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While a natural ultraviolet cutoff, presumably at the Planck length, is widely assumed

to exist in nature, it is nontrivial to implement a minimum length scale covariantly.

This is because the presence of a fixed minimum length needs to be reconciled with

the ability of Lorentz transformations to contract lengths. In this paper, we implement

a fully covariant Planck scale cutoff by cutting off the spectrum of the d’Alembertian.

In this scenario, consistent with Lorentz contractions, wavelengths that are arbitrarily

smaller than the Planck length continue to exist. However, the dynamics of modes of

wavelengths that are significantly smaller than the Planck length possess a very small

bandwidth. This has the effect of freezing the dynamics of such modes. While both

wavelengths and bandwidths are frame dependent, Lorentz contraction and time dila-

tion conspire to make the freezing of modes of trans-Planckian wavelengths covariant.

In particular, we show that this ultraviolet cutoff can be implemented covariantly also

in curved spacetimes. We focus on Friedmann Robertson Walker spacetimes and

their much-discussed trans-Planckian question: The physical wavelength of each co-

moving mode was smaller than the Planck scale at sufficiently early times. What

was the mode’s dynamics then? Here, we show that in the presence of the covariant

UV cutoff, the dynamical bandwidth of a comoving mode is essentially zero up until

its physical wavelength starts exceeding the Planck length. In particular, we show

that under general assumptions, the number of dynamical degrees of freedom of

each comoving mode all the way up to some arbitrary finite time is actually finite.

Our results also open the way to calculating the impact of this natural UV cutoff

on inflationary predictions for the cosmic microwave background. C© 2013 American

Institute of Physics. [http://dx.doi.org/10.1063/1.4790482]

I. INTRODUCTION

Heuristic quantum gravity arguments suggest the existence of some form of a smallest length in

nature. Assume, for example, one tried to resolve a distance with an uncertainty of less than a Planck

length. Due to the uncertainty principle, this should imply a momentum uncertainty above the Planck

momentum. This in turn, due to Einstein’s equation, should lead to an uncertainty in curvature of the

order of a Planckian size curvature radius. This curvature uncertainty foils the attempt to measure a

distance with a precision below the Planck length. The difficulty with this intuition lies in expressing

the existence of a minimum length covariantly, given that Lorentz contraction can contract any given

length. That a minimum length is in fact not in contradiction with Lorentz contraction was shown in

Ref. 1, see also Refs. 2–6. For a recent review on the introduction of a covariant minimum length in

noncommutative geometry, see Ref. 7.

0022-2488/2013/54(2)/022301/22/$30.00 C©2013 American Institute of Physics54, 022301-1

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.42.98 On: Thu, 22 Sep 2016

03:57:54

http://dx.doi.org/10.1063/1.4790482
http://dx.doi.org/10.1063/1.4790482
http://dx.doi.org/10.1063/1.4790482
http://dx.doi.org/10.1063/1.4790482
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4790482&domain=pdf&date_stamp=2013-02-13


022301-2 Kempf, Chatwin-Davies, and Martin J. Math. Phys. 54, 022301 (2013)

Here, we will consider the proposal in Refs. 8 and 9 that the notion of a smallest length in nature

could manifest itself in that all physical fields possess no wavelength smaller than a fixed smallest

wavelength. While the notion of a finite minimum wavelength is not covariant, it can be turned into

a covariant notion, as we will discuss. It will, however, be instructive to first collect properties of

fields, which possess no wavelength smaller than some fixed finite smallest wavelength, say at the

Planck length.

To this end, we draw results from information theory. In information theory, the crucial equiv-

alence between continuous and discrete information is established by Shannon sampling theory. It

holds that bandlimited functions can be perfectly reconstructed anywhere from the values they take

on any chosen discrete sets of points whose average spacing is given by the inverse of the bandwidth.

For example, the amplitudes of 20 KHz bandlimited continuous music signals are usually sampled

and recorded at the rate corresponding to this bandwidth. Then, using the Shannon sampling theory,

the continuous music signal can be reconstructed perfectly for all times from only these discrete

samples. Inaccuracies can only arise from errors made in taking the samples. While the samples

need not be taken equidistantly, in engineering practice they usually are. The reason is that the more

unevenly spaced the samples are taken, the more the reconstruction is sensitive to measurement

inaccuracies.

If physical fields are bandlimited they too can be reconstructed everywhere from their amplitudes

on any discrete lattice of sufficiently dense average spacing. It is worth pointing out a key difference

to physical theories that are defined on a single lattice. In contrast to those theories, here the fields

can be represented on continuous spacetime or, equivalently, on any discrete lattice whose average

spacing is dense enough. The fact that no lattice is singled out implies, for example, that external

symmetries such as translation and rotation invariance are not broken. With a minimum wavelength

cutoff, spacetime could be in effect simultaneously continuous and discrete in mathematically the

same way that information can be simultaneously continuous and discrete, see Ref. 10.

Concretely, functions with a minimum wavelength are called �-bandlimited, where � > 0 is

the magnitude of the highest frequency component they contain. On the real line, R, the value that

an � − bandlimited function f takes at a point x ∈ R is completely reconstructible, for example,

from the values it takes on the discrete set of points {xn := nπ
�

}n∈Z, namely through the Shannon

sampling formula:11

f (x) =
∑

n∈Z

f (xn)
sin (�(x − xn))

�(x − xn)
. (1)

In R
n , a bandlimit, or ultraviolet cutoff of this kind, can be established as a cutoff on the

spectrum of the Laplacian, � := −
∑n

j=1
d2

d(x j )2 . This is because the subspace of fields whose Fourier

transforms have support only on the disc of radius � in R
n is that subspace of L2(Rn) spanned by the

eigenfunctions of � whose eigenvalues are less than or equal to �2 in magnitude. More precisely,

this subspace is the range of χ[0,�2](�) where χ[0,�2] is the characteristic function of the interval [0,

�2] and χ[0,�2](�) is a projection defined by the functional calculus.

This ultraviolet cutoff on fields in flat space is naturally generalizable to scalar fields on curved

space.9 Given an arbitrary curved space, or Riemannian manifold, we can assume its Laplacian to be

self-adjoint. If it possesses boundaries, we assume suitable boundary conditions have been chosen.

We now restrict the space of physical scalar fields to be that subspace of square integrable functions

on the manifold spanned by the eigenfunctions of the Laplacian whose eigenvalues are less than or

equal to �2, where � is the bandlimit or ultraviolet cutoff parameter. That is, define the space of

physical fields on a manifold M to be B(M,�) := χ[−�2,�2](�)L2(M), where � is the Laplacian

of the manifold M. This cutoff is covariant since the spectrum of the Laplacian is covariant. For

a proof of the sampling property for certain classes of Riemannian manifolds, see, for example,

Ref. 12.

In Ref. 9, to restore full covariance, a cutoff on the spectrum of the d’Alembertian on Minkowski

space has been investigated. This cutoff is covariant because the spectrum of the d’Alembertian is

scalar. Furthermore, it indeed provides a way to overcome the paradox that a fundamental minimum
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length should not be able to coexist with Lorentz transformations since the latter can contract any

length further. Namely, it was found that, in this scenario, wavelengths that are arbitrarily smaller

than the Planck length continue to exist. However, the dynamics of modes of wavelengths that are

significantly smaller than the Planck length then automatically possess a very small bandwidth.

Their dynamics in effect freezes: It suffices to take samples at a very low rate in time to reconstruct

the dynamics at all points in time. While both wavelengths and bandwidths are frame dependent,

Lorentz contraction and time dilation conspire to make this behaviour covariant, as they have to

because cutting the d’Alembertian’s spectrum is covariant.

Here, we extend this preliminary analysis by showing that this ultraviolet cutoff can be im-

plemented covariantly also in curved spacetimes. We study Friedmann Robertson Walker (FRW)

spacetimes in particular, where we focus on the much-discussed trans-Planckian question: The phys-

ical wavelength of each comoving mode was smaller than the Planck scale at sufficiently early times.

What was a mode’s dynamics then? (See Ref. 13 for a review of the trans-Planckian question, Sec.

V of Ref. 14, Refs. 15 and 16 for a cosmological introduction, and Ref. 17 for a more recent review.

Various approaches to the trans-Planckian question are studied in Refs. 18–26 to name a few.) Here,

we will show that in the presence of the covariant UV cutoff on the spectrum of the d’Alembertian,

the dynamical bandwidth of a comoving mode is essentially zero up until its physical wavelength

starts exceeding the Planck length. In particular, we show that under general assumptions, the num-

ber of dynamical degrees of freedom of each comoving mode all the way up to some arbitrary finite

time is actually finite. Concretely, the number of samples in time that need to be taken from the

beginning up to some finite time is finite. Our results should open the way to calculating also the

impact of this natural UV cutoff on inflationary predictions for the cosmic microwave background

(CMB).

In preparation, let us now recall certain results from the sampling theory of bandlimited functions

on R
n that we will later need.

II. REVIEW OF BASIC SAMPLING THEORY OF BANDLIMITED FUNCTIONS

Much is known about the reconstruction and interpolation properties of bandlimited functions

in one dimension. In essence, any bandlimited function can be reconstructed from any discrete set

of points provided that set of points is sufficiently dense on the real line. Density is defined in

the following way. Let � := {xn}n∈Z ⊂ R be a strictly increasing sequence of real numbers with

a finite minimum spacing between its members. Such a set � is called a set of sampling if any

bandlimited function can be reconstructed in a stable fashion from the values it takes on the points

of �. More precisely, � is called a set of sampling if there are constants c, C > 0 such that for every

f ∈ B(R,�),

c‖ f ‖2 ≤
∑

k

| f (xk)|2 ≤ C‖ f ‖2. (2)

The upper inequality always holds provided the sampling sequence � has a finite minimum spacing.27

The double inequality shows that the linear map from B(R,�) to l2(Z), which maps f ∈ B(R,�)

onto its sequence of sample values {f(xn)}, is invertible. In particular, this implies that f can be

perfectly reconstructed from its sample values and that a bounded error in the sample values leads

to a bounded error in the reconstructed function, i.e., f can be reconstructed from its sample values

in a stable fashion. Now let n(r) be the minimum number of points of � in any subinterval of length

r. The lower Beurling density of a sequence � is then defined as D(�) := limr→∞
n(r )

r
. With this

definition, the following theorem holds:28

Theorem 1: (Beurling)

The set of points � is a set of sampling for B(R,�) if D(�) > �
π

. Conversely, if � is a set of

sampling then D(�) ≥ �
π

.
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More generally, one can consider square integrable functions in R
n whose Fourier transforms

have support only in some compact n − dimensional set S. Call the space of such functions B(Rn, S).

The necessity part of the previous theorem generalizes to these frequency limited functions:28

Theorem 2: (Landau) If the set of points � is a set of sampling for B(Rn, S) then D(�) ≥ μ(S)

(2π)n .

Here, μ(S) denotes the Lebesgue measure, or volume of S. � is a set of points in R
n with a

finite minimum spacing between any two of its members, and n(r) is the smallest number of points

of � in any n − dimensional ball of radius r. This theorem demonstrates that in order for a set of

points to be a set of sampling for frequency limited functions, it must be sufficiently dense, where the

minimum possible density is proportional to the volume of the compact set S on which the Fourier

transforms of the functions in B(Rn, S) have support.

Observe that if f ∈ B(Rn, S), then there is an M > 0 such that S ⊂ Mn + x where Mn is an n

− dimensional cube of side length M and x ∈ R
n . It follows, by one-dimensional sampling in each

coordinate, that � := {Zn 2π
M

} is a set of sampling for B(S). This shows that sets of sampling always

exist for any space of frequency limited functions. Of course, this example of a set of sampling will

have density greater than that required by Landau’s theorem, unless S is itself a cube.

III. FLAT SPACETIME

Let M denote flat 1 + d dimensional spacetime. Here, the d’Alembertian is simply − ∂2

∂t2 + �,

where � is the spatial Laplacian. The eigenfunctions of the d’Alembertian are the plane waves

ei(p0t−p·x), where p0 is a temporal frequency, and p is the spatial frequency vector. In order to

impose a covariant ultra-violet cutoff �, we restrict our attention to the subspace B(M, �) of square

integrable functions on M spanned by the plane waves whose frequencies, or eigenvalues, obey the

inequality

∣∣p2
0 − |p|2

∣∣ ≤ �2. (3)

The set S of all p0 and p satisfying this inequality is the closed interior of a region bounded by

hyperboloids. This is an unbounded region, so there exist values of p0 and p inside the region, which

are individually arbitrarily large in magnitude. Unlike in the case of bandlimited functions in flat

Euclidean space, there exists no discrete set of points � := {xn}n∈Z ⊂ M of finite density, which is a

set of sampling for B(M, �). This follows from the fact that B(M, �) is the image of L2(S) under the

Fourier transform, where S is the region in R
4, which obeys the inequality (3). It is straightforward

to check that for any choice of 1 ≤ d ≤ 3 the volume of S is infinite, so that Landau’s theorem

implies that the minimum density a set of points needs to have in order to be a set of sampling for

B(M, �) is infinite.

Nevertheless, elements of B(M, �) still have special reconstruction properties. Consider an

arbitrary spatial mode, i.e., consider a field φ(t, p) of fixed spatial momentum p. Then the temporal

frequencies p0 of that spatial mode φ(t, p) are confined to the compact set Sp described by the

inequality

r1 := ℜ
{√

|p|2 − �2

}
≤ |p0| ≤

√
|p|2 + �2 =: r2. (4)

Sp is a single interval [ − r2, r2] for |p| ≤ � and the union of two intervals [ − r2, − r1]∪[r1, r2]

for |p| > � (see Figure 1). For the set � = {tn} to be a set of sampling for a fixed spatial mode

p, by Landau’s theorem, � must have a density at least as great as a minimum density, which

is proportional to the length of Sp. It is not hard to check that the length of Sp vanishes in the

limit as |p| → ∞. Therefore, each fixed spatial mode is temporally bandlimited and as a function

of time belongs to B(R, Sp). In this simple case where Sp is composed of at most two intervals,

it is known how to explicitly construct sets of sampling, which achieve the minimum density

required by Landau’s theorem.29 The fact that the volume of Sp vanishes in the limit as |p| → ∞
then means that the density of temporal degrees of freedom of a fixed spatial mode p vanishes in

this limit.
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FIG. 1. Fixed spatial p modes have finite temporal bandwidth.

This is the manifestation of the covariant ultra-violet cutoff in flat spacetime. Increasingly large

spatial modes still exist, but their density of temporal degrees of freedom decreases to zero; they are

“frozen out.” Further notice that this cutoff respects Lorentz symmetry, as it must since it is fully

covariant. Suppose that one performs a Lorentz transformation to new time and space coordinates

(t ′, x′). If one had a temporal lattice of sample points � := {tn} in the old coordinates, which was

dense enough to reconstruct a fixed spatial mode p in the old coordinates, then in the new coordinates

the time coordinate is dilated, so that the image of the set of points �′ = {t ′
n} is less dense. However,

under this coordinate change, the fixed spatial mode p becomes a larger fixed spatial mode p′ due

to length contraction. Consequently, the density a set of points in the time coordinate t′ needs to

have in order to be a set of sampling for the fixed spatial mode p′ is lower. In other words, the rate

at which one needs to measure the values of a fixed spatial mode in the new coordinates in order

to reconstruct it for all time is slower than the rate required in the old coordinates. This allows the

image set �′ of � under a Lorentz transformation to be both less dense and a set of sampling for

the higher spatial frequency mode p′. A further interesting observation is that since there is an upper

bound for the temporal bandwidth volume of any fixed spatial mode, it is possible that there could be

a set of points in time that is dense enough to be a set of sampling for every fixed spatial mode. Such

sets of points � do indeed exist and are not difficult to construct. This means that if one knows the

values that a covariantly bandlimited field takes on each spatial hypersurface corresponding to the

fixed values of time belonging to �, then the field can be reconstructed everywhere for all space and

time. Such a reconstruction formula can be written down explicitly. Namely, let � := {xn}∪{yn},

where xn := nπ√
2�

and yn := (n+α)π√
2�

. Here, α ∈ (0, 1) is arbitrary. The volume, or length of the set Sp

is always less than or equal to 2
√

2� for any fixed |p| > 0 so that by Landau’s theorem (Theorem

2), this set is dense enough to be a set of sampling for every fixed spatial mode p. In fact, � is a set

of sampling for each fixed spatial mode, and if φp is a fixed spatial mode, the reconstruction formula

is given by29

φp(t) =
∑

n∈Z

φp(xn)K (t − xn) + φp(yn)K (yn − t), (5)
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where for |p| < �,

K (t) =
cos(

√
2�t − α

√
2�/2) − cos(α

√
2�/2)

�t sin(α
√

2�/2)
, (6)

while for |p| > �,

K (t) =
cos

(
mpα

√
2� − (

√
2� +

√
p2 − �2)t

)

√
2�t sin

(
mpα

√
2�

)

−
cos

(
mpα

√
2� − ((2mp − 1)

√
2� −

√
p2 − �2)t

)

√
2�t sin

(
mpα

√
2�

)

+
cos

(
(2mp − 1)α

√
2�/2 − ((2mp − 1)

√
2� −

√
p2 − �2)t

)

√
2�t sin

(
(2mp − 1)α

√
2�/2

)

−
cos

(
(2mp − 1)α

√
2�/2 −

√
p2 − �2t

)

√
2�t sin

(
(2mp − 1)α

√
2�/2

) . (7)

In the above, mp is the largest integer for which (mp − 1)
√

2� <
√

p2 − �2. It follows that if one is

given a covariantly bandlimited field ϕ(t, x) and if one knows the values {ϕ(tn, x)}tn∈�;x∈R3 , then this

field can be reconstructed perfectly everywhere, for all space and time. This is because the knowledge

of the values {ϕ(tn, x)}tn∈�;x∈R3 determines the values {φp(tn)}tn∈�;p∈R3 through the spatial Fourier

transform. Here, φp(t) := φ(t, p) is the spatial Fourier transform of ϕ(t, x). These values together

with the reconstruction formula (5) can be used to calculate φp(t) for all time t and for all fixed spatial

modes p. Taking the inverse Fourier transform then yields the original bandlimited field ϕ(t, x) for

all values of space and time.

A. Aside: Fixed temporal modes of bandlimited fields on flat spacetime

The conclusions in this section followed from the assumption that a spatial mode p is fixed. One

could instead choose to fix a temporal mode, or any combination of the temporal mode and spatial

coordinate modes, and perform a similar analysis.

Note that while the situation is symmetric in 1 + 1 dimensional spacetime, i.e., whether one

fixes a temporal or a spatial mode one obtains identical results, the situation is slightly different in

1 + k dimensional spacetime if k ≥ 2.

For example, in 1 + 2 dimensional spacetime, the spatial bandwidth volume of a fixed temporal

mode p0 is the area between two disks of radii r1 and r2 (see Eq. (4)). Moreover, this area is constant,

independent of p0. If k = 3, the spatial bandwidth volume is the volume between two spheres of

radii ri, and this volume diverges as p0 → ∞. While each fixed temporal mode has a finite spatial

bandwidth volume, there is no uniform upper bound for this volume in 1 + 3 dimensions. Landau’s

theorem then implies that there is no set of spatial points �, which is a set of sampling for every

fixed temporal mode p0 in 1 + 3 dimensional flat spacetime, and hence there is no reconstruction

formula of the type (5) for a fixed temporal mode φp0
(x) of a bandlimited function on this spacetime.

(See Chap. 6 of Ref. 30 for details.)

IV. EXPANDING FRW SPACETIMES

We are now prepared to begin our investigation of the covariant UV cutoff in expanding

spacetimes. The line element for FRW spacetime can be expressed as ds2 = −dt2 + a2(t)dx2

where t is proper time. The d’Alembertian in 1 + 3 dimensions is then a second order differential
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linear operator given by

�̃ := −a−3(t)

(
d

dt
a3(t)

d

dt
− a(t)�

)
, (8)

where � is the spatial Laplacian. This expression is defined to act on a suitable dense domain in

L2(R4, a3(t) dt dx).

Here, it is assumed that a(t) > 0 is a positive function. Under Fourier transform in the spatial

variables, we obtain the differential operator

�̃k := −a−3(t)

(
d

dt
a3(t)

d

dt
+ a(t)k2

)
. (9)

Here, k2 := |k|2 ≥ 0 is the magnitude of the comoving spatial frequency vector. In order to construct

a well-defined linear operator using this expression, we need to specify its domain.

For example, consider de Sitter spacetime, for which a(t) = eHt, where H is the Hubble constant.

In this case, one can show that there is no unique self-adjoint operator associated with the expression

(9). Instead one can use this expression to define a symmetric operator with equal and infinite

deficiency indices on a dense domain in the Hilbert space. Once one has this symmetric operator,

one can construct a family of self-adjoint extensions (self-adjoint operators, which extend the original

symmetric operator). Each self-adjoint extension is a possible choice of self-adjoint d’Alembertian

for this spacetime. Physical input is necessary to determine which choice is correct. Indeed, the

covariant ultra-violet cutoff � is imposed by projecting onto the subspace spanned by eigenfunctions

to the d’Alembertian whose eigenvalues are less than or equal to �2 in magnitude. This means that,

in principle, one must implement the correct self-adjoint extension of the symmetric d’Alembertian

operator before cutting off its spectrum. Fortunately, in some cases it will be sufficient to show that

the choice of self-adjoint extension does not matter to answer the question at hand.

For the remainder of this paper, the time coordinate will be restricted to an interval [ti, tf], where

− ∞ ≤ ti < tf < ∞. For power law spacetime, a(t) = (Ht)k, it is sensible to choose ti = 0 (indeed

if k is not an integer, this scale factor is nonsensical for negative t), but for spacetimes such as de

Sitter, where a(t) = eHt, or something more general such as a(t) = sin 2(t)et, we are free to choose ti
= − ∞. The restriction to times tf that are finite is not necessary but it will be useful to determine a

mode’s total number of degrees up to some finite time.

Let us now consider a comoving spatial mode φ(t, k) and investigate, as in the case of flat

spacetime, the implications of the cutoff of the spectrum of the d’Alembertian for that mode.

In other words, we consider operators defined using the expressions given by Eq. (9) acting on

the Hilbert space H := L2([ti , t f ]; a3(t) dt) for fixed k := |k|. Cutting off the spectrum of the

d’Alembertian by �2 on the full spacetime then amounts to cutting off the spectrum of each of the

fixed-k d’Alembertians �k by �2. As discussed above, in order to make this operation precise, we

must use the expression (9) to define a particular self-adjoint operator for each comoving spatial

momentum magnitude k. Since (9) is a second order Sturm-Liouville differential expression, we can

do this by using the theory of ordinary differential operators:31

Define the linear manifold

Dom(�∗
k ) := {φ ∈ H | φ, a3(t)φ′ ∈ AC[ti , t f ]; �kφ ∈ H}, (10)

and define Dom(�̂k) as the set of all φ ∈ Dom(�∗
k ), which have support contained in a compact

subinterval of (ti, tf). Here, AC[ti, tf] denotes the set of all absolutely continuous functions on [ti, tf].

The linear manifold Dom(�∗
k ) is the largest linear manifold in H on which the formal expression

(9) can be defined for fixed k. It is not difficult to verify that the operator �̂k defined by �̂kφ = �̃kφ

for all φ ∈ Dom(�̂k) is a symmetric operator. Now let �k again denote the closure of �̂k . It follows

from Sec. 17 of Ref. 31 that the domain of �k is given by

Dom(�k) = {φ ∈ Dom(�∗
k ) |a3(ti )φ

′(ti ) = 0 = a3(t f )φ′(t f ); φ(ti ) = 0 = φ(t f )}. (11)
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It can be shown that the operator �
∗
k , defined by �

∗
kφ = �̃kφ for all φ ∈ Dom(�∗

k ) is the adjoint to

�k (Sec. 17 of Ref. 31). It also follows from Sec. 17 of Ref. 31 that �k has deficiency indices (n, n)

where 0 ≤ n ≤ 2. Recall that the deficiency indices (n+ , n− ) of a symmetric operator A are defined

to be n± := dim (Ker(A∗ ∓ i)), that A has a U(n)-parameter family of self-adjoint extensions if and

only if n+ = n = n− , and that if n+ = 0 = n− , then A is essentially self-adjoint. Here, U(n)

denotes the unitary group of n × n unitary matrices. For more details of the theory of symmetric

operators and their self-adjoint extensions, we refer the reader to Refs. 32 and 33, and to Ref. 31,

for an introduction to symmetric differential operators.

A. Deficiency indices and self-adjoint extensions

To investigate the effects of the covariant ultraviolet cutoff on the spacetimes discussed above,

one must cut off the spectrum of self-adjoint extensions of the symmetric d’Alembertians �k . The

deficiency indices and therefore the set of possible self-adjoint extensions of the d’Alembertian

depend on the choice of scale factor function a(t) (although a few conclusions can even be drawn

before making a specific choice of a(t)).

As we will see Sec. IV A 1, the case where �k has deficiency indices (2, 2) will be generic

and therefore of particular interest. If �k has deficiency indices (2, 2), then by a theorem of Krein,

the spectrum of any self-adjoint extension �
′
k is bounded below (p. 93 of Ref. 31). Furthermore,

the resolvent (�′
k − λ)−1, with λ ∈ C \ R, will be a compact Hilbert-Schmidt operator (Sec. 19 of

Ref. 31). Hence, the spectrum of such a resolvent consists of the closure of the set of eigenvalues

whose only possible accumulation point is 0. It follows that the spectrum of any self-adjoint extension

�
′
k of �k is purely discrete and has no finite accumulation point. Furthermore, one can show that

each of the symmetric operators �k is simple, i.e., each has no eigenvalues. To see this, first recall

the formula (11) for the domain of �k . Then by the existence-uniqueness theorem for ordinary

differential equations (Sec. 16 of Ref. 31), it follows that if φ ∈ Dom(�k) is a solution to �kφ = λφ,

then φ ≡ 0 since a3(ti)φ
′(ti) = 0 = φ(ti).

If �k is a simple symmetric operator with deficiency indices (2, 2), it follows that the spectrum

of any self-adjoint extension �
′
k of �k consists of eigenvalues of multiplicity at most 2, and that given

any λ ∈ R there is a self-adjoint extension �
′
k of �k for which λ is an eigenvalue of multiplicity 2

(Sec. 83 of Ref. 32).

Imposing the covariant ultra-violet cutoff on the kind of spacetime discussed above means that

one chooses a particular self-adjoint extension �
′
k and then considers the subspace, Bk(�), spanned

by eigenfunctions of this d’Alembertian whose eigenvalues are less than or equal to �2 in magnitude.

The nature of the spectra of the �
′
k in this kind of spacetime implies that each of the subspaces

Bk(�) will be of finite dimension Nk < ∞. Let { fn}N
n=1 be a basis for such a subspace. Since the

fn are linearly independent functions of time, almost all sets of N time points {tm}N
m=1 in [ti, tf]

are such that the matrix A with entries Anm := fn(tm) is invertible. Letting φk =
∑N

n=1 cn fn denote

the comoving spatial mode k of a covariantly bandlimited field in this spacetime, it follows that

φk(tm) =
∑N

n=1 cn fn(tm) so that

φk(t) =
N∑

n=1

N∑

j=1

A−1
nmφk(tm) fn(t). (12)

Hence, each spatial mode of a covariantly bandlimited field in any FRW spacetime for which �k

has deficiency indices (2, 2) is completely determined by the values it takes on a finite number of

points in time, and has only a finite number of temporal degrees of freedom. Of course, this simple

linear algebra argument applies to any finite dimensional subspace of functions.

1. The deficiency indices are generically (2, 2)

As we will now show, certain generically satisfied conditions are sufficient to guarantee that the

deficiency indices of �k are (2, 2).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.42.98 On: Thu, 22 Sep 2016

03:57:54



022301-9 Kempf, Chatwin-Davies, and Martin J. Math. Phys. 54, 022301 (2013)

If ti is finite, then �k will have deficiency indices (2, 2) provided the function a(t) is sufficiently

well-behaved on the compact interval [ti, tf] (Sec. 17 of Ref. 31). In particular, this is the case if a(t)

and 1/a(t) are finite, positive, and differentiable on [ti, tf]. If ti = − ∞, then applying Corollary 8 of

Ref. 34 shows that a sufficient condition for �k to have deficiency indices (2, 2) is that

1

k

∫ t f

−∞
a(t) dt < ∞. (13)

Note that we need to assume that k �= 0, although this is not a significant restriction. Indeed, for

fields with a finite positive mass, m > 0, the term k2 becomes k2 + m2, eliminating the zero mode

as a special case. If each �k has equal deficiency indices (2, 2), then each �k has a U(2)-parameter

family of self-adjoint extensions.32 The extensions can be constructed by extending the domain of

�k by choosing appropriate boundary conditions at the end points of the interval [ti, tf] (Sec. 18 of

Ref 31).

Fixed assumptions about the cosmic expansion.From now on, we will always assume that a(t)

is positive, differentiable, and finite. Also, unless stated otherwise, we will assume for the remainder

of the paper that either:

1. ti > − ∞ so that [ti, tf] is a compact interval and �k has deficiency indices (2, 2) for any

k ≥ 0, or

2.
∫ t f

−∞ a(t)dt < ∞ so that �k has deficiency indices (2, 2) for any k > 0.

B. Example: de Sitter spacetime

In de Sitter spacetime, a(t) = eHt, one can verify that in the case where ti = − ∞, the operator

�k , for k > 0, has deficiency indices (2, 2):

Switching to conformal time coordinates, let η(t) = 1
H

e−Ht , i.e., η′(t) = − 1/a(t) and η ∈ [ηf,

∞). It follows that a(η) = 1
Hη

and that the operator �k takes the form

�k = −a−4(η)
(
∂ηa2(η)∂η + a2(η)k2

)
, (14)

acting on a suitable dense domain in L2([ηf, ∞), a4(η)dη). If they exist, any eigenfunctions of the

adjoint operator �
∗
k must satisfy the following differential equation:

φ′′(η) −
2

η
φ′(η) +

(
k2 +

λ

H 2η2

)
φ(η) = 0. (15)

Two linearly independent solutions are given by the Bessel functions

fλ(η) = η3/2 Jβ(λ)(kη), (16)

and

gλ(η) = η3/2Yβ(λ)(kη), (17)

where β(λ) :=
√

9
4

− λ
H 2 . If λ is such that β(λ) �= Z, then the second linearly independent solution

can be chosen to be hλ(η) = η3/2J− β(λ)(kη) instead.

Since �k commutes with complex conjugation, it must have equal deficiency indices33, Theorem

X.3], so we just need to check that if λ :=
(

9
4

− i
)

H 2, β(λ) = ei π
4 = 1+i√

2
, then both solutions fλ and

hλ are normalizable. This will show that 2 = n+ = n− . Now for large η,

Jβ(kη) ∼

√
2

πkη
cos

(
kη −

βπ

2
−

π

4

)
+ O

(
1

kη

)
, (18)

so that fλ(η) is asymptotically proportional to ηcos (kη − c) for large η (Chap. 11.6 of Ref. 35). It

follows that fλ and similarly gλ are square integrable with respect to the measure a4(η)dη = 1
H 4η4 dη

so that �k has deficiency indices (2, 2) for k > 0, as expected.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.42.98 On: Thu, 22 Sep 2016

03:57:54



022301-10 Kempf, Chatwin-Davies, and Martin J. Math. Phys. 54, 022301 (2013)

As discussed above, it follows that the spaces Bk(�) of fixed comoving spatial momentum

modes of bandlimited fields have finite dimension Nk for any k > 0. It is remarkable that, therefore,

any non-zero fixed comoving spatial mode in de Sitter spacetime with a finite end-time has only a

finite number of degrees of freedom in time t ∈ ( − ∞, 0]. Intuitively, this is plausible because, since

the spacetime is expanding at an exponential rate, any fixed comoving spatial mode with magnitude

k corresponds to extremely small proper wavelengths or high proper spatial frequencies for most of

the time in t ∈ ( − ∞, 0]. As was shown for the case of flat spacetime, the larger the proper spatial

frequency mode, the smaller is its density of temporal degrees of freedom. Hence, since any fixed

comoving spatial mode in de Sitter spacetime with a finite end-time corresponds to exponentially

large proper spatial frequencies for most of t ∈ ( − ∞, 0], it is to be expected that such a comoving

mode could have merely a finite number of temporal degrees of freedom.

1. The zero mode

As remarked previously, the zero mode is unphysical and can be safely ignored for any mas-

sive scalar field. Nevertheless, we include some facts here about the zero mode for the sake of

completeness. In the case where k = 0, the ordinary differential equation (ODE) becomes

φ′′(η) −
2

η
φ′(η) +

λ

H 2η2
φ(η) = 0, (19)

which has two linearly independent solutions fλ(η) = ηq1(λ) and gλ(η) = ηq2(λ) where q1(λ) = 3
2

−√
9
4

− λ
H 2 and q2(λ) = 3

2
+

√
9
4

− λ
H 2 . Again, choosing λ =

(
9
4

− i
)

H 2 we obtain that

fλ(η) = η
3+

√
2

2
+ i√

2 , (20)

and

gλ(η) = η
3−

√
2

2
+ i√

2 . (21)

It is now clear that fλ is square integrable while gλ is not (with respect to the measure). This shows

that for de Sitter spacetime with ti = −∞, �0 has deficiency indices (1, 1). Also note that if λ ≥ 9H 2

4
,

then the real part of both qi(λ) is equal to 3, which shows that both solutions are non-normalizable.

It then follows from Theorem 3, p. 92, of Ref. 31, that [ 9H 2

4
,∞) belongs to the continuous spectrum

of �0. Moreover, the fact that [ 9
4
,∞) is in the continuous spectrum of the zero mode can be used to

show that if �2 > 9
4

that Nk → ∞ as k → 0. See, for example, Sec. 8.4.1 of Ref. 30.

Even though B0(�) has an infinite number of temporal degrees of freedom, the zero mode still

has a finite temporal density of degrees of freedom. For simplicity, consider 1 + 1 dimensional de

Sitter spacetime. Then, for an appropriate choice of self-adjoint extension of �0, it can be shown

that if φ ∈ B0(�) where �2 = B2 + 1
4

then

φ(η) =
∞∑

n=0

φ(ηn)K (ηn, η), (22)

where ηn = e
n
B and

K (ηn, η) =
√

η

ηn

(
sin (Bπ (ln(ηnη)))

Bπ ln(ηnη)
+

sin (Bπ ln(η/ηn))

Bπ ln(η/ηn)

)
, (23)

(Sec. 8.4.4, p. 99, Ref. 30). This shows that the zero spatial mode of a covariantly bandlimited field

is stably reconstructible from the values it takes on the set � := {ηn}∞n=0.
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V. THE NUMBER OF TEMPORAL DEGREES OF FREEDOM OF A FIXED COMOVING

SPATIAL MODE

We saw that under the assumptions above, �k has deficiency indices (2, 2) for any k > 0. Recall

that as a consequence, no matter which self-adjoint extension �
′
k of �k is used to define Bk(�),

Nk := dim (Bk(�)) will be finite.

In flat spacetime, we observed that large proper momentum spatial modes have less temporal

bandwidth than smaller proper momentum modes. This suggests that also in expanding FRW

spacetimes, large proper momentum spatial modes will have fewer temporal degrees of freedom

than smaller proper momentum spatial modes. Studying this problem amounts to studying the

spectrum of the second order differential operators �k .

A. The freezing of comoving modes at early times

At early enough times, the proper wavelength of any comoving mode is arbitrarily small. From

the study of the UV cutoff on Minkowski space, we therefore intuitively expect that the density of

temporal degrees of freedom of a comoving mode drops for earlier and earlier times, until it reaches

zero or a very small number and the mode therefore freezes.

Equivalently to considering earlier and earlier times, we may of course also consider larger and

larger k. In this subsection, we will therefore study the behaviour of Nk for large k. We will show

that (under our fixed assumptions about the cosmic expansion a(t)) there indeed exists a K > 0 such

that Nk = c ≤ 2 for all k ≥ K. Here, K is independent of the choice �
′
k of self-adjoint extension used

to define Bk(�), while the fixed constant c depends on the choice of self-adjoint extension. Again,

the choice of self-adjoint extension is to be determined by physics.

Choose λ′ ∈ R such that |λ′| ≤ �2. By Sec. 83 Ref. 32, there is a unique self-adjoint extension

�
′
k of �k , which has λ′ as an eigenvalue of multiplicity 2. Let fλ′ and gλ′ denote two linearly

independent solutions to the ordinary differential equation �̃kφ = λ′φ. Here, the tilde over the �k is

used to denote that we are not considering �̃k as a differential operator acting on any fixed domain,

but as a differential expression acting on any functions for which this expression is defined.

Lemma 1: If a real number λ �= λ′ is an eigenvalue of �
′
k then 0 = �(λ; λ′, k)

:= 〈 fλ, fλ′〉〈gλ, gλ′〉 − 〈 fλ, gλ′〉〈gλ, fλ′〉.

Proof: If λ is another eigenvalue of �
′
k then there are c1, c2 ∈ C such that c1fλ + c2gλ is an

eigenvector of �
′
k , and hence it must be orthogonal to both fλ′ and gλ′ . Hence,

(
0

0

)
=

(
〈c1 fλ + c2gλ, fλ′〉
〈c1 fλ + c2gλ, fλ′〉

)
= (c1, c2)

(
〈 fλ, fλ′〉 〈 fλ, gλ′〉
〈gλ, fλ′〉 〈gλ, gλ′〉

)
. (24)

It follows that the determinant of the above matrix, which is �(λ; λ′, k), vanishes. �

Using the method of Picard iterates that is often employed to prove the existence-uniqueness

theorem for ordinary differential equations, it is not difficult to show that if the solutions fλ and gλ

are chosen by imposing fixed initial conditions at some regular point in [ti, tf], then fλ(η) and gλ(η)

are entire as functions of λ for fixed k and η (pp. 51 − 56 of Ref. 31) and Sec. 2.3 of Ref. 36. Using

this fact and Morera’s theorem, it is straightforward to check that if fλ and gλ are chosen in this way,

that �(λ) := �(λ; λ′, k) for fixed λ′ and k is an entire function of λ.

Since we assume tf is finite, we can define a conformal time variable

η :=
∫ t f

t

a−1(t ′) dt ′. (25)

It follows that η ∈ [0, ηi] where ηi := η(ti). For example, in de Sitter space with ti = − ∞, we

would get that ηi = + ∞. The line element in these coordinates is ds2 = a2(η)
(
−dη2 + dx2

)
.

Re-calculating the symmetric d’Alembertian for a fixed comoving spatial mode of magnitude k in
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the η coordinates yields

�k = −a−4(η)
(
∂ηa2∂η + a2k2

)
, (26)

acting on a suitable dense domain in the Hilbert space L2([0, ηi]; a4(η) dη). Then, �̃kφ(η) = λφ(η)

takes the form

(pφ′)′ +
(
rk2 − q

)
φ = 0 (27)

with p(η) := a2(η), r(η) = a2(η), and q(η) = − a4(η)λ. Here, we have chosen q(η) so as to treat k2 as

an “eigenvalue.” This ODE is already almost in Liouville normal form Sec. 2 of Ref. 37. To convert

it to Liouville normal form, we let U(η) := φ(η)(r(η)p(η))1/4 = a(η)φ(η). This yields the new ODE

−U ′′ + QU = k2U (28)

with the new potential

Q(η) =
a′′(η)

a(η)
− λa2(η). (29)

For large k, the potential Q becomes negligible, and it is intuitively clear that solutions U will

behave asymptotically like sine or cosine. Therefore, the solutions φ to the original ODE behave

asymptotically like a− 1(η) multiplied with some linear combination of sine and cosine functions.

More precisely, by Sec. 3 of Ref. 37, let Uλ and Vλ be the solutions to the ODE (28), which

obey the boundary conditions
(

Uλ(0)

U ′
λ(0)

)
=

(
1

0

)
(30)

and
(

Vλ(0)

V ′
λ(0)

)
=

(
0

k

)
. (31)

The following asymptotic formulae are valid for large k:

Uλ(η) ∼ cos(kη) + O

(
1

k

)
and Vλ(η) ∼ sin(kη) + O

(
1

k

)
. (32)

The exact form of the asymptotic series for Uλ and Vλ depends on the potential Q (Eq. (29)), which

is determined by the scale factor a(η) and the eigenvalue λ (Sec. 3 of Ref. 37).

Now let fλ = a− 1Uλ and gλ = a−1Vλ. Then fλ and gλ are two linearly independent solutions to

the ODE (27), which obey the boundary conditions:
(

fλ(0)

f ′
λ(0)

)
=

(
1/a(0)

0

)
(33)

and
(

gλ(0)

g′
λ(0)

)
=

(
0

k/a(0)

)
, (34)

and which have the asymptotic behaviour

fλ(η) ∼ a−1(η) cos(kη) + O

(
1

k

)
and gλ(η) ∼ a−1(η) sin(kη) + O

(
1

k

)
. (35)

Now we define the function �(λ) := �(λ; λ′, k) as before using this choice of fλ and gλ for

each λ ∈ R. As discussed previously, �(λ) will be an entire function of λ for fixed λ′ and k. By the

asymptotic formulae for fλ, gλ, it follows that as k → ∞, 〈 fλ, fλ′〉 approaches
∫ ηi

0

cos2(kη)a2(η) dη. (36)
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Note that the fixed assumption that
∫ t f

ti
a(t)dt < ∞ becomes

∫ ηi

0

a2(η) dη < ∞ (37)

upon transforming to conformal time. As k → ∞, the frequency of oscillation of cos (kη) diverges,

and intuitively this integral will converge to the integral of a2(η) multiplied by 1
2
, the average value

of cos 2(πx) over one half period 0 ≤ x ≤ 1:

Lemma 2: Suppose that a2(η) is integrable on the interval [0, ηi]. Then

lim
k→∞

∫ ηi

0

cos2(kη)a2(η)dη =
1

2

∫ ηi

0

a2(η)dη = 1/2‖1/a‖2
H. (38)

In the statement of the above lemma, H := L2
(
[0, ηi ]; a4(η) dη

)
, and ‖ · ‖H denotes the norm

in this Hilbert space.

Proof: This is a straightforward consequence of the Riemann-Lebesgue lemma. Indeed, as

remarked before, our fixed assumptions about the cosmic expansion a(t) imply that 1/a ∈ H, so

that a2(η) ∈ L1[0, ηi], and in particular a2(η)χ[0,ηi ](η) ∈ L1(R). Using the trigonometric identity

2cos 2(x) = 1 + cos (2x) yields

lim
k→∞

∫ ηi

0

cos2(kη)a2(η)dη =
1

2

∫ ηi

0

a2(η)dη +
1

4
lim

k→∞

∫ ∞

−∞

(
ei2kη + e−i2kη

)
a2(η)χ[0,ηi ](η)dη.

(39)

By the Riemann-Lebesgue lemma, the second limit vanishes. �

Similar arguments show that 〈gλ, g′
λ〉 converges to 1

2
‖1/a‖2 and that 〈 fλ, gλ′〉 converges to zero.

It follows that for fixed λ and λ′, �(λ; λ′, k) converges to 1
4
‖1/a‖4 as k → ∞. This fact can be used

to prove the main result of this section:

Theorem 3: Given any choice of self-adjoint extension �
′
k of �k , let Bk(�)

:= Ran(χ[−�2,�2](�
′
k)), which has finite dimension Nk. There is a K > 0 such that Nk = c ≤ 2

for all k ≥ K and for any choice of self-adjoint extension �
′
k used to define Bk(�).

Proof: Let � be the bandlimit, or ultra-violet cutoff. Then for λ ∈ [ − �2, �2] and fixed λ′ ∈
[ − �2, �2], it follows that 〈 fλ, fλ′〉 converges uniformly to 1/2‖1/a‖2 for all λ in this interval as k

→ ∞.

By Lemma 2, �(λ; λ′, k) converges to the positive constant 1
4
‖1/a‖4 as k → ∞ for any

fixed λ, λ′. Now keeping λ′ fixed, consider �k(λ) := �(λ; λ′, k) as a net of continuous (in fact

entire) functions of the variable λ. Given any compact interval I, since �k converges pointwise to a

continuous (constant) function as k → ∞, this convergence must be uniform on I.

Hence, there is a K > 0 such that for all k ≥ K we have that �(λ; λ′, k) > 0 for all |λ| ≤ �2.

This shows that Nk = 2 for all k ≥ K (provided we define Bk(�) using the self-adjoint extension �
′
k ,

which has λ′ as an eigenvalue of multiplicity 2).

Now repeat the same argument again with λ′ = 3�2 + ǫ for some ǫ > 0. Choose K > 0 so large

that for k ≥ K we have that �
′
k has no eigenvalues in [ − 3�2, 3�2]. Then by Theorem 3 of Ref. 38,

� (�k)t > 2�2 for all t ∈ [ − �2, �2]. Here, � (�k)t denotes the minimum uncertainty or standard

deviation of the symmetric operator �k , taken over all states with expectation value t. It then follows

from Theorem 2 of Ref. 38, that any self-adjoint extension of �k has at most 2 eigenvalues in the

interval [ − �2, �2]. This demonstrates that no matter which self-adjoint extension is used to define

Bk(�), there is a K > 0 independent of the choice of self-adjoint extension such that k > K implies

that Nk = c ∈ {0, 1, 2}. �

Finally, we note that there always exists a self-adjoint extension of �k so that Nk becomes 0 for

sufficiently large k.
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B. Example: de Sitter spacetime

In the case of de Sitter spacetime, we can obtain more information about the value K for which

any comoving spatial mode with magnitude k ≥ K has at most 2 degrees of freedom in time. Consider

a de Sitter spacetime with scale factor a(t) = eHt that began expanding infinitely long ago in the past.

We will consider the evolution up to a finite proper time tf. In this case, it is convenient to modify

the calculations in Sec. V A by defining conformal time in a different way. Here, define conformal

time by η(t) = 1
H

e−Ht so that η′(t) = − 1/a(t) as before, but now η ∈ [ηf, ∞), where ηf > 0 is finite.

With these definitions, we can choose as our two linearly independent solutions to �
∗
kφ = λφ

fλ(η) =
√

kπ

2
η

3
2 Jβ(λ)(kη) ∼ η cos

(
kη −

π

2
β(λ) −

π

4

)
+ O

(
1

kη

)
, (40)

and

gλ(η) =
√

kπ

2
η

3
2 Yβ(λ)(kη) ∼ η sin

(
kη −

π

2
β(λ) −

π

4

)
+ O

(
1

kη

)
, (41)

where β(λ):=
√

9
4

− λ
H 2 . Using properties of Bessel functions, one can show that �(λ) = �(λ;

λ′, k) is still entire as a function of λ for fixed λ′ and k, and that it converges uniformly to 1
4
‖1/a‖4 as

k → ∞ for λ in any fixed compact interval I, where

‖1/a‖2 =
1

H 2

∫ ∞

η f

1

η2
dη =

1

H 2η f

= a(η f )/H. (42)

One can estimate the threshold K beyond which modes are dynamically frozen from the follow-

ing considerations. For simplicity, fix λ′ = 0, and consider the problem of finding the threshold for

the self-adjoint extension �
′
k for which λ′ = 0 is an eigenvalue of multiplicity 2. Recall from Lemma

1 that �
′
k has no other eigenvalues in [ − �2, �2] provided that �(λ; λ′ = 0, k) has no zeros in

[ − �2, �2]. Thus, we wish to determine the value K such that whenever k ≥ K, �(λ; 0, k) �= 0 for

all λ ∈ [ − �2, �2].

The inner products that define �(λ; 0, k) are given by

〈 fλ, f0〉 =
k

H 4

(
sin δ

λ/H 2
+

π

2
F(J, J )

)
〈 fλ, g0〉 =

k

H 4

(
−

cos δ

λ/H 2
+

π

2
F(J, Y )

)
,

〈gλ, f0〉 =
k

H 4

(
cos δ

λ/H 2
+

π

2
F(Y, J )

)
〈gλ, g0〉 =

k

H 4

(
sin δ

λ/H 2
+

π

2
F(Y, Y )

)
,

(43)

where J and Y are placeholders for the Bessel J and Bessel Y functions, respectively, and where

F(A, B) := kη f

Aβ(λ)−1(kη f ) B3/2(kη f ) − Aβ(λ)(kη f ) B1/2(kη f )

λ/H 2
+

Aβ(λ)(kη f ) Bβ(λ)(kη f )

β(λ) + 3/2
(44)

for A, B ∈ {J, Y}. Notice that if we divide �(λ; 0, k) by k2/H8 and define new variables y: = kηf

and ℓ: = λ/H2, we have that

H 8

k2
�(λ; 0, k) = G(y, ℓ), (45)

a function of only two variables. Since H �= 0, �(λ) and H 8

k2 �(λ) have the same zeros. So,

equivalently to our initial problem, we may search for the threshold Z such that H 8

k2 �(λ) = G(y, ℓ)

has no zeros on ℓ ∈ [− �2

H 2 ,
�2

H 2 ] for all y ≥ Z. Hence, let

Z

(
�

H

)
:= min

y>0

{
y

∣∣∣∣ G(y, ℓ) �= 0 ∀ ℓ ∈
[
−

�2

H 2
,

�2

H 2

]}
. (46)
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FIG. 2. Numerical simulation of Z(�/H). The red curve is a fit to the data by the curve Z = 0.07988(�/H)2.

Since y = kηf, we therefore have that the threshold K is given by

K =
1

η f

Z

(
�

H

)
. (47)

Without knowing the functional form of Z, Eq. (46) indicates that Z is a monotonically increasing

function of �/H. Since � approaches a constant function as k → ∞ (and hence as y → ∞), the

ℓ-zeros of G(y, ℓ) are pushed farther and farther away from the origin as y increases. Increasing �/H

widens the interval over which � must be nonzero, so larger values of �/H produce larger thresholds

Z(�/H).

Numerical analysis corroborates the preceding conclusion; a plot of Z(�/H) with ℓ restricted to

lie in ℓ ∈ [− �2

H 2 , min{ 9
4
, �2

H 2 }] is shown in Figure 2. When ℓ ≥ 9
4
, the orders of the Bessel functions in

the definition of Z become imaginary, which considerably complicates their numerical analysis. We

have circumstantially observed, however, that any ℓ-zeros of G(y, ℓ) for which ℓ > 9
4

are greater in

magnitude than the first zero for which ℓ ≤ 9
4
. Although it would be desirable to verify the behaviour

of Z for larger values of �/H, the computational task becomes highly nontrivial as �/H increases.

The current numerical analysis suggests that Z is proportional to (�/H)2.

One would expect that the modes in de Sitter space that are dynamical are those modes that

cross the Planck length before the end of inflation. Conversely, the dynamically frozen modes should

be those whose comoving wavelengths are so small that they never cross the Planck length during

the period of inflation. The dependence of the threshold for mode freezing K on the parameters ηf,

�, and H in Eq. (47) is indeed consistent with this expectation.

As ηf decreases toward 0, K increases; this is natural, as a small conformal end time ηf corre-

sponds to a late proper end time tf. The later the proper end time, the longer the period of inflation

lasts, so the smaller a mode’s comoving wavelength (and thus the larger k) must be if it is to never

cross the Planck length and become dynamical.

The dependence of K on the dimensionless ratio of the two length scales, �/H, has an intuitive

interpretation. Holding H fixed, increasing � essentially corresponds to decreasing the value of the

Planck length. This permits modes that were previously too small to cross the Planck length during

inflation to make that crossing. Hence, the comoving wavelengths of modes that do not cross the

Planck length decreases, or in other words, the threshold increases.
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VI. THE IMPACT OF THE COVARIANT ULTRAVIOLET CUTOFF ON THE SPECTRUM OF

QUANTUM FIELD FLUCTUATIONS

So far, we discussed how the presence of the covariant ultra-violet cutoff in expanding FRW

spacetimes would affect the kinematics of individual modes of scalar fields on the spacetime. Let us

now begin to investigate how the covariant cutoff would affect the full dynamics of scalar quantum

fields. In particular, the presence of this natural cutoff in nature could manifest itself with a potentially

measurable effect in the cosmic microwave background (CMB). It is, therefore, of great interest to

implement the covariant ultraviolet cutoff in the standard model of cosmic inflation.

In order to determine how the covariant ultra-violet cutoff affects the dynamics of a scalar

quantum field, it is convenient to use the path integral formalism since it is manifestly covariant. In

the path integral picture, the assumption that there exists this covariant ultraviolet cutoff in nature

means that the set of scalar fields that one integrates over in the quantum field theoretic path integral

is restricted to the space B(M, �) of covariantly bandlimited scalar fields on the spacetime M.

A. The two-point function

The dynamics of a free scalar field φ̂ are determined by the Feynman propagator, which is given

in the path integral picture through

G F (x, x ′) =
∫

φ(x)φ(x ′)ei S[φ] D[φ]∫
ei S[φ] D[φ]

, (48)

and in the interaction picture of the operator formalism through:

G F (x, x ′) = 〈0|T φ̂(x)φ̂(x ′)|0〉. (49)

Here, GF(x, x′) is ambiguous up to a choice of vacuum, which must be made on the basis of physical

input.

Denoting the coordinates x = (t, x), the key object of interest for inflationary predictions for

the CMB is G F (t = t ′, p), the equal-time spatial Fourier transform of the two-point function. This

is because G F (t = t ′, p) yields the fluctuation spectrum of the modes of a quantum field φ̂, and it is

this type of fluctuation spectrum that determines the spectrum of the scalar and tensor fluctuations

that are imprinted in the temperature and polarization spectra of the CMB.39 In the equation of

motion for GF,

(�x − m2)G F (x, x ′) = iδ4(x − x ′), (50)

�x is the d’Alembertian with respect to unprimed coordinates. The presence of homogeneous

solutions requires a choice of boundary condition on GF(x, x′), which in turn corresponds to the

choice of the vacuum. Technically, the choice of boundary condition fixes a self-adjoint extension

�
′ of �.

B. The two-point function in Minkowski space

We can here only begin our study of the impact of the covariant cutoff on the spectrum of quantum

field fluctuations, namely by considering the simple case of 1 + 3 dimensional Minkowski space,

where the d’Alembertian reads �x = − ∂2

∂t2 + ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . In this case, since �x = �x−x ′ , and

with Eq. (50), we can treat GF as a function exclusively of the separation x − x′. Fourier transforming

Eq. (50) with respect to x − x′, yields

G F (p) =
i

(2π )2

1

p2
0 − |p|2 − m2 + iǫ

. (51)

Through the Fourier transform, the choice of boundary condition becomes a choice of pole prescrip-

tion. The introduction of Feynman’s iǫ which implies the limit ǫ → 0+ after integrations is the

well-known choice of pole prescription that yields the Feynman propagator on Minkowski space.
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One recovers the equal time and momentum dependent two-point function of interest by performing

the inverse Fourier transform with respect to p0:

G F (t − t ′, p) =
i

(2π )5/2

∫ ∞

−∞
dp0

ei p0(t−t ′)

p2
0 − |p|2 − m2 + iǫ

. (52)

Setting t = t′, using standard methods of contour integration and defining ω:=
√

|p|2 + m2, one has

G F (t = t ′, p) =
1

(2π )3/2

1

2ω
. (53)

How does the above calculation change if one assumes the covariant cutoff? Let Gc
F (x, x ′) be

the composition of GF(x, x′) and the projector PB(M, �) that projects onto B(M, �), the space of

covariantly bandlimited functions, so that

Gc
F (x, x ′):=PB(M,�)G F (x, x ′) =

∫
B(M,�)

φ(x)φ(x ′)ei S[φ] D[φ]
∫

B(M,�)
ei S[φ] D[φ]

. (54)

If we perform a full inverse Fourier transform on Eq. (51), we obtain the following integral repre-

sentation of GF(x − x′):

G F (x − x ′) =
i

(2π )4

∫
dp0 d3p

ei(p0(t−t ′)−p·(x−x′))

p2
0 − |p|2 − m2 + iǫ

. (55)

Recall that the plane waves ei(p0(t−t ′)−p·(x−x′)) are the eigenfunctions of �x−x ′ with corresponding

eigenvalues p2
0 − |p|2. Equation (55) is therefore manifestly a linear combination of eigenfunctions

of the d’Alembertian, and so the action of the projector PB(M, �) gives

Gc
F (x − x ′) =

i

(2π )4

∫

|p2
0−|p|2|≤�2

dp0 d3p
ei(p0(t−t ′)−p·(x−x′))

p2
0 − |p|2 − m2 + iǫ

. (56)

Performing a spatial Fourier transform on the previous equation to obtain the two-point function of

cosmological interest, we find that

Gc
F (t − t ′, p′) =

i

(2π )11/2

∫

R3

d3(x − x′) eip′·(x−x′)

∫

|p2
0−|p|2|≤�2

dp0 d3p
ei(p0(t−t ′)−p·(x−x′))

p2
0 − |p|2 − m2 + iǫ

,

(57)

whence

Gc
F (t = t ′, p) =

i

(2π )5/2

∫

I(p)

dp0

1

p2
0 − |p|2 − m2 + iǫ

. (58)

The interval I(p) has two qualitatively different forms depending on the value of |p|. Referring to

Eq. (3) and Figure 1, we have that

I. if |p| ≤ �, then I(p) =
[
−

√
|p|2 + �2,

√
|p|2 + �2

]
, or

II. if |p| > �, then I(p) =
[
−

√
|p|2 + �2,−

√
|p|2 − �2

]
∪

[√
|p|2 − �2,

√
|p|2 + �2

]
.

Evaluating the integral in Eq. (58), we ultimately find that

Gc
F (t = t ′, p) =

⎧
⎪⎪⎨
⎪⎪⎩

1

(2π )3/2

1

2ω
−

i

(2π )5/2

1

ω
ln

∣∣∣∣
r2 + ω

r2 − ω

∣∣∣∣ |p| ≤ �

1

(2π )3/2

1

2ω
−

i

(2π )5/2

1

ω

(
ln

∣∣∣∣
r2 + ω

r2 − ω

∣∣∣∣ − ln

∣∣∣∣
ω + r1

ω − r1

∣∣∣∣
)

|p| > �

, (59)

where r2:=
√

|p|2 + �2 and r1:=
√

|p|2 − �2. Details of the aforementioned calculation may be

found in the Appendix. A plot of the absolute values of both G F (t = t ′, p) and Gc
F (t = t ′, p) are

shown in Figure 3. Notice that the integral in Eq. (58) (which defines Gc
F (t = t ′, p)) is the same
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FIG. 3. Plots of the two-point function GF (red) and the covariantly bandlimited two-point function Gc
F (blue). The plotting

parameters are � = 1 and m = 0.01.

integral as in Eq. (52) (which defines G F (t = t ′, p)) less an integration over R \ I(p), i.e.,

Gc
F (t = t ′, p) = G F (t = t ′, p) −

i

(2π )5/2

∫

R\I(p)

dp0

1

p2
0 − ω2 + iǫ

. (60)

The poles of these integrands are at the points p0 = ± ω, which always lie in the interval I(p),

hence the integral over R \ I(p) always yields a real number. Consequently, the difference between

GF and Gc
F is always a purely imaginary correction term, as is evident in Eqs. (59) and (60). Since

G F (t = t ′, p) is a real-valued function, the magnitude of Gc
F (t = t ′, p) will always be larger for all p,

which is indeed observed in Figure 3. The physical consequence of this effect is that the covariantly

bandlimited theory predicts larger quantum fluctuations of the field φ̂ than the standard theory.

Intuitively, the discarding of high-frequency contributions to the two-point function eliminated

destructive interference caused by these modes.

In fact, from Figure 1 it had to be expected that there will be a cusp in the graph of Gc
F in

Figure 3. Referring to Figure 1, the tangent line to the horizontally opening hyperbola that bounds

the region |p2
0 − |p|2| ≤ �2 is vertical at the cutoff value |p| = �. This point is the boundary across

which the form of I(p) qualitatively changes and is the location of the cusp.

VII. CONCLUSIONS AND OUTLOOK

We investigated the consequences of a possible covariant minimum wavelength in nature in

the form of a cutoff on the spectrum of the d’Alembertian. In this scenario, wavelengths smaller

than the Planck length do exist but the dynamics of such modes is in effect frozen due to their

exceedingly small temporal bandwidth. The information density in such modes is low in a literally

information-theoretic sense.

In particular, we showed that comoving modes in expanding spacetimes unfreeze, i.e., that

they grow temporal degrees of freedom and develop nontrivial dynamics, only after their proper

wavelength starts exceeding the Planck length. Later, as in standard inflationary cosmology, once

a comoving mode has outgrown the Hubble horizon, it again loses its dynamics, namely because

its two oscillatory solutions turn into a constant and a quickly decaying solution. (As in the usual

inflationary scenario, the mode then re-acquires nontrivial dynamics after inflation ends and the

mode re-enters the Hubble horizon.)
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FIG. 4. Plot of the relative difference in magnitudes of G F (t = t ′, p) and Gc
F (t = t ′, p) in Minkowski space for different

field masses m. The cutoff is set to � = 1.

The fact that soon after their unfreezing the modes’ dynamics freezes up again, namely upon

Hubble horizon crossing, could be crucial. In implies that, in principle, precision measurements of the

CMB and its polarization may provide evidence for or against the existence of a covariant bandlimit

in nature. This in turn would imply the enticing prospect of experimental access to Planck scale

physics. Indeed, according to the standard model of inflationary cosmology, the quantum fluctuations

that seeded fluctuations in the CMB’s temperature and polarization spectrum (and therefore cosmic

structure formation) were frozen upon their Hubble horizon crossing during inflation. The Hubble

horizon during inflation, however, is generally thought to have been only five or six orders of

magnitude larger than the Planck length. This means that the physics of the Planck scale, such as

potentially a covariant UV cutoff, could conceivable have an imprint in the CMB that is not all too

much suppressed. This is because the magnitude of the effect can be expected to be proportional to

some power, α, of the dimensionless ratio, σ , of the two basic length scales, the Planck length and

the Hubble length during inflation. Here, as we mentioned, σ is known to be no larger than about

10− 5 in most realistic models of inflation. In order to determine the experimental prospects, it will

be important to determine α.

To obtain a first indication of the size of the effects, let us consider Minkowski space.

Here, the effect is very small, indicating a value of α close to 2. To see this, let us consider

Figure 4 which shows the relative difference between G F (t = t ′, p) and Gc
F (t = t ′, p). At |p|

= 10−5�, experiments would need to be able to measure the two-point function to the tremen-

dous precision of 2 × 10− 9 % or better to be sensitive to the covariant cutoff. For a typical

inflationary spacetime such as de Sitter spacetime, or a more realistic cosmological model such

as power law inflation, the effect of a covariant cutoff may well be much larger than in the case

of Minkowski space, and α may be closer to 1, given that inflation tends to amplify quantum

fluctuations.

It is difficult, therefore, to predict the value of α and therefore to determine how large an effect

the covariant cutoff possesses in an expanding FRW spacetime at this stage. A detailed calculation

of α for the covariant UV cutoff in the inflationary scenario is progress.
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APPENDIX: TWO-POINT FUNCTION CALCULATION DETAILS

In this appendix, we discuss the details of how we calculate the covariantly bandlimited two-

point function in Minkowski space given by Eq. (58). Recall that the region of integration I(p)

assumes one of two qualitatively different forms depending on whether |p| ≤ � or |p| > �. We

must consider each case separately.

Consider the first case. Here, I(p) = [−
√

|p|2 + �2,
√

|p|2 + �2]. Recall that the poles of the

integrand in Eq. (58) occur at p0 = ±ω = ±
√

|p|2 + m2, so if m < �, the poles lie within the

bounds of integration, and if m > �, the poles lie outside the bounds. Only the first case is physical,

as we cannot have masses whose magnitudes lie beyond the Planck scale, to which � is set. Thus,

further assume that m < �. We can then evaluate the integral in Eq. (58) as follows:

Gc
F (t = t ′, p) =

i

(2π )5/2

∫ r2

−r2

dp0

1

p2
0 − ω2

(A1)

=
i

(2π )5/2

[∫ ∞

−∞
dp0

1

p2
0 − ω2

−
∫ ∞

r2

dp0

1

p2
0 − ω2

−
∫ −r2

−∞
dp0

1

p2
0 − ω2

]
(A2)

=
1

(2π )3/2

1

2ω
−

2i

(2π )5/2
lim

R→∞

∫ R

r2

dp0

1

p2
0 − ω2

, (A3)

where r2:=
√

|p|2 + �2. We have that

lim
R→∞

∫ R

r2

dp0

1

p2
0 − ω2

= lim
R→∞

1

2ω
(ln |p0 − ω| − ln |p0 + ω|)

∣∣∣∣
R

r2

(A4)

=
1

2ω
ln

(
r2 + ω

r2 − ω

)
, (A5)

so for |p| ≤ � and m < �,

Gc
F (t = t ′, p) =

1

(2π )3/2

1

2ω
−

i

(2π )5/2

1

ω
ln

(
r2 + ω

r2 − ω

)
. (A6)

For completeness, let us also calculate Gc
F (t = t ′, p) for m > �. In this case, the poles of the

integrand lie outside the bounds of integration, so we can evaluate the integral using the fundamental

theorem of calculus.

Gc
F (t = t ′, p) =

i

(2π )5/2

∫ r2

−r2

dp0

1

p2
0 − ω2

(A7)

=
i

(2π )5/2

1

2ω
(ln |p0 − ω| − ln |p0 + ω|)

∣∣∣∣
r2

−r2

(A8)

= −
i

(2π )5/2

1

ω
ln

(
ω + r2

ω − r2

)
. (A9)

Consider now the second case. Here, I(p) = [−
√

|p|2 + �2,−
√

|p|2 − �2] ∪
[
√

|p|2 − �2,
√

|p|2 + �2]. Again, the poles lie within the bounds of integration if m < �
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and outside the bounds if m > �. Assuming m < � and proceeding similarly to before, we have

Gc
F (t = t ′, p) =

i

(2π )5/2

[∫ −r1

−r2

dp0

1

p2
0 − ω2

+
∫ r2

r1

dp0

1

p2
0 − ω2

]
(A10)

=
i

(2π )5/2

[∫ ∞

−∞
dp0

1

p2
0 − ω2

(A11)

−
∫ −r2

−∞
dp0

1

p2
0 − ω2

−
∫ r1

−r1

dp0

1

p2
0 − ω2

−
∫ ∞

r2

dp0

1

p2
0 − ω2

]

=
1

(2π )3/2

1

2ω
−

i

(2π )5/2

1

ω

[
ln

(
r2 + ω

r2 − ω

)
− ln

(
ω + r1

ω − r1

)]
, (A12)

where r1:=
√

|p|2 − �2. In the case where m > �,

Gc
F (t = t ′, p) =

i

(2π )5/2

[∫ −r1

−r2

dp0

1

p2
0 − ω2

+
∫ r2

r1

dp0

1

p2
0 − ω2

]
(A13)

=
2i

(2π )5/2

∫ r2

r1

dp0

1

p2
0 − ω2

(A14)

= −
i

(2π )5/2

1

ω

[
ln

(
ω + r2

ω − r2

)
− ln

(
ω + r1

ω − r1

)]
. (A15)

1 C. Rovelli and S. Speziale, “Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction,” Phys. Rev. D 67,

064019 (2003).
2 S. Doplicher, K. Fredenhagen, and J. E. Robert, “Spacetime and fields, a quantum texture,” Commun. Math. Phys. 172,

187–220 (1995).
3 S. Doplicher, “The quantum structure of spacetime at the Planck scale and quantum fields,” in Proceedings of the 37th

Karpacz Winter School of Theoretical Physics New Developments in Fundamental Interaction Theories (AIP Conf. Proc.,

2001), Vol. 589, pp. 204–213.
4 G. Piacitelli, “Quantum spacetime: A disambiguation,” Symmetry, Integr. Geom.: Methods Appl. 6, 073 (2010).
5 T. Padmanabhan, “Duality and zero-point length of spacetime,” Phys. Rev. Lett. 78, 1854 (1997).
6 T. Padmanabhan, “The hypothesis of path integral duality I: Quantum gravitation corrections to the propagator,” Phys.

Rev. D 57, 6206 (1998).
7 P. Martinetti, F. Mercati, and L. Tomassini, “Minimal length in quantum space and integrations of the line element in

noncommutative geometry,” Rev. Math. Phys. 24, 1250010 (2012).
8 A. Kempf, “Fields over unsharp coordinates,” Phys. Rev. Lett. 85, 2873 (2000).
9 A. Kempf, “Covariant information-density cutoff in curved space-time,” Phys. Rev. Lett. 92(22), 221301 (2004).

10 A. Kempf, “Spacetime could be simultaneously continuous and discrete, in the same way that information can be,” New

J. Phys. 12, 115001 (2010).
11 C. E. Shannon, The Mathematical Theory of Communication (University of Illinois Press, Chicago, IL, 1949).
12 I. Pesenson, “A sampling theorem on homogenous manifolds,” Trans. Am. Math. Soc. 352(9), 4257–4269 (2000).
13 T. Jacobson, “Trans-Planckian redshifts and the substance of the space-time river,” Prog. Theor. Phys. Suppl. 136, 1–17

(1999).
14 R. H. Brandenberger, “Principles, progress, and problems in inflationary cosmology,” AAPPS Bulletin 11(2), 20–29

(2001); e-print arXiv:astro-ph/0208103.
15 J. Martin and R. H. Brandenberger, “Trans-Planckian problem of inflationary cosmology,” Phys. Rev. D 63, 123501

(2001).
16 U. H. Danielsson, “Note on inflation and trans-Planckian physics,” Phys. Rev. D 66, 023511 (2002).
17 G. Shiu, “Inflation as a probe of trans-Planckian physics: A brief review and progress report,” J. Phys.: Conf. Ser. 18(1),

188 (2005).
18 J. C. Niemeyer, “Inflation with a Planck-scale frequency cutoff,” Phys. Rev. D 63, 123502 (2001).
19 A. Kempf and J. C. Niemeyer, “Perturbation spectrum in inflation with a cutoff,” Phys. Rev. D 64, 103501 (2001).
20 R. H. Brandenberger and J. Martin, “The robustness of inflation to changes in super-Planck-scale physics,” Mod. Phys.

Lett. A 16(15), 999–1006 (2001).
21 R. H. Brandenberger and J. Martin, “Back-reaction and the trans-Planckian problem of inflation reexamined,” Phys. Rev.

D 71, 023504 (2005).
22 R. Easther, B. R. Greene, W. H. Kinney, and G. Shiu, “Inflation as a probe of short distance physics,” Phys. Rev. D 64,

103502 (2001).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.42.98 On: Thu, 22 Sep 2016

03:57:54

http://dx.doi.org/10.1103/PhysRevD.67.064019
http://dx.doi.org/10.1007/BF02104515
http://dx.doi.org/10.3842/SIGMA.2010.073
http://dx.doi.org/10.1103/PhysRevLett.78.1854
http://dx.doi.org/10.1103/PhysRevD.57.6206
http://dx.doi.org/10.1103/PhysRevD.57.6206
http://dx.doi.org/10.1142/S0129055X12500109
http://dx.doi.org/10.1103/PhysRevLett.85.2873
http://dx.doi.org/10.1103/PhysRevLett.92.221301
http://dx.doi.org/10.1088/1367-2630/12/11/115001
http://dx.doi.org/10.1088/1367-2630/12/11/115001
http://dx.doi.org/10.1090/S0002-9947-00-02592-7
http://dx.doi.org/10.1143/PTPS.136.1
http://arxiv.org/abs/astro-ph/0208103
http://dx.doi.org/10.1103/PhysRevD.63.123501
http://dx.doi.org/10.1103/PhysRevD.66.023511
http://dx.doi.org/10.1088/1742-6596/18/1/005
http://dx.doi.org/10.1103/PhysRevD.63.123502
http://dx.doi.org/10.1103/PhysRevD.64.103501
http://dx.doi.org/10.1142/S0217732301004170
http://dx.doi.org/10.1142/S0217732301004170
http://dx.doi.org/10.1103/PhysRevD.71.023504
http://dx.doi.org/10.1103/PhysRevD.71.023504
http://dx.doi.org/10.1103/PhysRevD.64.103502


022301-22 Kempf, Chatwin-Davies, and Martin J. Math. Phys. 54, 022301 (2013)

23 R. Easther, B. R. Greene, W. H. Kinney, and G. Shiu, “Generic estimate of trans-Planckian modifications to the primordial

power spectrum in inflation,” Phys. Rev. D 66, 023518 (2002).
24 R. Easther, B. R. Greene, W. H. Kinney, and G. Shiu, “Imprints of short distance physics on inflationary cosmology,”

Phys. Rev. D 67, 063508 (2003).
25 B. R. Greene, K. Schalm, G. Shiu, and J. P. van der Schaar, “Decoupling in an expanding universe: Backreaction

barely constrains short distance effects in the cosmic microwave background,” J. Cosmol. Astropart. Phys. 2005(02), 001

(2005).
26 R. Easther, W. H. Kinney, and H. Peiris, “Boundary effective field theory and trans-Planckian perturbations: Astrophysical

implications,” J. Cosmol. Astropart. Phys. 2005(08), 001 (2005).
27 R. M. Young, An Introduction to Non-Harmonic Fourier Series (Academic, New York, NY, 1980).
28 H. J. Landau, “Necessary density conditions for sampling and interpolation of certain entire functions,” Acta Math. 117,

37–52 (1967).
29 D. A. Linden, “A discussion of sampling theorems,” Proc. IRE 47(7), 1219–1226 (1959).
30 R. T. W. Martin, “Bandlimited functions, curved manifolds and self-adjoint extensions of symmetric operators,” Ph.D.

dissertation (University of Waterloo, Waterloo, ON, 2008); also available at http://hdl.handle.net/10012/3698.
31 M. A. Naimark, Linear Differential Operators in Hilbert Space, Part II (Frederick Ungar, New York, NY, 1968).
32 N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space (Dover, New York, NY, 1993).
33 M. Reed and B. Simon, Methods of Modern Mathematical Physics: Fourier Analysis, Self-Adjointness (Academic, Cam-

bridge, UK, 1999), Vol. 2.
34 I. W. Knowles, W. N. Everitt, and T. T. Read, “Limit-point and limit-circle criteria for Sturm-Liouville equations with

intermittently negative principal coefficients,” Proc. R. Soc. Edinb. [Math] 103(3-4), 215–228 (1986).
35 H. J. Weber, G. B. Arfken, and F. E. Harris, Mathematical Methods for Physicists (Elsevier, Burlington, MA, 2005).
36 E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups (American Mathematical Society, Providence, Rhode

Island, 1957).
37 C. T. Fulton and S. A. Pruess, “Eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems,” J. Math.

Anal. Appl. 188, 297–340 (1994).
38 R. T. W. Martin and A. Kempf, “Quantum uncertainty and the spectra of symmetric operators,” Acta Appl. Math. 106(3),

349–358 (2009).
39 V. F. Mukhanov and S. Winitzki, Introduction to Quantum Effects in Gravity (Cambridge University Press, Cambridge,

UK, 2007).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.42.98 On: Thu, 22 Sep 2016

03:57:54

http://dx.doi.org/10.1103/PhysRevD.66.023518
http://dx.doi.org/10.1103/PhysRevD.67.063508
http://dx.doi.org/10.1088/1475-7516/2005/02/001
http://dx.doi.org/10.1088/1475-7516/2005/08/001
http://dx.doi.org/10.1007/BF02395039
http://dx.doi.org/10.1109/JRPROC.1959.287354
http://hdl.handle.net/10012/3698
http://dx.doi.org/10.1017/S0308210500018874
http://dx.doi.org/10.1006/jmaa.1994.1429
http://dx.doi.org/10.1006/jmaa.1994.1429
http://dx.doi.org/10.1007/s10440-008-9302-7



