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Abstract
State minimization of incompletely specified machines is an impor-

tant step of FSM synthesis. An exact algorithm consists of generation
of prime compatibles and solution of a binate covering problem. This
paper presents an implicit algorithm for exact state minimization of
FSM’s. We describe how to do implicit prime computation and im-
plicit binate covering. We show that we can handle sets of compatibles
and prime compatibles of cardinality up to 21500. We present the first
published algorithm for fully implicit exact binate covering. We show
that we can reduce and solve binate tables with up to 106 rows and
columns. The entire branch-and-bound procedure is carried on im-
plicitly. We indicate also where such examples arise in practice.

1 Introduction
Implicit techniques are based on the idea of operating on discrete

sets by their characteristic functions represented by Binary Decision
Diagrams (BDD’s). In many cases of practical interest these sets have
a regular structure that translates into small-sized BDD’s. BDD’s can
be manipulated efficiently with the usual Boolean operators.

Previous work showed how to compute implicitly the primes of
a Boolean function and how to reduce implicitly the unate table of
the Quine-McCluskey procedure to its cyclic core ([4, 8]). Exact
solutions to problems too hard for ESPRESSO were found. Implicit
techniques increase the size of problems that can be solved exactly in
logic synthesis and verification.

This paper presents an implicit algorithm for exact state minimiza-
tion of incompletely specifiedFSM’s (ISFSM’s), an NP-hard problem.
The classical algorithm for state minimization of ISFSM’s [6] reduces
the problem to the computation of prime compatibles and the selec-
tion of a minimum closed set of them by means of a binate covering
step [14]. To compute prime compatibles one must examine compat-
ible sets of states. If an FSM has too many compatibles, either the
prime computation or the binate covering step will be intractable with
explicit techniques. Interesting classesof FSM’s yield such intractable
problems.

In this paper we describe how to do implicit prime computation
and implicit binate covering. Since generation of compatibles and
solution of binate covering are common problems in logic synthesis,
the techniques that we are going to describe have a large applicability.
We show that we can handle sets of compatibles and prime compat-
ibles of cardinality up to 21500, a size clearly unattainable by explicit
enumeration. We present the first implicit exact algorithm for binate
covering. We report results of an implementation capable of reducing
and solving huge binate tables (up to 106 rows and columns). The
entire branch-and-bound procedure is carried on implicitly. Previ-
ous implicit implementations of unate covering did not address the
problem of finding implicitly a branching column and a lower bound.

The remainder of the paper is organized as follows. Section 2
introduces implicit representations and manipulations. Algorithms
for implicit generation of compatibles are presented in Section 3.
Section 4 gives some generalities on binate covering. Generation of the
implicit binate table is described in Section 5. Implicit table reduction
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is described in Section 6, while other implicit table manipulations are
briefly given in Section 7. Results on a variety of benchmarks are
reported and discussed in Section 8. Conclusions and future work are
summarized in Section 9. These implicit algorithms are discussed in
greater lengths in [9].

2 Implicit Representations and Manipulations
Algorithms for sequential synthesis have been developed primarily

for State Transition Graphs (STG’s). STG’s have been usually repre-
sented in two-level form where state transitions are stored explicitly,
one by one. Alternatively, STG’s can be represented implicitly with
Binary Decision Diagrams (BDD’s) [2, 1]. BDD’s represent Boolean
functions (e.g. characteristic functions of sets and relations) and have
been amply reported in the literature [2, 1], to which we refer.1

2.1 Implicit FSM Representation

A Finite State Machine (FSM) can be represented by a 5-tuple
(I;O; S;T ;O). I and O are the sets of input patterns and output
patterns. S is the set of states. T � I�S�S is the transition relation
that relates a next state to an input and a present state. O � I�S�O
is the output relation that relates an output to an input and a present
state. An FSM, where each (input, state) pair is related to exactly
one next state and one output, is a completely specified FSM. An
incompletely specified FSM is one where either the next state or the
output is not specified for at least one (input, state) pair.

If a next state is unspecified, no transitions on the (input, state) pair
need to be considered for the purposeof state minimization, so they are
omitted fromT . On the other hand,we represent all unspecified output
patterns inO corresponding to an (input, state) pair, to ensure correct-
ness of the output compatibles computation described in Section 3.1.
The transition and output relations are given by:

T (i; p; n) = 1 iff n is the specified next state of state p on input i
O(i; p; o) = 1 iff o is a (possibly unspecified) output of state p on i

where i and o are Boolean vectors of signals while p and n are repre-
sented by positional-sets defined below.

2.2 Positional-set Representation

To perform state minimization, one needs to represent and manip-
ulate efficiently sets of states, or state sets, (such as compatibles) and
sets of sets of states (such as sets of compatibles). Our goal is to
represent any set of sets of states implicitly as a single BDD, and
manipulate such state sets symbolically all at once. Different sets of
sets of states can be stored as multiple roots with a single shared BDD.

Suppose a FSM has n states, there are 2n possible distinct subsets
of states. In order to represent collections of them, each subset of
states is represented in positional-set form, using a set of n Boolean
variables, x = x1x2 : : : xn. The presence of a state sk in the set is
denoted by the fact that variable xk takes the value 1 in the positional-
set, whereas xk takes the value 0 if state sk is not a member of the set.
One Boolean variable is needed for each state because the state can
either be present or absent in the set.2 For example, if n = 6, the set

1
9x(F) (8x(F))denotes the existential (universal)quantificationof functionF over

variablesx;) denotes Boolean implication;, denotes XNOR;: denotes NOT.
2The representation of primes proposed by Coudert et al. [3] needs 3 values per

variable to distinguish if the present literal is in positive or negative phase or in both.



with a single state s4 is represented by 000100 while the set of states
s2s3s5 is represented by 011010.

A set of sets of states is represented as a set S of positional-sets
by a characteristic function �S : Bn ! B as: �S(x) = 1 iff the set
of states represented by the positional-set x is in the set S. A BDD
representing �S(x) will contain minterms, each corresponding to a
state set in S.

2.3 Operations on Positional-sets

With our definitions of relations and positional-set notation for
representing set of states, useful operators on sets and sets of sets can
be derived. We have proposed in [9] a unified notational framework
for set manipulation, extending the work by Lin et al. in [11]. Here
we define some relationships between two sets, between two sets of
sets, between a set and a set of sets, etc.

Theorem 2.1 Set equality, containmentand strict-containment be-
tween two positional-sets x and y can be captured by the following
constraints: (x = y) =

Qn

k=1 xk , yk; (x � y) =
Qn

k=1 yk )

xk; and (x � y) = (x � y) � (x 6= y).

Theorem 2.2 Given two sets of positional-sets, complementation,
union, intersection, and sharp can be performed on them as logical
operations (:;+; �; �:) on their characteristic functions.

Theorem 2.3 Given the characteristic functions �A(x) and �B(x)
representing two sets A and B (of positional-sets), the set contain-
ment test is true iff setA contains set B, and can be computed by:

Set Containx(�A; �B) = 8x [�B(x)) �A(x)]

Theorem 2.4 Given a characteristic function �A(x) representing a
set A of positional-sets, set union defines a positional-set y which
represents the union of all state sets in A, and can be computed by:

Set Unionx(�A; y) =

nY

k=1

yk , 9x [�A(x) � xk]

For each bit position k, the right-hand expression sets yk to 1 iff
there exists an x 2 �A such that its kth bit is a 1. This implies
that the positional-set y will contain the kth element iff there exists a
positional-set x in A such that k is a member of x.

Theorem 2.5 The maximal of a set F of sets is the set containing
sets in F not strictly contained by any other set in F , and is given by:

Maximalx(�F ) = �F (x)� 6 9y [�F (y) � (y � x)]

The term 9y [�F (y) � (y � x)] is true iff there is a positional-set y in
�F such that y � x. In such a case, x cannot be in the maximal set
by definition, and are taken away from �F (x).

2.4 k-out-of-n Positional-sets

We define a family of sets of state sets,Tuplen;k (x), which contain
all positional-sets x � S with exactly k states in them. Their BDD’s
can constructed by the following algorithm, by calling Tuple(n; k):

Tuple(i; j) f
if (j < 0) or (i < j) return 0
if (i = 0) and (i = j) return 1
return ITE(xi; Tuple(i� 1; j � 1); Tuple(i� 1; j))

g

Tuple(i; j) contains positional-sets of cardinality j with i variables,
x1; x2; : : : ; xi, which can be grouped into those that include state
i and those that do not. The latter group simply corresponds to
Tuple(i � 1; j), the set of positional-sets of cardinality j with only
x1; x2; : : : ; xi�1 (using one less variable). The former group can
be obtained by adding state i to each positional-set in Tuple(i �
1; j � 1), the set of positional-sets of cardinality j � 1 with i � 1
variables. Therefore Tuple(i; j) can be computed recursively by
ITE(xi; Tuple(i � 1; j � 1); Tuple(i� 1; j)). Recursion can stop
when a termination condition as shown is met. The BDD size and time
complexity of Tuple(n; k) are bothO(nk), provided its intermediate
results are memoized in a computed table ([1]).

3 Implicit Generation of Compatibles
An exact algorithm for state minimization consists of two steps:

generation of various sets of compatibles, and solution of a binate
covering problem. The generation step involves identification of sets
of states called compatibles which can potentially be merged into
a single state in the minimized machine. Unlike the case of CS-
FSM’s, where state equivalence partitions the states, compatibles for
incompletely specified FSM may overlap. As a result, the number of
compatibles can be exponential in the number of states ([13]), and the
generation of the whole set of compatibles can be a challenging task.

The covering step (described in Sections 4 to 7) is to choose a
minimum subset of compatibles satisfying covering and closure con-
ditions, i.e., to find a minimum closed cover. The covering conditions
require that every state is contained in at least one chosen compatible.
The closure conditions guarantee that the states in a chosen compati-
ble are mapped by any input sequence to states contained in a chosen
compatible.

In this section, we describe implicit computations to find sets of
compatibles required for exact state minimization.

3.1 Output Incompatible Pairs

To generate compatibles, incompatibility relations between pairs of
states are derived first from the given output and transition relations.

Definition 3.1 Two states are an output incompatible pair if, for
some input, they cannot generate the same output. The set of output
incompatible pairs,OICP(y; z), can be computed as:

OICP(y; z) = Tuple1(y)�Tuple1(z)�9i 6 9o [O(i; y; o)�O(i; z; o)]

Although y and z can represent any positional-sets, the conditions
Tuple1(y) �Tuple1(z) restrict them to represent only pairs of single-
ton states. The last term is true iff for some input i, there is no output
pattern that both state y and z can produce (i.e., output incompatible).

3.2 Incompatible Pairs

Definition 3.2 Two states are an incompatible pair if (1) they are
output incompatible, or (2) on some input, their next states are an
incompatible pair. The set of incompatible pairs is the least fixed
point of ICP:

ICP(y; z) = OICP(y; z)+9i; u; v [T (i; y; u)�T (i; z; v)�ICP(u; v)]

and can be computed by the following iteration:

ICP0(y; z) = OICP(y; z)

ICPk+1(y; z) = ICPk(y; z)

+ 9i; u; v [T (i; y; u) � T (i; z; v) � ICPk(u; v)]

The iteration can terminate when ICPk+1 = ICPk (= ICP).

The fixed point computation starts with the set of output incompatible
pairs. After the kth iteration, ICPk+1(y; z) contains all the incom-
patible state pairs (y; z) that lead to an output incompatible pair in k
or less transitions. This set is obtained by adding state pairs (y; z)
to the set ICPk(y; z), if an input takes states (y; z) into an already
known incompatible pair (u; v).

3.3 Incompatibles

So far we established relationships between pairs of states. The
following definition introduces sets of states of arbitrary cardinalities.

Definition 3.3 A set of states is an incompatible if it contains at least
one incompatible pair. The set of incompatibles can be computed as:

IC(c) = 9y; z [ICP(y; z) �

nY

k=1

yk + zk ) ck]



Q
n

k=1 yk + zk ) ck performs bitwise OR on singletons y and z. If
either of their k-th bits is 1, the correspondingck bit is constrained to 1.
Otherwise, ck can take any values. The outer product

Qn

k=1 requires
that the above is true for each k. Thus, it generates all positional-sets
c which contain the union of the positional-sets y and z. The whole
computation defines all state sets c each of which contains at least an
incompatible pair of singleton states (y; z) 2 ICP .

3.4 Compatibles

Definition 3.4 A set of states is a compatible if it is not an incompat-
ible. The set of compatibles, C(c), can be computed as:

C(c) = :Tuple0(c) � :IC(c)

C(c) simply contains all non-empty subsets of states which are not
incompatibles. The empty set in positional-set notation is Tuple0(c)
and all subsets which are not incompatible are given by:IC(c).

3.5 Implied Classes of a Compatible

To set up the covering problem, we also need to compute the closure
conditions for each compatible. This is done by finding the class set
of a compatible, i.e., the set of next states implied by a compatible.

Definition 3.5 A set of states di is an implied set of a compatible c
for input i if di is the set of next states from the states in c on input i.

The implied set (in singleton form) of a compatible c for input i can
be defined by the relation F(c; i; n) which evaluates to 1 iff on input
i, n is a next state from state p in compatible c.

F(c; i; n) = 9p [C(c) � (c � p) � T (i; p; n)]

InF(c; i; n), a compatible c 2 C(c) and an input i are associated with
singleton next state n. Given c and i, n is in relation F(c; i; n) (i.e.,
state n is in the implied set of compatible c under input i) iff if there
is a present state p 2 c such that n is the next state of p on input i.

Note that the implied next states are represented here as singleton
states in F(c; i; n). All singletons n in relation with a compatible
c and an input i can be combined into a single positional-set, for
later convenience. This positional-set representation of implied sets
associates each compatible c with a set of implied sets d.

Theorem 3.1 The implied sets d (in positional-set form) of a compat-
ible c for all inputs are computed by the relation CI(c; d) as:

CI(c; d) = 9i [9n(F(c; i; n)) � Set Unionn(F(c; i; n); d)]

F(c; i; n) relates implied next states as singleton positional-setsn to
compatible c and input i and Set Unionn(F(c; i; n); d) forms the
union of these singleton sets by bitwise OR and produces a positional-
set d. The term 9n(F(c; i; n)) is needed, to exclude invalid (com-
patible, input) combinations. Finally the inputs i are existentially
quantified from the implied sets of c of different inputs.

3.6 Class Set of a Compatible

Definition 3.6 An implied set d of a compatible c is in its class set
iff (1) d has more than one element, and (2) d 6� c, and (3) d 6� d0 if
d0 2 class set of c.

We can ignore any implied set which contains only a single state,
because its closure condition is satisfied if the state is covered by some
chosen compatible. Also if d � c, the closure condition is satisfied
by the choice of c. Finally, if the closure condition corresponding to
d0 is stronger than that of d, the implied set d is not necessary.

Theorem 3.2 The class set of a compatible c is defined by the relation
CCS(c; d) which evaluates to 1 iff the implied set d is in the class set
of compatible c.

CCS(c; d) = :Tuple1(d) � (c 6� d) �Maximald(CI(c; d))

The singleton implied sets Tuple1(d) are excluded according to con-
dition 1 in Definition 3.6. By condition 2, we prune away implied
sets d which are contained in their compatibles c. Finally given a
compatible c,Maximald(CI(c; d)) gives all its implied sets dwhich
are not strictly contained by any other implied sets in CI(c; d).

3.7 Prime Compatibles

To solve exactly the covering problem, it is sufficient to consider a
subset of compatibles called prime compatibles. As proved in [6], at
least one minimum closed cover consists entirely of prime compati-
bles.

Definition 3.7 . A compatible c0 dominates a compatible c if (1)
c0 � c, and (2) class set of c0 � class set of c.

i.e., c0 dominates c if c0 covers all states covered by c, and the closure
conditions of c0 are a subset of the closure conditions of c. As a
result, compatible c0 expresses strictly less stringent conditions than
compatible c. Therefore c0 is always a better choice for a closed cover
than c, thus c can be excluded from further consideration.

Theorem 3.3 The prime dominance relation is given by:

Dominate(c0; c) = (c0 � c)�Set Containd(CCS(c; d);CCS(c
0

; d))

The two terms on the right express the two dominance conditions
by which c0 dominates c according to Definition 3.7. Since compat-
ibles c and c0 are represented as positional-sets, (c0 � c) is com-
puted according to Theorem 2.1. On the other hand, class sets are
sets of sets of states and are represented by their characteristic func-
tions. Containment between such sets of sets of states is computed by
8d CCS(c0; d)) CCS(c; d), as described by Theorem 2.3.

Definition 3.8 A prime compatible is a compatible not dominated
by another compatible. The set of prime compatibles is given by:

PC(c) = C(c)� 6 9c0 [C(c0) �Dominate(c0; c)]

Compatibles c that are dominated by some compatiblec0 are computed
by the expression9c0 [C(c0) �Dominate(c0; c)]. By definition, the set
of prime compatibles is simply given by the set of compatibles C(c)
excluding those that are dominated.

4 Implicit Binate Covering

The classical branch-and-bound algorithm for minimum-cost bi-
nate covering has been described in [6, 7] and implemented by means
of efficient computer programs (ESPRESSO and STAMINA). The branch-
and-bound solution of minimum binate covering is based on the fol-
lowing recursive procedure. In our implicit formulation, we keep the
branch-and-bound scheme, but we replace the traditional description
of the table as a (sparse) matrix with an implicit representation, using
BDD’s for the characteristic functions of the rows and columns of the
table. Moreover, we have implicit versions of the manipulations on
the binate table required to implement the branch-and-bound scheme.
In the following sections we are going to describe the following: im-
plicit representation of the covering table, implicit reduction, implicit
branching column selection, implicit computation of the lower bound,
and implicit table partitioning.

mincov(R;C;U ) f
(R;C) = Reduce(R;C;U )
if (Terminal Case(R;C))

if (cost(R;C) � U ) return no solution
else U = cost(R;C); return solution

L = Lower Bound(R;C)
if (L � U ) return no solution
ci = Choose Column(R;C)
S1 = mincov(Rci ; Cci ; U )
S0 = mincov(Rci ; Cci ; U )
return Best Solution(S1 [ fcig; S

0)
g



At each call of the binate cover routine mincov, the binate table
undergoes a reduction stepReduce and, if termination conditions are
not met, a branching column is selected and mincov is called recur-
sively twice, once assuming the selected column ci in the solution set
(on the table Rci ; Cci ) and once out of the solution set (on the table
Rci

; Cci
). Some suboptimal solutions are bounded away by comput-

ing a lower bound L on the current partial solution and comparing it
with an upper bound U (best solution obtained so far). A good lower
bound is based on the computation of a maximal independent set.

5 Implicit Covering Table Generation

We do not represent (even implicitly) the elements of the table, but
we make use only of a set of row labels and a set of column labels, each
represented implicitly as a BDD. They are chosen so that the existence
and value of any table entry can be readily inferred by examining its
corresponding row and column labels. This choice allows us to define
all table manipulations needed by the reduction algorithms in terms
of operations on row and column labels and to exploit all the special
features of the binate covering problem induced by state minimization
(for instance, each row has at most one 0).

Definition 5.1 A column is labelled by a positional-set p. The set of
column labels C is obtained by prime generation as C(p) = PC(p).

Beside distinguishing a row from another, each row label must
also contain information regarding the positions of 0 and 1’s in the
row. Each row label r consists of a pair of positional-sets (c; d).
Since there is at most one 0 in the row, the label of the column p
intersecting it in a 0 is recorded in the row label by setting its c part
to p. If there is no 0 in the row, c is set to the empty set, Tuple0(c).
Therefore a row label r corresponds to a unate clause iff relation
unate row(r) = Tuple0(c) is true. Because of Definition 5.3 for
row labels, the columns intersecting a row labelled r = (c;d) in a 1
are labelled by the prime compatibles p that contain d. i.e.,

Definition 5.2 The table entry at the intersection of a row labelled by
r = (c; d) 2 R and a column labelled by p 2 C can be inferred by:

the table entry is a 0 iff relation 0(r; p)
def
= (p = c) is true,

the table entry is a 1 iff relation 1(r; p)
def
= (p � d) is true.

Definition 5.3 The set of row labels R is given by:

R(r) = PC(c) � CCS(c; d) + Tuple0(c) � Tuple1(d)

The closure conditions associated with a prime compatible p are that
if p is included in a solution, each implied set d in its class set must be
contained in at least one chosen prime compatible. A binate clause of
the form (p+ p1 + p2 + � � �+ pk) has to be satisfied for each implied
set of p, where pi is a prime compatible containing the implied set d.
The labels for binate rows are given succinctly byPC(c) � CCS(c; d).
There is a row label for each (c; d) pair such that c 2 PC is a prime
compatible and d is one of its implied sets in CCS(c;d). This row
label consistently represents the binate clause because the 0 entry in
the row is given by the column labelled by the prime compatiblep = c,
and the row has 1’s in the columns labelled by pi wherever (pi � d).

The covering conditions require that each state be contained by
some prime compatible in the solution. For each state d 2 S, a unate
clause has to be satisfied which is of the form (p1 + p2 + � � � + pj)
where the pi’s are the prime compatibles that contain the state d. By
specifying the unate row labels to beTuple0(c)�Tuple1(d), we define
a row label for each state in Tuple1(d). Since the row has no 0, its c
part must be set to Tuple0(c). The 1 entries are correctly positioned
at the intersection with all columns labelled by prime compatibles pi
which contain the singleton state d.

From now on, we will use c as column label and C(c) will be the
set of column labels, as we no longer manipulate compatibles.

6 Implicit Reduction Techniques
Reduction rules aim to the following:
1. Selection of a column. A column must be selected if it is the only
column that satisfies a given row. A dual statement holds for columns
that must not be part of the solution in order to satisfy a given row.
2. Elimination of a column. A column ci can be eliminated if its
elimination does not preclude obtaining a minimal cover, i.e., if there
is another column cj that satisfies at least all the rows satisfied by ci.
3. Elimination of a row. A row ri can be eliminated if there exists
another row rj that expresses the same or a stronger constraint.

The order of the reductions affects the final result. Reductions are
usually attempted in a given order,until nothing changes any more (i.e.,
the covering matrix has been reduced to a cyclic core). The reductions
and order implemented in our reduction algorithm are summarized as
follows:

Reduce(R;C;U) f
repeat f

Collapse Columns(C); Column Dominance(R;C)
Sol = Sol [ Essential Columns(R;C)
if (jSolj � U) return no solution
Unacceptable Columns(R;C); Unnecessary Columns(R;C)
if (C does not cover R) return no solution
Collapse Rows(R); Row Dominance(R;C)

g until (both R and C unchanged)
return (R;C)

g

In the reduction, there are two cases when no solution is generated:
1. The added cardinality of the set of essential columns, and of the
partial solution computed so far, Sol, is larger or equal than the upper
boundU . In this case, a better solution is known than the one that can
be found from now on and so the current computation branch can be
bounded away.
2. After having eliminated essential, unacceptable and unnecessary
columns and covered rows, it may happen that the rest of the rows
cannot be covered by the remaining columns. In this case, the current
partial solution cannot be extended to any full solution.

We are going to describe how the reduction operations are per-
formed implicitly using BDD’s on the special table representation
described in the previous section.

6.1 Duplicated Rows and Columns

It is possible that more than one column (row) label is associ-
ated with columns (rows) that coincide element by element. We
need to identify such duplicated columns (rows) and collapse them
into a single column (row). This avoids the problem of columns
(rows) dominating each other when performing implicitly column
(row) dominance. The following computations can be seen as finding
the equivalence relation of duplicated columns (rows) and selecting
one representative for each equivalence class.

Theorem 6.1 Duplicated columns and rows can be detected and
collapsed by:

dup col(c0; c) = 8r [R(r)�:0(r; c0)�:0(r; c)�(1(r; c0), 1(r; c))]

C(c) = C(c)� 6 9c0 [C(c0) � dup col(c0; c) � (c0 � c)]

dup row(r0; r) = 8c [C(c)�(0(r0; c), 0(r; c))�(1(r0; c), 1(r; c))]

R(r) = R(r)� 6 9r0 [R(r0) � dup row(r0; r) � (r0 � r)]

For the column labels c0 and c to be in the relation dup col, the first
equation requires the following conditions to be met for every row
label r 2 R. Since each row has at most one 0, the row labelled
r cannot intersect either column at a 0, (i.e., :0(r; c0) � :0(r; c)).
In addition, the entry (r; c) is a 1 iff the entry (r; c0) is a 1, (i.e.,
1(r; c0), 1(r; c)).

The second computation picks a representative column label out
of a set of columns labels corresponding to duplicated columns. A



column label c is deleted from C iff there is a column label c0 which
has a smaller binary value than c and both label duplicated columns.
Here we exploit the fact that any positional-set c can be interpreted as
a binary number. Therefore, a unique representative from a set can be
selected by picking the one with the smallest binary value.

Detection of duplicated rows, selection of a representative row, and
table updating are performed by the third and last equations as in the
case of duplicated columns.

From now on, sometimes we will blur the distinction between a
column (row) label and the column (row) itself, but the context should
say clearly which one it is meant.

6.2 Column Dominance

Definition 6.1 A column c0 �-dominates another column c if c0 has
all the 1’s of c, and c0 contains no 0.

� dom(c0; c) =6 9r fR(r) � [1(r; c) � :1(r; c0) + 0(r; c0)]g

For column c0 to �-dominate c, the right-hand expression ensures that
there is not a row r 2 R such that either the table entry (r; c) is a 1
but the table entry (r; c0) is not, or the table entry (r; c0) is a 0.

Definition 6.2 A column c0 �-dominates another column c if (1) c0

has all the 1’s of c, and (2) for every row r0 in which c0 contains a 0,
there exists another row r in which c has a 0 such that disregarding
entries in column c0, r0 has all the 1’s of r.

� dom(c0; c) = 6 9r0 fR(r0) � [1(r0; c) � :1(r0; c0) + 0(r0; c0)� 6 9r

[R(r) � 0(r; c)� 6 9c00 [C(c00) � (c00 6= c
0) � 1(r; c00) � :1(r0; c00)] ]]g

According to the definition, the table should not contain a row r0 2 R
if either of the following two cases is true at that row: (1) table
entry at column c is a 1 while entry at column c0 is not a 1 (i.e.,
1(r0; c) �:1(r0; c0)), or (2) c0 has a 0 in row r0 (i.e., 0(r0; c0)) but there
does not exist a row r 2 R such that its column c is a 0 and disregarding
entries in column c0, row r0 has all the 1’s of row r. Rephrasing the
last part of the condition 2, the expression 6 9c00 [C(c00) � (c00 6= c0)
�1(r; c00) � :1(r0; c00)] requires that there is no column c00 2 C apart
from column c0 such that c00 has a 1 in row r, but not in row r0.

The conditions for �-dominance are a strict subset of those for �-
dominance, but �-dominance is easier to compute implicitly. Either
of them can be used for col dom. The set of dominated columns to
be deleted from the table can be computed as:

D(c) = C(c) � 9c0 [C(c0) � (c0 6= c) � col dom(c0; c)]

A column c 2 C is dominated if there is another different c0 2 C
which column dominates c.

Theorem 6.2 The following computations delete a set of columns
D(c) from a table (R;C) and all rows intersecting these columns in
a 0.

C(c) = C(c) � :D(c)

R(r) = R(r)� 6 9c [D(c) � 0(r; c)]

The first computation removes columns in D(c) from the set of
columns C(c). The expression 9c [D(c) � 0(r; c)] defines all rows
r intersecting the columns in D in a 0. They are deleted from R.

6.3 Row Dominance

Definition 6.3 A row r0 dominates another row r if r has all the 1’s
and 0 of r0 . Reduction by row dominance can be computed by:

row dom(r0; r) = 6 9c fC(c)�[1(r0; c)�:1(r; c)+0(r0; c)�:0(r; c)]g

R(r) = R(r)� 6 9r0 [R(r0) � (r0 6= r) � row dom(r0; r)]

For r0 to dominate r, the first equation requires that there is no column
c 2 C such that either the table entry (r0; c) is a 1 but the entry (r; c)
is not, or the entry (r0; c) is a 0 but the entry (r; c) is not. The second
equation says that any row r 2 R, dominated by another different row
r0 2 R, is deleted from the set of rows R(r) in the table.

6.4 Essential and Unacceptable Columns

Definition 6.4 A column c is an essential column if there is a row
having a 1 in column c and 2 everywhere else.

ess col(c) = C(c) � 9r fR(r) � unate row(r) � 1(r; c)

� 6 9c
0 [C(c0) � (c0 6= c) � 1(r; c0)] g

For a column c 2 C to be essential, there must exists a row r 2 R
which (1) does not contain any 0 (i.e., unate row(c)), (2) contains a 1
in column c (i.e., 1(r; c)), and (3) there is not another different column
intersecting the row in a 1 (i.e., 6 9c0 [C(c0) � (c0 6= c) � 1(r; c0)]).

Theorem 6.3 Essential columns must be in the solution. Each essen-
tial column must then be deleted from the table together with all rows
where it has 1’s. The following computations add essential columns
to the solution, delete them from the set of columns and delete all rows
in which they have 1’s:

solution(c) = solution(c) + ess col(c)

C(c) = C(c) � :ess col(c)

R(r) = R(r)� 6 9c [ess col(c) � 1(r; c)]

The first two equations move the essential columns from the column
set to the solution set. The last equation deletes from the set of rows
R all rows intersecting an essential column c in a 1.

Definition 6.5 A column c is an unacceptable column if there is a
row having a 0 in column c and 2 everywhere else.

unacceptable col(c) = C(c)�9r fR(r)�0(r; c)� 6 9c0 [C(c0)�1(r; c0)]g

For column c 2 C to be unacceptable, there must be a row r 2 R

which intersects the column c at a 0 and no column c0 intersects that
row r in a 1 (i.e., 6 9c0 [C(c0) � 1(r; c0)]).

Definition 6.6 A column is an unnecessary column if it does not
have any 1 in it.

unnecessary col(c) = C(c)� 6 9r [R(r) � 1(r; c)]

A column c 2 C is unnecessary if no row r 2 R intersects it in a 1.

Theorem 6.4 Unacceptable and unnecessary columns should be
eliminated from the table, together with all the rows in which such
columns have 0’s. The table (R;C) is updated according to Theorem
6.2 by setting D(c) = unacceptable col(c)+unnecessary col(c).

7 Other Implicit Covering Table Manipulations
To have a fully implicit binate covering algorithm as described in

Section 4, we must also compute implicitly a branching column and a
lower bound. These computations as well as table partitioning involve
solving a common subproblem of finding columns in a table which
have the maximum number of 1’s.

7.1 Selection of Columns with Maximum Number of 1’s

Given a binary relation F (r; c) as a BDD, the abstracted problem is
to find a subset of c’s each of which relates to the maximum number of
r’s in F (r; c). An inefficient method is to cofactorF with respect to c
taking each possible values ci, count the number of onset minterms of
eachF (r; c)jc=ci , and pick the ci’s with the maximum count. Instead
our algorithm, Lmax, traverses each node of F exactly once:

Lmax(F;r) f
v = bdd top var(F )
if (v 2 r) return (1; bdd count onset(F ))
else f /* v is a c variable */

(T; count T ) = Lmax(bdd then(F ); r)
(E; count E) = Lmax(bdd else(F ); r)
count = max(count T; count E)
if (count T = count E) G = ITE(v; T; E)
else if (count = count T ) G = ITE(v; T;0)
else if (count = count E) G = ITE(v;0; E)
return (G; count)

g
g



Lmax takes a relation F (r; c) and the variables set r as arguments
and returns the setG of c’s which are related to the maximum number
of r’s in F , together with the maximum count. Variables in c are
required to be ordered before variables in r. Starting from the root of
BDD F , the algorithm traverses down the graph by recursively calling
Lmax on its then and else subgraphs. This recursion stops when the
top variable v of F is within the variable set r. In this case, the BDD
rooted at v corresponds to a cofactor F (r; c)jc=ci

for some ci. The
minterms in its onset are counted and returned as count, which is the
number of r’s that are related to ci.

During the upward traversal of F , we construct a new BDD G in
a bottom up fashion, representing the set of c’s with maximum count.
The two recursive calls of Lmax return the sets T (c) and E(c) with
maximum counts count T and count E for the then and the else
subgraphs. The larger of the two counts is returned. If the two counts
are the same, the columns in T and E are merged by ITE(v; T;E)
and returned. If count T is larger, only T is retained as the updated
columns of maximum count. And symmetrically for the other case.
To guarantee that each node of BDD F (r; c) is traversed once, the
results of Lmax and bdd count onset are memoized in computed
tables. Note that Lmax returns a set of c’s of maximum count. If we
need only one c, some heuristic can be used to break the ties.

7.2 Implicit Selection of a Branching Column

The selection of a branching column is a key ingredient of an
efficient branch-and-bound covering algorithm. A good choice re-
duces the number of recursive calls, by helping to discover more
quickly a good solution. We adopt a simplified selection crite-
rion: select a column with a maximum number of 1’s. By defining
F 0(r; c) = R(r) � C(c) � 1(r; c) which evaluates true iff table entry
(r; c) is a 1, our column selection problem reduces to one of finding
the c related to the maximum number of r’s in the relation F 0(r; c),
and so it can be found implicitly by calling Lmax(F 0; r). A more
refined strategy is to restrict our selection of a branching column to
columns intersecting rows of a maximal independent set, because a
unique column must eventually be selected from each independent
row. A maximal independent set can be computed as follows.

7.3 Implicit Selection of a Maximal Independent Set of Rows

Usually a lower bound is obtained by computing a maximum inde-
pendent set of the unate rows. A maximum independent set of rows
is a (maximum) set of rows, no two of which intersect the same col-
umn at a 1. Maximum independent set is an NP-hard problem and an
approximate one (only maximal) can be computed by a greedy algo-
rithm. The strategy is to select short unate rows from the table, so we
construct a relation F 00(c; r) = R(r) �unate row(r) �C(c) �1(r; c).
Variables in r are ordered before those in c. The rows with the
minimum number of 1’s in F 00 can be computed by Lmin(F 00; c),
by replacing in Lmax the expressionmax(count T; count E) with
min(count T; count E). Once a shortest row, shortest(r), is se-
lected, all rows having 1-elements in common with shortest(r) are
discarded from F 00(c; r) by:

F
00(c; r) = F

00(c; r): 6 9c0 f9r0 [shortest(r0)�F 00(c0; r0)]�F 00(c0; r)g

Another shortest row can then be extracted from the remaining table
F 00 and so on, until F 00 becomes empty. The maximum independent
set consists of all shortest(r) so selected.

7.4 Implicit Covering Table Partitioning

If a covering table can be partitioned inton disjoint blocks, the min-
imum covering for the original table is the union of the minimum cov-
erings for the n sub-blocks. n-way partitioning can be accomplished
by successive extraction of disjoint blocks from the table. When the
following iteration reaches a fixed point, (Rk; Ck) corresponds to a
disjoint sub-block in (R;C).

R0(r) = Lmax(R(r) �C(c) � [0(r; c) + 1(r; c)] ; c)

Ck(c) = C(c) � 9r fRk�1(r) � [0(r; c) + 1(r; c)]g

Rk(r) = R(r) � 9c fCk(c) � [0(r; c) + 1(r; c)]g

This sub-block should be extracted from the table (R;C) and the
above iteration can be applied again to the remaining table, until the
table becomes empty. [9] provides a more detailed explanation.

8 Experimental Results
We implemented the algorithms described in the previous sections

in a program called ISM, an acronym for Implicit State Minimizer. We
ran ISM on different suites of FSM’s. They are: the MCNC bench-
mark and other examples, FSM’s from asynchronous synthesis [10],
FSM’s from learning I/O sequences [5], FSM’s from synthesis of in-
teracting FSM’s [15], constructed FSM’s that exhibit a large number
of maximal and prime compatibles, random FSM’s. Each suite has
different features with respect to state minimization. We present in
two tables the most interesting experiments. Table 1 summarizes the
results of computing prime compatibles. Table 2 summarizes the re-
sults of solving binate covering. Examples with a few compatibles
were not included in Table 1. Examples where primes are not needed
to find a minimum FSM were not included in Table 2. Comparisons
are made with STAMINA ([12], shortened as STAM in the tables), a pro-
gram that represents the state-of-art for state minimization based on
explicit techniques. All run times are reported in CPU seconds on a
DECstation 5000/260 with 440 Mb of memory.

8.1 Computation of Compatibles

Table 1 reports the numbers of compatibles and prime compati-
bles of FSM’s from various benchmarks. The CPU time refers to the
computation of prime compatibles. For these experiments STAMINA
was run with the option -P to compute all primes. Compatibles are
an important measure of complexity because they are the candidates
from which prime compatibles are selected. There are no interest-
ing examples from the MCNC benchmark or similar hand-designed
FSM’s. In those cases an explicit algorithm is sufficient to get a quick
answer and it may be faster than an implicit one. The reason is that
ISM manipulates relations having a number of variables linearly pro-
portional to the number of states. When there are many states and
few compatibles, the purpose of ISM is defeated and its representation
becomes inefficient.

# prime CPU time (sec)
fsm # states # compat. compat. ISM STAM

alex1 42 55928 787 24 16
intel edge.dummy 28 9432 396 37 3

isend 40 22207 480 13 fails
pe-rcv-ifc.fc 46 1.528e11 148 114 fails

pe-rcv-ifc.fc.m 27 1.793e6 38 3 147
pe-send-ifc.fc 70 5.071e17 506 571 fails

pe-send-ifc.fc.m 26 8.978e6 23 3 312
vbe4a 58 1.756e12 2072 109 167

vmebus.master.m 32 5.049e7 28 26 fails
th.30 31 97849 33064 21 17256
th.40 41 1.456e6 529420 75 fails
th.55 55 3.622e7 1.555e7 1273 fails
fo.20 21 42193 12762 2 1369
fo.50 51 3.643e7 1.696e7 216 fails
fo.70 71 9.621e10 4.524e10 22940 fails
ifsm0 38 1064973 18686 43 4253
ifsm1 74 43006 8925 25 466
ifsm2 150 497399 774 267 356

rubin18 18 212 � 1 212 � 1 0 751
rubin600 600 2400 � 1 2400 � 1 1978 fails
rubin1200 1200 2800 � 1 2800 � 1 27105 fails
rubin2250 2250 21500 � 1 21500 � 1 271134 fails

e271 19 393215 96383 21 fails
e285 19 393215 121501 13 fails
e304 19 393215 264079 93 fails
e423 19 204799 160494 102 fails
e680 19 327679 192803 151 fails

Table 1: Computation of compatibles.

The examples from alex1 to vmebus.master.m are FSM’s generated
as intermediate steps of an asynchronous synthesis procedure [10].



STAMINA failed on the examples isend, pe-rcv-ifc.fc, pe-send-ifc.fc,
vmebus.master.m, while ISM was able to complete them. The running
times of ISM track well with the size of the set of compatibles and when
both programs complete they are usually well below those of STAMINA
(pe-rcv-ifc.fc.m, pe-send-ifc.fc.m, vbe4a). For asynchronoussynthesis
a more appropriate formulation of exact state minimization requires
the computation of all compatibles or at least of prime compatibles
and a different set-up of the covering problem [10].

The examples from th.30 to fo.70 come from a set of FSM’s con-
structed to be compatible with a given collection of examples of in-
put/output behavior [5]. Here ISM shows all its power compared to
STAMINA, both for the number of computed primes and running time.
STAMINA fails on the examples from th.25 and fo.20 onwards and,
when it completes, it takes almost two orders of magnitude more time
than ISM. The examples ifsm0, ifsm1, ifsm2 come from a set of FSM’s
produced by FSM optimization, using the input don’t care sequences
induced by a surrounding network of FSM’s [15]. They exhibit often
large number of prime compatibles.

The examples prefixed by rubin have been constructed to have a
number of prime compatibles exponential in the number of states [13].
ISM is able to generate sets of prime compatibles of cardinality up to
21500 with reasonable running times, unattainable for explicit enumera-
tion. The examples from e271 to e680 have been randomly generated.
Again only ISM could complete those exhibiting many primes.

8.2 Solution of Binate Covering

Table 2 reports results of the implicit binate covering algorithm
implemented in ISM vs. the explicit one available in STAMINA. CPU
time refers only to binate covering without the time to find prime
compatibles. Data are given both for� and � dominance. Under table
size we provide the dimensions of the initial binate table (rows times
columns). # mincov is the number of recursive calls of the binate
cover routine. Data are reported with a � in front, when only the first
solution was computed. Data are reported with a y in front, when
only the first table reduction was performed. # cover is the cardinality
of a minimum cost solution (when only the first solution has been
computed, it is the cardinality of the first solution). The examples are
from the same benchmarks presented before.

# mincov # cover CPU time (sec)
fsm table size ISM STAM ISM ISM STAM

r x c �=� �=� �=� �=� �=�

ex2 4e3x1e3 *6/*14 *6/286 *10/*12 *58/*293 *116/2100
ex3 243x91 201/37 91/39 4/4 78/33 0/0
ex5 81x38 16/6 10/6 3/3 4/3 0/0
ex7 137x57 38/31 37/6 3/3 8/12 0/0

e271 9e4x9e4 1/1 -/- 2/2 1/55 fails/fails
e285 1x1e5 1/1 -/- 2/2 0/0 fails/fails
e304 1e6x2e5 2/- -/- 2/- 463/fails fails/fails
e423 6e5x1e5 *2/- -/- *3/- *341/fails fails/fails
e680 7e5x1e5 2/- -/- 2/- 833/fails fails/fails
th.20 6e3x3e3 *4/*6 *5/*3 *5/*5 *13/*26 *1996/*677
th.25 3e4x1e4 *3/*6 -/- *5/*6 *69/*192 fails/fails
th.30 6e4x3e4 *4/*9 -/- *8/*8 *526/*770 fails/fails
th.35 1e5x8e4 *8/*9 -/- *12/*10 *2296/*2908 fails/fails
th.40 1e6x5e5 *8/- -/- *12/- *6787/fails fails/fails
fo.16 6e3x3e3 *2/*3 *3/*3 *3/*3 *6/*23 *1641/*513
fo.16 6e3x3e3 *2/623 *3/377 *3/3 *6/9194 *1641/1459
fo.20 2e4x1e4 *2/*4 -/- *4/*4 *31/*68 fails/fails
fo.30 1e6x5e5 *2/*5 -/- *4/*5 *1230/*1279 fails/fails
fo.40 6e9x2e9 y1/- -/- y-/- y723/fails fails/fails
ifsm1 1e4x8e3 *4/2 *10/3 *14/14 *388/864 *17582/805
ifsm2 1e3x774 4/3 41/44 9/9 136/230 49/3

Table 2: Solution of binate covering.

With the exception of ex3, ex5, ex7 from the MCNC benchmark
(where as expected ISM takes more time than STAMINA), the other
examples generate large covering tables. Some of them are the largest
binate tables ever mentioned in the literature (up to 109 rows and
columns). The experiments show that ISM is capable of building and
reducing those table and of producing a minimum solution or at least a

solution. This achievement is beyond the reach of explicit techniques
and substantiates the claim that implicit techniques advancedecisively
the size of instances that can be solved exactly.

When both programs complete, the number of recursive calls of the
binate cover routine is often comparable for ISM and STAMINA. There
are some exceptions and for those STAMINA is usually better. This
indicates that our implicit branching selection is good, but still short
of the target. We are aware of more optimizations that can improve
the speed and increase the applicability of our implicit binate solver.

9 Conclusions and Future Work
We have presented an implicit algorithm for exact state minimiza-

tion of ISFSM’s. We have described how to do implicit prime com-
putation and implicit binate covering. Sets of compatibles of size up
to 21500 have been generated. Tables with up to 106 rows and columns
have been solved. We have also indicated where such examples arise
in practice. The only explicit dependence is on the number of states
of the FSM.

The implicit computations presented here to solve binate covering
exploit some restrictions on the instances occurring in state minimiza-
tion of ISFSM’s, e.g., the fact that binate clauseshave exactly one zero.
This pays off in terms of computational efficiency. Moreover, typical
occurrences of binate covering in logic synthesis share this feature.
Our technique can be extended to general binate covering problems.
How much generality one can afford and still expect efficiency is a
matter of applications and object of current research.
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