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Abstract—This paper presents the first fully integrated 24-GHz

phased-array transmitter designed using 0.18- m CMOS transis-

tors. The four-element array includes four on-chip CMOS power

amplifiers, with outputs matched to 50 
, that are each capable

of generating up to 14.5 dBm of output power at 24 GHz. The

heterodyne transmitter has a two-step quadrature up-conversion

architecture with local oscillator (LO) frequencies of 4.8 and

19.2 GHz, which are generated by an on-chip frequency synthe-

sizer. Four-bit LO path phase shifting is implemented in each

element at 19.2 GHz, and the transmitter achieves a peak-to-null

ratio of 23 dB with raw beam-steering resolution of 7 for radia-

tion normal to the array. The transmitter can support data rates of

500 Mb/s on each channel (with BPSK modulation) and occupies

6.8 mm 2.1 mm of die area.

Index Terms—CMOS, integrated circuits, multiphase oscillator,
phased arrays, power amplifiers, radar, transmitter, wireless
communications.

I. INTRODUCTION

H
IGH-FREQUENCY phased-array systems have been

ubiquitous in the fields of radar and radio astronomy

[1]–[3]. However, these systems rely on specialized discrete

components and careful assembly of modules that increase

cost and complexity of manufacturing. Integration on silicon

makes it possible to realize complex phased-array systems, with

on-chip mixed-signal and digital signal processing, at lower

cost and with higher reliability. Furthermore, digital tuning and

calibration in integrated systems can be used to improve the

performance of critical analog/RF parts [4], [5]. Importantly,

the very low incremental cost of signal processing elements,

i.e., transistors, and the benefits of integration such as short and

robust interconnects and good component matching enable the

realization of novel phased-array architectures that are designed

specifically for existing and emerging applications [6], [7]. For

instance, phased-array-based transmitters and receivers, oper-

ating at high frequencies where large bandwidths are available,

are well suited for high data rate directional point-to-point

wireless communication networks and for short-range radar

applications such as collision avoidance and assisted parking in

automobiles.

The physical size of such integrated phased-array systems is

restricted by the size of the antennas and the spacing between

them. In a system employing resonance-based antennas, the an-

tenna size and spacing decrease with an increase in frequency.
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Thus, the large bandwidths and smaller physical system size

render high frequencies attractive for integrated phased-array

implementation.

A particularly interesting frequency for integrated phased-

array system implementation is 24 GHz. The Industrial, Sci-

entific, and Medical (ISM) band at 24 GHz has been opened

up for wireless point-to-point communications by the Fed-

eral Communications Commission (FCC) [8]. In addition,

7 GHz of spectrum from 22 to 29 GHz has been allocated

for ultra-wideband vehicular radar applications, making the

24-GHz band appealing from both wireless communication

and car radar perspectives.

CMOS process technologies are the most attractive among

silicon-based technologies for integrated systems due to the

benefits of scaling and the possibility of integrating the digital

backbone with the RF front-end. However, the low active gain of

MOS transistors and the lossy passives at high frequencies have

prevented any significant movement toward integrating entire

high-frequency phased-array systems on CMOS technologies.

The fully integrated four-element 24-GHz phased-array trans-

mitter, with on-chip power amplifiers, reported in this paper is

not only the first fully integrated phased-array transmitter but

also the first system to demonstrate such levels of integration

at 24 GHz using 0.18- m CMOS transistors. The transmitter

reported in this paper and the eight-element phased-array SiGe

receiver presented in [6] demonstrate the feasibility of 24-GHz

phased-array systems in silicon-based processes.

In the following sections, the system level and circuit level

aspects in the design of the transmitter will be discussed in

depth. Section II provides a brief introduction to the properties

and advantages of phased-array transmitters while Section III

discusses the tradeoffs of high-frequency phased-array wireless

communication. Different phased-array architectures, partic-

ularly the local oscillator (LO) phase-shifting architecture

adopted in this paper, are examined in Section IV. The archi-

tecture of the transmitter and the design of key circuit building

blocks are described in Section V, and the measurement results

are presented in Section VI.

II. PHASED-ARRAY PRINCIPLES

In a multiple-element transmitter, a beam is formed in a de-

sired direction by varying the relative delay in each element to

compensate for the difference in propagation delays for signals

from different elements. Electronic variation of the delay en-

ables beam steering without actual mechanical reorientation of

the antennas. Fig. 1 shows a simplified -element phased-array

transmitter. When the input signal is distributed to elements
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Fig. 1. n-element phased-array transmitter.

that delay the signal by multiples of , the combined signal in a

direction is given by

(1)

Therefore, the signals from all elements add up coherently in

the direction , where is the spacing between

antennas and is the velocity of light. This coherent addition

increases the power radiated in the desired direction while in-

coherent addition of the signal in other directions ensures lower

interference power at receivers that are not targeted. It can be

seen from (1) that in an -element transmitter, if each element

radiates watts omnidirectionally, the effective isotropic radi-

ated power (EIRP)1 in the main beam direction is watts.

For example, if each transmitter in a four-element array radi-

ates 14 dBm, the EIRP in the beam direction is increased by

12 dB to 26 dBm. This increase in signal power

at the receiver is particularly useful at high frequencies, where

the efficiency and output power of silicon-based power ampli-

fiers are low, path loss is high, and the receiver sensitivity is low.

From a system perspective, implementing a phased array at the

receiver side as well improves receiver sensitivity, thereby in-

creasing channel capacity. The directivity of the phased-array

transmitter–receiver system permits higher frequency reuse due

to better interference suppression and rejection, leading to in-

creased network capacity.

III. HIGH-FREQUENCY WIRELESS COMMUNICATION

The large bandwidths and smaller physical system size moti-

vate a move to high frequencies for wireless communications. In

this section, the tradeoffs of high-frequency wireless networks

are discussed, with an emphasis on phased-array systems.

The beamforming and electronic beam-steering properties of

phased arrays provide a solution to the demand for directional

1The EIRP in a particular direction is the power that an isotropic transmitter
would have to radiate to cause the same field strength in that direction.

Fig. 2. Comparison of channel capacities for different system parameters
demonstrates the tradeoffs of moving to high frequencies. (a) Channel capacity
for EIRP = 0:1 W, BW = 4%. (b) Channel capacity for EIRP = 1 W,
BW = 1%.

wireless links at high frequencies.2 Resonance-based planar an-

tennas such as dipoles or patch antennas are well suited for

an integrated phased-array-based system with electronic beam

steering. A typical patch antenna array at 24 GHz, for instance,

has an antenna gain of 10 dB [9].3 According to the antenna

theorem, the aperture area of an antenna, for a given gain, de-

creases with an increase in frequency, reducing the power col-

lected at the receiver at high frequencies [10]. The collected

power cannot be increased by increasing the aperture area, as

that increases antenna gain, making the antenna more direc-

tional and hence limiting the angles at which phased-array op-

eration is possible. Thus, in a resonance-antenna-based system,

2The spatial specifications in the 24- to 24.25-GHz band call for a main lobe
beamwidth not exceeding 3.5 in the azimuthal and the elevation planes [8].

3A four-element array, implemented with antennas that have 10-dB gain, will
have an effective antenna gain of 22 dB. Therefore, in the four-element array,
to achieve the maximum permitted EIRP of 29.7 dBm in the 24- to 24.25-GHz
band [8], each transmitter has to generate 7.7 dBm. In the 22- to 29-GHz band,
the low EIRP requirements (� �2.5 dBm) make large bandwidth the primary
focus of design.
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the advantage of large bandwidths at high frequencies is offset

to some extent by the lower received power and the higher re-

ceiver noise figure at high frequencies.

For a transmit EIRP of , the signal power at the receiver

is given by Friis’ equation [11]

(2)

where and are the receiver and transmitter antenna

gain, is the wavelength, is the distance between transmitter

and receiver, and is the exponent that can be higher than the

nominal value of 2 to account for excess path loss. In order to

explore the tradeoffs of moving to high frequencies, the channel

capacity (in bit per second) given by Shannon’s theorem [12]

(3)

is calculated for different carrier frequencies while keeping

the fractional bandwidth constant, accounting for larger band-

widths at higher frequencies. The noise figure of the receiver is

assumed to increase linearly with frequency [13]. A noise figure

of 3 dB is assumed at 6 GHz, resulting in a noise figure of 7 dB

at 24 GHz.4 The individual antennas are assumed to be isotropic

and no excess path loss is considered (i.e., ). Fig. 2(a) and

(b) plots the channel capacity against carrier frequencies under

the assumptions made above for two sets of EIRP and fractional

bandwidth values. The fact that the curves are not monotonic

and exhibit a peak demonstrates the tradeoff between larger

bandwidths, lower collected power, and higher noise figure at

high frequencies. The peak in the channel capacity curve moves

to lower frequencies for higher transmitter–receiver separations

and moves to higher frequencies with higher transmit EIRP or

lower noise figure, both of which can be improved by imple-

menting multiple-antenna systems such as phased arrays. Fig. 3

plots the channel capacity for different transmitter–receiver sep-

arations, assuming a bandwidth of 250 MHz, EIRP of 30 dBm,

and receiver noise figure of 7 dB at 24 GHz. In a four-ele-

ment phased-array receiver, the signal-to-noise ratio (SNR) at

the output may be improved by up to 6 dB [6]. When this im-

provement in SNR is included in (2) and (3), it can be seen that

high-speed (greater than 1 Gb/s) phased-array data links are pos-

sible up to a distance of 200 m at 24 GHz.

IV. PHASED-ARRAY ARCHITECTURES

A. Delay and Phase-Shifting Architectures

Ideally, to achieve broadband phased-array operation, a true-

time delay is required in each element. In the architecture in

Fig. 4(a), the required time delay is implemented in the RF path

in each element. However, implementing a broadband low-loss

true-time delay element at RF, which is capable of large varia-

tion, occupies a practical area, and scales well with an increase

in number of elements, poses several problems. The true-time

delay in the RF path can be replaced equivalently by a delay in

the IF path and a phase shift in the LO path/IF path as shown

in Fig. 4(b), or by implementing the delay in the digital domain

4Noise figure F = 1 + (f=6e9).

Fig. 3. Channel capacity for different transmitter–receiver separations at
24 GHz.

Fig. 4. Broadband array architectures. (a) Delay in RF path. (b) Delay in IF
path and LO phase shift. (c) Digital delay at baseband.

as shown in Fig. 4(c). While an analog delay element at IF has

the same problems as a delay at RF, practical considerations of

mixed-signal circuits and digital signal processor (DSP) perfor-

mance limit the digital array architecture [14].

If the bandwidth of interest is sufficiently narrow, the time

delay (a linear phase shift in the frequency domain) can be ap-

proximated by a constant phase shift at the center frequency.

The phase-shift architecture can be implemented as an approxi-

mation of the delay-based architecture in Fig. 4(a), which leads

to a phase shift in the RF signal path [Fig. 5(a)], or as an approx-

imation of the architecture in Fig. 4(b), which leads to a phase

shift in the LO path or IF signal path [Fig. 5(b) and (c)].

Low-loss phase shifters in the RF path have attracted research

interest [15], [16]. If the phase-shifter loss is not uniform for all

phase shifts, variable gain amplifiers are required in each ele-

ment to equalize the phase-shifter losses to avoid array pattern

degradation.

Phase shifters in the LO path circumvent this problem as the

circuits in the LO path such as the voltage-controlled oscillator
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Fig. 5. Narrowband phased-array architectures. (a) RF phase shift. (b) IF phase
shift. (c) LO phase shift.

(VCO) and the LO path amplifiers operate in saturation by de-

sign since the performance of the mixers in the up-conversion

path is improved with larger LO voltage swings. Furthermore,

with large LO signal swings at the LO ports of the mixers, the

sensitivity of mixer gain to the LO signal amplitude is low. As a

result, with phase shifters in the LO path, the variation in signal

amplitude for different values of phase shift is minimal. There-

fore, the LO path phase-shifting architecture has been chosen

for the phased-array transmitter.

B. Effects of Narrowband Approximation

The narrowband LO phase-shift architecture [shown in

Fig. 5(c)] leads to some signal distortion due to dispersion. The

input signal that is distributed to each element in a phased-array

transmitter can be represented as ,

where and represent the baseband signal modulating

the carrier. When phase shifts are implemented in each element

to achieve a radiation angle of , for which the propagation

delay between successive elements differs by , the combined

signal power is

(4)

Thus, none of the phase-shifting architectures ensure that the

baseband modulating signals add up coherently resulting in a

signal distortion that is manifested as a higher error vector mag-

nitude (EVM). EVM increases with an increase in the number

of elements and/or the bandwidth of the baseband signal, and

can be a source of error on both the transmitter and receiver

side leading to higher bit error rates [17]. As will be explained

below, a method to mitigate the deterministic errors caused by

the phase-shift approximation is to use a normalized orthogonal

frequency division multiplexing (OFDM) modulation scheme

for the baseband input that is distributed to all the elements in

the transmitter.

For a QPSK signal at data rate bits per second, the time

period of each symbol . Therefore, the complex dig-

ital baseband signal is where is complex. In

OFDM, the total bandwidth of the system is divided into

Fig. 6. EVM improvement provided by normalized OFDM-QPSK modulation
over QPSK modulation for 8-element and 16-element transmitter.

channels, with the subcarriers orthogonal. The baseband dig-

ital data are divided into parallel streams, each of which is

used to modulate a subcarrier [18]. Thus, each OFDM symbol

consists of QPSK symbols, and for each frame (of duration

),

Since each of the channels in the OFDM scheme is narrow-

band, the error due to the time delay being replaced by a constant

phase shift can be largely corrected by multiplying the input

modulating each subcarrier by a complex normalizing factor

such that

(5)

The memoryless predistortion coefficients depend upon the

direction of radiation that is known a priori in the transmitter.

The same normalization scheme can also be implemented in a

phased-array receiver to account for similar signal distortion due

to dispersion. Fig. 6 compares the EVM for a raw QPSK modu-

lation scheme and for a 64-subcarrier OFDM-QPSK modulation

scheme with complex normalization in a 24-GHz phased-array

transmitter with 8 and 16 elements. The signal has a data rate

of 1 Gb/s and a bandwidth of 750 MHz. The maximum EVM,

corresponding to a worst-case radiation angle of 90 , improves

from 5.8% to 1% in the 16 element case, demonstrating the ef-

ficacy of the normalized OFDM scheme. Thus, careful choice

of modulation schemes and simple equalization methods can

render the implementation of actual analog or digital delay in

each element unnecessary. Increasing the number of subcarriers

decreases the EVM further and can compensate for increased

distortion due to higher signal bandwidth and/or higher number

of elements in the array.

C. Array Pattern Performance

The transmitter described in this paper is based on a phase-

shifting architecture that was introduced in [14] in the context

of a receiver. Fig. 7(a) shows a simplified four-element phased-

array transmitter with LO path phase shifting. Relative phase
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(a)

(b)

Fig. 7. Array gain for four-element LO path phase-shifting transmitter.
(a) Four-element LO phase-shift phased-array transmitter. (b) Array gain for
four-element phased-array transmitter.

shifts of , , and are implemented in the elements. The

angle of radiation is given by

(6)

where is the velocity of light and is the spacing between the

antennas. For

(7)

Fig. 8. Equivalent architecture of a single transmitter element and frequency
plan.

Fig. 7(b) plots the array gain versus angle of radiation for 16

uniformly spaced values of with a step size of 22.5 . As can

be seen from the figure, the phase-shift resolution is sufficient

to radiate at all angles at close to peak array gain. The 3-dB

beamwidth for radiation that is normal to the axis of the array is

26 and the beam-steering resolution is 7 . The beamwidth and

the beam-steering resolution increase as the angle of radiation

becomes more oblique. The array pattern is degraded by mis-

matches in the signal amplitude and LO phase shift across dif-

ferent elements. For example, in the case of a two-element trans-

mitter, an amplitude mismatch of 3 dB translates to a peak-to-

null ratio of 15.3 dB. The error in the beam direction, due to a

given absolute error in LO phase shifting, depends upon the ac-

tual beam direction and can be derived from (7).

V. TRANSMITTER ARCHITECTURE

In this section, the architecture of the phased-array transmitter

is discussed in depth. This is followed by a detailed description

of the circuits in the signal path and the LO path.

The four-element fully integrated transmitter has on-chip

power amplifiers [19] as well as an integrated frequency syn-

thesizer. Due to concerns related to frequency pulling, direct

up-conversion was considered to be unsuitable. A two-step

up-conversion architecture was chosen for the transmitter with

LO frequencies of 4.8 and 19.2 GHz (Fig. 8). The two LO

frequencies are generated by a single synthesizer loop using a

divide-by-four.

Quadrature up-conversion was implemented in both stages

[20]. The image attenuation of the first up-conversion step

depends upon the matching and quadrature accuracy of the
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Fig. 9. Architecture and floor plan of 24-GHz four-element phased-array transmitter.

first up-conversion step. The image signal of the second up-

conversion step falls at 14.4 GHz and is therefore attenuated

not only by the quadrature architecture but also by the tuned

stages at RF.

Fig. 9 shows the architecture and floor plan of the four-el-

ement transmitter [21]. In the signal path, the baseband and

signals are up-converted to 4.8 GHz by a pair of quadra-

ture up-conversion mixers. The 4.8-GHz and signals are

buffered and provided to the 4.8- to 24-GHz up-conversion

mixers in each element. The output of the mixers is amplified

and differential to single-ended conversion is performed to

drive the on-chip single-ended CMOS power amplifiers that are

matched at the output to 50 .

In the LO path, the output of the 16-phase 19.2-GHz VCO

is provided to the phase selectors in each element. These phase

selectors select the right phase of the LO in each element for

the desired beam direction. The phase-selection circuitry is con-

trolled by shift registers that can be programmed using a digital

serial interface, enabling electronic beam steering. The VCO

is part of an on-chip frequency synthesizer that generates the

19.2-GHz LO signals from a 75-MHz reference. A divide-by-

four in the synthesizer loop generates the 4.8-GHz LO and

signals for the first up-conversion step.

A. Circuits in Signal Path

1) IF and RF Up-Conversion Mixers: The baseband-

to-4.8-GHz quadrature mixers common to all elements are

Gilbert-type up-conversion mixers. The first up-conversion

mixer consumes 3.8 mA of dc current while the buffers fol-

lowing the mixer consume 4.3 mA. The output of these buffers

is distributed to the quadrature up-conversion mixers in each

element using a symmetric H-tree structure to ensure good

array performance.

Fig. 10(a) shows the schematic of 4.8- to 24-GHz up-con-

version mixers in each element. These mixers are essentially

Gilbert-type up-conversion mixers with some of the dc current

provided by the p-channel field-effect transistors (PFETs) [22],

[23]. The current in the IF transconductance part of the mixer

( and ) needs to be high to improve mixer linearity and

gain. However, the drop in the switching devices ( , ,

, and ) increases significantly with higher dc current and

hence the amplitude of the LO needed to switch these transis-

tors increases. Therefore, to increase the conversion gain at a

given LO swing and to reduce the sensitivity of the conversion

gain to the LO amplitude, part of the dc current ( 55%) is pro-

vided by the PFETs ( and ), which reduce the dc current

and, consequently, the drop across the switching devices.

Fig. 10(b) plots the simulated conversion gain of the quadrature

mixers against LO amplitude for the same dc current in the IF

transconductance part, with and without the PFETs. It can be

seen that, with the PFET current sources, the simulated quadra-

ture conversion gain increases from 6 to 9.7 dB for a 200-mV

peak-to-peak LO swing and is less sensitive to LO amplitude.

The quadrature mixers draw a total current of 10 mA from a

2.5-V supply.

2) Tunable Passive Loads at 24 GHz: The cascade of tuned

stages in the RF path in each element exacerbates any off-tuning

in the passive loads. To avoid the problem of gain loss due to

off-tuning, switchable capacitors, controlled by programmable

shift registers, were implemented at the output of some of the

high-frequency stages [Fig. 11(a)]. In the predriver stage, for

example, these capacitors allow the center frequency to be tuned

from 23.7 to 26.3 GHz, which is sufficient to account for process

variations and errors in simulation of passives [Fig. 11(b)].

3) Balun: All the circuits up to and including the 24-GHz

PA driver are differential while the PA was designed to be single

ended. To avoid power and efficiency loss at the output of the
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Fig. 10. RF up-conversion mixers (4.8–24 GHz). (a) Gilbert-type mixer with
PFETs for current boosting. (b) Variation of gain with LO amplitude with and
without current boosting.

PA, a balanced–unbalanced converter (balun) was placed before

the PA. This eliminates the need for an off-chip balun or a differ-

ential antenna. As shown in Fig. 12, the balun was realized with

a single-turn transformer to minimize substrate loss through ca-

pacitive coupling. Electromagnetic simulations show an inser-

tion loss of 1.5 dB for the balun when input and output parasitic

inductances are tuned out with parallel capacitors [24].

4) Power Amplifier (PA): The transmitter contains four

on-chip power amplifiers matched at the output to 50 . The

amplifier, shown in Fig. 13(a), is similar to the stand-alone

amplifier reported in [25]. While the input of the stand-alone

amplifier is matched to 50 , the parasitic inductance of the

balun is used to tune out the input capacitance in the first stage of

the amplifier integrated in the transmitter. The PA has two gain

stages with each gain stage consisting of a cascode transistor

pair to ensure stability and increase breakdown voltage. The PA

(a)

(b)

Fig. 11. Digital tuning calibration in high-frequency stages. (a) Predriver stage
with switchable capacitors in load. (b) Simulated change in center frequency
with digital tuning control.

is designed to operate in class AB mode. As the transistor

is 65 GHz, the harmonic content at the drain of the transistor

for the 24-GHz input signal is low. Harmonic-matching-based

classes such as class E and class F therefore did not increase

efficiency significantly in simulation and were not used. The

output and interstage matching networks in the PA are real-

ized with the substrate-shielded coplanar waveguide structure

shown in Fig. 13(b) to reduce power losses and area [26]. In

this structure, the presence of the ground shield beneath the

coplanar signal line increases the capacitance per unit length,

. However, as the return current cannot flow through the

patterned ground shield, the inductance per unit length, ,

remains the same. The simultaneously high and result
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Fig. 12. Balun for differential to single-ended conversion at PA input.

(a)

(b)

Fig. 13. On-chip power amplifier. (a) Two-stage on-chip power amplifier.
(b) Substrate-shielded coplanar waveguide structure.

in lower wave velocity, leading to more than a factor of two re-

duction in wavelength at 24 GHz when compared to a standard

coplanar waveguide structure in silicon dioxide. Additionally,

as the structure is well shielded, the isolation between the power

amplifier and other circuits in the transmitter is improved. The

low loss per unit length (1 dB/mm), improved isolation, and

short wavelengths make this structure particularly suitable for

integrating multiple power amplifiers on the same die.

Amplifier stability is improved by the RC network at the input

of each stage, which guarantees low frequency stability. Further

details on the design of the power amplifier and the waveguide

structure can be found in [19] and [25].

B. LO Path Circuits

The multiple-phase VCO, shown in Fig. 14, is at the heart

of the LO phase-shifting architecture adopted in this paper. The

19.2-GHz CMOS VCO consists of eight differential amplifiers

connected together in a ring structure and is similar to the design

in [14]. As the ring is closed by flipping the inputs of the last

Fig. 14. 19.2-GHz 16-phase CMOS VCO.

Fig. 15. Two-stage phase selector.

amplifier, the VCO is capable of generating 16 equally spaced

phases of the LO with a step size of 22.5 [27]. As previously

discussed, this step size is sufficient for a four-element phased-

array system.

The outputs of the VCO have to be provided to the phase se-

lectors in each element in a symmetric fashion as any asymmetry

in this distribution leads to an error in the phase shift causing

degradation of the array pattern. Therefore, a symmetric H-tree

structure, using the top two thick metal layers, is used to dis-

tribute the multiple VCO outputs.

The phase selectors for the and LO phases in each ele-

ment work in two stages, with the first stage selecting the right

differential pair and the second stage determining the polarity.

The eight differential outputs of the VCO are provided to two

sets of eight differential pairs that comprise the first stages of the

and phase selectors. The differential outputs are also pro-

vided to a dummy set of differential pairs to ensure that the VCO

buffers see a constant load. Fig. 15 shows the phase-selection

circuitry that determines the phase for the signal to the mixer

LO ports. An identical circuit selects the phase for the signal

independently. As shown in Fig. 15, the tail current of each dif-

ferential pair in the first stage is controlled by a shift register. By

turning on the right differential pair in the first stage, the VCO

differential pair outputs corresponding to desired phase for the

signal can be selected. The second stage of the phase selectors
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Fig. 16. Die micrograph of 24-GHz four-element phased-array transmitter.

Fig. 17. Measurement setup to characterize transmitter performance.

consists of a set of two differential pairs with tail current sources

that are also controlled by the shift registers (Fig. 15). The in-

puts to these differential pairs are anti-phase with respect to each

other. Thus, the output can either be in-phase or anti-phase with

respect to the input. In the dummy set, the tail current sources of

the differential pairs is controlled by bits complementary to the

LO and phase-selection bits to ensure constant loading of

the VCO buffers. The eight differential pairs (six dummy, one

, and one ) that are turned on for any given phase shift draw a

total of 16 mA and the differential pairs in the second stage draw

3.1 mA each. While independent and LO phase selection

provides flexibility to account for phase distribution and device

mismatches, in practice the LO distribution and matching was

sufficient to render independent selection superfluous.

Interpolation of the raw 16 phases of the VCO is possible

by selecting more than one differential pair in the first stage of

the phase selectors. (The two-stage phase selection procedure

limits the phase shifts that can be generated by using this inter-

polation method.) For example, when the differential pairs cor-

responding to 0 phase and 22.5 phase are enabled, the output

has a phase of 11.25 .

Fig. 18. Output matching with probe-based testing and with wirebonds to
PCB.

VI. EXPERIMENTAL RESULTS

The phased-array transmitter has four elements and is imple-

mented using 0.18- m CMOS transistors in a BiCMOS process

[28]. The of the NMOS transistors in the process is 65 GHz.

The process offers five metal layers with the thickness of the

top two metal layers being 4 m and 1.25 m, respectively.

Fig. 16 shows a die photograph of the transmitter which occu-

pies 6.8 mm 2.1 mm of die area.

A high-frequency printed circuit board (PCB) measurement

setup has been designed to characterize complete system per-

formance. Some of the packaging parasitics such as wirebond

inductance have been taken into account during circuit design.

Fig. 17 shows a close-up of the measurement setup for the

transmitter chip. The PCB is a high-frequency laminate that is

compatible with planar antenna design and is supported by a

brass substrate that acts as the ground. Two ground pedestals

are milled on the brass substrate and the chip is mounted on

the substrate, between the pedestals, using silver epoxy. By

wirebonding the PA ground pads onto the pedestals, the length
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Fig. 19. Performance of on-chip 24-GHz CMOS power amplifier.

Fig. 20. Array measurement setup.

and therefore the inductance of these wirebonds are reduced.

The height of the PCB (10-mil dielectric thickness) is chosen

to be close to the height of the chip m to reduce the

length of the wirebonds to traces on the PCB. Fig. 18 shows

the output matching of a single element of the transmitter when

measured by probing and by wirebonding the output to the

PCB. Though the match with wirebonds is more narrowband,

the output matching is better than 10 dB from 23.4 to 24.1 GHz.

A broader frequency range for matching can be achieved by

using flip-chip-based packaging techniques.

Fig. 19 summarizes the performance of the on-chip power

amplifiers, which are capable of generating up to 14.5 dBm

of output power at 24 GHz with an output-referred 1-dB

compression point of 11 dBm. The coupling between multiple

power amplifiers on the same die is a concern in an integrated

phased-array system. The physical distance ( 1 mm) between

Fig. 21. Comparison of theoretical and measured array pattern with two
elements and with four elements active.

Fig. 22. Output spectrum of transmitter for 100- and 500-Mb/s QPSK input.
(a) Output spectrum for 100-Mb/s QPSK input. (b) Output spectrum for
500-Mb/s QPSK input.

the power amplifiers and the use of a shielded transmission line

in matching networks improve the isolation in this work. In

order to measure the isolation between elements, three of the

elements were deactivated by switching off all the LO phases

in the phase selectors in those elements. The isolation was

determined by comparing the power at the output of the active

element with the output power of the three inactive elements.

The worst case isolation (i.e., between two adjacent elements)

is measured to be 28 dB.

The image rejection of the first up-conversion stage, which de-

pends upon the quadrature matching of the mixers and the first
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Fig. 23. Setup for direct down-conversion of 24-GHz transmitter output.

Fig. 24. Eye diagram of the down-converted transmitter output for 250- and
500-Mb/s BPSK input. (a) Single-channel 250 Mb/s (only to I channel):
EVM = 9:7%. (b) Single-channel 500 Mb/s (only to I channel):
EVM = 9:8%.

TABLE I
TRANSMITTER PERFORMANCE SUMMARY

LO, is 24 dB. The image signal of the second up-conversion step,

which falls at 14.4 GHz, is found to be attenuated by 43 dB due

to the additional attenuation provided by the tuned stages at RF.

To measure the performance of the transmitter alone, without

antenna nonidealities such as coupling, the different propaga-

tion delays for each element for each direction of radiation have

to be replicated. This is done by connecting the output of each

element to variable phase shifters (Fig. 20). By varying the rel-

ative phase shift in the external phase shifters, the propagation

delays for each beam direction can be emulated. The output of

the phase shifters is combined and measured using a spectrum

analyzer or a power meter. Fig. 21 shows the measured perfor-

mance of the transmitter with two elements active and with all

four elements active. When compared to theory, these results

demonstrate the proper functioning of the phased-array trans-

mitter. The worst-case peak-to-null ratio with all four elements

active is 23 dB.

While the PA has a bandwidth of 3.1 GHz, the bandwidth

of the entire transmitter is constrained by the bandwidth of the

IF stages and also by the cascade of tuned stages at IF and

RF. Fig. 22, which shows the measured spectrum of the trans-

mitter when a 100- and 500-Mb/s QPSK signal is provided at

baseband, indicates that the transmitter is capable of supporting

high data rates. To measure the performance of the transmitter

for high data rate input, an external direct down-conversion re-

ceiver was assembled, consisting of a passive mixer followed
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by an amplifier (Fig. 23). For this measurement, the LO signal

that is used for down-conversion needs to be locked to the car-

rier signal of the transmitter. Therefore, the 24-GHz LO signal

to the external mixer is divided by 320 to generate the 75-MHz

reference for the on-chip frequency synthesizer. The baseband

input was provided to one channel using a pseudorandom bit

pattern generator and no pulse shaping was done at the input to

minimize intersymbol interference (ISI). Fig. 24 plots the eye

diagram for the down-converted baseband filtered output for the

250- and 500-Mb/s BPSK signal. The measured EVM did not

increase significantly with an increase in data rate, indicating

that it is dominated by the noise in the external down-conver-

sion setup.

The entire system with four on-chip power amplifiers draws

788 mA from a 2.5-V supply. The measured performance of the

chip is summarized in Table I.

VII. CONCLUSION

In this paper, the first fully integrated phased-array trans-

mitter has been demonstrated using 0.18- m CMOS tran-

sistors, proving the feasibility of high-frequency integrated

phased-array systems on silicon-based processes. The tradeoffs

of high-frequency wireless communication are discussed. The

limitations of phase-shifting architectures are explored and

methods to overcome them are suggested. The 4-bit local

oscillator (LO) path phase-shifting approach adopted in the

transmitter has better than 10 beam-steering resolution for

radiation normal to the array. Each on-chip PA is capable of

generating up to 14.5 dBm of output power, translating to an

effective isotropic radiated power (EIRP) of 26.5 dBm. The

transmitter is capable of supporting data rates in excess of

500 Mb/s and is well suited for 24-GHz wireless links.
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