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Abstract

\Ve present a new scheme which evolves the perturbed part of the distribution function
along a set of characteristics that solves the fully nonlinear gyrokinetic equations. This
nonlinear characteristic method for particle simulation is an extension of the partially lin-
ear weighting scheme,! and may be considered an improvement of existing 6 f methods.*
Some of the features of this new method are: the ability to keep all the nonlinearities.
particularly those associated with parallel acceieration: the loading of the physical equi-
librium distribution function fy (e.g.. a Maxwellian), with or without the multiple spatial
scale approximation:! the use of a single set of trajectories for the particles: and also, the
retention of the conservation properties of the original gyrokinetic system in the numerically
converged limit (i.e., small At. small Az and a large number of particles). Therefore, one
can rake advantage of the low noise property of the weighting scheme together with the
quiet start techniques to simulate weak instabilities, with a substantially reduced number
of particles than required for a conventional simulation. The new method is used to study a
one dimensional drift wave model which isclates the parallel velocity nonlinearity, .\ mode
coupling calculation of the saturation mechanism is given. which is in good agreement with
the simulation results and predicts a considerably lower saturation level then the estimate
of Sagdeev and Galeev.> Finally. we extend the nonlinear characteristic method to the

electromagnetic gyrokinetic equations in general geometry.
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I. Introduction

An outstanding issue in gyrokinetic simulation (and in particle-in-cell simulation in
- general) is that often times it is necessary to use a rather large number of particles to
resolve the physics of interest. The concern being that thermal fluctuations (or noise) and
lack of sampling (or resolution) of the two to six dimensional phase space caused by a finite
number of particles may obscure the physical process being modeled. For example. the
broad-band dersity fluctuations existing in tokamak plasmas usually have an average level
of a fraction of one percent or less. Thus, modeling such plasmas requires a very large
number of particles for proper resolution. such that Ny > 1/(6n/n)? ~ 105.* Early on it
was recognized by Beyers and others that improvements in noise properties could be made by
loading more uniform distributions or “quiet starts,”®® and also by linearization techniques
which track the perturbed quantities in terms of the equilibrium trajectories.”!¥ More
recently, Dimits and Lee' developed a linear and a “partially linear” scheme by allowing
the particle weights to evolve in time. In the linear scheme the particle weights follow
the equilibrium trajectories. In the partially linearized scheme, the E x B nonlinearity
is retained by adding this drift to the equilibrium (zeroth-order) orbit. There have been
other investigations®* into similar techniques often called 6 f methods. but no schemes up
to this point have reported actual simulation results where the parallel velocity nonlinearity
is retained.

‘The nonlinear characteristic method presented here is similar to previous weighting
schemes;! however. the fully nonlinear trajectories are evolved and a consistent evolution
equation is used for the particle weights. We begin by presenting the new method for
the electrostatic slab case and the associated conservation properties of particle number,
momentum, and total energy. We then present gyrokinetic simulations of a sjrupie one

dimensional drift wave instability in a shearless slab. This model isolates Eydy 6 f nonlin-

Vi
earity and allows us to study the associated nonlinear physics. A three wave mode coupling
theory is presented which gives a saturation level of e|¢|/T. = 5.572/(&”0“9)2 which is much
lower than the calculation of Sagdeev and Galeev,’ e|¢|/T. =~ i(kJ_p,,)z. There is good

agreement between theory and simulation in terms of linear frequency, growth rate. and
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nonlinear saturation. The conservation properties of the simulation plasma have also been
investigated. It is found that the conservation of number density, momentum and energy
in the nonlinear stages of the simulation can be achieved only if we use a sufficiently large
number of particles. small timesteps. and a small grid cell size. Finally. we discuss the ap-
plication of the nonlinear characteristic method to the general electromagnetic (nonuniform

equilibrium magnetic field) gyrokinetic equations.

II. Nonlinear Characteristic Method

As mentioned earlier. devising a scheme where only the perturbed part of the distribution
function is evolved has been previously investigated.!=® It was recognized that, by evolving
only the perturbed part of the distribution 6 f, one could remove the initial noise associated
with the equilibrium fy due to the use of a finite number of particles.® The scheme we
present here is similar to the previously proposed éf methods.?> but we take into account
the discrete representation of the characteristicc in a similar fashion as was done for the
linear and partially linearized schemes.!

Let us begin by writing the distribution function f(R,uvy,u) in the familiar way as
f = fo+ 6f. where fy is the equilibrium background distribution and is independent of
time, and 6 f is the perturbed time dependent part of the distribution. For (k p;)* < 1.

the gyrokinetic equation for é f in the electrostatic slab limit is
- ) . ; q ,
00 f + v - Vof + 0V 8f + %E“ounaf = —vp Vfy - %EHov“ fo. (1)

where p; = r,;/Q; is the ion gyroradius, v = cE/Bxb is the ExB drift. The corresponding

gyrokinetic Poisson equation in the small (&, p;)? limit is
(ps/AD)*Vio = —dme(ni - n.), (2)
where ps = /Tpi. T =T, /T, A\p = TF/(47TTL(]€2] is the Debye length. and

n= /h'f(lvudp. (3)



The characteristics (or trajectories) of Eq. (1) are

R = v||5+v1;, {5)

and along these characreristics 6 f is chanizing because the right hand side of Eq. (1) is

nonzero {note that g = 0 here). The evolution equation for ¢ f along the trajectories is
- q ... .
bf==vep -V fo- “,'-’;b”()l.“fo. (6)

Now. we simply need to solve Eqs. (4)-(6). At first glance, one might consider loading a
large number of characteristics (or particles). each having it’s own ¢ f, evolve the system in
time and then weight the ¢ f's to the grid to obtain field quantities. However. one needs to
examine carefully how é f is being numerically represented and whether Eq. (1) or (6) is
indeed being solved correctly.

In a similar fashion as the partially linear weighting scheme.* except now the fully

nonlinear trajectories are evolved. 4 f in the simulation is represented as

N
SR vy pt) = Z wiS(R = Ra)é(wy — ) )0(p — ). {

=1

where .V is the total number of particles and 5 is the particle shape function. w, is the
particle weight and can be interpreted as the 6 f/ f associated with the particle i. as will be
shown below. S(u) = #(u) is used for present discussion (i.e.. we assume the particle shape
function has the same properties as the delta function). This is equivalent to assuming that
all quantities have a small spatial (or long wavelength) variation compared to the particle

size. One can then use relations such as the following

il

ST f(R,)SIR = R,) Y f(R)—(R=Ri)-VfIR)+ - ]S(R - R,) (%)

I

f(R)> S(R-Ry). (9)

Substituring Eq. {7) into Eq. (1) we ootain the following relation.

. ) q ,
Z w s R — R, )8l vy = ey ol =) = =veg - Vfy - ;I;E!|()L,llﬁ). (10)
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[t should be noted here that Eq. (10) and Eq. (6) are quite different. Namely. the evolution
of w from Eq. (10) is not the same as assuming w = §f and using Eq. (6) to evolve w
along it's trajectory. We will elaborate this point later. Next, we assume that the particle

distribution can be represented as a smooth analytical function
g(R vy pt) = Zb(R -~ R;)o( oy = vl = pi). (11)

(g could be equal to the physical distribution f. but this is not necessary np to this point.)

From Egs. (10) and (11). we obtain

' dy
ri‘,:—‘:v _Vfo+_(1_E ”fo

g m g

R=R.,vy=vp u=pt

One way to solve Eq. (12) is to note that the function ¢ satisfies the full nonlinear gy-
rokinetic equation so that g is constant along a trajectorv. One then can use the relation
g(Ryvpivpet) = g [R,(r = 0)oo(t = 0)opyt = 0]. Since the initial loading is arbitrary,
one can, for example. load a uniform distribution ¢g(¢t = 0) = const. independent of the
phase space variables, which seems to be the approach proposed by Kotschenruether.?

However. the equilibrium fy with a nonuniform loading in the velocity space (with or
without spatial inhomogeneity) is preferred, because one wants more phase space resolution
(i.e.. particles) where the wave is in resonance with the distribution function (w/k = v)).
Typically. for low frequencv microinstabilities, the resonant velocities are smaller than the
thermal velocity of the species. Thus, a nonuniform loading {e.g., the Maxwellian distribu-
tion) in velocity space is much more desirable than a uniform one. One problem associated
with the nonuniform loading for the existing 6 f schemes is that additional particle arrays
(or calculations) are needed to keep track of g;(t = 0). Moreover, numerical difficulties may
arise from the denominators of Eq. (12) for particles with small values of g;(t = 0), i.e..
those initially located in the tail of the distribution. These are the potential drawbacks for
using Eq. (12) to evaluate w;, along with g,(t = 0).

We now present the nonlinear characteristic method, which avoids these problems. One
loads the particles with the equilibrinm distribution g(¢t = 0) = fy (as above. ¢ is the

particle distribution) in the same manner as in the usual particle simulation. Then we



1 1 0 f :
assume g = f = [y + &f throughout the simulation. Since 7 = T (1 - ‘—fi) from Eq.
0

{12). we arrive at

. i, 4 g dub) (¢S ‘
w, = — {(VE-.]TD—._{-;)-EH—fO_) <l-——f—>:| . (1'3)

X=X, USRI T Wt

To determine & f/f in Eq. (13), we note the following

b . . .
S ST AR = RaA = oy ) (1)

_ §
= ) SR = Rib(vy — vyidolp — p) [(—f-

f ] X=X US| L= Ha it

of =

The “approximately equal to” sign was used again because we assumed that f and éf were
smooth functions, as was done in Eq. (11). From Eqs. (7) and (15) we see that w; = [¢ f/ f],,

and. hence, we can substitute this into Eq. {13) to obtain

wi = “(1~'fllz'){(VE'Zf—0+iE||—"—fo>] . (16)
. fD m fO x=x..u"=uu,.u=;/...t

Equation (16) along with Egs. (4), (5) and (7) are the crux of the new nonlinear charac-
teristic method [as usual. one uses Eqs. (2) and (3) to complete the loop]. Besides the
nonlinearities appearing as perturbations to the zeroth-order trajectories [Ey and vg in
Eqs. (4) and (5)]. there is the additional factor (1 — w;) in the evolution of the equation
for the weights in Iiq. (16). This factor, which is essential to the nonlinear physics and the
conservation properties of the simulation plasma, describes the difference between fu(t = 0)
and fy(t), as indicated by Eq. (12).

Let us now discuss the conservation of the total particle number, momentum and total
energy associated with the new nonlinear weighting scheme. First, we examine the change
in “the number of particles” by taking the zeroth velocity moment of Eq. (1). Using Eq.
(7) and assuming that the sum of the w;’s is nearly zero initially, we then obtain

Zw,-(t):(). (17)
i

The momentum conservation can be derived by taking the first velocity moment of Eq. (1),

o {/ u“bded/Ldv“} - %{/nE”dR} = (), (18)
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which, along with Eqs. (2} and (7). then gives

Z Mg Z vum»wm = 0, (19)

where n is given by Eq. (3) and « denotes species. To calculate the change in energy,!
we take the second velocity moments of Eq. (1) for both the ions and the electrons and
substituting them into Eq. (2). Again, if we take the particle weights and field to be zero

at ¢ = 0, then the simulation should conserve energy, i.e.,

Z"no{ Z( - L’Z )w s _p_s. ? L )V qﬁ’zdR_‘ 0 (20)
. 5) : Ko [|oi /et AD S + -

We expect Egs. (17)-(20) to hold for a simulation plasma in the limit of large number
of particles and fine space and time resolution. In the next section, we will examine the
validity of these conservation properties in a simulation using a finite number of particles.
This is an important exercise which serves as a test for both the formal correctness as well
as the practicality of the proposed scheme. In other words, we want to examine the scheme

to see if it is a useful alternative to conventional particle methods.

III. One Dimensional Drift Wave Simulation

We now present simulation results using the new method checking linear and nonlinear
physics as well as the conservation properties. For simplicity, a one dimensional drift wave
problem is chosen as an example here. In this one dimensional model the £ x B nonlinearity
is not present, so the E“i)v" 6 f nonlinearity is the only mechanism for saturation. This is the
term which has been neglected in the previous scheme! on the assumption that, in the more
realistic two and three dimensional geometries, it is the the £ x B nonlinearity which is the
dominant saturation mechanism. However, as suggested in Ref. 10 and 11, the E‘Ni)unéf
nonlinearity may be relevant in determining the steady-state transport for gradient-driven
microinstabilities.

In this problem the one spatial dimension y is perpendicular to the spatial gradients,

which are in the r direction, and is almost perpendicular to the magnetic field, b = z + 8y.



Here, both r and = are ignorable coordinates for the perturbation quantities. The one

dimensional version of Eq. (1) for both the ions and the electrons is
» o s ) ) U
Ulbf + 97’||(7y(§f - 0’0().,/(001‘,“(5f = —f{()yd)fo + Ct(}()y(ﬁﬁfo, (21)

where a = (1,-m;/m,) for the ions and the electrons, respectively; and we use the di-
mensionless gyrokinetic units of y/ps — y, it — ¢, v)/¢; — v, and ep/T, — &. For this
problem, we use &k = —dlnng and have assumed a Maxwellian equilibrium. The gyrokinetic

Poisson equation or the “quasineutrality™ condition in one dimension is
yy® + 6ni = bn,. (22)

We solve these equations with a one dimensional gyrokinetic simulation using the new
method explained in Sec. 2. In addition, a quiet start technique employing Fibonacci
numbers® has been used. In order to further minimize the noise, we have also used a cutoff
scheme! of

wi = o) {(23)

for the fast particle with v; > w/k). ¢, is initially perturbed, where m is the Fourier
harmonics of interest. Since our purpose is to study the nonlinear electron dynamics, we
have also linearized the ion motion in the simulation by discarding the Oy, f term in Eq.
(21), which is accornplished in the simulation by letting 1) = 0 for Eq. (4) and dropping
the (1 — w;) correction in Eq. (16).

The first run shown has the following parameters in the gyrokinetic units: T./T; =
1, m;/m, = 1837, the magnctic field tilt § = 0.01, the particle size is one (= p,), the
timestep is At = 1. K, = 0.2, the system size is L = 16Axz, the grid size is Az = 0.5,
and the total number of particles is V¢ = fig = 987, where fi5 denotes the sixteenth
Fibonacci number. With this choice of parameters the dominant unstable mode is the
n = 1 hurmonic or & = 27/L ~ 0.8 mode. Figure 1(a) shows the the time evolution of
the electrostatic potential for n = 1 Fourier mode. The real part is the solid line and the
imaginary part is the dashed line. The mode frequency averaged over both the linear and

nonlinear parts of the evolution is w ~ 0.075. Figure 1(b) gives the logarithmic change of the
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amplitude as a function of time for this mode. A clean linear growth followed by a sudden
nonlinear saturation is clearly visible. The measured linear growth rateis y ~ 0.012. and the
saturation amplitude is ¢ ~ 1.1%. Figure 2(a) shows the spatially averaged perturbation
6 feo(= (6 f)) at t = 500 and gives the resonant point at v = 0.2v¢.. Integrating ¢ foo in vy,
we obtain | 3=, wi /N |~ 132107 at t = 500; thus, the particle conservation deviates from
Eq. (17). This discrepancy, which increases by a factor of 2.5 at the end of the run, has
no effect on the instability, it is however, a measure of accuracy of the simulation. Another
interesting aspect of the simulation is that, while we are solving Eq. (21). we also follow

the evolution of the equation f = 0 with the same set of equations of motion and

N
Sty =3 Sy = )by = vye). (24)

i=1
The total distribution function f at ¢t = 500 is shown in Fig. 2(b). Its jaggedness, com-
pounded by the fact that é fog is no. at all discernible, would make it impossible to use this
information for conservation property diagnostics, let alone for the field solve.
Because of the use of the linear ion response, the momentum conservation given by
Eq. (18) cannot be satisfied in the simulation. However, we can use Eq. (19) to check a

similar property. In the one dimensional system, it becomes!?

d m; B
S oo g.auy + ZLB(T.) = 0. (25)
where ', = —d,on, is the particle flux, and (---) denotes spatial average. Hence, we

obtain a relationship between the rate of change of the momentum and the particle flux
in the simulation., which is plotted in Fig. 3(a). Here, a frequency filter has been used
to smooth the data for dp./dt and the normalization constant ng is the average number
density. Apparently, numerical noise for the flux is quite substantial and, again. there
is a discrepancy of O(10™*) between these two quantities. From Eq. (20), the energy

conservation becomes,
(/6ft.’ﬁdvn)/n,0l.ue2 + (| 9,0 [}) = 0. (26)

This is shown in Fig. 3(b). Again, the results are quite noisy and the difference between

the kinetic energy and the field energy is also of O(10~*). However, considering the small
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number of particles used in the simulation, these results are actually quite good. We remind
the reader that this was accomplished through the use of: 1) nonlinear weighting scheme,
2) the quiet start technique. and 3) the nonrandom initial perturbation.

Nevertheless, the errors in the conservation properties after nonlinear saturation is trou-
blesome. since our ultimate goal is to use the scheme to study long-time steady-state phé-
nomena. To improve upon these results, we have carried out a series of runs and found
that a substantial increase in numerical EL(‘(:tlrzmtzy is needed. To illustrate this point, we now
present a run with At = 0.2, NV, = 46,368 particles on a 64-grid system using a particle
size of ps/2. All the other parameters remain the same. Figures 4(a)and (b) show the mode
history. Comparing with the previous case, the mode frequency (averaged over both the lin-
ear and nonlinear parts of the evolution) increases slightly to w ~ 0.088, and the saturation
level decreases slightly to @ ~ 1%. while the growth rate remains the same at v ~ 0.012.
One important difference is that the numerical (including noise) errors remain small in the
nonlinear stage when the particles are trapped and executing bounce motion. This charac-
teristic is clearly manifested in the diagnostics for the perturbed distribution function é f.y
and f in Figs 5(a) and (b). However, for the perturbed distribution, which is also mea-
sured at ¢ = 500, the asymmetry in the velocity space still remains, and the corresponding

discrepancy for the total particle number, | 5, w;/Ny,

. averages to about 1.35 x 1074,
which is similar to the previous course simulation. However, the overall smoothness of the
distributions in Figs. 5(a) and (b) come from the increase in numerical accuracy. Interest-
ingly, even with this type of accuracy, the perturbation of 4 f.q is still not quite discernible
in the total f diagnostic Fig. 5(b). This is because the perturbation is only a factor of two
above the thermal fluctuation level of & = 1/\/Nyoik = 0.6%.* Thus, following from Ref. 1,
one can surmise that a total f simulation. even with this many particles, would not give
as clean a result as the new scheme, This point cannot be verified, however, because there
is no available scueme to solve the equation of the form, f = —kdyo fo. The corresponding
flux and energy diagnostics for this case are shown in Figs. 6(a) and (b). As we can see.

the conservation of both these quantities are near perfect. The implication here seems to

be that one still has to use a very large number of particles with enough spatial and time



resolution to obtain reasonable conservation properties, On the other hand. a conventional
particle simulation would need even more. However, if one is only interested in linear growth
and nonlinear saturation. the present scheme represents a substantial savings in computing

resources,

IV. Nonlinear Saturation:

The nonlinear saturation of the most unstable modes (e.g., n = 1 in the simulation
results presentgd above) is due to the parallel velocity nonlinearity and is not caused by
E x B advection. It is commonly assumed that the the E x B nonlinearity, which is absent
‘n the simple one dimensional model. is the dominant nonlinearity for the saturation of
the drift waves in the (mere realistic) higher dimensional models. However, the parallel
nonlinearity does play a role in the saturation as was shown in Ref. 11. The simulation
results in Sec. 3 ind‘icaw that the saturation level is comparable to the E x B saturation level
elo|/Te ~ v/(k%csps) (assuming k. ~ ky).!'" and is much lower then e|o|/T. ~ HkLps)?,
as predicted by Sagdeev and Galeev.® Also, in a tokamak geometry, drift type modes are
elongated in the radial direction (&, <« &g}, at least in the linear phase, which should reduce
the effect of the £ < B on saturation. '*' In addition, the parallel nonlinearity may be
important in determining the steady-state transport caused by microturbulence.'® which
will not be discussed here. The one dimensional model allows us to isolate the parallel
nonlinearity and studyv the associated physics.

In this section. we consider a simple case of three-wave coupling between the two fastest
growing mosdes (n = £1) and 6 f, for the electrons. The saturation takes place when the
electron electron distribution is steepened at the resonance point kyy = w. The saturation
amplitude of the potential due to the E}d,, ¢ f nonlinearity is calculated using a quasilinear
estimate which is similar to the calculation for saturation of drift waves due to the E x B
nonlinearity given in Ref. 11. In the following, we use the subscript *1” to label the fastest
growing mode and its complex conjugate with & = 2rn/L. where L is the system length. and

n is the Fourier mode number. [Note that & fi(k) = o f7(—k)]. The governing drift-kinetic

11



electron equations are

. . . Ly -
(’)gbfl + }\‘,“UH()yﬁfl + H{w. — k”UH ) fo + lf_k||(ﬁldx;||6f0

|
o
N

M fo - 2 kn@l()v"[m &éfr) = 0, (28)

where w. = k& (in the gyrokinetic units). fo is the background Maxewellian and 6 fy is the
nonlinear change of the background due to mode coupling. The perturbed electron density
is 0ner = [6fidy. For the ions, we assume a fluid response since lw/kyl > v, and the

continuity equation for ion density becomes
(‘)gﬁnt'l + iw‘.tSniI = 0. (29)

Equations (22) and (27)-(29) could be solved using the Vlasov ( Eulerian) simulation and
should give the same results as the particle simulation in the previous section. However. to
obtain an analytic estimate, we assume the dependence of e=™“t for § f;, n;1, and ®,, where

w = wr + 1y and also |w./v| > 1. The perturbation can then be expressed as

(we = wr) m; Ky :
ofy = j - Jo - — ’
h lfo oy _w)fu m (hyoy ) Ay bfo ¢ d1. (30)
Assuming v small, we can use the lollowing relation
1 /\”I‘” - Wy + l:"/ L .
= . = b (kv - wy ), (31)
(hyog ~w) kg = wf? e

to obtain the electron density response as

+0o s 1 my too k” .
57%1 = [..;(, éf](h?n = {l - L\/;k”vte(w, —w,)—- ;-Tb—;.[.m m()x;||6fo(l‘!)|[} 03]

U

(32)
From which we arrive at the following nonlinear dispersion relation
my [+ Ky ‘
l k"-—-\/——' - ’/ e Oy, 0 fod vy = 0. 3.
i VT T L Ty — o .
Neglecting the nonlinear term (last term on the right), we obtain the familiar linear results!!
wr=w o= 34
WrEWE TR (34)
= e e — ) (35)
B ——— —(Wa — Wy ). 35
e 2 (hyoee) (14 k2) '

12



The predicted linear frequency and growth rate for the simulation are: w; = 0.0976 and
= 0.0134, which are very close to the results shown in Figs. 1 and 4. From the linear

response for é f1, the nonlinear response of the background can be estimated as

6fo = n;?—- LITPNLI wi)By {8Ckyoy = w) folvp) } (36)

Substituting Eq. (36) into Eq. (33), we obtain the nonlinear dispersion relation in terms of

the amplitude of &,

k
1+k—-—¢_ —unb—z”( )|¢P}=u (37)
2 Ty

From this equation, again assuming |y/w| < 1, we obtain the same real frequency w, = wy,

but the the quasilinear value for the growth rate becomes

kyjjvte
Y= {1 - 2( ”ﬂ:t |¢ |2} (38)

At saturation v = 0, the saturation level of the potential can be expressed as

oL vi .
o) = V2 (ke ) (39)

Using the simulation parameters of kH = #2r/L = 0.00785, m;/m, = 1837, and v = 0.0134.

the predicted saturation amplitude is |¢1| = 0.11%, which is an order of magnitude smaller
than‘ the level obtained from the simulation results shown in Figs. | and 4. Thus, the effect
of parallel nonlinearity on the saturation is overly estimated by the above approximation.

Next, to improve on this first estimate, we use the original form of the resonant denom-
inator, Eq. (31), and also use the full nonlinear 6 f; to calculate 8 fq, i.e.,

|2(w.—wr)au"{—l———[1+ﬂi ul 0”"”(’]}. (40)

Kyjoy = wrl? Mme (wa —wi)  fo

§fo = Lk
m

If the quasilinear approximation is valid, this second order ordinary differential equation
could be solved to obtain 6 fg, which in turn could be used in Eq. (33) to obtain an accurate
prediction of the saturation level. The extra term included in Eq. (40) accounts for the
effect of parallel trapping on saturation.‘ To obtain an simpler estimate, we begin by using
the é-function relation, Eq. (31), in Eq. (40) to obtain

my

bf() =(l -« folu”“ur/k“ ,”|]|(D1| We —W{](‘)U"’k“’l)” -— u‘_z’ (-U)

13
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where a = M ——L& . Then, substituting Eq. (41) in Eq. (33), assuming

meleema) Sy

lw/k)| < vec. and integrating, we obtain the following relation for the saturation amplitude

‘ 2 ./1‘2
= =, 42
|1 T=a U o) (42)

Assuming a linear response for ¢ f; as was done in deriving Eq. (39), so that a = 0, we

'

obtain |¢;| = 0.32%. which is in better agreement with the simulation results than Eq. (39),

but ‘'t still too low.

\

An estimate of o can be made by taking the derivative of Eq. (40) with respect to v)[s

and evaluate at v = w,/k)| to obtain

\ m - | a2 1. - .
Ouuéf() — = Ek|l|¢1|2 {(w. —wy ) fol v“)dj" k“l)“ - Wy 2 (43)
my N s 02 03 L -2
o i) ) in e}

where we have neglected derivatives of fo(v)) because it is slowly varying compared to

kjjoy —wr|7%. We have also neglected 92 6 fo terms, by assuming é fo has the following form
1en Ul

2 Avd(t)

e e [ LY "
6 fo = C(t)vexp : , (44)
Il

where C"and Ay are independent of vy, and Avy = | [2|l@1(t)| 72 is the width of the trapping
region [see Fig. 5(a)]. From Eq. (44), one can show that 63"6f0

~ (). In addition.
1 ’ v =wr/ky
we can use the relationship of 03” 0 fo ~ —K‘i—ii)vnéfo, to obtain an equation for «, i.e.,

2:7

BN FONTE PR

(45)

ek 2 . . . . ~
where » = (U—‘Wgﬂ)—kbl |. We can now substitute this approximate value of a into Eq. (42) to
i

obtain the following cubic equation

3., 7., 3
§33—13"-53»1:0. (46)
Solving Eq. (46), we find
2
N
= 548 -t 47
|11 (R (47)



along with two spurious complex roots with negative real parts. Equation (47) yields
|é61] = 0.87% for our simulation parameters, which is in good agreement with the the
results shown in Figs. | and 4. We have also tried an iterative solution using the linear
value of 6 f; to obtain the first iteration 6 fJ, then using 0,,”6_/'01 in Eq. (40) to predict & f¢.

etc. However, this procedure did not converge.

V. General Nonlinear Characteristic Method

In this Section we extend the nonlinear scheme previously discussed for the electrostatic
slab in Sec. 2 to the toroidal finite-J gyrokinetic equations. We begin, as before, by writing
flz,t) = folz) + 6f(z.t), where z = (R,y,), and fo(z) is an equilibrium distribution
which satisfies zg - Jz fo(z) = 0. Using the electromagnetic gyrokinetic equations with a
q17-20

nonuniform equilibrium B-fiel and writing z as an equilibrium and perturbed part,

z = 79 + 2, the equation for éf is
O(B*6f)+ 0y - (28B*6f) = =2 - 05 fo. (48)

where p is time independent. and the equilibrium and perturbed trajectories are evolved

using
. 1 - C -~
RU = —E:{U”B 0+;bXMVBO}, (49)
. 1
50 = - {B v, %VBO}, (50)
. 1 . .
R! = —B—‘-{v“éBLﬁ-SquVﬁB”-FCbX V5¢}, (51)

1

P D
U” - - Bﬂ

{B‘O- (i‘-vaBH + ZV6o + ia,aA,,f)) + 6B, - H-VBO}, (52)
m m mc m

where B* = B + 6B, + 2¢uV x b, B* = b-B*, and B*® = B® + ¢,V x b.
The characteristics (or particles) follow the full nonlinear trajectories z = z° + z', and

0 f is represented by
B 6f(z,t) = ) wib(z — z). (53)

15



We define g as a smooth distribution function representing the particle distribution (g does

not necessarily have to be equal to the physical distribution function f at this point)
B g(z.t)~ Y bz - z). (54)
i

Substituting Eq. (33) into Eq. (48) and using Eq. (54), we obtain

i = — [z‘-———()Zf"] : (55)
9(2:t) ] gmg, 1
which is just the generalization of Eq. (12). If . as before, we take g = f = fy + 6f we
obtain
-9
w; = —(I—w;){zl-—z'—fg] . (56)
fo Z2=Z;,t

This evolution equation for w; along with the equations for the nonlinear trajectories Eqs.

(49)-(52), is the more general version of the new method presented in Sec. 2.

VI. Discussion

We have developed a new nonlinear characteristic method which retains all nonlinearities
in a consistent way. This, however, does not preclude the possibility of neglecting various
nonlinear terms if they are physically unimportant. In fact various terms can easily be
“turned on and off” to test their physical effect. We also see no immediate difficulties
in applying this method to other Vlasov-Maxwell systems where the derivatives of the
initial distribution are known and finite. For a strong instability, where the perturbations
become large 6§ f/f =~ 1, noise properties revert back to those of a conventional particle
simulation. However, in such a case the linear phase would be much more accurately
resolved. At best, the new method captures the physics of conventional particle schemes
with improved statistical properties. At worst, the scheme behaves linearly (with very low
noise properties) for small perturbations, and fully nonlinear (with associated thermal noise)
for large perturbations, and consistently makes the transition between the two extremes.
We were able to obtain good energy conservation. However, compared to the number needed
to capture the relevant physics of the drift wave model, a very large number of particles

were required. The saturated electrostatic energy and associated change in electron kinetic

16



energy is only 1.0% of the total electron thermal energy for the choice of parameters in Sec.
3. As su¢ . it is not surprising that a relatively large number of particles, small timestep
and fine grid where required to resolve this small change in kinetic energy (1.0% of the

total).

This one dimensional drift wave model permits us to isolate E“OU"

the associated nonlinear physics. Mode coupling theory was used to obtain a saturation

0 f nonlinearity and

level which is much lower (for our choice of parameters) than the estimate based on the
energy balance calculation of Sagdeev and Galeev.® Simulation results agree well with our
estimate. Because of this new lower saturation amplitude, parallel velocity nonlinearity
may play a more important role in microturbulence then previously thought, although past

investigations have shown such a tendency.!!

In addition, the existing linear theory for
tokamak geometry predicts a ballooning type mode structure which is elongated in the
radial direction and, therefore, will reduce the effectiveness of the £ x B nonlinearity for
saturation. |

Finally, the nonlinear characteristic method was extended to the general electromag-

netic gyrokinetic equations. Application of these equations in a three dimensional toroidal

simulation is an ongoing effort and will be reported in the future.!®
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Figures

Figure 1 (a) Time history for the real (solid line) and imaginary (dashed line) part
of the electrostatic potential for the n = 1 drift instability (kyp; ~ 0.8), and (b) the

corresponding amplitude evolution for the run with 987 particles on a 16-grid system.

Figure 2 (a) Perturbed distribution 6 f(k = 0)/ fo( vy = 0), and (b) the total distribu-

tion f/fo[v” = () for the electrons for the 987 particle run at Q;t = 500.

Figure 3 (a) Time history for the electron particle flux (solid line), and the time rate of
change for the electron parallel motmentum (dashed line), and (b) the time evolution
for the perturbed electron kinetic energy (solid line), and the field energy (dashed

line) for the 987 particl» run.

Figure 4 (a) Time history for the real (solid line) and imaginary (dashed line) part
of the electrostatic potential for the m = 1 drift instability (k;p; ~ 0.8), and (b)
the corresponding amplitude evolution for the run with 46368 particles on a td-grid

system.

Figure 5 (a) Perturbed distribution 6 f(k = 0)/ fo{v = 0), and (b) the total distribu-
tion f/fo(v“ = () for the electrons for the 46368 particle run at Q;t = 500.

Figure 6 (a) Time history for the electron particle flux (solid line), and the time rate of
change for the electron parallel momentum (dashed line), and (b) the time evolution
for the perturbed electron kinetic energy (solid line), and the field energy (dashed

line) for the 46368 particle run.
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