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Abstract 

Specialized imputation routines for multilevel data are widely available in software packages, 

but these methods are generally not equipped to handle a wide range of complexities that are 

typical of behavioral science data.  In particular, existing imputation schemes differ in their 

ability to handle random slopes, categorical variables, differential relations at level-1 and level-2, 

and incomplete level-2 variables.  Given the limitations of existing imputation tools, the purpose 

of this manuscript is to describe a flexible imputation approach that can accommodate a diverse 

set of two-level analysis problems that includes any of the aforementioned features.  The 

procedure employs a fully conditional specification (also known as chained equations) approach 

with a latent variable formulation for handling incomplete categorical variables.  Computer 

simulations suggest that the proposed procedure works quite well, with trivial biases in most 

cases.  We provide a software program that implements the imputation strategy, and we use an 

artificial data set to illustrate its use. 
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A rather large body of methodological literature supports the use of missing data 

handling methods that assume a missing at random (MAR) mechanism, whereby the probability 

of missing data on a particular variable is fully determined by the observed values of other 

variables (Little & Rubin, 2002; Rubin, 1976).  The multiple imputation procedure proposed by 

Rubin (1987) is an MAR-based approach that enjoys widespread use in a variety of disciplines, 

including the behavioral sciences.  To implement multiple imputation, a researcher first creates 

several copies of the incomplete data set, filling in each with a different set of plausible 

replacement values.  The complete data sets are then analyzed, and the resulting parameter 

estimates and standard errors are pooled into a single set of results.  Multiple imputation is 

preferable to older approaches such as deletion because it can reduce nonresponse bias and 

improve power.  Detailed descriptions of multiple imputation are readily available in the 

methods literature (Enders, 2010; Graham, 2012; Little & Rubin, 2002; Schafer, 1997; Schafer & 

Graham, 2002; Schafer & Olsen, 1998; Sinharay, Stern, & Russell, 2001; van Buuren, 2012). 

Joint modeling and fully conditional specification (FCS; also known as sequential 

regression and chained equations imputation) are the principal imputation frameworks for single-

level data.  Schafer’s (1997) classic text popularized the joint modeling strategy that assumes a 

common distribution for the incomplete variables.  In the context of normally distributed data, 

Schafer’s approach repeatedly samples plausible population parameters (typically a covariance 

matrix and a mean vector) from a probability distribution and uses those parameters to define a 

multivariate normal distribution, from which it draws replacement data values.  FCS uses a 

similar two-step algorithmic approach (sample parameter values, use the parameters to define a 

distribution of replacement values), but it draws imputations from a series of univariate 

conditional distributions (Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001; van 
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Buuren, 2007, 2012; van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006).  Under this 

scheme, variables are imputed one at a time, with the filled-in variable from one step serving as a 

predictor in all subsequent imputation steps. 

Methodologists have extended the joint model and FCS to multilevel data (Asparouhov & 

Muthén, 2010; Carpenter, Goldstein, & Kenward, 2011; Goldstein, Bonnet, & Rocher, 2007; 

Goldstein, Carpenter, Kenward, & Levin, 2009; Schafer, 2001; Schafer & Yucel, 2002; van 

Buuren, 2011, 2012; Yucel, 2008), and specialized imputation routines are widely available in 

software packages.  For example, the joint model framework is implemented in Mplus (Muthén 

& Muthén, 1998–2012), the PAN and MLMMM packages in R (Schafer, 2001; Schafer & 

Yucel, 2002; Yucel, 2008), MLwiN and Stata (Carpenter et al., 2011), and SAS (Mistler, 2013), 

and FCS is available in the R package MICE (van Buuren et al., 2014).  The joint model is 

equivalent to FCS with single-level data and multivariate normal variables (Hughes, White, 

Seaman, Carpenter, & Sterne, 2014), but multilevel imputation routines apply different 

underlying models, and software packages offer different functionality (Enders, Mistler, & 

Keller, 2016).  Simulation and analytic work suggest that the joint model and FCS can readily 

accommodate basic random intercept analyses with normally distributed variables, but they 

differ beyond that (Carpenter & Kenward, 2013; Enders et al., 2016; Mistler & Enders, 2016). 

Enders et al. (2016) conclude that existing multilevel imputation routines are good for 

very specific tasks, but these methods are generally not equipped to handle a wide range of 

complexities that are typical of behavioral science data.  In particular, the joint model and FCS 

differ in their ability to handle random slopes, categorical variables, differential relations at 

level-1 and level-2 (e.g., contextual effect models, multilevel structural equation models), and 

incomplete level-2 variables.  Given the limitations of existing imputation tools, our primary 
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goal for this paper is to outline a flexible FCS imputation strategy that can accommodate a 

diverse set of two-level analysis problems that includes any (or all) of the aforementioned 

features.  We provide an application named Blimp for Mac and Windows that implements our 

FCS approach, and we use computer simulations to evaluate its performance. 

The organization of the paper is as follows.  We begin with a brief description of 

complete-data Bayesian estimation for a two-level model, as this provides the mathematical 

machinery for FCS imputation.  Second, we review how FCS is currently applied to multilevel 

data.  Third, we describe complete-data Bayesian estimation for a two-level probit model, as this 

provides the basis for imputing nominal and ordinal variables.  Fourth, we outline an extension 

to FCS that accommodates incomplete nominal and ordinal variables at level-1 and level-2.  

Fifth, we outline a modification to FCS that partitions relations among level-1 variables into 

within- and between-cluster components.  Sixth, we propose an extension to FCS that can 

accommodate missing data on level-2 variables. Finally, we use computer simulations to 

evaluate the modifications to FCS, and we conclude with a data analysis example that 

demonstrates our custom-built FCS software application. 

Bayesian Estimation for a Two-Level Regression Model 

Like other multilevel imputation schemes (Asparouhov & Muthén, 2010; Goldstein et al., 

2007; Goldstein et al., 2009; Schafer & Yucel, 2002), FCS borrows from established complete-

data Bayesian estimation methods for multilevel regression models.  Multilevel imputation via 

FCS can be viewed as a complete-data Bayesian analysis with an additional step that fills in the 

data, conditional on the model parameters and level-2 residuals from a particular iteration.  To 

provide some necessary background, this section gives a brief overview of the Gibbs sampling 

algorithm for a Bayesian analysis.  We focus on a traditional multilevel model for univariate 
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normal data because it provides the mathematical machinery for FCS imputation.  However, it is 

important to emphasize that FCS is not limited to traditional multilevel regression models, as the 

resulting imputations are applicable to other multilevel frameworks with nested factors (e.g., 

multilevel structural equation models).   

To motivate the ensuing discussion, consider a multilevel model with two level-1 

predictors and a random slope1.  Using notation from Scott, Shrout, and Weinberg (2013), the 

model is 

 

   (1) 

 

where Y1ij is the outcome score for observation i in cluster j, Y2ij and Y3ij are level-1 predictors,  

is the intercept, and  and are slope coefficients for Y2 and Y3, respectively.  Turning to the 

random effects, u0j is a residual that captures between-cluster residual variation (i.e., mean 

differences) in the outcome, and u1j is a random slope residual that allows the influence of Y2 to 

vary across clusters.  Finally, 
 
is a within-cluster residual that captures unexplained level-1 

variation.  In line with a traditional multilevel analysis, we assume that level-2 residuals are 

multivariate normal with zero means and an unstructured covariance matrix , and we assume 

that level-1 residuals are normally distributed with a constant variance .  This latter 

assumption can be relaxed, as the Bayesian framework readily accommodates heteroscedastic 

within-cluster residual variation (Kasim & Raudenbush, 1998; van Buuren, 2011). 

	
1 Multilevel models are also known in the literature as mixed effects and random effects models.  We use 

the phrase multilevel model to emphasize that our imputation routine is designed for data structures with 

nested factors.  Not all mixed models that incorporate random effects feature this multilevel nesting 
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 A Bayesian analysis views regression coefficients, level-2 residuals, and variance 

parameters as random variables, and a joint distribution describes the relative probability of 

different combinations of parameter values and level-2 residual terms, given the data.  Bayesian 

estimation expresses this joint distribution as a set of full conditional distributions, and a Gibbs 

sampler algorithm iteratively samples values from each distribution.  The joint distribution for 

the model in Equation (1) requires four such conditional distributions, one each for the 

regression coefficients, the level-2 residuals, the within-cluster residual variance, and the level-2 

covariance matrix.  Accordingly, the Gibbs algorithm samples these quantities in a series of four 

steps, with each step conditioning on (i.e., treating as known) the values from previous steps: (a) 

sample regression coefficients from a distribution that conditions on the data, the current 

variance estimates, and the current level-2 residuals, (b) sample level-2 residuals from a 

distribution that conditions on the data, the coefficients from the previous step, and the current 

variance estimates, (c) sample a level-1 residual variance from a distribution that conditions on 

the data, the current level-2 covariance matrix, and the coefficients and residuals from previous 

two steps, and (d) sample a level-2 covariance matrix from a distribution that conditions on the 

data and the values from the first three steps. 

 More formally, the sampling steps for a single iteration t of the Gibbs algorithm are 

 

   (2) 
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where ~MVN denotes a multivariate normal distribution, ~IG is the inverse Gamma distribution, 

and ~IW indicates the inverse Wishart distribution.  Each of the above distributions has a 

location and scale parameter that defines its expected value and variance, and these quantities 

also depend on hyperparameters (i.e., the expected value and variance) of a corresponding prior 

distribution.  The supplemental online material includes a technical document that gives specific 

details for each distribution, as do a number of published resources (Browne & Draper, 2000; 

Goldstein et al., 2007; Goldstein et al., 2009; Kasim & Raudenbush, 1998; Schafer & Yucel, 

2002; van Buuren, 2012; Yucel, 2008).   

 Iterating the sampling steps from Equation (2) many (e.g., several thousand) times gives 

an empirical estimate of each parameter’s marginal posterior distribution, the mean and standard 

deviation of which are analogous to a frequentist point estimate and standard error, respectively.  

In the context of FCS imputation, the previous sampling steps are unchanged, but each iteration 

features an additional fifth step that generates imputations based on the current model parameters 

and level-2 residual terms.  Thus, each Gibbs cycle uses the current imputations to execute a 

complete-data Bayesian analysis, after which it uses the resulting parameter values to generate a 

new set of imputations.  The next section details this procedure. 

FCS Imputation for Two-Level Data 

This section describes the current implementation of multilevel FCS.  To be consistent 

with existing literature and software (van Buuren, 2011, 2012; van Buuren et al., 2014), we 

restrict our attention to normally distributed level-1 variables, but subsequent sections outline 

modifications to FCS that extend its current capabilities.  For brevity, we focus on imputation 

here and refer interested readers to other resources that describe analysis and pooling procedures 
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for multiply imputed data (Enders, 2010; Rubin, 1987; Schafer, 1997; Schafer & Olsen, 1998; 

Sinharay et al., 2001; van Buuren, 2012).   

Multilevel FCS imputes variables one at a time, drawing replacement values from a series 

of univariate distributions that condition on a set of multilevel model parameters, level-2 residual 

terms, and complete and previously imputed variables.  To illustrate, consider a set of Q 

incomplete level-1 variables, indexed q = 1, … , Q.  The imputation steps from a single iteration 

t of FCS can be summarized symbolically as follows 

 

   (3) 

 

where  is the variable to be imputed at step q of iteration t, 
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a complete-data Bayesian analysis with  as the outcome followed by an imputation step that 

uses  and  to generate updated imputations for .  

To illustrate multilevel FCS, reconsider the random slope analysis from Equation (1), and 

assume that all variables are incomplete.  This analysis is useful because it highlights that FCS 

can tailor the composition of each imputation step to accommodate the specific features of a 

particular analysis model (e.g., some variables require a random slope, others require only 

random intercepts).  However, it is important to reiterate that FCS is not limited to univariate 

regression models, as the resulting imputations are applicable to other multilevel frameworks 

with nested factors (e.g., multilevel structural equation models).   

To begin, FCS applies the Bayesian estimation steps from Equation (2) to the filled-in 

data from the previous iteration, treating Y1 as an outcome and Y2 and Y3 as predictors.  The 

resulting parameter values and residual terms define a normal distribution that generates Y1 

imputations 

 

   (4) 
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Ŷ
1ij

(t )
σ

ε (Y1 )

2

θ
(q)

(t )
u
(q)

(t )



MULTILEVEL IMPUTATION    11 

Having updated Y1, FCS performs a second set of Bayesian estimation steps, this time 

treating Y2 as the outcome and Y1 and Y3 as predictors.  As before, the resulting parameter values 

and residual terms define a normal distribution, from which the algorithm draws new Y2 

imputations. 

 

   (5) 

 

Notice that the distribution attempts to preserve the random influence of Y1 on Y2 in the analysis 

model by incorporating a symmetric random effect for the regression of Y2 on Y1.  Although 
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Lüdke, & Robitzsch, 2016; van Buuren, 2011, 2012; van Buuren et al., 2014).   
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2014).  The FCS framework is very flexible and can accommodate a number of useful extensions 

that are not readily available to researchers.  The remainder of the paper outlines three such 

modifications that address important practical problems that arise in behavioral research: (a) 

incomplete nominal and ordinal variables, (b) analyses that partition relations into within- and 

between-cluster relations (e.g., contextual effects analyses; multilevel structural equation 

models), and (c) incomplete level-2 variables.  This functionality is implemented in the Blimp 

application for Mac and Windows.  

Bayesian Estimation for Ordinal and Nominal Outcomes 

The current application of FCS to multilevel data is limited to normally distributed 

variables, and published studies have yet to extend FCS to incomplete categorical variables.  The 

categorical imputation routine that we outline in this manuscript borrows from established 

Bayesian estimation procedures for probit regression models (Agresti, 2012; Albert & Chib, 

1993; Finney & DiStefano, 2013; Johnson & Albert, 1999), variants of which are implemented 

in the joint model imputation framework (Asparouhov & Muthén, 2010; Carpenter & Kenward, 

2013; Carpenter, Goldstein, & Kenward, 2011; Goldstein, Carpenter, Kenward, & Levin, 2009).  

To provide some necessary background, this section gives a brief overview of the complete-data 

estimation steps for a multilevel probit model.  Consistent with FCS for normally distributed 

variables, categorical imputation can be viewed as a complete-data Bayesian analysis with an 

additional step that fills in the data, conditional on multilevel model parameters and level-2 

residuals.  For now, we focus on an analysis with level-1 variables, but the procedure readily 

generalizes to higher-level variables.   

To motivate the ensuing discussion, consider a simple random intercept model with a 

single level-1 predictor and binary outcome variable with discrete values of zero and one.  Probit 
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regression views discrete responses as arising from a normally distributed latent variable, often 

denoted  in the literature.  For example, if Y is a clinical depression indicator (e.g., 0 = not 

depressed, 1 = clinically depressed), the model defines a corresponding  latent variable 

representing a normally distributed propensity for clinical depression.  The resulting model for 

the underlying latent variable is as follows. 

 

   (7) 

 

Conceptually, Equation (7) is standard linear multilevel regression model with a latent outcome 

variable.  However, because the latent variable is not observed, the model constrains the within-

cluster residual variance to unity to define a scale (i.e.,  is a within-cluster z-score).   
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   (8) 

 

With K > 2 response categories, the first threshold  is often fixed at zero, but the decision to 

estimate the intercept instead of this threshold (or visa versa) is arbitrary.  The top panel of 

Figure 1 depicts the within-cluster latent variable distributions for a binary outcome at three 

values of X, and the bottom panel shows a 5-category ordinal variable with four threshold 

parameters. 

The latent variable formulation for categorical variables offers computational advantages 

because it integrates with established Bayesian estimation procedures for normally distributed 

outcomes.  Specifically, the Gibbs sampler begins by updating the threshold parameters (if K > 

2) and sampling latent scores for the entire sample, after which it uses identical steps from 

Equation (2) to update parameters and level-2 residual terms from the model in Equation (7).  

More formally, the sampling steps for a single iteration t of the algorithm are 
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where TN denotes the truncated normal distribution (explained below), and the remaining terms 

are the same as before.  Note that the sampling step for the within-cluster residual variance is 

absent because this parameter is a constant.  Published resources (Albert & Chib, 1993; Cowles, 

1996; Goldstein et al., 2007) and the technical document in the supplemental online material give 

a description of the updating step for thresholds, and the remaining distributions are the same as 

those for a linear multilevel model.   

A brief description of the process that generates latent variable scores provides insight 

into categorical imputation, which we describe in the next section.  To begin, reconsider the 

regression model from Equation (7), first assuming that Y is a binary outcome (e.g., a clinical 

depression indicator).  The model from Equation (7) implies the following latent variable 

distribution for each case. 

 

   (10) 

 

For clarity, we omit iteration superscripts on the parameters and residual terms, noting that these 

quantities carry forward from the previous Gibbs cycle.  Recall that a threshold parameter 
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response options k = 1, …, 5.  Cases with Y = 1 must have latent scores between negative infinity 

and , cases with Y = 2 must have latent values between  and , and so on.  

The multinomial probit model can accommodate nominal variables with K > 2 categories 

(Aitchison & Bennett, 1970; Albert & Chib, 1993; Goldstein et al., 2009).  For example, suppose 

that the outcome variable is a 3-category depression diagnosis (e.g., 1 = clinical depression, 2 = 

subclinical depression, 3 = no depression).  The multinomial model defines an underlying normal 

variable  for each of the K discrete response options that can be viewed as the latent 

propensity of endorsing a particular category (e.g., a normally distributed propensity for each 

diagnosis).  The latent variables can be expressed more succinctly as a set of K – 1 latent 

difference scores, each of which contrasts the  value for a particular category against that of 

an arbitrary reference group (e.g., the response with the highest numeric code).  For example, the 

latent difference scores for a nominal variable with K = 3 response options (k = 1, 2, 3) are  

 

   (11) 
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   (12) 

 

The variable name subscripts on the coefficients and residual terms indicate that these quantities 

can differ across latent variables, such that X may be a stronger predictor of  than  (or vise 

versa).  Specifying the within-cluster covariance matrix as an identity matrix defines the scales 

of the latent variables, as it did in the ordinal model. 

The multinomial probit model does not require threshold parameters.  Rather, category 

membership implies a particular rank order and magnitude for the latent variable difference 

scores.  Specifically, for a nominal variable with K response options (k = 1, …, K), the following 

function relates the discrete and latent scores. 
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or equivalently  > 0 and  > .  Finally, membership in the third category (the reference 

group) implies that both  and  are less than zero (i.e., the latent propensities of belonging to 

the first and second category are less that of the third category).   

 Because the multinomial model does not employ thresholds, the initial sampling step that 

generates the latent variable scores uses an accept-reject algorithm (Goldstein et al., 2009) to 

repeatedly draw a set of  values for each case until it obtains values that satisfy the rules from 

Equation (13).  After sampling latent scores for the entire sample, the algorithm uses the final 

three steps of Equation (9) to update the parameters and level-2 residual terms from the model in 

Equation (12).  These updating steps are identical to the corresponding steps for normally 

distributed variables in Equation (2).  The technical document in the supplemental online 

material gives additional details.  

Categorical Variable Imputation 

Consistent with the procedure for normal variables, FCS imputation for categorical 

variables is essentially a complete-data Bayesian analysis with an additional step that fills in the 

missing data.  Missing values necessitate three changes to the Gibbs sampler from Equation (9).  

We summarize these in text, and refer readers to the online supplemental material for additional 

details.  First, the second estimation step applies only to the complete cases because the 

procedure for drawing latent scores from a truncated normal distribution must condition on an 

observed discrete response.  Second, each estimation cycle concludes with an additional step that 

generates imputations based on the current model parameters and level-2 residual terms.  As 

illustrated in Equations (7) and (12), the Bayesian estimation steps are modeling the underlying 

normal variable, and so imputation is also performed on the latent variable metric.  However, the 

procedure for drawing  imputations is somewhat different than that for the complete cases 
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because it is no longer possible to condition on a discrete response.  Rather, the imputation step 

accounts for missing data uncertainty by drawing latent variable imputes from a normal 

distribution with no truncation or restrictions on the latent variable’s range.  Finally, after 

completing imputation, the algorithm converts the latent variable imputes to discrete scores by 

applying Equation (8) to ordinal variables or Equation (13) to nominal variables. 

To illustrate categorical imputation, consider the following analysis model 

 

   (14) 

 

where Y1 is an incomplete ordinal variable, and Y2 and Y3 are dummy codes representing an 

incomplete nominal variable with three categories.  We use (o) and (n) in the superscripts to 

remind readers that the variables are ordinal and nominal, respectively.  To begin, FCS applies 

the Bayesian estimation steps from Equation (9), treating Y1 as the outcome and Y2 and Y3 as 

predictors.  The resulting parameter values and residual terms define a normal distribution that 

generates Y1 imputations on the latent variable metric, as follows. 

 

   (15) 

 

After applying the rules from Equation (8) to create discrete imputes, a second sequence of 

Bayesian estimation steps provides parameter values and residual terms for the nominal 

imputation models. 
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   (16) 

 

The algorithm next applies the categorization rules from Equation (13) to the latent variable 

imputations, after which it begins the next round of Y1 imputation. 

It is important emphasize that categorical imputation is very different from rounding 

schemes that have appeared in the literature (Allison, 2002, 2005; Bernaards, Belin, & Schafer, 

2007; Yucel, He, & Zaslavsky, 2008), most of which are capable of introducing substantial 

biases (Horton, Lipsitz, & Parzen, 2003).  For example, the so-called naïve rounding approach 
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Carpenter & Kenward, 2013; Johnson & Albert, 1999) and applies established Bayesian 

estimation steps from the literature (Albert & Chib, 1993; Cowles, 1996; Goldstein et al., 2007).  

Further, the latent variable approach is an established method for joint model imputation 

(Asparouhov & Muthén, 2010; Carpenter & Kenward, 2013; Muthén & Muthén, 1998–2012) 

that appears to work well with single-level data (Wu, Jia, & Enders, 2015) and two-level random 

intercept models (Enders et al., 2016). 

Partitioning Within- and Between-Cluster Variation with FCS 

 Many multilevel analyses apply models that partition relations among level-1 variables 
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Lüdke, Marsh, Robitzsch, & Trautwein, 2011; Raudenbush & Bryk, 2002; Shin & Raudenbush, 

2010).  An example of this model is   

 

   (17) 

 

where  is the pooled within-cluster regression of Y1 on Y2, and  is the difference between 

the within-cluster regression and the between-cluster regression of  on  (i.e., the contextual 

effect), and X is a covariate.  Raudenbush and Bryk (2002) gave an example of a contextual 
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engagement differed.  Other similar applications are common in the substantive literature (Dunn, 

Masyn, Jones, Subramanian, & Koenen, 2015; Huang & Cornell, 2015; Muthén, 1991; Reise, 

Ventura, Neuchterlein, & Kim, 2005; Toland & De Ayala, 2005). 

Although not immediately obvious, the standard formulation of FCS described in the 

previous sections is incapable of partitioning relations among level-1 variables into within- and 

between-cluster components because it places implicit equality constraints on functions of the 

within- and between-cluster covariance matrices (Mistler & Enders, 2016).  Analytic work and 
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computer simulation results show that applying FCS to models such as that in Equation (17) can 

introduce considerable bias, even under a missing completely at random (MCAR) mechanism 

(Carpenter & Kenward, 2013; Enders et al., 2016; Mistler & Enders, 2016).  Carpenter and 

Kenward (2013, p. 220) outlined a modification to FCS (attributed to a personal communication 

from Ian White) that addresses this problem by introducing the cluster means of level-1 variables 

into the imputation model. 

Implementing Carpenter and Kenward’s modification is straightforward.  Following each 

imputation step, the FCS algorithm computes the cluster means from the filled-in data, and both 

the level-1 variable and its cluster means function as predictors in subsequent imputation steps.  

To illustrate this modification, reconsider the contextual effects analysis model from Equation 

(17), and assume that X is complete and Y1 and Y2 are incomplete.  We further assume that all 

variables are normally distributed, but the procedure works the same with categorical variables.  

Omitting the supporting sampling steps that provide the parameter values and level-2 residual 

terms, FCS draws imputations from the following distributions 

 

   (18) 

 

where ,  and  are cluster means.  

The FCS imputation models from Equation (18) are more general than the analysis model 

because they partition all relations into within- and between-cluster components, whereas the 

analysis model does so only for Y1 and Y2.  This generality is not detrimental and would be 
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indicators of a latent factor in a multilevel confirmatory factor analysis.  The imputation models 

in Equation (18) do not impose constraints on the within- and between-cluster covariance 

matrices and thus could accommodate a model that posits a different factor structure at level-1 

and level-2, different loading magnitudes, factor variances, and so on (e.g., Martin et al., 2010).  

Analytic work and computer simulations suggest that Carpenter and Kenward’s (2013) 

modification to FCS adequately preserves the within- and between-cluster covariance matrices 

(Carpenter & Kenward, 2013; Enders et al., 2016; Mistler & Enders, 2016).  The Blimp 

application incorporates cluster means by default, but users can disable this option. 

FCS Imputation for Incomplete Level-2 Variables 

 Imputation for incomplete level-2 variables is straightforward with some, but not all, 

incarnations of joint model imputation (Asparouhov & Muthén, 2010; Carpenter et al., 2011; 

Goldstein et al., 2009).  Briefly, the joint model is a multivariate approach that uses saturated 

within- and between-cluster covariance matrices to generate imputations (e.g., for an overview, 

see Enders et al., 2016).  This framework defines all variables as having two levels, and it 

constrains to zero all elements of the within-cluster covariance matrix that correspond to the 

level-2 variables.  These constraints produce level-2 imputations that are effectively the sum of a 

grand mean and a between-cluster residual term.  Methodologists have described an analogous 

model specification for maximum likelihood estimation of two-level models (Liang & Bentler, 

2004). 

Despite the ease with which the joint model generates level-2 imputations, current 

applications of this approach have little or no capacity for preserving random slope variation 

because they assume a common within-cluster covariance matrix for all clusters (Enders et al., 
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2016)2.  In our view, this limitation provides a compelling rationale for building out the FCS 

framework, which can readily accommodate random slopes (e.g., see the earlier description and 

illustration of FCS).  However, the FCS literature has thus far addressed only incomplete level-1 

variables (van Buuren, 2011, 2012), and methods for imputing incomplete level-2 variables are 

not automatically available in software.  Methodologists have suggested that level-2 missingness 

may be addressed by aggregating the data and applying single-level imputation to a cluster-level 

data set with J records (Gelman & Hill, 2007; Yucel, 2008), and analytic work from Carpenter 

and Kenward (2013, pp. 220-221) provides a formal mathematical rationale for this strategy.     

This section outlines a level-2 imputation strategy that applies the following steps: (a) use 

the procedure from the previous sections to impute all level-1 variables, conditioning on the 

current level-2 imputations, (b) aggregate the data, creating a J-record data set where each row 

contains the cluster means and level-2 scores for cluster j, (c) apply single-level FCS to the 

incomplete level-2 variables, and (d) carry the level-2 imputes forward to the next round of level-

1 imputation.  Consistent with level-1 imputation, the level-2 procedure can be viewed as a 

complete-data Bayesian analysis with an additional step that fills in the data, conditional on the 

model parameters from a particular iteration.  The key difference is that a series of single-level 

regression models define the distributions of missing data.  Complete-data Bayesian estimation 

for linear regression requires sampling steps for the coefficients and residual variance, as 

follows. 

 

   (19) 

	
2 Yucel (2011) outlined a Gibbs sampler for cluster-specific covariance matrices, but this 

approach has not been evaluated in the literature. 
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Note that we use a u and  to denote the residual and residual variance, respectively, to 

emphasize that variation is at the between-cluster level.  The specific details of each distribution 

are found in the online supplemental material and in published resources (Gelman et al., 2014; 

Lynch, 2007; Sinharay et al., 2001; van Buuren, 2012; van Buuren et al., 2006). 

To illustrate level-2 imputation more concretely, consider the following analysis model 

 

   (20) 

 

where Y1 and X are incomplete and complete level-1 variables, respectively, and Y2 and Y3 are 

incomplete level-2 predictors.  Further, temporarily assume that all variables are normally 

distributed.  Following Y1 imputation, FCS aggregates the level-1 variables and creates a cluster-

level data set where each row contains the level-2 scores and the cluster means of Y1 and X.  FCS 

first applies the Bayesian estimation steps from Equation (19) to the filled-in data, treating Y2 as 

the outcome, and the remaining variables as predictors.  The resulting parameter values define a 

normal distribution that generates updated Y2 imputations.  A second sequence of Bayesian 

estimation steps provides the parameters for Y3 imputation.  The level-2 imputation models are as 

follows  
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where a predicted value and residual variance again define the center and spread of the 

distributions, respectively.  We reiterate that Equation (21) is a single-level imputation model, 

with the  parameters capturing between-cluster residual variation.  As noted previously, 

analytic work from Carpenter and Kenward (2013, pp. 220-221) shows that including aggregated 

level-1 variables (e.g., and ) in the level-2 imputation models is important for preserving 

the between-cluster covariance structure. 

 The categorical imputation procedure described earlier in the manuscript readily extends 

to level-2 variables.  In this situation, the estimation steps from Equation (9) simplify because the 

residuals and their covariance matrix (i.e., u and ) are no longer needed for a single-level 

probit model.  Rather, the estimation steps update threshold parameters (ordinal variables with K 

> 2 categories), latent scores for the complete cases, and regression coefficients, after which 

latent variable imputations are drawn from an unrestricted normal distribution.  For example, 

suppose that Y2 and Y3 from the previous analysis model are incomplete ordinal variables.  The 

imputation steps for these variables are as follows. 

 

   (22) 

 

As before, the variance of the latent variable distributions is fixed at unity for identification, and 

the latent imputes are categorized at the end of each step using the current threshold values and 

the rules from Equation (8). 
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To investigate the performance of our FCS approach, we designed a Monte Carlo 

simulation study with four between-subjects factors: number of clusters (J = 25, 50, and 200), 

within-cluster sample size (nj = 5, 15, 25, and 50), intraclass correlation (ICC = .20 and .50), and 

the MAR missing data rate (0%, 5%, 15%, and 25%).  We generated 2000 replications within 

each of the 96 design cells, resulting in 192,000 replications.  In choosing the levels of each 

factor we considered guidelines from the literature, conditions implemented in published Monte 

Carlo studies, and generalizability to typical behavioral science data sets.  For example, ICC 

values of .20 and .50 are representative of cross-sectional (e.g., students nested in schools) and 

repeated measures (e.g., observations nested in subjects) designs, respectively (Spybrook et al., 

2011), and these values are typical of ICCs from published research (Gulliford, Ukoumunne, & 

Chinn, 1999; Hedges & Hedberg, 2007; Murray & Blitstein, 2003).  Similarly, the level-2 

sample sizes we implement represent values that researchers might choose after consulting the 

methodological literature (e.g., Kreft and de Leeuw (1998) recommend at least 30 clusters, and 

Maas and Hox (2005) suggest that 50 clusters is a common value in educational and 

organizational settings).  For within-cluster sample sizes, Maas and Hox (2005) suggest that nj = 

30 is typical of educational research settings, and we chose nj = 5 as a lower limit for the within-

cluster sample size because smaller values are known to produce imprecise random effect 

estimates in some situations (Clark & Wheaton, 2007; Raudenbush, 2008).  Finally, it is difficult 

to determine appropriate missing data rates because authors rarely report this information.  

Nevertheless, the rates that we examine here are common in the missing data simulations and are 

sufficiently large to expose practical problems with imputation (e.g., a 25% missing data rate on 

every variable in the analysis model is probably uncommon in most applied scenarios). 

Population Model and Data Generation 
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 We used a two-level regression model with a random slope as the population data-

generating model.  For the ICC = .20 condition, the population regression model was 

 

   (23) 

 

where Y is a continuous level-1 outcome, X1 is a 6-category ordinal variable, and X21 and X22 are 

binary dummy codes representing a 3-category nominal variable, and X3 and X4 are binary level-

2 covariates.  We use alphanumeric superscripts on the variable names to remind readers of the 

metrics (i.e., c = continuous, o = ordinal, and n = nominal).  Throughout the paper, we have used 

X and Y to denote complete and incomplete variables, respectively, but we break from that 

convention here and use X to denote a predictor in the analysis model.  We chose this model 

because it is sufficiently complex to represent published applications of MLMs and because it 

incorporates a combination of features that are difficult or impossible to handle with existing 

imputation frameworks.  We acknowledge that some researchers may prefer to code the 6-

category X1 variable as a set of dummy variables, but we treat this variable as ordinal in order to 

evaluate the imputation routine; doing so does not inherently violate model assumptions because 

the multilevel analysis does not impose distributional assumptions on predictor variables.  

Although not depicted in the analysis model, the simulation also includes a normally distributed 

auxiliary variable at each level, A1 and A2.  As described below, these variables determine 

missingness probabilities. 

 The data generation process first created random normal variables and subsequently used 

threshold parameters to form discrete values for the categorical variables.  To facilitate the 

determination of model parameters, we began by specifying within- and between-cluster 
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covariance matrices for the underlying normal variables, shown in Table 1.  These matrices had 

the following properties: (a) predictors measured at the same level (e.g., X3 and X4) had 

correlations of .30, (b) auxiliary variables had .40 correlations with other variables measured at 

the same level (e.g., A1 and Y) but were uncorrelated with variables at the opposite level (e.g., A1 

and X3), and (c) all predictors had a .30 correlation with the outcome variable.  We chose 

correlations of .30 to align with Cohen’s (1988) definition of a medium effect size, and we 

specified somewhat stronger correlations for the auxiliary variables to ensure that omitting these 

variables from imputation would introduce bias (Collins, Schafer, & Kam, 2001). 

The following steps produced the underlying normally distributed versions of the 

variables.  First, we created the level-2 variables (i.e., A2, X3, X4) and the between-cluster 

components of the level-1 predictors (i.e., 
 
and ).  Second, we generated the within-cluster 

components of the level-1 variables (i.e., A1, X1 and X2).  These steps first generated standard 

normal variables and then used Cholesky decomposition to transform the z-scores to the desired 

covariance structure from Table 1.  Third, we generated level-2 residuals as z-scores and again 

used Cholesky decomposition to transform them to the desired covariance structure.  We 

determined the residual intercept variance by solving for the regression of  on the between-

cluster variables.  Based on some preliminary power simulations, we set the slope variance equal 

to 30% of the total level-2 variance, and we arbitrarily specified a .30 correlation between the 

intercept and slope residuals.  Fourth, we computed a vector of predicted scores that conditioned 

on the within- and between-cluster predictors and the level-2 residual terms, and defined Y as the 

sum of a predicted score and a within-cluster residual.  We again used the appropriate elements 

of the covariance matrices in Table 1 to obtain the coefficients and residual variance for this step. 
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After generating underlying normal variables, we used the cumulative distribution 

function of the normal distribution to determine threshold parameters for categorizing the 

predictor variables.  Specifically, we chose thresholds that approximately recoded (a) X1 into a 6-

category ordinal variable with proportions equal to .10, .25, .30, .15, .10, and .10, (b) X2 into 

three discrete groups with proportions of .20, .20, and .60, and (c) X4 and X5 into a binary 

variables with category proportions of .40 and .60 and .60 and .40, respectively.  The choice of 

category proportions is somewhat arbitrary, but we chose the above values to mimic background 

variables that would not follow a uniform or symmetric distribution (e.g., education level, 

ethnicity, etc.).   

The final step of data generation imposed MAR missing values on every variable in the 

analysis model.  Recall that the data generation process included a pair of normally distributed 

auxiliary variables, A1 and A2.  These variables determined missingness, such that higher scores 

on A1 (or A2) produced higher rates of missing data at level-1 (or level-2).  We used logistic 

regression to relate the auxiliary variables to the missingness probabilities as follows.  First, we 

used the latent variable formulation for logistic regression (Agresti, 2012; Johnson & Albert, 

1999) to define a latent propensity of missingness at level-1 and level-2.  To ensure a relatively 

strong selection mechanism, we set the correlation between this latent variable and the auxiliary 

variables at .40, from which we derived a logistic regression intercept and slope.  Substituting the 

values of A1 into the equation produced an N-row vector of level-1 missingness probabilities, and 

doing the same with A2 gave a J-row vector of level-2 probabilities.  For each level-1 variable, 

we created an N-row vector of missing data indicators (0 = observed, 1 = missing) by sampling 

from a binomial distribution, such that the success rate for each observation was equal to its 

corresponding missingness probability.  We applied the same procedure to the level-2 variables, 
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coding each variable as missing if its corresponding indicator equaled one.  We used R version 

3.2.3 to execute the data generation steps, and the syntax is available upon request. 

Imputation and Estimation 

 We used the Blimp application to generate 50 imputations for each artificial data set.  

After examining the potential scale reduction diagnostic (Gelman & Rubin, 1992) from several 

data sets, we specified a burn-in period of 1000 iterations and a thinning interval of 1000 

iterations (i.e., starting at the 1000th Gibbs cycle, we saved a data set every 1000th iteration 

thereafter).  We then used full maximum likelihood estimation in Mplus 7 to fit the analysis 

model to each imputed data set, and we wrote a custom R program to pool the resulting estimates 

and standard errors.  It is difficult to identify a useful comparison against which to evaluate our 

FCS approach because existing methods are unable to produce adequate imputations for the 

analysis model in Equation (23).  For example, joint model approaches that use a latent variable 

formulation for categorical variables (e.g., the MLwiN and Mplus programs) cannot preserve 

random slope variation and thus would yield biased random effects.  Although it can 

accommodate random slopes, the current implementation of FCS (e.g., in the R package MICE) 

does not accommodate categorical variables.  Interested readers can consult Enders et al. (2016) 

for a demonstration of these problems.  Some structural equation modeling programs (e.g., 

Mplus) could apply full information maximum likelihood estimation to the analysis model, but 

this approach is not a useful benchmark because it necessarily treats the categorical predictors as 

normally distributed random variables.  Finally, listwise deletion is problematic in this 

simulation because it requires an MCAR mechanism.  Thus, we restrict our attention to FCS. 

We examined two outcomes, relative bias and confidence interval coverage.  As noted 

previously, we used standard matrix expressions to derive regression parameters for generating 
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the underlying normal variables.  However, these parameters are no longer applicable after 

categorizing the predictors.  Because it is difficult or impossible to analytically derive true values 

for a model with discrete explanatory variables, we instead used the estimates from a complete 

data set with a million cases (10,000 clusters with 100 cases each) to define the true values.  The 

population parameters for the ICC = .20 and .50 conditions are given below.  

 

  (24) 

 

We defined relative bias as the difference between an average estimate and the true value divided 

by the true value (i.e., bias as a proportion of the true value).  Authors regularly suggest that 

relative bias values less than .10 in absolute value are acceptable (Finch, West, & MacKinnon, 

1997; Kaplan, 1988).  Finally, we used the pooled standard errors to construct 95% confidence 

intervals for each estimate and computed confidence interval coverage as the proportion of 

replications where the normal-theory interval (i.e., the estimate plus or minus 1.96 standard error 

units) contained the true (complete-data) parameter value.  With an alpha level of .05, an 

accurate imputation routine should produce coverage rates of .95.  Values below the nominal rate 

indicate Type I error inflation (e.g., a coverage value of 90% suggests a twofold increase in Type 

I errors), whereas values exceeding .95 reflect conservative inference.  When estimates are 

unbiased, confidence interval coverage unambiguously reflects the quality of the estimated 
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standard errors, but biased estimates will distort coverage, even when standard errors are 

accurate. 

Results 

 Figures 2 through 4 give trellis plots of relative bias by the number of level-2 units, with 

dashed lines denoting the ± 0.10 bias thresholds that authors routinely apply in simulation studies 

(Finch et al., 1997; Kaplan, 1988).  For readers who want to inspect the numeric estimates and 

bias values in more detail, Tables 1 through 6 in the supplemental online material give the 

average parameter estimates and relative bias values for all combinations of conditions.  With 

almost no exceptions, relative bias values for the fixed effects estimates fell below ± 0.10, and 

the design factors had very little impact on parameter recovery.  There was a slight tendency for 

accuracy to improve when the within-cluster sample size was nj = 15 or larger, as relative bias 

values were generally near zero in these situations.   

Turning to variance estimates, the sample sizes and missing data rate influenced the 

between-cluster covariance matrix estimates.  Figures 2 through 4 highlight a number of trends.  

First, the intercept-slope covariance exhibited the largest bias values, followed by the slope and 

intercept variance, respectively.  The covariance bias is likely an artifact of dividing by a 

population value that is relatively close to zero, so we are hesitant to emphasize this finding.  The 

intercept variance estimates generally exhibited tolerable biases, and this parameter was largely 

unaffected by the missing data rate.  Slope variance estimates were typically too low, with bias 

values reach or exceeding 10% at missing data rates of 15% or higher.  Second, bias decreased as 

the within-cluster sample size increased, presumably because the reliability of the level-2 

residuals improved.  Third, increasing the number of clusters from 25 to 50 influenced the 

estimates, but further increasing the number of clusters to 200 had virtually no impact.  
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Comparing Figures 2 and 3, we see that random effect biases were generally smaller with 25 

clusters than with 50 clusters.  Although this trend may seem counterintuitive, the difference is 

attributable to the prior distribution, the influence of which depends on the number of clusters.  

Specifically, when the number of clusters was small, the inverse Wishart prior distribution 

counteracted negative bias by shifting the mass of the marginal posterior distributions to a higher 

positive value.  Judging from the similarity of Figures 3 and 4, the influence of the prior 

effectively vanished with 50 or more clusters.  As noted in the online supplemental material, our 

choice of prior distributions was informed by the literature and extensive simulation work.  

Nevertheless, we caution against overgeneralizing these results, as the influence of the prior may 

depend on features of the data or the analysis model.  A variety of resources discuss the influence 

of prior distributions with small samples (e.g., Depaoili, 2014; McNeish, 2016; McNeish & 

Stapleton, 2016a). 

Figures 5 through 7 give trellis plots of confidence interval coverage for the fixed effects 

slopes by the number of level-2 units, with dashed lines at .925 and .975 denoting the so-called 

liberal criterion from Bradley (1978).  We do not consider coverage for variance estimates 

because the literature suggests that symmetric confidence intervals for these parameters are 

inappropriate (e.g., Maas & Hox, 2005; Snijders & Bosker, 2012), and we also omit the intercept 

because this parameter is typically not central to substantive hypotheses3.  As seen in Figures 6 

and 7, when the number of clusters was 50 or higher, coverage values for all slope coefficients 

generally fell within Bradley’s liberal criterion.  However, with 25 clusters, the level-1 predictors 

had adequate coverage, but the values for level-2 predictors were generally too low, with most 

	
3 The intercept coefficient generally suffered from low coverage, with most values ranging 

between .90 and .925; this finding was independent of the missing data rate, with the complete-

data estimates exhibiting the same pattern. 
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values ranging between .88 and .925.  Complete-data estimates – including those from our study 

– exhibit the same pattern (McNeish & Stapleton, 2016b; Stegmueller, 2013), so it does not 

appear that imputation exacerbates coverage problems.  

Software Implementation 

 The FCS imputation routine that we propose in this manuscript is available in Blimp, an 

application for the Mac and Windows operating systems.  Researchers can work from a simple 

command language or from a graphical interface.  To illustrate the program, we consider the 

Blimp syntax for the analysis model in Equation (23).  The syntax and the corresponding data 

file are available at www.appliedmissingdata.com/multilevel-imputation.html, as are a number of 

supporting documents and tutorials. 

The Blimp syntax consists of a relatively small number of commands (shown in caps, 

although the program is not case sensitive), each of which ends in a colon.  Commands are 

followed by one or more options or specifications, with a semicolon terminating each list.  

Briefly, the DATA command gives the file path to the raw ASCII data file, the VARNAMES 

command lists the order of the variables in the data file, and MISSING specifies a common 

missing value code for all incomplete variables.  The MODEL command specifies a level-2 

identifier variable (the variable to the left of the tilde), the variables in the imputation model (the 

list to the right of the tilde), and any random associations between pairs of level-1 variables (two 

or more variables joined by a colon).  Variables listed on the MODEL command are 

automatically defined as continuous (normal) unless the user lists the variables on the ORDINAL 

or NOMINAL lines.  The MODEL command automatically introduces random intercepts for all 

level-1 variables, and random slopes are specified by joining two or more level-1 variables with 

a colon (e.g., “y:x1” specifies a random slope).  NIMPS gives the desired number of imputations, 
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BURN and THIN are algorithmic options that determine the burn-in and thinning (i.e., between-

imputation) intervals, respectively, and SEED provides a random number seed.  In our example, 

NIMPS = 20 requests 20 data imputed sets, and the BURN = 1000 and THIN = 1000 options 

instruct the program to save the first data set after the 1000th computational cycle and subsequent 

data sets every 1000th cycle thereafter.  Finally, the OUTFILE command gives the file path for 

the text file(s) containing the imputations, and the OPTIONS command specifies a number of 

miscellaneous computational and output preferences.  In our example, the “prior1” keyword 

specifies the prior distribution for variance and covariance parameters (see the technical 

document from the online supplemental material), “hov” invokes homogeneous within-cluster 

residual variances,  “separate” saves imputed data sets to separate text files (e.g., for analysis 

with Mplus), “psr” requests a table of potential scale reduction factors (Gelman & Rubin, 1992), 

and “clmean” introduces cluster means in the imputation model, as in Equation (18).  As noted 

previously, all facets of imputation can also be specified using a graphical interface that bypasses 

the need for syntax. 

Blimp is written in C++ and is provided as an optimized compiled executable for Mac 

and Windows operating systems.  This architecture makes the program substantially faster than 

an R package, for example.  To provide some rough benchmarks, we generated 50 imputations 

for two data sets from the simulation study.  With 25% missing data on every variable, a 2014 

iMac took approximately 22 seconds to complete imputation with N = 125 observations (25 

clusters and 5 observations per cluster), and it took roughly 7 minutes to complete imputation 

with N = 10,000 observations (200 clusters with 50 cases per cluster).  These runtimes put Blimp 

on par with commercial packages such as Mplus. 

Discussion 
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Multiple imputation is an MAR-based approach that has enjoyed widespread use in a 

variety of disciplines.  The joint model and FCS are the predominant imputation frameworks for 

single-level data, and both have multilevel extensions.  The multilevel imputation literature is 

still relatively nascent, and existing imputation routines are diverse and offer different 

functionality; all approaches can readily accommodate basic random intercept analyses with 

normally distributed variables, but they differ in their ability to handle random slopes, 

categorical variables, different within- and between-cluster covariance matrices, and incomplete 

level-2 variables (Enders et al., 2016).  This paper outlined an FCS imputation approach that can 

accommodate these common analysis features.  Our simulation results suggest that FCS gives 

good performance across a variety of conditions that are typical of behavioral science data.  In 

virtually conditions that we examined, regression coefficients were relatively free of bias, even 

in small samples with a large proportion of missing data.  Random effect estimates were 

somewhat mixed, however.  Intercept variance estimates were generally accurate and were 

unaffected by the missing data rate.  Slope variance estimates, on the other hand, were often too 

low.  A 15% missing data rate appeared to be a tipping point where slope variance estimates 

began to exhibit biases exceeding 10%, particularly when the within-cluster sample size was 

small. 

 Our work developing and testing FCS imputation allows us to offer a number of practical 

recommendations for researchers.  In the context of single-level imputation, the literature often 

suggests that a single set of well-conceived imputations can serve as input data for a wide variety 

of statistical analyses.  Given the complexities of multilevel data, we recommend that researchers 

limit their focus to a single analysis or a small family of analyses when generating imputations.  

Employing parsimonious imputation models mitigates computational problems that can arise 
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with large numbers of random effects (Schafer, 2001), and it avoids an excessive number of 

level-2 variables (level-2 imputation requires fewer variables than clusters).  Related to model 

complexity, we recommend that researchers perform preliminary analyses to determine which 

variables in a particular analysis family require random slopes.  Although our procedure can 

accommodate more than one random slope predictor, we expect the Gibbs sampler algorithm to 

experience computational problems if the number of random associations is too large (Schafer, 

2001).  To simplify imputation, researchers could first estimate models with listwise deletion, 

retaining random slopes that reach some liberal significance criterion (e.g., p < .20); because 

these tests are exploratory, approximate probability values from standard Wald z-tests can be 

used for this purpose, or researchers can use more appropriate mixture-based chi-square tests 

(Molenberghs & Verbeke, 2004; Savalei & Kolenikov, 2008).  Finally, we strongly encourage 

researchers to examine convergence diagnostics prior to creating a set of imputations for 

analysis.  In our experience, even relatively simple models can require very long burn-in periods 

(e.g., several hundred, perhaps 1000 or more iterations) in order for the MCMC algorithm to 

achieve stationarity.  Currently, our software implements Asparouhov and Muthén’s (2010) 

modification of the Gelman and Rubin (1992) potential scale reduction factor, and we 

recommend that researchers examine PSR values from two or more long chains (e.g., 2000 or 

more iterations) prior to generating imputed data sets. 

Although our preliminary simulation results are promising, a great deal of 

methodological work remains.  First, interaction effects are often of interest in multilevel 

research, and our program currently requires users to treat product terms like any other 

incomplete variable (von Hippel, 2009).  A growing body of methodological research has 

demonstrated that interactive effects are problematic for MAR-based missing data handling 
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methods (Carpenter & Kenward, 2013; Enders, Baraldi, & Cham, 2014; Seaman, Bartlett, & 

White, 2012; Yuan & Savalei, 2014), and imputing product terms generally requires an MCAR 

mechanism (Carpenter & Kenward, 2013).  Methodologists have recently developed FCS-based 

imputation routines that work well with interactive effects (Bartlett, Seaman, White, & 

Carpenter, 2015), and we hope to extend these procedures to the multilevel context in the future.  

Second, we limited our simulations to a normally distributed outcome and normally distributed 

random effects.  Violating either of these assumptions is potentially problematic for multiple 

imputation (Yuan, Yang-Wallentin & Bentler 2012; Yucel & Demirtas, 2010).  Nonnormal data 

are probably the norm in many behavioral research settings, so it is important for future studies 

to evaluate FCS with nonnormal continuous variables.  The impact of nonnormality could be 

most pronounced on level-2 imputation where the sample size is very small (Yuan et al., 2012).  

Third, all simulation studies necessarily lack generalizability, and ours is no different, as we 

chose to investigate a rather limited set of conditions and parameter values.  For example, we 

limited our focus to medium effect sizes in the context of a traditional multilevel regression 

model, and we restricted our attention to categorical predictors because the literature has largely 

focused on continuous variables.  In developing our imputation routine, we performed numerous 

simulation studies with different models (e.g., random intercepts, random slopes) and different 

configurations of variables (e.g., all continuous, mixtures of categorical and continuous).  The 

results from these test simulations were largely consistent with those reported here, and 

summaries are available upon request.  One difference from the simulations here is that 

regression coefficients for continuous level-2 predictors tend to exhibit mild biases when the 

number of clusters is small and the percentage of missing data is large (e.g., J = 25 with 25% 

missing data can produce bias values of 10-15%).  This bias is consistent with published studies 
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on single-level imputation with small sample sizes (Yuan et al., 2012).  Nevertheless, future 

studies should examine different analysis models (e.g., multilevel structural equation models), 

different data structures (e.g., dyadic data structures), different configurations of random effects 

(e.g., more than one random slope, smaller or larger intraclass correlations), and different effect 

sizes, to name a few. 

In sum, multiple imputation has a long history in the methodological literature, but its 

extension to multilevel data is more recent.  Given the limitations associated with existing 

imputation routines, our goal was to develop and test an imputation procedure that can 

accommodate a wide range of complexities that are typical of behavioral science data.  Our 

computer simulations suggest that the FCS approach has good performance across many 

scenarios, but a great deal of methodological work is needed to advance this important topic. 
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Table 1       

Within- and Between-Cluster Covariance Matrices for Data Generation 

  A1 A2 Y X1 X2 X3 X4 

ICC = .20 

A1 0 0 0 0 0 0 0 

A2 0 1.00 0 0 0 0.40 0.40 

Y 0.40 0 0.25 0.08 0.08 0.15 0.15 

X1 0.40 0 0.30 0.25 0.08 0 0 

X2 0.40 0 0.30 0.30 0.25 0 0 

X3 0 0 0 0 0 1.00 0.30 

X4 0 0 0 0 0 0 1.00 

ICC = .50 

A1 0 0 0 0 0 0 0 

A2 0 1.00 0 0 0 0.40 0.40 

Y 0.40 0 1.00 0.30 0.30 0.30 0.30 

X1 0.40 0 0.30 1.00 0.30 0 0 

X2 0.40 0 0.30 0.30 1.00 0 0 

X3 0 0 0 0 0 1.00 0.30 

X4 0 0 0 0 0 0 1.00 

Note. The diagonal displays the between-cluster variances.  The within-

cluster variances of all level-1 variables equal 1, and these quantities are 

zero for level-2 variables.  The lower-diagonal gives the average within-

cluster covariances, and the upper diagonal elements in bold typeface 

give the between-cluster variances covariances.  Because the ICC = .50 

condition has within- and between-cluster variances set to 1.00, all off-

diagonal elements can be viewed as correlations. 
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Figure 1.  Latent  distributions for a categorical Y variable at three values of X.  The dashed 

line represents the within-cluster regression (i.e.,  and ), and the 

horizontal line(s) denotes the threshold(s).  The top panel depicts a binary Y variable where a 

discrete score of Y = 1 occurs when the measurement process yields a  value above the 

threshold , and a discrete score of Y = 0 occurs when  falls below the threshold.  The bottom 

panel depicts a five-category ordinal variable with four threshold parameters. 
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Figure 2.  Average relative bias values for design cells with j = 25 clusters.  Relative bias is 

defined as the difference between an average estimate and the true value expressed as a 

proportion of the true value.  The dashed lines represent bias values of ± 0.10. 
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Figure 3.  Average relative bias values for design cells with j = 50 clusters.  Relative bias is 

defined as the difference between an average estimate and the true value expressed as a 

proportion of the true value.  The dashed lines represent bias values of ± 0.10. 
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Figure 4.  Average relative bias values for design cells with j = 200 clusters.  Relative bias is 

defined as the difference between an average estimate and the true value expressed as a 

proportion of the true value.  The dashed lines represent bias values of ± 0.10. 
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Figure 5.  95% confidence interval coverage for design cells with J = 25 clusters.  The solid line 

at .95 represents the nominal value, and the dashed lines at .925 and .975 represent Bradley’s 

(1978) liberal criterion. 
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Figure 6.  95% confidence interval coverage for design cells with J = 50 clusters.  The solid line 

at .95 represents the nominal value, and the dashed lines at .925 and .975 represent Bradley’s 

(1978) liberal criterion. 
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Figure 7.  95% confidence interval coverage for design cells with J = 200 clusters.  The solid 

line at .95 represents the nominal value, and the dashed lines at .925 and .975 represent Bradley’s 

(1978) liberal criterion. 
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This supplemental document contains two components.  Supplement A gives six tables 

displaying the average parameter estimates from the computer simulation reported in the paper.  

Supplement B gives technical details for the Markov chain Monte Carlo algorithm described in 

the paper. 

 

  



MULTILEVEL IMPUTATION    60 

Supplement A: Tabled Results from Computer Simulation Study 

Table 1 

Average Estimates from Simulation Study (ICC = .20, Number of Clusters = 25)   

 True  Missing Data Rate per Variable 

Parameter Value   0% 5% 15% 25%   0% 5% 15% 25% 

   Cluster Size = 5  Cluster Size = 15 

Intercept 5.006  5.003 5.002 5.002 5.004  5.003 5.002 5.002 5.004 

X1 Slope 0.191  0.188 0.188 0.191 0.181  0.188 0.188 0.191 0.181 

X2 Slope 0.219  0.225 0.226 0.216 0.239  0.225 0.226 0.216 0.239 

X3 Slope 0.496  0.514 0.513 0.492 0.509  0.514 0.513 0.492 0.509 

X4 Slope 0.198  0.211 0.210 0.204 0.188  0.211 0.210 0.204 0.188 

X5 Slope 0.207  0.204 0.206 0.202 0.195  0.204 0.206 0.202 0.195 

Intercept Var. 0.198  0.152 0.156 0.165 0.176  0.152 0.156 0.165 0.176 

Covariance 0.030  0.021 0.021 0.024 0.022  0.021 0.021 0.024 0.022 

Slope Var. 0.034  0.037 0.041 0.053 0.061  0.037 0.041 0.053 0.061 

Residual Var. 0.891   0.856 0.852 0.849 0.849   0.856 0.852 0.849 0.849 

   Cluster Size = 25  Cluster Size = 50 

Intercept 5.006  5.003 5.002 5.002 5.004  5.003 5.002 5.002 5.004 

x1 Slope 0.191  0.188 0.188 0.191 0.181  0.188 0.188 0.191 0.181 

x2 Slope 0.219  0.225 0.226 0.216 0.239  0.225 0.226 0.216 0.239 

x3 Slope 0.496  0.514 0.513 0.492 0.509  0.514 0.513 0.492 0.509 

x4 Slope 0.198  0.211 0.210 0.204 0.188  0.211 0.210 0.204 0.188 

x5 Slope 0.207  0.204 0.206 0.202 0.195  0.204 0.206 0.202 0.195 

Intercept Var. 0.198  0.152 0.156 0.165 0.176  0.152 0.156 0.165 0.176 

Covariance 0.030  0.021 0.021 0.024 0.022  0.021 0.021 0.024 0.022 

Slope Var. 0.034  0.037 0.041 0.053 0.061  0.037 0.041 0.053 0.061 

Residual Var. 0.891   0.856 0.852 0.849 0.849   0.856 0.852 0.849 0.849 
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Table 2 

Average Estimates from Simulation Study (ICC = .20, Number of Clusters = 50)   

 True  Missing Data Rate per Variable 

Parameter Value   0% 5% 15% 25%   0% 5% 15% 25% 

   Cluster Size = 5  Cluster Size = 15 

Intercept 5.006  5.003 5.002 5.002 5.004  5.010 5.010 5.003 4.998 

X1 Slope 0.191  0.188 0.188 0.191 0.181  0.189 0.189 0.188 0.185 

X2 Slope 0.219  0.225 0.226 0.216 0.239  0.219 0.220 0.232 0.226 

X3 Slope 0.496  0.514 0.513 0.492 0.509  0.507 0.506 0.501 0.495 

X4 Slope 0.198  0.211 0.210 0.204 0.188  0.201 0.204 0.213 0.199 

X5 Slope 0.207  0.204 0.206 0.202 0.195  0.203 0.202 0.196 0.179 

Intercept Var. 0.198  0.152 0.156 0.165 0.176  0.163 0.163 0.164 0.170 

Covariance 0.030  0.021 0.021 0.024 0.022  0.026 0.025 0.023 0.022 

Slope Var. 0.034  0.037 0.041 0.053 0.061  0.031 0.032 0.032 0.034 

Residual Var. 0.891   0.856 0.852 0.849 0.849   0.883 0.883 0.889 0.893 

   Cluster Size = 25  Cluster Size = 50 

Intercept 5.006  5.000 4.999 4.999 5.006  5.004 5.003 5.008 5.003 

X1 Slope 0.191  0.189 0.188 0.186 0.188  0.187 0.186 0.188 0.186 

X2 Slope 0.219  0.217 0.219 0.221 0.221  0.217 0.219 0.221 0.223 

X3 Slope 0.496  0.503 0.502 0.499 0.493  0.499 0.498 0.496 0.489 

X4 Slope 0.198  0.204 0.205 0.198 0.195  0.203 0.204 0.197 0.195 

X5 Slope 0.207  0.204 0.201 0.212 0.191  0.199 0.198 0.200 0.195 

Intercept Var. 0.198  0.169 0.168 0.166 0.165  0.174 0.173 0.169 0.170 

Covariance 0.030  0.027 0.026 0.023 0.021  0.027 0.026 0.024 0.022 

Slope Var. 0.034  0.031 0.031 0.030 0.030  0.031 0.031 0.030 0.029 

Residual Var. 0.891   0.890 0.890 0.891 0.899   0.891 0.891 0.894 0.898 
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Table 3 

Average Estimates from Simulation Study (ICC = .20, Number of Clusters = 200)   

 True  Missing Data Rate per Variable 

Parameter Value   0% 5% 15% 25%   0% 5% 15% 25% 

   Cluster Size = 5  Cluster Size = 15 

Intercept 5.006  5.002 5.002 4.999 5.001  5.002 5.001 4.997 5.000 

X1 Slope 0.191  0.189 0.189 0.185 0.183  0.188 0.187 0.186 0.184 

X2 Slope 0.219  0.225 0.230 0.233 0.224  0.221 0.226 0.222 0.227 

X3 Slope 0.496  0.519 0.521 0.518 0.500  0.506 0.507 0.503 0.499 

X4 Slope 0.198  0.204 0.205 0.201 0.199  0.204 0.204 0.200 0.199 

X5 Slope 0.207  0.203 0.203 0.205 0.189  0.200 0.200 0.206 0.197 

Intercept Var. 0.198  0.173 0.174 0.173 0.176  0.181 0.181 0.181 0.181 

Covariance 0.030  0.024 0.023 0.021 0.019  0.027 0.026 0.023 0.020 

Slope Var. 0.034  0.034 0.036 0.040 0.043  0.031 0.031 0.030 0.029 

Residual Var. 0.891   0.877 0.876 0.877 0.879   0.890 0.891 0.893 0.900 

   Cluster Size = 25  Cluster Size = 50 

Intercept 5.006  5.006 5.005 5.002 5.002  5.003 5.003 5.001 4.999 

X1 Slope 0.191  0.188 0.188 0.187 0.186  0.188 0.187 0.186 0.185 

X2 Slope 0.219  0.223 0.225 0.225 0.226  0.220 0.222 0.222 0.223 

X3 Slope 0.496  0.504 0.503 0.498 0.495  0.502 0.500 0.497 0.489 

X4 Slope 0.198  0.203 0.205 0.201 0.189  0.206 0.205 0.204 0.193 

X5 Slope 0.207  0.204 0.204 0.201 0.197  0.201 0.201 0.203 0.191 

Intercept Var. 0.198  0.183 0.183 0.181 0.179  0.185 0.184 0.181 0.179 

Covariance 0.030  0.027 0.026 0.024 0.020  0.027 0.026 0.024 0.021 

Slope Var. 0.034  0.032 0.032 0.030 0.028  0.032 0.032 0.031 0.029 

Residual Var. 0.891   0.891 0.892 0.895 0.899   0.890 0.891 0.895 0.899 
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Table 4 

Average Estimates from Simulation Study (ICC = .50, Number of Clusters = 25)   

 True  Missing Data Rate per Variable 

Parameter Value   0% 5% 15% 25%   0% 5% 15% 25% 

   Cluster Size = 5  Cluster Size = 15 

Intercept 5.026  5.003 5.003 5.003 5.001  5.003 5.002 5.001 5.001 

X1 Slope 0.239  0.188 0.188 0.188 0.186  0.187 0.187 0.188 0.187 

X2 Slope 0.250  0.225 0.228 0.235 0.225  0.221 0.224 0.224 0.228 

X3 Slope 0.553  0.515 0.516 0.518 0.506  0.506 0.507 0.502 0.499 

X4 Slope 0.402  0.200 0.200 0.203 0.197  0.203 0.202 0.200 0.199 

X5 Slope 0.404  0.206 0.205 0.198 0.188  0.204 0.203 0.201 0.187 

Intercept Var. 0.800  0.189 0.190 0.190 0.190  0.191 0.191 0.190 0.192 

Covariance 0.119  0.026 0.024 0.021 0.016  0.027 0.025 0.022 0.019 

Slope Var. 0.128  0.033 0.032 0.031 0.029  0.032 0.032 0.030 0.027 

Residual Var. 0.914   0.889 0.889 0.890 0.899   0.892 0.893 0.896 0.902 

   Cluster Size = 25  Cluster Size = 50 

Intercept 5.026  5.005 5.004 5.002 5.004  5.006 5.005 5.004 5.003 

X1 Slope 0.239  0.188 0.188 0.187 0.186  0.188 0.187 0.186 0.185 

X2 Slope 0.250  0.219 0.222 0.222 0.225  0.218 0.221 0.222 0.223 

X3 Slope 0.553  0.503 0.503 0.499 0.494  0.500 0.499 0.496 0.490 

X4 Slope 0.402  0.203 0.203 0.200 0.195  0.205 0.205 0.201 0.193 

X5 Slope 0.404  0.204 0.203 0.199 0.197  0.205 0.203 0.197 0.195 

Intercept Var. 0.800  0.192 0.192 0.192 0.192  0.192 0.192 0.192 0.191 

Covariance 0.119  0.028 0.026 0.024 0.021  0.028 0.027 0.025 0.022 

Slope Var. 0.128  0.033 0.032 0.030 0.027  0.033 0.032 0.031 0.028 

Residual Var. 0.914   0.892 0.893 0.896 0.901   0.891 0.892 0.896 0.901 
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Table 5 

Average Estimates from Simulation Study (ICC = .50, Number of Clusters = 50)   

 True  Missing Data Rate per Variable 

Parameter Value   0% 5% 15% 25%   0% 5% 15% 25% 

   Cluster Size = 5  Cluster Size = 15 

Intercept 5.026  5.015 5.015 5.001 5.013  5.021 5.019 5.014 5.010 

X1 Slope 0.239  0.237 0.235 0.233 0.235  0.235 0.234 0.232 0.232 

X2 Slope 0.250  0.274 0.276 0.275 0.238  0.255 0.256 0.250 0.244 

X3 Slope 0.553  0.590 0.591 0.606 0.567  0.570 0.567 0.548 0.543 

X4 Slope 0.402  0.391 0.390 0.395 0.384  0.426 0.424 0.397 0.391 

X5 Slope 0.404  0.396 0.396 0.393 0.379  0.409 0.407 0.388 0.399 

Intercept Var. 0.800  0.668 0.664 0.675 0.679  0.703 0.702 0.712 0.692 

Covariance 0.119  0.096 0.094 0.090 0.083  0.101 0.098 0.098 0.085 

Slope Var. 0.128  0.116 0.122 0.136 0.139  0.119 0.118 0.114 0.106 

Residual Var. 0.914   0.895 0.896 0.901 0.917   0.910 0.912 0.917 0.930 

   Cluster Size = 25  Cluster Size = 50 

Intercept 5.026  5.016 5.015 5.009 5.012  5.017 5.015 5.012 5.015 

X1 Slope 0.239  0.238 0.237 0.234 0.231  0.238 0.236 0.233 0.233 

X2 Slope 0.250  0.250 0.252 0.251 0.239  0.251 0.252 0.253 0.246 

X3 Slope 0.553  0.554 0.553 0.551 0.538  0.556 0.553 0.546 0.534 

X4 Slope 0.402  0.398 0.403 0.399 0.393  0.406 0.407 0.401 0.380 

X5 Slope 0.404  0.409 0.406 0.401 0.400  0.410 0.406 0.400 0.392 

Intercept Var. 0.800  0.714 0.710 0.717 0.698  0.718 0.714 0.712 0.696 

Covariance 0.119  0.107 0.104 0.099 0.085  0.113 0.110 0.103 0.096 

Slope Var. 0.128  0.120 0.118 0.113 0.108  0.122 0.120 0.116 0.109 

Residual Var. 0.914   0.910 0.912 0.920 0.928   0.911 0.913 0.921 0.930 
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Table 6 

Average Estimates from Simulation Study (ICC = .50, Number of Clusters = 200)   

 True  Missing Data Rate per Variable 

Parameter Value   0% 5% 15% 25%   0% 5% 15% 25% 

   Cluster Size = 5  Cluster Size = 15 

Intercept 5.026  5.011 5.010 5.005 5.002  5.015 5.013 5.014 5.007 

X1 Slope 0.239  0.239 0.239 0.235 0.235  0.238 0.237 0.234 0.232 

X2 Slope 0.250  0.260 0.260 0.265 0.262  0.254 0.254 0.252 0.252 

X3 Slope 0.553  0.587 0.587 0.587 0.577  0.565 0.563 0.556 0.548 

X4 Slope 0.402  0.403 0.401 0.399 0.387  0.410 0.409 0.393 0.385 

X5 Slope 0.404  0.410 0.406 0.396 0.393  0.406 0.403 0.398 0.384 

Intercept Var. 0.800  0.785 0.786 0.789 0.795  0.788 0.788 0.792 0.795 

Covariance 0.119  0.103 0.098 0.086 0.071  0.110 0.105 0.095 0.084 

Slope Var. 0.128  0.121 0.118 0.109 0.097  0.124 0.121 0.113 0.101 

Residual Var. 0.914   0.912 0.915 0.925 0.939   0.914 0.916 0.924 0.939 

   Cluster Size = 25  Cluster Size = 50 

Intercept 5.026  5.019 5.018 5.013 5.010  5.022 5.020 5.015 5.013 

x1 Slope 0.239  0.237 0.236 0.233 0.232  0.238 0.236 0.233 0.232 

x2 Slope 0.250  0.252 0.253 0.252 0.246  0.250 0.251 0.250 0.247 

x3 Slope 0.553  0.559 0.556 0.550 0.538  0.554 0.551 0.545 0.533 

x4 Slope 0.402  0.410 0.407 0.398 0.389  0.404 0.402 0.398 0.386 

x5 Slope 0.404  0.409 0.405 0.391 0.383  0.409 0.406 0.394 0.388 

Intercept Var. 0.800  0.790 0.789 0.788 0.789  0.793 0.792 0.791 0.783 

Covariance 0.119  0.113 0.109 0.100 0.089  0.116 0.113 0.104 0.094 

Slope Var. 0.128  0.126 0.123 0.115 0.105  0.127 0.124 0.118 0.110 

Residual Var. 0.914   0.913 0.916 0.923 0.934   0.913 0.915 0.921 0.931 
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Supplement B: MCMC Sampling Steps and Distributions for Two-Level Imputation 

This document contains the supplemental online material from Enders, Keller, and Levy 

(2017) paper in Psychological Methods, the full citation for which is as follows. 

 

Enders, C.K., Keller, B.T., & Levy, R. (2017, Advanced Online Publication). A fully 

conditional specification approach to multilevel imputation of categorical and continuous 

variables. Psychological Methods. 

 

The document gives technical details of the full conditional distributions used to draw 

regression coefficients, random effects, and covariance matrices (or variance estimates).  

Additional details are widely available in the literature, as these distributions largely borrow 

from established Bayesian estimation procedures for multilevel models (Browne & Draper, 

2000; Cowles, 1996; Gelman et al., 2014; Goldstein et al., 2009; Kasim & Raudenbush, 1998; 

Schafer, 1997; Schafer & Yucel, 2002; Sinharay et al., 2001; van Buuren, 2012; Yucel, 2008).  

For the remainder of the document, we abandon the previous scalar notation in favor of a more 

succinct matrix representation of the multilevel model 

 

   (1) 

 

where yj is the vector of outcome scores for cluster j, Xj is the corresponding matrix of predictor 

variables (level-1 or level-2), including a unit vector for the intercept, Zj is a subset of the level-1 

variables in Xj that have a random influence on the outcome (including a unit vector for the 

intercept), uj is the column vector of level-2 residuals for cluster j, and  is a vector of within-
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cluster residuals.  In the context of FCS, y is an incomplete variable that is the target of 

imputation at a particular step, and X and Z contain complete and previously imputed variables.  

Level-2 imputation applies a single-level regression model to a cluster-level data set with J 

records.  In matrix format, the model is as follows. 

 

   (2) 

 

Two algorithmic options are available for the Bayesian estimation sequence that provides 

the necessary parameter estimates for imputation.  Following derivations from Rubin (1987, pp. 

162-166), the MICE computational option is consistent with the original formulation of fully 

conditional specification (van Buuren, 2012; van Buuren, Brand, Groothuis-Oudshoorn, & 

Rubin, 2006), whereby only those cases with observed data on the variable to be imputed are 

used to estimate the imputation model parameters.  In contrast, the GIBBS option uses a 

conventional Gibbs sampler that draws parameters from a distribution that conditions on the 

observed and imputed data.  The Gibbs sampler for missing data imputation is described in 

various Bayesian analysis texts (Jackman, 2009; Lynch, 2007). 

Level-1 Gibbs Sampler Steps for Continuous Variables 

Step 1: Draw regression coefficients from a multivariate normal distribution, conditional 

on the current random effects, parameter estimates, and imputations. 

 

y = Xβ + u
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   (3) 

 

We use a j subscript on the within-cluster residual variance to allow for the possibility of 

heterogeneous within-cluster variances (discussed below), noting that all  are the same in the 

homogeneous case, which is the default in Blimp. 

Step 2: Draw cluster-specific random effects from a multivariate normal distribution, 

conditional on the current parameter estimates and imputations. 

 

   (4) 

 

Step 3: For a homogeneous within-cluster variance (the HOV keyword of the OPTION 

command, which is the default), draw a residual variance from an inverse Gamma distribution, 

conditional on the current parameter estimates, level-2 residuals, and imputations. 
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   (5) 

 

The sum of squares (scale) value S is the sum of a component based on computed level-1 

residuals and the prior distribution’s sum of squares, Sp.  Similarly, the degrees of freedom value 

is a sum based on the data and the degrees of freedom for the prior, .  The Blimp application 

offers two common sets of hyperparameters for the prior distribution: Sp = 0 and  = – 2 (the 

PRIOR2 keyword of the OPTIONS command), and Sp = 1 and  = 2 (the PRIOR1 keyword of 

the OPTIONS command, the default).  For a heteroscedastic within-cluster variance (the HEV 

keyword of the OPTIONS command), we implement the procedure described in Kasim and 

Raudenbush (1998).  

Step 4: Draw the level-2 covariance matrix from an inverse Wishart distribution, 

conditional on the current parameter estimates, level-2 residuals, and imputations. 

 

   (6) 
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The scale (sum of squares and cross-products) matrix S is the sum of a component based on the 

level-2 residuals from Step 2 and the prior distribution’s scale matrix, Sp.  Similarly, the degrees 

of freedom value is a sum based on the data and the degrees of freedom for the prior,
 

.  Blimp 

offers two common sets of hyperparameters for the prior distribution: Sp = 0 and  = – p – 1 

(the PRIOR2 keyword of the OPTIONS command), and Sp = I and  = p + 1 (the PRIOR1 

keyword of the OPTIONS command), where p is the number of random effects.  Blimp uses the 

PRIOR1 hyperparameters as the default because our simulations suggest that this option gives 

better performance when the number of clusters is small. 

Step 5: Draw the imputation for case i from a univariate normal distribution, conditional 

on the current parameter estimates, level-2 residual terms, and previously. 

 

   (7) 

 

Level-1 Gibbs Sampler Steps for Categorical Variables 

 The sampling steps for categorical variables are expressed symbolically in Equation (9).  

The initial sampling step that draws threshold parameters, conditional on the underlying latent 

scores and current parameter values, applies only to ordinal variables with K > 2 categories.  

Albert and Chib (1993) described an approach for updating thresholds, but this procedure 

equation reference goes hereconverges very slowly.  Instead, Blimp implements the procedure 

described by Cowles (1996).  Cowles’ procedure uses a Metropolis-Hastings procedure within 

the Gibbs sampler to draw each threshold from a normal proposal distribution, and it accepts the 

threshold draws at some prespecified probability.  In the interest of space, we refer readers to 

Cowles (1996) for details on sampling threshold parameters, as the procedure is rather involved 
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The second step draws latent variable scores for the complete cases.  For ordinal 

variables, latent values are drawn from a truncated normal distribution.  For nominal variables, 

latent scores are drawn that conform to the necessary rank and magnitude conditions given in 

Equation (13).  Both situations are described in the body of the manuscript, so we do not repeat 

that information here.  The sampling steps for , u, and  are identical to those in Equations 

(3), (4) and (6), except that  (the vector of latent variable scores in cluster j, comprised of for 

the complete and incomplete cases) replaces yj in the equations.  For nominal variables, these 

sampling steps are repeated for each of the K – 1 latent variable difference scores, whereas they 

are performed only once for ordinal variables.  After drawing parameter values and level-2 

residual terms, latent variable imputations for the incomplete cases are drawn from an 

unrestricted normal distribution, as described in text.  The final step converts the latent imputes 

to discrete values using the functions from Equations (8) or (13), depending on whether a 

variable is ordinal or nominal, respectively. 

Level-2 Gibbs Sampler Steps for Continuous Variables 

 After completing a single iteration of level-1 imputation, Blimp aggregates all level-1 

variables, creating a J-record data set where each row contains the cluster means of level-1 

variable (complete and imputed) and level-2 scores for cluster j.  The program then applies 

single-level FCS to the incomplete level-2 variables.  The remainder of the document describes 

the sampling steps for the single-level regression model in Equation (2).  To reiterate, we use u 

to denote the residuals in this single-level model because these terms reflect between-cluster 

variation. 

Step 1: Draw regression coefficients from a multivariate normal distribution, conditional 

on the current parameter values and imputations. 

β Σ
u

y
j
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   (8) 

 

Step 2: Draw a residual variance from an inverse Gamma distribution, conditional on the 

current parameter estimates and imputations. 

 

   (9) 

 

The sum of squares and degrees of freedom values follow from adopting a standard non-

informative prior from Bayesian linear regression (Lynch, 2007, p. 170). 

Step 3: Draw an imputation for cluster j from a univariate normal distribution, conditional 

on the current parameter values and data. 

 

   (10) 

 

 

Level-2 Gibbs Sampler Steps for Categorical Variables 
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The level-2 Gibbs steps for categorical variables are as follows.  First, draw threshold 

parameters for ordinal variables with K > 2 response options.  This step follows Cowles (1996), 

as described previously.  Second, draw latent variable scores for the complete cases.  For ordinal 

variables, latent values are drawn from a truncated normal distribution.  For nominal variables, 

latent scores are drawn that conform to the necessary rank and magnitude conditions given in 

Equation (13).  Third, draw regression coefficients from the distribution in Equation (8), where

 (the vector of latent scores for the full sample) replaces y.  For nominal variables, this step is 

repeated for each of the K - 1 latent difference scores.  Fourth, draw latent imputations for the 

incomplete cases from an unrestricted normal distribution, as described in the manuscript.  

Finally, convert the latent imputes to discrete values using the functions in Equations (8) or (13).  
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