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Figure 1. The proposed fully-connected layered model can recover fine structures better than a locally connected layered model [27].

Abstract

Layered models allow scene segmentation and motion

estimation to be formulated together and to inform one an-

other. Traditional layered motion methods, however, employ

fairly weak models of scene structure, relying on locally

connected Ising/Potts models which have limited ability to

capture long-range correlations in natural scenes. To ad-

dress this, we formulate a fully-connected layered model that

enables global reasoning about the complicated segmen-

tations of real objects. Optimization with fully-connected

graphical models is challenging, and our inference algo-

rithm leverages recent work on efficient mean field updates

for fully-connected conditional random fields. These meth-

ods can be implemented efficiently using high-dimensional

Gaussian filtering. We combine these ideas with a layered

flow model, and find that the long-range connections greatly

improve segmentation into figure-ground layers when com-

pared with locally connected MRF models. Experiments on

several benchmark datasets show that the method can re-

cover fine structures and large occlusion regions, with good

flow accuracy and much lower computational cost than pre-

vious locally-connected layered models.

1. Introduction

Layered models [8, 12, 30] are promising for motion

analysis, particularly for handling occlusion and capturing

temporally consistent scene structure [27]. Their advantage

derives from the fact that they combine motion estimation

with segmentation. This allows the integration of image-

based information with flow information to arrive at a good

segmentation of the scene, which is propagated over time

using motion cues. Accurate segmentations, and thus appro-

priate spatial segmentation and image appearance priors, are

key to achieving good performance.

Ising/Potts models produce global segmentations from

the interaction of neighboring pixels. While popular in many

vision tasks, including layered models [31], such local de-

pendencies have limited modeling power. For example, in

the “Hand” sequence of Figure 1, ambiguous local motion

and boundary cues cause locally connected layered mod-

els [27] to merge the background between the fingers into

the foreground (Figure 1(b)).

The problem becomes easier with the more global view

provided by a fully-connected model that captures pairwise

interactions among every pair of pixels. By linking the

narrow background regions between the fingers to other dis-

tant background regions, it becomes far easier to correctly

segment foreground objects. Though appealing in model-

ing power, these fully-connected priors are difficult to opti-

mize. In this case, neither gradient-based methods [10] nor

graph cuts are computationally efficient [21]. Fortunately,

Krähenbühl and Koltun [15] recently showed that mean field

approximation algorithms can efficiently optimize densely

connected CRF models for static image segmentation. Mes-

sage update steps are efficiently implemented via bilateral

filtering. Recent work applies their optimization scheme to

optical flow [16] by directly modeling the flow field with a

densely connected CRF.

For optical flow estimation, we argue that it is more pow-

erful to utilize a fully-connected prior for layer segmentation.

To that end, we formulate a new model that combines re-

cent work on layered flow estimation with algorithms for

static image segmentation with fully-connected models. The

resulting objective function effectively combines informa-

tion about motion, occlusion, image appearance, and time to



estimate a temporally consistent segmentation of the scene

and its evolution. Here we focus on a two-layer model

and produce figure-ground segmentations, but our method

could be readily extended to more layers. We exploit high-

dimensional Gaussian filtering to implement the spatial mes-

sage passing. Because flow fields are not directly observed,

optimization for fully-connected layered models is more

challenging than for static image segmentation models, and

we proposal several innovations to improve speed and ac-

curacy. In spite of modeling additional dependencies, our

resulting mean field method is more efficient than previous

locally connected formulations [27].

Our key contributions are 1) a new formulation of the

layered optical flow problem that exploits a fully-connected

model to achieve better segmentation and that effectively

couples image and motion segmentation; 2) a mean field

approximation that leverages recent work on image segmen-

tation; 3) an objective function that effectively models oc-

clusions to enable figure-ground segmentation; 4) a precise

segmentation of the scene into regions of foreground and

background; 5) new schemes for optimizing fully-connected

models for layered motion estimation; 6) competitive results

on benchmark datasets with a relatively low computational

cost compared to locally-connected layered models.

2. Related Work

Several previous and current lines of research intersect

our theme, including figure-ground segmentation, video seg-

mentation, and layered optical flow estimation. A review of

these broad fields is beyond our scope. Here we focus on

layered models, and specifically ones that combine motion

estimation and segmentation.

While our 2-layer method is related to figure-ground seg-

mentation, previous work in that area typically uses motion

only as a cue to segmentation [7], treats it as an observation

[2], and does not attempt to accurately estimate optical flow.

In contrast, our work attempts to simultaneously estimate

accurate flow and solve for a figure-ground segmentation

that gives good flow estimates. Our work is also completely

automatic, unlike much of the work on video matting, which

usually requires the user to provide a rough segmentation

in the form of a trimap. Furthermore, our method can be

extended beyond figure-ground to model more layers.

Recent work by Ochs and Brox [22] addresses motion

segmentation using point trajectories. They show that higher-

order tuples (3-affinities) and segmentation using spectral

clustering can produce nice segmentations of scenes with

several moving objects. Unlike our work, they do not address

the dense flow estimation problem, and consequently do not

test on competitive flow benchmarks.

Unger et al. [29] can handle scenes with hundreds of

labels and handle occlusions by an outlier process without

geometric modeling. The estimated motion is not very accu-

rate as evaluated on the Middlebury benchmark.

Our work is directly descended from layered models of

optical flow [12, 30, 31]. Several methods extract layered

models of the scene as well as layer movement, using para-

metric models of the motion of each layer. Jojic and Frey

[13] extract segmented regions and reason about their depth

order, but focus on simple translational motions and do not

provide a segmentation of the scene. Kumar et al. [18]

address a similar problem but exploit graph cuts for opti-

mization and assume a piecewise parametric model of the

scene using a purely local MRF model.

Accurate flow estimation and segmentation requires

richer models of flow within layers that go beyond simple

parametric transformations. Previous methods [27, 31] allow

the flow to vary smoothly or discontinuously within layers.

Recent work [27] shows that such models can achieve good

flow and segmentation accuracy, albeit with high computa-

tional cost. Layered representations are more complicated

than commonly used MRF models, and often use a sequence

of random fields/functions [26, 27] to model depth order and

occlusions. Inference is thus more challenging. A limitation

of these previous methods is that the spatial variation in the

flow is modeled by a local (typically pairwise, Ising or Potts)

MRF.

Graph cuts (GC) [4] and belief propagation (BP) [17]

are popular optimizers for Ising/Potts models and can find

better local optima than local search methods [28]. However,

local MRF models are fundamentally limited in their expres-

sive power. One way to go beyond local MRFs is to use

higher-order potentials [24], but these models are difficult

to optimize using GC [14] or BP [19]. Another way to add

long-range interactions is to densely connect distant pixels as

in the non-local means denoising methods [5]. Such methods

do not address layers, segmentation or flow.

Here we build on recent fully-connected models in which

every pixel is connected to every other pixel. Krähenbühl

and Koltun [15] describe a mean-field approximate inference

scheme for fully connected CRF models. They show that the

spatial message passing step can be efficiently approximated

by high-dimensional filtering [1]. Zhang and Chen [33] in-

dependently suggest a quadratic programming relaxation for

fully connected CRFs, and use bilateral filtering to perform

gradient descent. Our main contribution is to extend these

fully-connected inference methods to layered models for

optical flow estimation and segmentation.

3. Fully Connected Modeling and Inference

We first formulate our fully connected layered model, and

then describe a variational expectation maximization (EM)

inference algorithm.



3.1. A Fully Connected Layered Flow Model

Given a sequence of images It, 1 ≤ t ≤ T , we seek to de-

compose the scene into foreground (k=1) and background

(k=2) layers. We use the terms foreground and background

loosely; the foreground layer is one that contains regions oc-

cluding the background. Generally, multiple moving objects

that do not mutually occlude each other will appear in the

foreground layer. A multi-layer formulation [26] can lead to

semantically more meaningful segmentations of the scene

but is beyond the scope of this paper. Experimentally we find

that complex scenes can be surprisingly well approximated

by a two-layer model.

Each layer k has its own flow field (utk,vtk). We use a

semi-parametric flow model [27] that biases the flow within

each layer to be piecewise smooth, and roughly similar to a

global affine motion. For the horizontal flow field, utk, we

define the spatial energy term, Emrf(utk, θtk) =

∑

(p,q)∈Emrf

ρmrf (u
p
tk−u

q
tk)+λaff

∑

p

ρaff(u
p
tk−u

p
θtk

), (1)

where p and q are pixel indices, Emrf contains spatial edges

connecting the four nearest pixels, ρ(·) is a robust penalty

function, λaff is a weight, and uθtk is the horizontal com-

ponent of an affine motion within the layer. The energy

function for vtk, the vertical flow field, is defined similarly.

We use a binary mask gt to model the foreground support

at frame t. Pixels that are not visible in the foreground

belong to the background layer. As shown in Figure 2, we

model the binary mask spatially as a fully connected CRF

and define the spatial energy term

Espace(gt)=
∑

p

∑

q 6=p

wp
qδ(g

p
t 6=g

q
t ), (2)

where a pixel is fully connected to all other pixels at the
current frame, δ(x) is 1 if x is true and 0 otherwise, and the
weight wp

q is defined as

w
p
q = ηG1(I

p
t −I

q
t , p−q)+(1−η)G2(p−q) = (3)

η exp

{

−
||Ipt −I

q
t ||

2

σ2

I

−
||p−q||2

σ2
s

}

+(1−η) exp

{

−
||p−q||2

σ2

s′

}

,

where σI , σs, and σs′ are the standard deviations for the

Gaussian kernels, and η ∈ [0, 1] weights their relative impor-

tance. The first (color) term encourages pixels with similar

colors, at moderate distances, to lie within the same layer.

The second (spatial) term discourages small, isolated regions.

Such small regions produce distracting segmentation arti-

facts [15]. For our layered flow model, they further lead to

inaccurate flow estimates; removing these isolated regions

significantly reduces outliers in our final results.

The binary layer support masks evolve over time accord-

Figure 2. Spatial-temporal neighborhood structure for the binary

mask defining foreground layer support. The center pixel (red) is

spatially fully connected to all other pixels at the current frame. The

center pixel is also temporally connected to two temporal neighbors

(green), as determined by the foreground and background flow

vectors. The pair of temporal neighbors are only shown for the next

frame; the previous is omitted for clarity.

ing to the flow field of the foreground layer,

Etime(gt,gt+1,ut1,vt1) =
∑

(p,q)∈Et1

δ(gpt 6=g
q
t+1), (4)

where Et1 = {(p, q) : q = p + (up
t1, v

p
t1)} contains all

temporal neighbors linked by the foreground flow field. As

discussed in more detail in Sec. 3.2, we handle subpixel

motion by bilinear interpolation of the temporal neighbors.

The layer support mask provides a segmentation of the

video sequence: a pixel p belongs to the foreground layer

if g
p
t = 1, and to the background otherwise. We can then

reason about occlusions and modulate the data matching

term accordingly, so that at frame t we have

Edata(gt,gt+1,ut,vt) =

2
∑

k=1

∑

(p,q)∈Etk

φk
data(g

p
t , g

q
t+1), (5)

where the negative log-likelihoods for the two layers are

φ1
data(g

p
t , g

q
t+1) =

(

ρD(Ipt −I
q
t )−λD

)

g
p
t g

q
t+1, (6)

φ2
data(g

p
t , g

q
t+1) =

(

ρD(Ipt −I
q
t )−λD

)

ḡ
p
t ḡ

q
t+1. (7)

Here, ρD(·) is a robust penalty and ḡ = 1−g. The foreground

term is only “on” when a pixel and its successor at the next

frame are both visible, g
p
t = g

q
t+1 = 1. The background term

is active when g
p
t = g

q
t+1 = 0. The occlusion penalty λD >

0 can be derived by assigning a uniform outlier distribution to

occluded (unmatched) pixels [26]. Note that occluded states

are less likely than flow vectors whose robust matching costs

are smaller than λD.



E(g,u,v, θ)=

T−1
∑

t=1

{

Edata(gt,gt+1,ut,vt)+λa

2
∑

k=1

(

Emrf(utk, θtk)+Emrf(vtk, θtk)
)

+λbEspace(gt)

+λcEtime(gt,gt+1,ut1,vt1)

}

+λbEspace(gT ) (8)

Combining these model potentials over a sequence of T

observed frames, we arrive at the overall energy function of

Eq. (8). For notational simplicity, we omit dependence on

the fixed input images. The energy function is proportional

to the negative log probability of the joint distribution of the

binary masks and flow fields P (g,u,v, θ | I).

3.2. Inference

We use a variational EM algorithm [9], maximizing the

posterior probability of the hidden flow fields while approxi-

mately marginalizing over possible layer support masks:

max
u,v,θ

logP (u,v, θ | I) = max
u,v,θ

log
∑

g

P (g,u,v, θ | I)

≥ max
u,v,θ

∑

g

Q(g) log
P (g,u,v, θ|I)

Q(g)
(9)

= min
u,v,θ

−H(Q) +
∑

g

Q(g)E(g,u,v, θ) (10)

Here, E(g,u,v, θ) = − logP (u,v, θ | I) up to some un-

known normalization constant. H(Q) is the entropy of the

variational distribution Q, which for algorithm efficiency is

constrained to be fully factorized over both space and time,

Q(g) =
∏

t

∏

p Q
p
t (g

p
t ). Given the flow field and marginal

approximations at all but one pixel, we can derive the mean

field update of Eq. (11) via standard methods [9]; see the

Supplemental Material for details. Alg. 1 summarizes an

inference algorithm based on a mean field message update

schedule. The following sections describe the schemes that

make this approach efficient and accurate.

Parallel Spatial Messages. Let l̄ = 1 − l. At each itera-

tion, a pixel receives messages from all the other pixels in

the frame, weighted according to Eq. (3) as

Q̃
p
t (l) =

∑

q 6=p

wp
qQ

q
t (l̄) =

∑

q

wp
qQ

q
t (l̄)−Q

p
t (l̄). (12)

This is a convolution with a Gaussian kernel in the space and

intensity dimensions [15, 23], so
∑

q w
p
qQ

q
t (l̄)

=
∑

q

ηG1(I
p
t −I

q
t , p−q)Q

q
t (l̄)+(1−η)G2(p−q)Q

q
t (l̄)

=η
[

G1 ⊗Q(l̄)
]

(Ip, p) + (1− η)
[

G2 ⊗Q(l̄)
]

(p) (13)

This high-dimensional filtering can be efficiently imple-

mented via a permutohedral lattice [1].

Algorithm 1 Mean field for non-local layers

Compute C
p
tk=

[

ρD
(

I
p
t − I

q
t+1

)

− λd

]

, (p, q) ∈ Etk
Initialize Q

p
t (l) ∝ exp{−Cp

t,2−l}

while not converged do

Qprev ← Q

Adjust weight on temporal term λc as scheduled

Spatial message passing

Q̃
p
t (l)← λb

∑

q 6=p w
p
qQ

q
t (l̄)

Temporal message passing from next frame

Q̃
p
t (l)← Q̃

p
t (l) + λc

∑

(p,q)∈Et1
Q

q
t+1(l̄)

Q̃
p
t (1)← Q̃

p
t (1) +

∑

(p,q)∈Et1
C

p
t1Q

q
t+1(1)

Q̃
p
t (0)← Q̃

p
t (0) +

∑

(p,q)∈Et2
C

p
t2Q

q
t+1(0)

Temporal message passing from previous frame

Q̃
p
t (l)← Q̃

p
t (l) + λc

∑

(q,p)∈Et−1,1
Q

q
t−1(l̄)

Q̃
p
t (1)← Q̃

p
t (1) +

∑

(q,p)∈Et−1,1
C

q
t−1,1Q

q
t−1(1)

Q̃
p
t (0)← Q̃

p
t (0) +

∑

(q,p)∈Et−1,2
C

q
t−1,2Q

q
t−1(0)

Exp and normalize

Q
p
t (l)←

exp{−Q̃
p
t (l)}

exp{−Q̃
p
t (0)}+exp{−Q̃

p
t (1)}

Damping

Q← µQ+ (1−µ)Qprev

Median filter Q when λc changes

end while

Temporal Messages. Temporal connectivity is more

sparse than the non-local spatial model. Each pixel p has

two temporal neighbors q at the next frame, determined by

the motion of the foreground and the background layers. Its

update depends on {Qq
t+1 : q = p + (up

tk, v
p
tk), k = 1, 2}.

As real motion is subpixel, we use bilinear interpolation to

compute these messages from the four nearest neighbors.

Because marginals are positive real numbers, this is straight-

forward with complexity linear in the frame size.

A pixel, p, may have several temporal neighbors, q, at

the previous frame, so that its update depends on marginals

{Qq
t−1 : p = q + (uq

t−1,k, v
q
t−1,k), k = 1, 2}. We locate

these neighbors by inverse warping of the flow field, and

complexity remains linear in the number of pixels.

Convergence and Local Optima. To implement spatial

message passing via high-dimensional filtering, we must

update the node marginals within a frame simultaneously and

in parallel [15]. While mean field methods are guaranteed

to converge when marginals are updated sequentially [9],

they may oscillate with parallel updates as demonstrated

in Figure 5. We suspect this is a greater problem for our

flow model, where likelihoods are more ambiguous than for
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semantic image segmentation tasks.

We use several approaches to reliably find better local

optima. First, we mix the distributions at the current and the

previous iterations, similar to damped BP [11]:

Qnew = µQcurr + (1− µ)Qprev (14)

where µ is a stepsize parameter. Second, we start with a

small temporal weight λc and gradually increase its strength.

With strong temporal dependence, it is difficult to deviate

from our (temporally consistent) initialization; a weak tem-

poral term allows the algorithm to escape local optima via

likelihood cues. We use a piecewise adjustment scheme, in

which λc is fixed for several iterations before jumping to a

series of larger value.

Third, we perform median filtering to the approximate

distribution Q whenever there is a change in temporal weight

λc. This median filtering step helps reduce speckles caused

by outliers in the data matching term, and results in better

local optima as measured by the K-L divergence between

the approximate and true distributions.

Flow Updates. We interleave mean field updates to the

layer support distributions with refinement of the foreground

and background flow fields. Gradient-based optimization is

similar to single-layer affine-biased flow estimation, except

that likelihoods are weighted by the inferred layer supports.

To avoid local optima, we initialize via a FlowFusion [20]

step which combines the current flow estimate and the affine

flow field of each layer.

4. Experimental Results

Parameter settings. We hand-tune the parameters using

the Middlebury training set: σI = 8, σs = 20, λb = 20,

λaff = 0.001, σs2 = 5, and µ = 0.6. Following [26], we first

compute an initial flow estimate using Classic+NL [25], and

cluster the flow vectors into 2 groups. The method proposed

here is applied to four-frame video sequences.

Graph cuts vs mean field. We use the synthetic examples

from [27] to compare the effect of using graph cuts for local

models and a mean field approximation for fully connected

models. As shown in Figure 3, the lack of local evidence

and the poor initialization causes the local model to get

stuck. The fully connected model recovers from the poor

initialization.

Effect of FlowFusion. We perform a FlowFusion step to

obtain stronger local minima, with some increase in com-

(a) First frame of video (b) Initial flow by Classic+NL

(c) Local model optimized by

graph cuts

(d) Fully connected model

optimized by mean field

Figure 3. Motion segmentation results on a synthetic sequence.

The textureless sky region surrounded by the trunk of the elephant

makes it hard for the local model to infer the layer ownership.

The fully connected model can more accurately infer the layer

ownership by using global information.

(a) Classic+NL (b) w/o FlowFusion (c) w/ FlowFusion

Figure 4. FlowFusion helps reach better local minima. .

putational cost. As shown in Tables 1 and 2, FlowFusion

improves the flow estimates on some sequences. We evaluate

the K-L divergence between the approximate distribution

Q and the true distribution P using the 12 Middlebury test

sequences. The FlowFusion step reduces the K-L divergence

on every sequence. The average logarithmic decrease is

2 ∗ 105. We evaluate our algorithm with the FlowFusion step

(FC-2Layers-FF) and without it (FC-2Layers).

Convergence of the mean field algorithm. Figure 5

shows that using the damping scheme helps reach a better

local minimum. Figure 6 shows that adjusting the weight on

the temporal term and applying median filtering respectively

helps the mean field algorithm converge. The algorithm can

freely explore the solution space when the temporal weight

is small and then converge to a better local minimum. Visu-



Figure 5. Damping helps convergence. The parallel mean field

algorithm (blue circle) fails to converge for the fully connected

layered model, while damping (red dot) helps the algorithm to

converge to a better local minimum.

(a) no adjustment (b) adjustment (c) w/ filtering

Figure 6. Adjustment and median filtering helps convergence.

They also lead to fewer speckles; see the image in Figure 7. (better

viewed on a computer screen)

ally, the segmentation has fewer speckles with the adjusting

and filtering.

4.1. Benchmark Sequences

Middlebury optical flow. The proposed method, FC-

2Layers-FF, is ranked 11th on EPE and 7th on AAE in the

public table at the time of writing (April 2013). Without

the FlowFusion step, the algorithm still obtains reasonable

results, as shown in Tables 1 and 2. We perform a bootstrap

statistical significance test of the flow estimation results on

the Middlebury training and test set for the algorithm with

and without the FlowFusion step. The P-Values are 0.9602
and 0.8954, suggesting that the two have similar perfor-

mance. For practical purposes, we can drop the computation-

ally expensive FlowFusion step and still obtain acceptable

results. Our dense two-layer FC-2Layers-FF model does

not outperform the sparse multi-layer Layers++ method; we

Figure 7. Example results on Middlebury. Top to bottom: First

frame; Estimated flow; Segmentation.

expect future multi-layer formulations to further improve the

performance of fully-connected models of layer support.

MIT layered segmentation. Figures 1 and 9 show some

results on the MIT dataset. FC-2Layers-FF correctly seg-

ments the hand from the background. Compared with a

local model, the fully-connected model can recover the back-

ground holes between the fingers. FC-2Layers-FF also re-

covers the fine structure of the bicycle in “Car3” (Figure 9).

However, there are also failure cases that reveal the limita-

tion of the fully-connected layered model. The reflections on

the car and the woman’s forehead are misleading color cues

for the segmentation. As discussed in [15], long-range con-

nections may propagate wrong information for small regions

with different appearance from that of their true layer.

Historical sequences. We also apply FC-2Layers-FF to

several other sequences, as shown in Figure 8. FC-2Layers-

FF correctly segments the tree from the background in “flow-

ergarden” and the person from the background in “8 org”.

MPI Sintel. We apply FC-2Layers-FF to the MPI Sintel

dataset [6] using the same parameters tuned on the Middle-

bury training set. As summarized in Table 3, FC-2Layers-

FF performs better than MDP-Flow2 on the more challeng-

ing final set. In the unmatched (occlusion) regions, FC-

2Layers-FF is better on both sets than MDP-Flow2. As

shown in Figure 10, FC-2Layers-FF captures the major oc-

clusions in the scene and the segmentation is consistent with

the scene structure. The estimated flow fields are visually

close to the ground truth. Note that because the head in

“shaman 2” has very different motion from the body in the

four frames we used, it is reasonable that FC-2Layers-FF

separates the head from the body.



Table 1. Average end-point error (EPE) on the Middlebury training set. The proposed FC-2Layers and FC-2Layers-FF methods improve

over the single layered Classic+NL, while obtaining performance close to a multi-layered formulation.
Avg. Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3

Classic+NL 0.221 0.238 0.131 0.152 0.073 0.103 0.468 0.220 0.384

Layers++ 0.195 0.211 0.150 0.161 0.067 0.086 0.331 0.210 0.345

FC-2Layers 0.207 0.227 0.145 0.160 0.072 0.096 0.366 0.195 0.395

FC-2Layers-FF 0.205 0.228 0.143 0.155 0.072 0.094 0.362 0.199 0.391

Fast version 0.212 0.227 0.139 0.159 0.077 0.095 0.383 0.214 0.405

Table 2. Average end-point error (EPE) on the Middlebury optical flow benchmark test set. The two-layer formulation of the fully-connected

layered model achieves performance comparable to a multi-layer local model (Layers++).

Fast version uses a fast but less accurate version to compute the initial flow field, which results in slight loss in performance.
Rank Avg. Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

EPE

Layers++ 11.5 0.27 0.08 0.19 0.20 0.13 0.48 0.47 0.15 0.46

FC-2Layers 16.9 0.30 0.08 0.21 0.21 0.15 0.58 0.51 0.16 0.48

FC-2Layers-FF 13.8 0.28 0.08 0.21 0.20 0.15 0.53 0.49 0.16 0.44

Figure 8. Motion estimation and segmentation results on “flower-

garden” and “8 org” [3]. Top to bottom: First frame; Estimated

flow; Segmentation; Occlusions.

Table 3. Average end-point error (EPE) on the MPI Sintel test set.
Final Clean

Overall Unmatched Overall Unmatched

FC-2Layers-FF 8.137 39.723 6.781 37.144

MDP-Flow2 [32] 8.445 43.430 5.837 38.158

Classic+NL [25] 9.153 44.509 7.961 42.079

Computational time. The computational time for the 4-

frame 640 × 480 “Urban” sequence is approximately 40
minutes on a 4GHz Linux desktop computer. The core algo-

rithm for mean field inference takes about 5 minutes. The

remaining time is largely spent on computing the initial flow

fields with Classic+NL [25] in MATLAB. We have devel-

Figure 9. Motion estimation and segmentation results on the MIT

benchmark. From top to bottom: First frame of video; Flow es-

timate; Segmentation. The fully connected layered model can

recover the fine structures in the scene, such as the background

holes in “Car3” (right column).

oped a fast version of Classic+NL by using preconditioned

conjugate gradient that reduces the total computational time

to about 10 minutes, with slight drop in performance, as

shown in Table 1. Further speedup is achievable by using

C++ and a GPU flow implementation. Note that the speed

is already much faster than previous locally layered models,

which take 5 hours to process 2 frames [26] or more than 10
hours for 4 frames [27].

5. Conclusion

We have formulated a fully-connected layered model that

captures long-range correlations in natural scenes for joint

motion segmentation and estimation. Building on recent suc-

cesses in static image segmentation, we develop a variational



(a) First image (b) True optical flow (c) Estimated optical flow (d) Segmentation

Figure 10. Results on two sequences of the MPI-Sintel training dataset, “alley 1” (top row) and “shaman 2” (bottom row).

EM algorithm based on high-dimensional filtering. Inference

for our fully-connected model is more efficient than algo-

rithms previously used for local models, and fully-connected

prior models are particularly effective at recovering fine

scene structures and their motion. The proposed algorithm

achieves competitive results on the Middlebury and MPI Sin-

tel optical flow benchmark and produces reliable results on a

variety of other sequences. Our work extends previous work

on fully-connected models for joint motion segmentation

and estimation, and also suggests that layered models can be

a rich and flexible representation for natural scenes.
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