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Abstract

VCepresent a new scheme which evolw_s the perturbed part of the distribution function

along _ set of characteristics that solves the fully nonlinear gyrokinetic equations. This

nonlinear characteristic method for particle simulation is _n extension of the parti_dly lin-

• e_r weighting scheme, ] and mav be considered an improvement of e.visting 6f methods. 2":3

Some of the features of this new method are: the ability to keep ali the nonlinearities.
a
• particularly those e_ssociated with parallel acceieration: the loading of the physical equi-

librium distribution function f0 (e.g.. ;_ .Xlaxwelfian), with or without the multiple spatial

scale approximation: 4 the use of a single set of trajectories for the particles: and also, the

retention of the conservation properties of the original gyrokinetic system in the numerically

converged limit (i.e., small At, small /X.c and a large number of particles). Therefore, one

can take advantage of the low noise property of the weighting scheme together wilh the

quiet start techniques to simulate we_k instabilities, with a substantially reduced number

of particles than required for a conventional simulation. The new method is used to study a

one dimensional drift wave model which isolates the parallel velocity nonlinearity..\ mode

coupling calculation of the saturation mechanism is given, which is in good agreement with

the simulation results and predicts a considerably lower sa_turation level then the estimateiii

of Sagdeev and Galeev. s FinaLly. we extend the nonfinear characteristic method to the

electromagnetic gyrokinetic equations in general geometry.
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I. Introduction

An outstanding issue in gyrokinetic simulation (and in particle-in-cell simulation in

general) is that often times it is necessary to use a rather large number of particles to b'

resolve the physics of interest. The concern being that thernlal fluctuations (or noise) and

lack of sampling (or resolution) of the two to six dimensional phase space caused by a finite

number of particles may obscure the physical process being modeled. For examl_le, the

broad-band dev.sitv fluctuation.'_ e.,dsting in tokamak plasmas usually have an average level

of a fraction of one percent or less. Thus, modeling such plasmas requires a very large

number of particles for proper resolution, such that N_o¢ >> 1/(6n/n) 'a _ 106.4 Early on it

was recognized by Beyers and others that improvements in noise properties could be made by

loading more uniform distributions or "quiet starts, ''6-s and also by linearization techniques

which track the perturbed quantities in terms of the equilibrium trajectories. _<1° More

recently, Dimits and Lee1 developed a linear and a "partially linear" scheme by allowing

the particle weights to evolve in time. In the linear scheme the particle weights follow

the equilibrium trajectories. In the partially [inearized scheme, the E x B nonlinearity *

is retained by a.dding this drift to the equilibrium (zeroth-order) orbit. There have been
t,

other investigations 2,3 into similar techniques often called c_f methods, but no schemes up •

to this point have reported actual simulation results where the parallel velocity nonlinearity

is retained.

The nonlinear characteristic method presented here is similar to previous weighting

schemes: 1 however, the fully nonlinear trajectories are evolved and a consistent evolution

equation is used for the particle weights. We begin by presenting the new method for

the electrostatic slab case and the _ssociated conservation properties of particle number,

momentum, a.nd total energy. We then present gyrokinetic simulations of a si.,npie one

dimensional drift wave instability in a shearless slab. This model isolates EIIO,.uaf nonlin-

earity and allows us to study the associated nonlinear physics. A three wave mode coupling

theory is presented which gives a saturation level of el_bl/T¢ _. 5..572/(kllvte) 2 which is much ,,

, 1 )2lower than the, calculation of Sagdeev and Galeev, s elV_l/r_. _. a(kj.p, . There is good

agreement between theory and simulation in terms of linear frequency, growth rate, and •
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nonlinear saturation. The conservation properties of the simulation plasm_ have also been

investigated. It. is found that tile conservation of number density, momentum and energy

in the nonlinear stages of the simulation can be achieved only if we use a sufficienlly larKe

nun]ber of particles, small timesteps, and tt small grid cell size. Finally, we discuss the ap-

plication of the nonlinear characteristic method to the general electromagnetic (nonuniform

equilibrium magnetic field) gyrokinetic equations.

II. Nonlinear Characteristic Method

:ks mentioned earlier, devising a scheme where only the perturbed part, of the distribution

function is evolved has been previously investigated. I-3 It was recognized that, by evolving

only the perturbed part of the distribution 6f, one could remove the initial noise associated

with the equilibrium f0 due to the use of a finite number of particles. _ The scheme we

present here is similar to the previously proposed 6f methods, 2'3 but we take into account

the discrete representation of the characteristics in a similar fashion as wa,s done for the

finear and partially [inearized schemes. 1

_ ' by writing the distribution function f(R, vii,#) in the familiar way asLet ,is b_gln

, f = f0 + 6f. wher_ f0 is the equilibrium background distribution and is independent of

time, and bf is the perturbed time dependent part of the distribution. For (kzp,)" << 1.

the gyrokinetic equation for bf in the electrostatic slab limit is

OtOf + vE. V6f + vllVil_f + q fif - -VE. Vfo- qm Ell/)'ll m ElIOt'lIfo. ( 1)

where pi - I.'ti/_'_i iS the ion gyroradius, vE - cE/Bxb is the E×B drift. The corresponding

gyrokinetic Poisson equation in the small (/ej.pi) '2 limit is

(ps/,_D)2V_O = -4_'e(ni- n,.), (2)

where p_ - v/Tpi, r - "I'_/T,, AD - x/L/(,J, rrT_0e2) is the Debye length, and

,_ -- f _f dvlld#, (3)
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The characteristics (or trajectoriesj of Eq. (1) are

= qEll, (.1) '/;li

R = ,'lli_+vE, I5_
w

and along these characteristics af is changing because the right hand side of Eq. (1) is

nonzero (note that fl =0 heret. The evolution equation for Of along the trajectories is

6"f = -VE. rf0- q
m EII0''ll f0. (6)

Now, we simply need to solve Eqs. (4)-(6). At first glance, one might consider loading a

large number of characteristics (or particles), each having it's own bf, evolve the system in

time and then weight 1he bf's to the grid to obtain field quantities. However, one needs to

examine carefully how 6f is being numerically represented and whether Eq. (1)or (6)is

indeed being solved correctly.

In a similar fashion as the partially linear weighting scheme, 4 except now the fully

nonlinear trajectories are evolved, hf in the simulation is represented as

N

,_.I'(R. _'11"11.t) = _ u.,iS'(R - R, )6( cii - ql, )6(# - _, ). (7)

,I

where .V is the total number of particles and .5' is the particle shape function, u.', is the

particle weight and can be interpreted as the 6f/f associated with the particle i. as will be

shown below. 5'(u) = b(_,) is used for present discussion (i.e.. we assume the particle shape

function has the same properties as the delta function). This is equivalent to assuming that

all quantities have a small spatial (or long wavelength) variation compared to the particle

size. One can then use relations such as the following

f(R,).b'(a- R,) = _[f(R)-(R-R,).Vf(R)+...]5'(R-R,) 8)
! !

f(R) _ .5'(R- R,). 9)

Substituting E( t. (7) into Eq. (1) we ootain the following relation. ,.

E u),/_i'R. - R,)_( _"1- u!li ia(/z - Iz,) = -vk7 • g'fo - qE, iO:.,fo. (10)
a ' lll ' p



It should be noted here that Eq. (10) and Eq. (6) are quite ditferent, Namely. the f_w)lution

of d, from Eq. (10)is not the same as assuming _b = 6'f and using Eq. (6) to evolve it,

along it's trajectory. We will elaborate this point later. Next, we assume that the particle

distribution can be represented as a smooth analytical function
w

g(R, I:l[,lz.t) _. _7, _(R- Ri)_(vll- Vlli)_(# -/xi). (11
i

(g could be equal to the physical distribution f. but this is not necessary ,lp to this point.

From Eqs. (10) and ( I 1). we obtain

[ V f0 q Ovllfo]
= . _ + --Ell (12

t/,, - vE g m --g"d-J rt=rt.,,,,,=_,,,u=.,,t

One way to solve Eq. (12) is to note that the function g satisfies the full nonlinear gy-

rokinetic equation so that g is constant along a trajectory. One then can use the relation

[ ]H(R,, vlli,#i,t) = g R,(t = 0), t)lli(t = 0),#i,t = 0 . Since the initial loading is arbitrary,

one (:an, for example, load a uniform distribution g(t = O) = const, independent of the

, phase space variables, which seems to be the approach proposed by Kotschenruether. a

However. the equiLibrium f0 with a nonuni/brm loading in the velocity space (with or

without spatial inhomogeneity)is preferred, because one wants more phase space resolution

(i.e., particles) where the wave is in resonance with the distribution function (a,'/kll = vii).

TypicaLly, for low frequency microinstabilities, the resonant velocities are smaller than the

thermal velocity of the species. Thus, a nonuniform loading (e.g., the Maxwellian distribu-

tion) in velocity space is much more desirable than a uniform one. One problem associated

with the nonuniform loading l'or the existing bf schemes is that additional particle arrays

(or calculations) are needed to keep track of gi(t = 0). Moreover, numerical difl-iculties may

arise from the denominators of Eq. (12) for particles with small values of qi(t = 0), i.e.,

those initiMly located in the tail of the distribution. These ;_re the potential drawbacks for

using Eq. (12) to evaluate w;, along with gi(t = 0).

We now present the nonlinear characteristic method, which avoids these problems. One

loads the particles with the equilibrium distribution g(t = O) = fo (as abow_,, g is the

4 particle distribution) in the same manner as in the usual particle simulation. Then we
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assume 9 = f = fo + _Sf throughout the simulation. Since f fo 1 , from Eq.

(12), we _u'I'ive itr

_,,= - vz, -7;--,,+ - E, fo ] t - (t:_/Irl ,.

X--X,,Vl[=vll,,I_=l_,,t

To determine_f/f illEq. (13),we notethefollowing

bf _ --/-_(R- R;)6(,,ll- viii)b(#-#i) (14)
d

l

i X=X, ,vii =vii ' ,U=U, ,t ,

The "approximately equal to" sign was used again because we assumed that f and 6f were

smooth functions, a.s was (lone in Eq. (tr). From Eqs. (7)and (15) we see that wi = [6f/f]i,

and, hence, we can substitute this into Eq. (13) to obtain

,_;: -(1- ,,,,) ,,E.-_o + --Eil-_o ] _=_,,.,.=,,,,,.:,.,,,
m ( 16)

Equation (ltj) along with Eqs. (4), (5)and (7)are the crux of the new nonlinear charac-

teristic method [as usual, one uses Eqs. (2) and (3) to complete the loop]. Besides the

nonlinearities appearing as perturbations to the zeroth-order trajectories fEll and v/.: in

Eqs. (.4) and (5)], there is the additional factor (1 - wi) in the evolution of the equ_tion

for the weights in I'2q. (16). This factor, which is essential to the nonlinear physics and the

conservation properties of the simulation plasma, describes the difference between f0(t = 0)

and f0(t), as indicated by Eq. (12).

Let us now discuss the conservation oi' the total particle number, momentum _md total

energy associated with the new nonlinear weighting scheme. First, we examine the change

in "the number of particles" by taking the zeroth velocity moment of Ett . (1). Using Eq.

(7) and ass_lmirtg that the sum of tile wi's is nearly zero initially, we then obtain

__, wf(t)= 0. (17)
i

The momentum conservation can be derived by taking the first velocity moment of I'2q.(1),

Ot(/ ollOfdRdpdvll}- ! {/ n,L_ll,iR}= O, (lS)ygl lp
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which, along with Eqs. (2) and (7), then gives

,, where n is given by Eq. (3) and _ denotes species. To calculate the change irt energy, 4

we take tile second velocity moments of Eq. (1) for both the ions and the electrons and

substituting them into Eq. (2). Again, if we take the particle weights and field to be zero

at t = 0, then the simulation should conserve energy, i.e.,

vii'; IV±OI'fiR= 0. (20)c_ i

We expect Eqs. (17)-(20) to hold for a simulation plasma in the limit of large number

of particles and fine space and time resolution. In the next section, we will examine the

validity of these conservation properties in a simulation using a finite number of particles,

This is an import_Lnt exercise which serves as a test for both the formal correctness as well

as the practicality of the proposed scheme. In other words, we want to examine the scheme

to see if it is _ useful alternative to conventional particle methods.

III. One Dimensional Drift Wave Simulation

We now present simulation results using the new method checking linear `und nonlinear

physics as well ,us the conservation properties. For simplicity, a one dimension,ul drift wave

problem is chosen as an example here. In this one dimensional model the E ×/3' nonl.inearity

is not present, so the Eii/)Ull6f nonlinearity is the only mechanism for saturation. This is the

term which h_s been neglected in the previous scheme x on the assumption that, in the more

re,ulistic two and three dimensional geometries, it is the the E x B nonlinearity which is the

dominant saturation mechanism. However, as suggested irt Ref. 10 and 11, the EilOoll6f

nonlinearity may be relevant in determining the steady-state transport for gradient-driven

microinstabilities.

- In this problem the one spatial dimension y is perpendicular to the spatial gradients,

which are in the z direction, and is almost perpendicular to the magnetic field, i_= i + 0_r.

7



Here, both x and z are ignorable coordinates for the perturbation quantities. The one

dimensional version of Eq. (1) for both tile ions and the elecl',rons is

Otb f + OVllOu6f - aOO:¢cPO,,ll6f = -_Ou(bfo + o:OOuo fv, (21) ,*

where c_ =: (1,-m,i/rne) for the ions and the electrons, respectively; and we use the di-

mensionless gyrokinetic units of Y/Ps -- Y, _t,t -- t,, vii/es ---, ql' and eo/T_, -- _. For this

problem, we use _ = -O_lnno and have assumed a Maxwellian equilibrium. The gyrokinetic

Poisson equation or the "quasineutrality" condition in one dimension is

Ouy_p+ 6ni = 6he. (22)

We solve these equations with a one dimensional gyrokinetic simulation using the new

method explained in Sec. 2. In addition, a quiet start technique employing Fibonacci

numbers s has been used. In order to further minimize the noise, we have also used a cutoff

scheme I of

wi= _(x;) (23)

for the fast particle with viii >> ,.o/hll. O,,_ is initially perturbed, where rn is the Fourier

harmonics of interest. Since (),lr purpose is to study the nonlinear electron dynamics, we

have also linearized the ion motion in the simulation by discarding the O_,,6f term in Eq.

(21), which is accompfished in the simulation by letting i;ll = 0 for Eq. (.4) and dropping

the (1 - _ei)correction in Eq. (16).

The first run shown has the following parameters in the gyrokinetic units: 7e/Ti =

l, rni/m._ = 1837. the rnagn_tic field tilt 0 = 0.01, the particle size is one (= p.,), the

timestep is _kt = t. nn = 0.2, the system size is L = t6'-kx, the grid size is Ax = 0.5,

and the total number of particles is .Vtot = f16 = 987, where f l6 denotes the sixteenth

Fibonacci number. With this choice of parameters the dominant unstable mode is the

rz = 1 h,,rmonic or /_:= 2rr/L _ 0.8 mode. Figure l(a) shows the the time evolution of

the electrostatic potential for n = 1 Fourier mode. The real part is the solid line and the

imaginary part is the dashed fine. The mode frequency _veraged over both the linear and

nonlinear p_Lrts of the evolution is _z "=_0.075. Figure l(b)gives the logarithmic change of the

8



amplitude as a function of time for this mode. A clean linear growth followed by a sudden

nonlinear saturation is clearly visible. The Inea.sured linear growth rate is 7 "" 0.012, and the

saturation amplitude is (b " 1.1%. Figure 2(a) shows the spatially averaged perturbation
_,,_

_f_o(- (6f)) at t = 500 and gives the resonant point at vii = 0.2Vte. Integrating 0f_,,0in ell,

we obtain I _,i wi/Ntot I_ t.3xt0 -4 at t = 500; thus, the particle conservation deviates from

Eq. (17). This discrepancy, which increases by a factor of 2.5 at the end of the run, has

no effect on the instability, it is however, a measure of accuracy of the simulation. :\nether

interesting aspect of the simulation is that, while we are solving Eq. (21), we also follow

the evolution of the equation j_= 0 with the same set of equations of motion and

N

f(_j, vii, t) = _ S(y - 9i)gi(vll - viii). (24)
i=1

The total distribution function f at t = 500 is shown in Fig. 2(b). Its jaggedness, com-

pounded by the fact that 6f_0 is no_ at all discernible, would make it impossible to use this

information for conservation property diagnostics, let alone for the field solve.

Because of the use of the linear ion response, the momentum conservation given by

Eq. (18) cannot be satisfied in the simulation. However, we can use Eq. (19) to check a,

similar property. In the one dimensional system, it becomes 12

,,llf,l ,ll) + o(r ) = o, (25)rrze

where -Pe =- -OvcPrze is the particle flux, and (...) denotes spatial average. Hence, we

obtain a relationship between the rate of change of the momentum and the particle flux

in the simulal;ion, which is plotted in Fig. 3(a). Here, a frequency filter has been used

to smooth the data for dpe/dt and the nornlaiization constant no is the average number

density. Apparently, numerical noise tbr the flux is quite substantial and, again, there

is a discrepancy of O(10 -4 ) between these two quantities. From Eq. (20), the energy

conservation becomes,

(f 6f"i_dvll)/n, ovee2 + (I Oy* I'2}= O. (26)

This is shown ill Fig. 3(b). Again, the results are quite noisy and the difference between

• the kinetic energy and the field energy is also of O(10-4). [towever, considering the smM1
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number of particles used in the simulation, these results are actually quite good. We remind

the reader that this was accomplished through the use of: 1) nonlinear weighting scheme,

2) the quiet start technique, and 3) the nonrandom initial perturbation.
?)

Nevertheless, the errors in the conservation properties after nonlinear saturation is trou- ,,

blesome, since our ultimate goa.[ is to use the scheme to study long-time steady-state phe-

nomena. To improve upon these results, we have carried out a series o1' runs _tnd found

that a substantial increase in numerical _u:curacy is needed. To illustrate this point, we now

present a run with ,_kt = 0.2, :Ytot = -16,368 p_rticles on a 64-grid system using a, pa,rticle

size ofp_/2. Ali the other parameters remain the same. Figures 4(a) and(b) show the mode

history. Comparing with the previous case, the mode frequency (averaged over both the lin-

ear and nonlinear parts of the evolution) increases slightly to w '-, 0.088, and the saturation

level decreases slightly to o _- 1%, while the growth rate remains the same at 7 -_ 0.012.

One important difference is that the numerical (including noise) errors remain small in the

nonlinear stage when the particles are trapped and executing bounce motion. This charac-

teristic is clearly manifested in the diagnostics for the perturbed distribution function hf_,0

and f in Figs 5(a)and (b). ttowever, for the perturbed distribution, which is also mea-

sured at t = :7)00, the _symmetry in the velocity space still remains, _tncl the corresponding

discrepa, ncy for the total particle number, I _i wi/Ntot ], averages to a,bout 1.35 x 1o-4 ,

which is similar to the previous course simulation. However, the overall smoothness of the

distributions in Figs. 5(a) and (b) come from the increase in numerical _u:curacy. Interest-

ingly, even with this type of accuracy, the perturbation of 5f_.0 is still not quite discernible

in the total f diagnostic Fig. 5(t)). This is because the perturbation is only a, factor of two

above the thermal fluctuation level of o = 1/_k _ 0.6%.'* Thus, following from Ref. 1,

one can surmise that a total f simulation, even with this many particles, would not give

as clean _t result a,s the new scheme. This point cannot be verified, however, because there

is no available s(,leme to solve the equation of the form, ] = -_:0v_f0. The (:orresponding

flux and energy diagnostics for this case are shown in Figs. 6(a) ztnd (b). As we can see,

the conservation of both these quantities ar- near• (_ perfect. The impl;tcation here seems to

be that one still has to use _ very large number of particles with enough spatial and time
Ib
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resolution _o obtain reasonable conserva.tion properties. On tile other hand, a conventional

particle simulation would need even more. l-[owever, if one is only interested in linear growth

_md nonlinear saturat.ion, the present scheme represents a substantial savings in computing

resources.
',w

IV. Nonlinear Saturation

The nonlinear saturation of' tile most unstable modes (e.g., rz = +1 in the simulation

results presented above) is due to the parallel velocity nonlinearity and is not caused by
t

E x B advection. It; is commonly assumed that the the E x B nonlinearity, which is absent

!n the simple one dimensional model, is the dominant nonlinearity for ttle saturation of
,.

the drift Wa.ves in the (more realistic) higher dimensional models. I{owever, the parallel

nonlinearitv does play a role in the saturation as was shown in Ref. II. The simulation

results in Src. 3 indicate that the sat_ration level is comparable to the E × B saturation level

elol/T_ ,,, _,,./(k_c._p._)(a.ssumin_;/,', .-, /,,y),_ ;znd is much lower then el(/)l/Z_,"" .}(/,:lh,)'2,

, as predicted bv Sag(trey and Galeev. 5 Also, iii a tokamak geometry, drift 'type modes are

elongated in the radial direction (J,:_<</c0), at least in the linear phase, which should reduce

. O " ('* q •. the fr ct. of the E :_ f_ on saturation, l:s-..15In addition the parallel nonlinearity may be

important in determining tile steady-state transport caused by microturbulence, l_s which

will not be discussed here. The one dimensional model allows us to isolate the parallel

nonlinearity and studv the a.ssociated physics.

In this section, we consider a simple case of three-wave coupling between the two fast;est

growing modes (r_ = +1) and 6lo for the electrons. The saturation takes place when the

electron electron distrib,_tion is steepened at tile resonance point /,:llVll- ,,s. The saturation

ainplilu(te of the potential due to the EliOt.li(Sf nonlinearity is calculated using a. quasilinear

es_imat.e whirh is sinlilar _o the. calculation for saturation of drift waves (tue to the E × /3

nonlinearity given in Ref. l l. In the following, we use the subscript "1" to label the fastest

, growing mode and its complex conjugate with A:= 2,'rn./L, where L is the system length, a,nd

7_is the Fourier mode number. [Noto that afl(k) = afl"(-k)]. The governing drift-kinetic

0
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electron equations are

Ot_fl + kllt,'llOv_ft + i(a,,.- kllvll)f o+imiklOlO,,,6f0 - O, (27) '
TIZe

Otbfo - 2 k,llelO,,,Im(¢l,Sf _) = O, (2._)

where _,,. = _k (in the gyrokinetic units), f0 is the background Maxewellian and 6lo is the

nonfinear change of the background due to mode coupfing. The perturbed electron density

is 6n,_l = f 5ftdvll. For the ions, we assume a fluid response sittce Ico/kll[ >> vti, and the

continuity equation for ion density becomes

OtSnil + iw, Snit = 0. (29)

Equations (22) and ('27)-(29) couht be solved using the Vlasov (Eulerian) simulation and

should give the same results as the particle simulation in the previous section. However, to

obtain an analytic estimate, we assume the dependence of e -i'''t for/_fl, nii, and ol, where

_' = _ + i7 and also 1/71 >> I. The perturbation can then be expressed as

{ (_'-_") fo - mi k.' 5fo}¢1 30)fl = f0- (klIvll__a) m_(kllVll-CO)Ov" .

Ass,uning 7 small, we can use the following relation

1 kllvii - _o_+ i7
- _/'r6(kllvll - CO_), 31

(kllull -. _o) Ikllvii - col2

to obtain the electron density response as

,*n_l &fldt'll 1 kll,V,_e mo. _ (k)ivllco)
- = - t -_(_.-wr)- _ Ovll(Sfodvl[ 01.

(a2

From which we arrive at the following nonlinear dispersion relation

i + k 2 _* ' _ l mi :_+_" kllrn_ ¢o (kllVll - _) O_'"af°dvll (

Neglecting the nonlinear term (last term on the right), we obtain the familiar linear results 11

CO.

_o_=wl -= t+k 2' (:14) .

I wt
7 = 71 =-- - --

(kllVt.) (1 +/c2) (_. -'.-'t). (;15)
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The predicted Linear frequency and growth rate for the simulation are: wt = 0.0976 _md

, Tl = 0.0134, which are very close to the results shown in Figs. 1 and -l. From the linear

response Ibr 5fl, the nonlinear response of the background can be estimated as

mi _1¢l - {<4 - <.or)So(vii 36" <4fo= lr--. 12(w,. ¢zl)OVl I (kllVll )}. ( )'m,,. 7

Substituting Eq. (36) into Eq. (33), we obtain the nonLinear dispersion relation in terms of

the amplitude of ¢l

1 + k 2 _" i r l (_. - ml) 1 - 2 mi I®,1 =0. (:/7)
7t

From this equation, again assuming I_'/_1<<1, we obtain the same real frequency _, = wl,

but the the quasiLinear value for the growth rate becomes

,7 = ,.),tI l _ 2 (kllVte)4 }r? I¢,_ . (3_)

At saturation 7 = 0, the saturation level of the potential can be expressed as

i _} (3,o)
I¢,I= v_(}llvte)2'

Using the simulation parameters of kll = 02lr/L = 0.00785, mime = 1837, zmd 7t = 0.0134,

the predicted saturation amplitude is ]Cii = 0.11%, which is an order of magnitude smaller

than the level obtained from the simulation results shown in Figs. 1 and 4. Thus, the effect

of parallel nonLinearity on the saturation is overly estimated by the above approximation.

Next, to improve on this first estimate, we use the original form of the resonant denom-

inator, Eq. (31), and also use the full nonlinear _ft to calculate _if0, i.e.,

6fo= klllCtl2(w'-w')Ovii IkllOll-W,.I 2 m_,(w,-_t) fo , (40)

If the quasilinear appro_mation is vaLid, this second order ordinary differential equation

could be solved to obtain 6fo, which in turn could be used in Eq. (33) to obtain mnaccurate

prediction of the saturation level. The extra term included in Eq. (40) accounts for the

effect of parallel trapping on saturation. To obtain an simpler estimate, we begin by using

" the 5-function relation, Eq. (31), in Eq. 40) to obtain

mi k
, 6fo = (1-.ct) fol<,li=_,,./kil_0-.'111¢,I_(_.-_t)OoiilkllVll-_l -'2 (-11)
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where a - - '_na._ kH . Then, substituting Eq. (41) in Eq. (33), _tssuming
m,_ (_o-,.'-'t) lo ,Vll=W,./k!l

[a.'/kll [ << c't_. and integrating, we obtain the following relation ibr the saturation amplitude '"

2 "Ii_)2' (42) ,,

Assuming a linear response for _fl as was done in deriving Eq. (39), so that _ = 0, we

obtain I¢11 = 0.32%, which is in better agreement with the simulation results than Eq. (39),

but "t still too low.

An estimate of c_ can be made by taking the derivative o,r Eq. (40) with respect to vii,

and evaluate at vii = _/kll to obtain

vii =w, , 2 _ 2
0_,,5/'o = m'/ell[¢_['2{(_'--_)fo(vll)O,_,[lellvll _1- (43)I kl I 'me .

}
q2 + .

'rn,e v II=w. / k II

where we have neglected derivatives of f0(Vll ) because it is slowly varying compared to

,2

IkllVll-_ -'_. We have also neglected 0_ll_f0 terms, by assuming _Sf0 has the following form
a

fo = C( t)Vll exp 2 Avi_(t ) ] ' (44)

_/')where C and AVll are independent of vii, and A vii _ .l_(t)l -_ is the width of the trapping

"11 _- 0. In _ddition,region [see Fig. 5(a)]. From Eq. (44), one (:.an show that O_ll_fo =_°'/kll

OVll _ :5 ,. "we can use the relationship of ,3 6[0 -_ ,X_%O_llbfo, to obtain an equation for _,t, i.e.,

2z 2

a. , (45)
c,= 2z2+7._+1

where z = _ 101[. We can now substitute this approximate value of e into Eq. (42) to

obtain the following cubic equation

3 _3 7 _ 3
--z- 1 =0. .16)8 4 2

Solving Eq. (46), we find

16_1=,5.48 ;?
(kllVt_) 2, 47)

14



along with two spurious complex roots with negative real parts. Equation (.17) yields

[O11 = 0.87% for our simulation parameters, which is in good a_greement with the the

results shown in Figs. / and 4. We have also tried an iterative solution using the linear

value of dif: to obtain the first iteration f f0t, the:: using 0,,11,5f_in Eq. (40 to predict 6f_,
¢

etc. However, this procedure did not converge.

V. General Nonlinear Characteristic Method

In this Section we extend the nonlinear scheme previously discussed for the electrostatic

slab in Src. 2 to the toroidal finite-;_ gyrokinetic equations. We begin, as before, by writing

f(z,t) = fo(z) + 5f(z,_), where z = (R, vii,#), and lo(z) is an equilibrium distribution

which satisfies _,o' 0zfo(z) - 0. Using the electromagnetic gyrokinetic equations with a

nonunitbrm equilibrium B-field 17-2° and writing _, as an equilibrium and perturbed part,

- 7,o+ zl, the equation for 6f is

0t( B'di f) + Oz . (_,B*Sf) -- -z:. Ozf0. (48)

where # is time independent, and the equilibrium and perturbed trajectories are evolved

, using

- B--7 vii +-l_e x#VB ° , (49)

'iii° - B*_{B''_V'B°}m ' (50)

R1 = Bmi VllSBJ'+ e x#VSBil+cl_xVSq5 , (5I)

where B" = B ° + diB± + mcttv × b, B" = b' B" and B "° = B ° + m--_tZVX I_.
e ' e

The characteristics (or particles) follow the full nonlinear trajectories z = z° + z 1, and

_f is represented by

• B*Sf(z,t) = _ widi(z - ai). (53)
i

lr

15



We define g as a smooth distribution function representing the particle distribution (g does

not necessarily ha.ve to be equal to the physical distribution function f at this point) ..

B'q(z,t) _ _ tS(z - zi). (.5-1)
i

Substituting Eq. (53) into Eq. (48) and using gq. (54), we obtain

g(z,t)Jz=z,,t

which is just the generalization of Eq. (12). If, as before, we take g = f = f0 + bf we

obtain

['lbl - -(1 -wi) i 1 0zf0] (56)
' -7/-0

This evolution equation tbr w; along with the equations for the nonlinear trajectories Eqs.

(49)-(52), is the more general version of the new method presented in Sec. 2.

VI. Discussion

We have developed a new nonlinear characteristic method which retains all nonlinearities

in a consistent way. This, however, does not preclude the possibility of neglecting various

nonlinear terms if they _zre physically unimportant. In fact various terms can easily be

"turned on and off" to test their physical effect. We also see no immediate difficulties

in applying this method to other Vlasov-Maxwell systems where the derivatives of the

initial distribution are known and finite. For a strong instability, where the perturbations

become large _Sf/f _ 1, noise properties revert back to those of a conventionM particle

simulation. However, in such a case the linear phase would be much more accurately

resolved. At best, the new method captures the physics of conventional [)article schemes

with improved statistical properties. At worst, the scheme behaves linearly (with very low

noise properties) for small perturbations, and fully nonlinear (with associated thermal noise)

for large perturbations, and consistently makes the transition between the two extremes.

We were able to obtain good energy conservation. However, compared to the number needed

to capture the relevant physics of the drift wave model, a very large number of particles

were required. The saturated electrostatic energy and associated change in electron kinetic t

16



energy is only 1.0% of the total electron thermal energy for the choice of parameters in Se(:.

3. As su( . lt is not surprising that a relatively large number of particles, small timestep

and fine grid where required to resolve this small change in kinetic energy (1.0% of the

total).

This one dimensional drift wave model permits us to isolate EilO,_tmSfnonlinearity and

the associated nonlinear physics. Mode coupling theory was used to obtain a saturation

level which is much lower (for our choice of parameters) than the estimate based on the

energy balance calculation of Sagdeev and Galeev. 's Simulation results agree well with our

estimate. Because of this new lower saturation amplitude, parallel velocity nonlinearity

may play a more important role in microturbulence then previously thought, although past

investigations have shown such a tendency. 11 In addition, the e.,dsting linear theory for

tokamak geometry predicts a ballooning type mode structure which is elongated in the

radial direction and, therefore, will reduce the effectiveness of the E × B nonlinearity for

saturation.

Finally, the nonlinear characteristic method was extended to the general electromag-
i,

netic gyrokinetic equations. Application of these equations in a. three dimensional toroidal

simulation is an ongoing effort and will be reported in the future. 15

Acknowledgments

We thank Dr. Liu Chen, Dr. T.S. ttahm, and Dr. A. Dimits for enlightening discus-

sions. This research was supported in part by an appointment to the U.S. Department of

Energy Fusion Energy Postdoctoral Research Program administered by Oak Ridge Associ-

ated Universities and by DOE Contract No. DE-AC02-76-CHO-3073.

17

................................................... IUmllI/Imlr .................... I ............................................. 111111111 .............................................................



References

l.\. Dimits and W. W. Lee, PPPL Report 2718, Oct. 1990 [submitted to J. Comp. Phys.].

2T. Ta,iima and F.W. Perkins, Proceedings of the ,Sherwood Fusion Theory Conference, 2P9

(t98a).

3M. Kotschenruether, Proceedings of the I_th International Conference on Numerical ,5'im-

ulation of Plasmas (Anapolis, MD 199l).

'IW.W. Lee , a. Comput. Phys. 72,243 (1987).

' VSR.Z. Sagdeev and A.A. Ga.lee , Nonlinear Plasma Theory, W.A Benjamin, Inc., NY

(1969).

_.I.A. Byers, Proceedings of the b))urth C'onference on Numerical Simulation of Plasmas

(NRL,Washington, DC 1970), P. 496.

r.I.P. Friedberg, R.L. Xlorse, _nd C.W. Nielson, Proceedings of the Third C'onference on
,I

Numerical Simulation of Plasmas (Stanford University, CA 1969).

s.l. Denavit and J.Xl. Walsh, Comments irs Plasma Phys. Controlled Fusion 6 209(1981).

:)B.I, (:ohen, S.P. Auerbach, ,I.A. Byers. and H. Weitzner, Phys. Fluids 23, 2529 (1980).

l°A. Friedman, R.N. Sudan, and ,J. Denavit, J. Comput. Phys. 40 1 (1980).

11W,W. Lee, ,I,A. Krommes, (2;.t{. Oberman, and R.A. Smith, Phys. Fluids 27 2652 (198,1

12W. M. Nevins, Phys. Fluids 22, 1681 (1979).

13S.(,'. Cowley, R.SI. Kulsrud and R. Sudan, Phys. Fluids B 13 2767 (1991).

14Romenelli, L. Chen and S. Brigugtio, Phys. Fluids B 3 2496 (1984).

laS.E. Parker and W.W. Lee, Proceedings of the International Sherwood Fusion Theor!l

Conference, 1B3 (1992).

16W.W. Lee, W.M. Tang, Phys. Fluids, al 61'2 (1988). t

18



IrT.S. Hahm, W.W. Lee and A. J. Brizard, Phys. Fluids 31 1940 (1988).

" 1sT.S. Itahm, Phys. Fluids 31 2670 (1988).

tgA. J. Brizard, J. Plasma Physics 41 541 (1989).
',,w

'2°A.J. Brizard, Ph.D. Thesis, Princeton Univ., ,Ian. [990.

Figures

Figure i (a) Time history for the real (soLid line) and imaginary (dashed line) part

of the electrostatic potential for the n = 1 drift instability (kj_pi _- 0.8), and (b) the

corresponding amplitude evolution for the run with 987 particles on a 16-grid system.

Figure 2 (a) Perturbed distribution _f(k = O)/fo(vlt = 0), and (b) the total distribu-

tion f/fo(¢'ll = 0) for the electrons for the 987 particle run at l_it = 500.

Figure 3 (a) Time history for the electron particle flux (solid line), and the time rate of

• change for the electron parallel momentum (dashed fine), and (b) the time evolution

for the perturbed electron kinetic energy (solid fine), and the field energy (dashed

line) for the 987 particle run.

Figure 4 (a) Time history for the real (solid line) and imaginary ((lashed fine) part

of the electrostatic potentiM for the m = 1 drift instability (k±pi "" 0.8), and (b)

the corresponding ampfitude evolution for the run with 46368 particles on a 64-grid

system.

Figure 5 (a) Perturbed distribution _f(k - O)/fo(vll = 0), and (b) the total distribu-

tion f/fo(Vll = 0) for the electrons for the 46368 particle run at f_it = 500.

Figure 6 (a) Time history for the electron particle flux (soLid fine), and the time rate of

change for the electron parallel momentum (dashed Line), and (b) the time evolution

, for the perturbed electron kinetic energy (soLid Line), and the field energy (d_shed

line) for the 46368 particle run.
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