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A fully gradient elasticity model for bending of nanobeams is proposed by using a nonlocal thermodynamic approach. As a basic
theoretical novelty, the proposed constitutive law is assumed to depend on the axial strain gradient, while existing gradient elasticity
formulations for nanobeams contemplate only the derivative of the axial strain with respect to the axis of the structure. Variational
equations governing the elastic equilibrium problem of bending of a fully gradient nanobeam and the corresponding di�erential
and boundary conditions are thus provided. Analytical solutions for a nanocantilever are given and the results are compared with
those predicted by other theories. As a relevant implication of applicative interest in the research 	eld of nanobeams used in
nanoelectromechanical systems (NEMS), it is shown that displacements obtained by the present model are quite di�erent from
those predicted by the known gradient elasticity treatments.

1. Introduction

Nanostructures are nowadays widely used as main compo-
nents of many micro- and nanoelectromechanical systems
(MEMS andNEMS) [1–5]. Typical MEMS andNEMS consist
of thin beams made of metals, polymers, traditional silicon-
based materials, or functionally graded materials [6–11].

�emechanical behaviour of nanostructures can be stud-
ied by both theoretical and experimental methods; see, for
example, [12] for a review. Generally, conducting controlled
experiments at the nanoscale is di�cult and expensive.
Accordingly, theoretical modelling is the main tool for study-
ing the properties of nanostructures.

Nanobeams can be modelled by using an atomistic
approach [13, 14] or continuum mechanics-based models
which are extensively used due to computational simplicity
and e�ectiveness. One of the basic assumptions in continuum
models is that the lattice structure is neglected and it is
replaced by a continuum medium.

In this framework, several theories have been introduced
to consider small-scale e�ects at the micro- and nanoscale.

Unlike classical (local) elasticmodels, nonlocal elasticmodels
introduce length-scale parameters in the constitutive rela-
tions. On the basis of an analogy presented in [15, 16], nonlo-
cal e�ects on nanorods and nanobeams, formulated accord-
ing to the Eringen model, can be simulated by prescribing
suitable axial and curvature distortions on corresponding
local rods and beams. Accordingly a general procedure is
provided to establish if nonlocal nanorods and nanobeams
are free of small-scale e�ects.

Several models based on the Euler-Bernoulli or Timo-
shenko beam theories have been proposed in the literature
in order to develop e�ective nonlocal nanobeam models for
bending, buckling, and vibrations; see, for example, non-
local elasticity model [17–24] couple stress theory [25, 26],
modi	ed couple stress theory [27–29], gradient plasticity for
strain so�ening materials [30–33], gradient elasticity model
[34–40], and FE analysis of 	nite random composite bodies
[41, 42].

In particular, the existing gradient elasticity model (GM)
for Euler-Bernoulli nanobeams encompasses the 	rst deriva-
tive of the axial strain in the beam axis direction (see, e.g.,
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the recent contribution by Aifantis and coworkers [40, 43])
and disregards the other nonvanishing component of the
axial strain gradient.

�e aim of this paper is to propose a fully gradient
elasticity model (FUGM) for Euler-Bernoulli nanobeams,
starting from a thermodynamic approach, in which all the
components of the gradient of the axial strain are taken into
account to model the nonlocal behaviour of the nanobeam.
�e solutions of the FUGM in terms of transverse displace-
ments can thus be compared with the corresponding ones
evaluated by the GM. As a result, the in�uence of the gradient
component, which is usually disregarded in the GM, on the
bending behaviour of nanobeams can be clearly enlightened.

�e starting point of the present work is the de	nition
of the Helmholtz free energy in terms of the axial strain
and of its gradient. Accordingly a fully gradient elasticity
model (FUGM) for bending of Euler-Bernoulli nanobeams
is provided based on a nonlocal thermodynamic approach;
see, for example, [44, 45]. Two length-scale parameters
are introduced in the model and are associated with the
nonvanishing components of the strain gradient of the axial
strain.

Nonlocal thermodynamics allows us to build up a reliable
methodology to derive the nonlocal variational formulation
of the elastic equilibrium for the FUGM which yields the
di�erential equation with the relevant boundary conditions.

As an example, a nanocantilever with a concentrated load
at its tip is investigated using the FUGM. Results given by the
FUGMare comparedwith those evaluated by theGMand it is
shown that the e�ects of the gradient component are usually
disregarded in the GM; that is, the derivative of the axial
strain in the transverse direction is signi	cant.�e di�erence
between the results of the FUGM and the results of the GM
will be quantitatively shown and analysed. In particular, the
nanobeam solved by the FUGM becomes sti�er than the one
solved by the GM.

2. Nonlocal Thermodynamics for
Euler-Bernoulli Nanobeams

�e internal energy density � in a nonlocal elastic material
can be assumed in the form

� = � (�, ∇�, �) , (1)

where the kinematic internal variable∇� is the gradient of the
strain tensor � and � is the entropy.

Denoting by �(�, ∇�, �) the Helmholtz free energy
de	ned by means of the Legendre transform, the 	rst law of
thermodynamics for isothermal processes and for a nonlocal
behaviour (see, e.g., [44, 46]) can be formulated as follows:

∫
B

�̇ (�, ∇�, �) 	
 = ∫
B

� ∗ �̇ 	
 − ∫
B

̇�� 	
, (2)

where �̇ = 0 and � is the nonlocal stress tensor 	eld of the
bodyB.�e superscript dot indicates the di�erentiationwith
respect to time and the symbol ∗ denotes the single (double)

index saturation. �e energy balance in (2) can be written
pointwise inB in the form

�̇ = � ∗ �̇ − ̇�� + �, (3)

where the thermodynamic scalar variable � is the nonlocal
residual function which accounts for the energy exchanges
between neighbour particles (see, e.g., [47]). Since nonlocal
e�ects due to elastic deformations are con	ned into the body,
the residual � ful	ls the insulation condition:

∫
B

�	
 = 0. (4)

�e second principle of nonlocal thermodynamics for
isothermal processes is written in the local form ̇�� ≥ 0
everywhere inB, where ̇� is the internal entropy production
rate per unit volume; see, for example, [48]. Accordingly
the nonlocal Clausius-Duhem inequality for isothermal pro-
cesses follows from relation (3) in the form

� = ̇�� = � ∗ �̇ − �̇ + � ≥ 0, (5)

where the presence of the nonlocal residual function �
guarantees the nonnegativeness of the dissipation � and
accounts for material nonlocality.

�e body energy dissipationE is provided by integrating
relation (5) to get

E = ∫
B

̇�� 	
 = ∫
B

� ∗ �̇ 	
 − ∫
B

�̇ 	
 ≥ 0. (6)

Expanding relation (6), dissipation (5) is pointwise vanishing
according to the reversible nature of the model. As a conse-
quence, for any admissible deformationmechanism, it results
in

∫
B

� ∗ �̇ 	
 = ∫
B

	�� ∗ �̇ 	
 + ∫
B

	∇�� ∗ ∇�̇ 	
. (7)

In the next section, a fully gradient elasticity theory for
Euler-Bernoulli nanobeams is presented starting from (7) and
taking into account all the components of the strain gradient.

3. Fully Gradient Elasticity
Model for Nanobeams

Let us consider a homogeneous isotropic nanobeam of length�.�e �-coordinate is taken along the length of the beam and
the �-coordinate along the thickness and the �-coordinate
is taken along the width of the beam. �e geometry and
the applied loads of the nanobeam are such that the dis-
placements (��, ��, ��) along the axes (�, �, �) are functions
of the �- and �-coordinates. It is further assumed that the
displacement �� is identically zero. �e cross-sectional area� and the second moment of area � about the �-axis are

(�, �) = ∫
Ω
(1, �2) 	�. (8)



Mathematical Problems in Engineering 3

�e proposed fully gradient elasticity model (FUGM) for
Euler-Bernoulli nanobeams is based on the following classical
displacement 	eld:

�� (�, �) = −V(1) (�) �,
�� (�, �) = V (�) ,
�� (�, �) = 0,

(9)

where V is the transverse displacement and the apex ⋅(�)
denotes the �-derivative of the function ⋅ along the nanobeam
axis �. �e rotation � of the cross-section of the nanobeam is�(�) = V

(1)(�).
Accordingly the nonvanishing kinematically compatible

deformation is given by the axial strain

�� (�, �) = −V(2) (�) � (10)

and the related nonvanishing components of the strain
gradient are

��� (�, �)�� = −V(3) (�) �,
��� (�, �)�� = −V(2) (�) = −�,

(11)

where � denotes the bending curvature of the nanobeam. In
the sequel, for simplicity, the subscript � of strains will be
dropped.

3.1. Variational Formulation of Elastic Equilibrium. �e pro-
posed FUGM for Euler-Bernoulli nanobeams is governed by
the following expression of the free energy:

� (�, �(1)) = 12��2 + 12� 2��(1)2 + 12� 2��2 (�) , (12)

where � is Young’s modulus. �e coe�cients  � = �0!� and � = �0!� incorporate small-scale e�ects, where �0 is amaterial
constant and (!�, !�) are the material length-scales associated
with the variation of the normal strain in the longitudinal
direction � and in the transversal direction �. Accordingly,
the nonlocal model depends on two parameters  � and  �.

Note that the nonlocal model tends to the local model in
the limit of vanishing nonlocal parameters as shown in the
sequel.

Using expression (12) of the free energy, the thermody-
namic requirement (7) provides the variational formulation:

∫
B

" ̇� 	
 = ∫
B

Σ ̇� 	
 + ∫
B

"1 ̇�(1)	
, (13)

where the static variables Σ and "1 denote the axial stresses
which are, respectively, duals of the strain � and of the strain

derivative �(1). �us, the axial stresses Σ and "1 are explicitly
given by

Σ = ���� = "0 + "2,
"1 = ��

��(1) = � 2��(1),
(14)

where "0 = �� and "2 = � 2��/�2.

4. Bending Solution

�e explicit expression of the variational formulation for the
FUGM can be recovered by (13). In fact substituting the
kinematically compatible relation (10) and the expression
of the strain derivatives (11) in (13) we get the nonlocal
variational formulation associated with the FUGM:

∫�
0
$V̇
(2)	� = ∫�

0
$0V̇(2)	� + ∫�

0
$1V̇(3)	�

+ ∫�
0
%V̇(2)	�,

(15)

where the stress resultant moments are

($,$0,$1, %) = −∫
Ω
(", "0, "1, "2) � 	�. (16)

�e di�erential equilibrium equation and the boundary
conditions corresponding to the proposed nonlocal FUGM
can be obtained by applying the integration by parts to the
nonlocal variational formulation (15) to get

V̇:$(2) = $(2)0 − $(3)1 + %(2) (17)

and the boundary conditions are

specify V or − $(1) = −$(1)0 + $(2)1 − %(1),
specify V

(1) or $ = $0 − $(1)1 + %,
specify V

(2) or 0 = $1.
(18)

�e classical di�erential equilibrium relation can be recov-

ered by integrating by parts the l.h.s. of (15) to get$(2) = &�,
where &� is the distributed transversal load. �e boundary

conditions at � = {0, �} provide the relations � = −$(1) = F

and $ = M, where � is the shear force and (F,M) are the
transverse force and couple, respectively.

Di�erential equation (17) and boundary conditions (18) of
the FUGMcan be reformulated in terms of the transverse dis-
placement V by expressing the bendingmoments ($0,$1, %)
in the following forms:

($0,$1) = −∫
Ω
�� (�,  2��(1)) 	� = �� (V(2),  2�V(3)) ,

% = −∫
Ω
� 2� ��	� = �� 2�V(2)

(19)

so that the di�erential equilibrium equation for the nonlocal
FUGM can be obtained by substituting (19) into (17) and (18)
to get

V̇:� (� +  2��) V(4) −  2���V(6) = &� (20)

and the related boundary conditions are

specify V or � = −� (� +  2��) V(3) +  2���V(5),
specify V

(1) or $ = �(� +  2��) V(2) −  2���V(4),
specify V

(2) or 0 = �� 2�V(3).
(21)
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�e bending moment can then be obtained in terms of the
transverse displacement by performing an integration by
parts of the second term at the r.h.s. of (15). Hence, we have

$ = $0 − $(1)1 + % = � (� +  2��) V(2) −  2���V(4) (22)

and the boundary condition $1 = 0 at � = {0, �} is ful	lled
due to (18)3.

�e boundary conditions to be imposed at the end
of a nanobeam to determine the six unknown coe�cients
associated with the FUGM are reported herea�er for external
constraints of engineering interest:

(i) simply supported end at the point � = �0
V (�0) = 0,

� (� +  2��) V(2) (�0) −  2���V(4) (�0) = 0,
V
(3) (�0) = 0;

(23)

(ii) clamped end at the point � = �0
V (�0) = 0,

V
(1) (�0) = 0,
V
(3) (�0) = 0;

(24)

(iii) free end at the point � = �0 loaded by a couple M
and a forceF:

−� (� +  2��) V(3) (�0) +  2���V(5) (�0) = F,
� (� +  2��) V(2) (�0) −  2���V(4) (�0) = M,

V
(3) (�0) = 0.

(25)

Remark 1. If the parameter  � is vanishing, the governing
equation (20) and the boundary conditions (21) pertaining
to the FUGM degenerate to the corresponding relations of
the nonlocal Euler-Bernoulli nanobeam theory based on
the gradient elasticity model (GM). Moreover, if both the
material parameters  � and  � are equal to zero, the governing
equations (20) and boundary conditions (21) reduce to those
of the classical (local) Euler-Bernoulli beam model.

5. Example: Cantilever Nanobeam

�e solutions of the FUGM obtained in the previous sections
are specialized for a nanocantilever subjected to a concen-
trated load' at its tip in terms of the six unknown coe�cients*	 with - = {1, 6} introduced below. �e geometric constants
are the length �, the width %, and the height3.

To this end it is convenient to introduce the following
dimensionless parameter4 related to the length-scale param-
eter  � by the expression

4 = √1 + ��  2� = √1 + ( �9 )2 ≥ 1, (26)

where 9 = √�/� is the radius of gyration.

�e solution of the sixth-order di�erential equation (20)
is

V (�) =  3�44 �(
/��)�*1 +
 3�44 �−(
/��)�*2 + *3 + *4�

+ *5�2 + *6�3
(27)

and bending moment (22) is given by

$ = 2��42*5 + 6��42*6�. (28)

�e six unknown coe�cients are evaluated by means of the
boundary conditions provided by relations (24) at � = 0 and
by relations (25) at � = �, whereM = 0 andF = '.

Accordingly the six unknown coe�cients of the FUGM
appearing in the expression of transverse displacement (27)
and of bending moment (28) are given by

*1 = '�� (1 + �(�/��)
) 4 ,
*2 = − �(�/��)
'�� (1 + �(�/��)
) 4 ,

*3 =  3� (−1 + �(�/��)
) '
�� (1 + �(�/��)
) 45 ,

*4 = −  2�'��44 ,
*5 = '�2��42 ,
*6 = − '6��42 .

(29)

�e lower and upper bounds V0 and V∞ of the nanocantilever
transverse displacement V can then be evaluated by taking the
limit of V for  � → 0 and  � → +∞, respectively, and are
given by

V0 = '��22�� − '�36�� ,
V∞ = '��24��42 .

(30)

Hence, the displacement V of the FUGM belongs to the
strip bounded by the functions V0 and V∞. Note that the
lower bound coincides with the classical (local) displacement
V0 of the considered nanocantilever and the upper bound
V∞ depends on 4, that is, the length-scale parameter  �.
Moreover, the nonlocal displacement V tends to vanish for4 → ∞.

�e bending moment (28) of the considered statically
determined nanobeam reduces to its classical (local) coun-
terpart $ = '(� − �) and the shear force is � = −$(1) = '.
A general theoretical motivation of this result is reported in
[20].
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Remark 2. �e expression of the transverse displacement
pertaining to the GM is obtained from (27) of the FUGM by
setting 4 = 1 (i.e.,  � = 0) into the expressions of the six
coe�cients (29).

Let us now introduce the following dimensionless quan-
tities:

A = �� ,
B = �� ,
C = %� ,
ℎ = 3� ,
E� =  �� ,
E� =  �� ,
V
∗ = V

��'�3 .

(31)

�us, the parameter 4 (see (26)) can be rewritten as 4 =
√1 + 12(E�/ℎ)2 and its plot is reported in Figure 1 in terms

of the dimensionless ratio E�/ℎ =  �/3.
For computations, we assume the following values of the

dimensionless parameters: E� ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} and4 ∈ {1, 1.1, 1.2, 1.5, 2} which yields E�/ℎ ∈ {0, 0.13, 0.19, 0.32,0.5}.
�e transverse dimensionless de�ection V

∗ of the nano-
cantilever is plotted in Figure 2 for E� = 0 with 4 = 1 and forE� = 0.2 with 4 ∈ {1, 1.1, 1.2, 1.5, 2}.

Note that the transverse dimensionless de�ection V
∗

obtained by the FUGM

(i) with E� = 0 and 4 = 1 coincides with the classical
(local) solution V

∗
0 ;

(ii) with E� ̸= 0 and4 = 1 coincides with the one obtained
by the GM with the corresponding E�;

(iii) for a given E� and for increasing values of 4 the
nanocantilever becomes sti�er than the solution
obtained by the GM.

�e dimensionless upper bound V
∗
0 of the transverse

de�ection is independent of the length-scale parameters(E�, 4) and is reported in Figure 2 with the black dot-dashed
line. �e dimensionless lower bound V

∗
∞ depends on the

parameter 4 and is reported in Figure 2 with a coloured dot-
dashed line for the considered values of 4. Hence, for a given4, the transverse dimensionless de�ection V

∗ of the FUGM
belongs to the strip bounded by V∗0 and by V

∗
∞, corresponding

to the chosen 4, for any value of the dimensionless length-
scale parameter E�.

�e transverse dimensionless de�ection V
∗ of the

nanocantilever is reported in Figure 3 for E� = 0 and
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Figure 1: Parameter 4 in terms of the dimensionless ratio E�/ℎ = �/3.
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Figure 2: Transverse dimensionless de�ection V
∗ of the nanocan-

tilever for E� = 0, with 4 = 1, and for E� = 0.2, with4 ∈ {1, 1.1, 1.2, 1.5, 2}, the dimensionless upper bound V
∗
0 , and the

dimensionless lower bound V
∗
∞ depending on the parameter 4.

4 ∈ {1, 1.1, 1.2, 1.5, 2}. �e vanishing of the length-scale
parameter E� ensures that the GM provides the same
solution of the classical (local) model. On the contrary, the
FUGM induces a nonlocal behaviour due to the presence
of the parameter 4 as shown in Figure 3. As a consequence,
the nanocantilever becomes sti�er than the local one for
increasing values of the nonlocal parameter 4.

�e maximum dimensionless de�ection V
∗(1) of the

nanocantilever obtained by the FUGM is plotted in Figure 4
in terms of the dimensionless parameter 4 for di�erent values
of E�. �e magnitude of 4 ranges in the interval [1, 4], E� ∈{0, 0.1, 0.2, 0.3, 0.4, 0.5}, and all the plots have a horizontal
asymptote V∗ = 0 for 4 → +∞; that is, E� → +∞.

Denoting by V
∗
�(1) the maximum dimensionless de�ec-

tion of the nanocantilever obtained by the GM, the compar-
ison between V

∗(1) and V
∗
�(1) is reported in Table 1 where

the variation Δ between the two maximum dimensionless
de�ections is evaluated according to formula Δ = [V∗(1) −
V
∗
�(1)]/V∗�(1).

�e maximum dimensionless de�ection in the classical
(local) Euler-Bernoulli model is V∗0 (1) = 1/3 and is recovered
from the FUGM by setting E� = 0 and 4 = 1; that is, E� = 0.
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Figure 3: �e transverse dimensionless de�ection V
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nanocantilever for E� = 0 and 4 ∈ {1, 1.1, 1.2, 1.5, 2}.
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Figure 4:Maximumdimensionless de�ection V∗(1) of the nanocan-
tilever in terms of the dimensionless parameter 4 for E� ranging in
the set {0, 0.1, 0.2, 0.3, 0.4, 0.5}.

Table 1 clearly shows that the maximum dimensionless
de�ection evaluated by the FUGM quickly decreases for
increasing4with respect to the corresponding one of theGM.
Analogously, for a given 4, the FUGM becomes sti�er than
the corresponding GM for increasing E�.
6. Conclusions

A fully gradient nanobeam model (FUGM) is presented
for the static bending of nanobeams based on a consistent
thermodynamic approach. �e governing equations and
the related high-order boundary conditions are derived by
using a variational formulation of the nonlocal model. �e
proposed theory can be specialized to recover the gradient
elasticity beam model (GM).

Analytical solutions of the proposed nonlocal fully gra-
dient nanobeam model in terms of transverse displacements
are provided for nanocantilevers.

Present results are comparedwith the corresponding ones
obtained using the gradient elasticity model to establish the
validity of the present formulation.

Table 1: Comparison between the maximum dimensionless de�ec-
tions V∗(1) of the FUGM and V

∗
�(1) of the GM for di�erent values

of E� and 4 for the considered nanocantilever. �e variation is Δ =[V∗(1) − V
∗
�(1)]/V∗�(1).

E� V
∗
�(1) 4 V

∗(1) Δ%

0 0.333333
1.0 0.333333 0%1.1 0.275482 −17.36%1.2 0.231481 −30.56%1.5 0.148148 −55.56%2.0 0.0833333 −75.00%

0.1 0.325333
1.0 0.325333 0%1.1 0.269894 −17.04%1.2 0.227463 −30.08%1.5 0.146436 −54.99%2.0 0.0827708 −74.56%

0.2 0.309119
1.0 0.309119 0%1.1 0.258015 −16.53%1.2 0.21859 −29.29%1.5 0.142352 −53.95%2.0 0.0813333 −73.69%

0.3 0.293613
1.0 0.293613 0%1.1 0.245869 −16.26%1.2 0.208999 −28.82%1.5 0.137386 −53.21%2.0 0.0793915 −72.96%

0.4 0.281914
1.0 0.281914 0%1.1 0.236127 −16.24%1.2 0.200882 −28.74%1.5 0.132625 −52.96%2.0 0.0772798 −72.59%

0.5 0.273732
1.0 0.273732 0%1.1 0.22899 −16.35%1.2 0.194675 −28.88%1.5 0.128565 −53.03%2.0 0.0752398 −72.51%

�e novelty of the present paper arises from the several
points. Firstly, as stated above, a more general nonlocal
nanobeam model that contains existing beam theories (clas-
sical and gradient elasticity theories) as special cases is
proposed. Two nonlocal parameters are introduced in the
FUGM in order to consider the nonlocal contributions in the
beam axis direction and in the transverse direction.

Secondly, the following implications of technical interest
are reported below.

(1) �e proposed FUGM shows that an increasing of the
nonlocal parameter associated with the strain gradi-
ent component in the transverse direction provides an
increasing of the nanostructural sti�ness so that the
de�ection of a nanobeam reduces with respect to the
corresponding one of the local model; see Figures 2,
3, and 4.
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(2) �e existing gradient elasticity model (GM) of Euler-
Bernoulli nanobeams overestimates the displacement
solution when compared with the new gradient elas-
ticity model (FUGM) as reported in Figures 2-3.

(3) �e proposed FUGM provides upper and lower
bounds for displacements in terms of the parameter4. �e upper bound is independent of the small-scale
parameters while the lower bound depends on the
nonlocal parameter 4.

(4) �e results given in Table 1 can be useful benchmarks
for other researchers to compare their outcomes in the
future.
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