaxation in the probability that 

mutation occurs as a function of generation.

It is desired to mutate each factor value with probability that decays 

exponentially as a function of generation. That is, mutations become less and 

less likely as the number of generations increases. To accomplish this, at 

generation g each event sample size is mutated with probability exp(-µ × g) 

where µ is a user-specified mutation rate parameter.

Given that mutation of an event sample size occurs, we then mutate the 

value with expectation approximately equal to the current value of the factor and 

variance that decreases with g. We accomplish this by means of a logit 

transformation as follows: first compute z = (y – L) / (U – L) where y, L, and U are 

the current, minimum and maximum sample sizes; L=0, U=floor(budget/cost of 

event), where floor is the largest integer not exceeding its argument. Then 

calculate d = log[z / (1 – z)] + [Uniform(0, 1) –.5] × σ × exp(-µ × g), where 

Uniform(0,1) denotes a random draw from a uniform distribution. Here σ is a 

user-specified parameter that controls the rate at which the variance decreases 

as a function of g. Finally, compute u =L+(U+1- L) × exp(d) / [1 + exp(d)] and the 

desired mutated sample size is floor(u) which is between L and U. This logit 

transformation has the properties that the expected value is approximately equal 

to the current sample size y and the standard deviation decreases with g. 

Following this mutation procedure, we generate solutions until M additional 

solutions which do not exceed the budget are obtained. Then the information 

gain criterion is evaluated for each of these additional M solutions.

   We use an “elitist” GA, which means that the population in the next 

generation consists of the M best solutions from the 3M solutions currently being 
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considered (M initial solutions, M crossover solutions and M mutated solutions). 

We execute the above GA for G generations.

 For the allocation problem we consider the optimal allocation for budgets 

of $100 and $250. For the GA, we use populations of size 25 (M=25) and 

generate 100 generations (G=100).  We considered case 8 from the previous 

section in which there were no data at the intermediate and top events. The 

length of the 90% credible interval for top event probability based on the existing 

data is 0.00318. To reduce the computational effort 500 draws from the joint 

posterior distribution of the seven event probabilities based on the current 

information are taken. For each draw, then numbers of events occurring are 

drawn from binomial distributions using these event probabilities for the 

proposed sample sizes. Then the resulting posterior is calculated using MCMC; 

to keep the computational requirements to a manageable size, we burn-in with 

500 draws and then compute the 90% central credible interval for the top event 

probability based on the next 1000 draws with no thinning. Thus, there are 500 

relative lengths (ratio of the new to the old interval). The information gain 

criterion is taken to be the 0.75 quantile or the 125
th
 largest relative length out of 

the 500 

Now suppose that the budget is $100. What resource allocation yields the 

most reduction in the 90% credible interval length of the top event probability? 

Based on a GA as described above, the GA produced the traces presented in 

Figures 3 and 4 which display the criterion and number of tests allocated, 

respectively. The information gain criterion starts at 0.69 in generation 1 and 

decreases to 0.50 in generation 100 with an allocation of 54, 11, 5, 22 and 6 new 

tests to basic events BE1-BE5, respectively, and no allocation to either of the 

higher-level events.
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 Figures 5 and 6 provide the GA trace for the criterion and number of tests 

allocated for a budget of $250. The information gain criterion starts at 0.45 in 

generation 1 and decreases to 0.31 in generation 100 with an allocation of 151, 

31, 21, 37 and 10 tests to basic events BE1-BE5, respectively, and no allocation 

to the higher-level events. That is, for the cost structure considered here, the 

entire test budget is allocated to the basic events.

Figure 3: GA Criterion Trace for $100 Budget
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Figure 4: GA Number of Tests Allocation Trace for $100 Budget

generation

n
u

m
b

e
r 

o
f 
te

s
ts

0 20 40 60 80 100

0
1

0
2

0
3

0
4

0
5

0

BE1

BE2

BE3

BE4

BE5

TE

IE

Figure 5: GA Criterion Trace for $250 Budget
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Figure 6: GA Number of Tests Allocation Trace for $250 Budget
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6. DISCUSSION

A fully Bayesian methodology has been developed for using multilevel event 

data in fault tree quantification. The method requires the identification and use of 

SOK uncertainty distributions for the probabilities of occurrence of the initial 

basic events. The higher-level event information must be expressed as data. The 

performance of the methodology was illustrated for a simple example and 

performs as expected. The combined use of higher-level data is particularly 

advantageous when the initial basic event data are weak.

Now that multilevel fault tree data can be simultaneously considered and 

analyzed, the question of how to allocate additional test resources across the 

fault tree events can be addressed. That is, for a given budget, the allocation 
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providing the most gain in information can be determined. We demonstrated how 

a genetic algorithm provides a practical way to accomplish this.

Thus, the fully Bayesian approach is very attractive and easy to use for 

fault tree analysis. It can naturally handle data at different event levels. 

Moreover, allocation of additional resources can easily be accomplished.
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