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A Fully-Parallel Turbo Decoding Algorithm
Robert G. Maunder, Senior Member, IEEE

Abstract—This paper proposes a novel alternative to the
Logarithmic Bahl-Cocke-Jelinek-Raviv (Log-BCJR) algorithm
for turbo decoding, yielding significantly improved processing
throughput and latency. While the Log-BCJR processes turbo-
encoded bits in a serial forwards-backwards manner, the pro-
posed algorithm operates in a fully-parallel manner, processing
all bits in both components of the turbo code at the same
time. The proposed algorithm is compatible with all turbo
codes, including those of the LTE and WiMAX standards. These
standardized codes employ odd-even interleavers, facilitating a
novel technique for reducing the complexity of the proposed
algorithm by 50%. More specifically, odd-even interleavers allow
the proposed algorithm to alternate between processing the odd-
indexed bits of the first component code at the same time as
the even-indexed bits of the second component, and vice-versa.
Furthermore, the proposed fully-parallel algorithm is shown to
converge to the same error correction performance as the state-
of-the-art turbo decoding algorithm. Owing to its significantly
increased parallelism, the proposed algorithm facilitates through-
puts and latencies that are up to 6.86 times superior to those of
the state-of-the art algorithm, when employed for the LTE and
WiMAX turbo codes. However, this is achieved at the cost of
a moderately increased computational complexity and resource
requirement.

Index Terms—Turbo codes, Iterative decoding, Parallel algo-
rithms, Throughput, WiMAX

I. INTRODUCTION

DURING the past two decades, wireless communication

has been revolutionized by channel codes that benefit

from iterative decoding algorithms. For example, the Long

Term Evolution (LTE) [1] and WiMAX [2] cellular telephony

standards employ turbo codes [3], which comprise a con-

catenation of two convolutional codes. Conventionally, the

Logarithmic Bahl-Cocke-Jelinek-Raviv (Log-BCJR) algorithm

[4] is employed for the iterative decoding of these convolu-

tional codes. Meanwhile, the WiFi standard for Wireless Local

Area Networks (WLANs) [5] has adopted Low Density Parity

Check (LDPC) codes [6], which may operate on the basis

of the min-sum algorithm [7]. Owing to their strong error

correction capability, these sophisticated channel codes have

facilitated reliable communication at transmission throughputs

that closely approach the capacity of the wireless channel.

However, the achievable transmission throughput is limited by

the processing throughput of the iterative decoding algorithm,
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if realtime operation is required. Furthermore, the iterative

decoding algorithm’s processing latency imposes a limit upon

the end-to-end latency. This is particularly relevant, since

multi-gigabit transmission throughputs and ultra-low end-to-

end latencies can be expected to be targets for next-generation

wireless communication standards [8]. Therefore, there is a

demand for iterative decoding algorithms having multi-gigabit

processing throughputs and ultra-low processing latencies.

Owing to the inherent parallelism of the min-sum algorithm,

it may be operated in a fully-parallel manner, facilitating

LDPC decoders having processing throughputs of up to 16.2

Gbit/s [9]. By contrast, the processing throughput of turbo

decoders is limited by the inherently serial nature of the

Log-BCJR algorithm, which is imposed by the data depen-

dencies of its forward and backward recursions [4]. While

a number of techniques have been proposed for increasing

the parallelism of the Log-BCJR algorithm, the state-of-the-

art LTE turbo decoder [10] achieves a processing throughput

of just 2.15 Gbit/s. These techniques include shuffled iterative

decoding [11], sub-block parallelism [12], [13], the Radix-

4 transform [10] and the Non-Sliding Window (NSW) tech-

nique [10]. These techniques allow both recursions of both

convolutional codes to be performed simultaneously, as well as

allowing the recursions to consider several turbo-encoded bits

per time period. However, in each case, the data dependencies

of the forward and backward recursions require the turbo-

encoded bits of each convolutional code to be processed

serially, spread over numerous consecutive time periods. As a

result, thousands of time periods are required to complete the

iterative decoding process of the state-of-the-art turbo decoder

of [10].

This motivates the novel turbo decoder algorithm of this

paper, which dispenses with the recursions of the Log-BCJR

algorithm and the associated data dependencies, facilitating

fully-parallel turbo decoding. More specifically, the proposed

fully-parallel turbo decoder algorithm is capable of processing

all bits corresponding to both convolutional codes at the same

time. The proposed fully-parallel algorithm is compatible with

all turbo codes, including those of the LTE and WiMAX

standards. These standardized turbo codes employ odd-even

interleavers, facilitating a novel technique for reducing the

complexity of the proposed algorithm by 50%. More specif-

ically, odd-even interleavers allow the proposed algorithm to

alternate between processing the odd-indexed bits of the first

component code at the same time as the even-indexed bits of

the second component, and vice-versa. This process is repeated

iteratively, until a sufficient number of decoding iterations have

been performed. Owing to this, the iterative decoding process

can be completed using just tens of time periods, which is

significantly lower than the number required by the state-of-

the-art turbo decoder of [10].
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Fig. 1. Schematics of (a) a turbo encoder, (b) the proposed fully-parallel turbo decoder and (c) a Log-BCJR turbo decoder.

Note that a number of fully-parallel turbo decoders have

been previously proposed, although these suffer from signif-

icant disadvantages that are not manifested in the proposed

algorithm. In [14], the min-sum algorithm is employed to

perform turbo decoding. However, this approach only works

for a very limited set of turbo code designs, which does not

include those employed by any standards. A fully-parallel

turbo decoder implementation that represents the soft informa-

tion using analogue currents was proposed in [15], however

it only supports very short message lengths N . Similarly,

[16] proposes a fully-parallel turbo decoder algorithm that

operates on the basis of stochastic bit sequences. However,

this algorithm requires significantly more time periods than the

Log-BCJR algorithm, therefore having a significantly lower

processing throughput.

The rest of this paper is structured as follows. Section II

provides background information on turbo encoding and in-

troduces the notation that will be employed throughout this

paper. The proposed fully-parallel turbo decoding algorithm

is described for generalized turbo codes in Section III, before

being applied to the LTE and WiMAX turbo codes, where

the above-described 50% reduction in complexity can be

afforded. In Section IV, the proposed fully-parallel turbo

decoder is compared with the state-of-the-art design at a purely

algorithmic level. This is motivated, since very different pro-

cessing throughputs, latencies, energy consumptions, hardware

resource requirements and error correction capabilities may

be expected to result for implementations of the proposed

algorithm using different hardware platforms, such as Applica-

tion Specific Integrated Circuit (ASIC), Field Programmable

Gate Array (FPGA), Network on Chip (NoC) and General

Purpose Graphics Processing Unit (GPGPU) technology, for

example. However, all of these platform-dependent hardware

characteristics will rely on the common set of fundamental

algorithmic characteristics that are quantified and thoroughly

compared in this paper. More specifically, the proposed fully-

parallel algorithm is shown to converge to the same error

correction performance as the state-of-the-art turbo decoding

algorithm, regardless of which turbo code it is applied for.

Owing to its significantly increased parallelism, the proposed

algorithm facilitates throughputs and latencies that are up to

6.86 times superior to those of the state-of-the art algorithm,

when employed for the LTE and WiMAX turbo codes. How-

ever, this is achieved at the cost of a moderately increased

computational complexity and resource requirement. Finally,

some conclusions are offered in Section V.

II. TURBO ENCODER

This section provides background information on turbo

encoding and introduces the notation that will be employed

throughout the remainder of this paper. Section II-A describes

a simplified turbo encoder, which facilitates a simplified

introduction of the proposed fully-parallel turbo decoder in

Section III. Sections II-B and II-C discuss the differences

between the simplified turbo encoder of Section II-A and those

of LTE and WiMAX, respectively.

A. Simplified turbo encoder

Figure 1(a) depicts a simplified turbo encoder, which does

not employ termination or tailbiting. This may be employed to

encode a message frame bu
1 = [bu1,k]

N
k=1 comprising N number

of bits, each having a binary value bu1,k ∈ {0, 1}. This message

frame is provided to an upper convolutional encoder, as shown

in Figure 1(a). This encoder uses the process described below

to generate two N -bit encoded frames, namely a parity frame

b
u
2 = [bu2,k]

N
k=1 and a systematic frame b

u
3 = [bu3,k]

N
k=1.

Meanwhile, the message frame b
u
1 is interleaved, in order to

obtain the N -bit interleaved message frame b
l
1 = [bl1,k]

N
k=1, as

shown in Figure 1(a). This is provided to a lower convolutional

encoder, which also uses the process described below to

generate another N -bit encoded frames, namely a parity frame

b
l
2 = [bl2,k]

N
k=1. Here, the superscripts ‘u’ and ‘l’ indicate

relevance to the upper and lower convolutional encoders,

respectively. However, throughout the remainder of this paper,

these superscripts are only used when necessary to explicitly

distinguish between the two convolutional encoders and are

omitted when the discussion applies equally to both. Note that

the turbo encoder represents the N bits of the message frame

b
u
1 using three encoded frames, comprising a total of 3N bits
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and resulting in a turbo coding rate of R = N/(3N) = 1/3.

Following turbo encoding, the encoded frames may be mod-

ulated onto a wireless channel and transmitted to a receiver.
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Fig. 2. State transition diagram of the LTE turbo code.

Both convolutional encoders operate in the same manner,

on the basis of a state transition diagram like the M = 8-state

example of Figure 2. The upper convolutional encoder begins

from an initial state of S0 = 0 and successively transitions

into each subsequent state Sk ∈ {0, 1, 2, . . . ,M − 1} by

considering the corresponding message bit b1,k. Since there

are two possible values for the message bit b1,k ∈ {0, 1},

there are K = 2 possible values for the state Sk that can

be reached by transitioning from the previous state Sk−1. In

Figure 2 for example, a previous state of Sk−1 = 0 implies

that the subsequent state is selected from Sk ∈ {0, 4}. This

example can also be expressed using the notation c(0, 0) = 1
and c(0, 4) = 1, where c(Sk−1, Sk) = 1 indicates that it is

possible for the convolutional encoder to transition from Sk−1

into Sk, whereas c(Sk−1, Sk) = 0 indicates that this transition

is impossible. Of the K = 2 options, the value for the state

Sk is selected such that b1(Sk−1, Sk) = b1,k. For example,

Sk−1 = 0 and b1,k = 0 gives Sk = 0, while Sk−1 = 0 and

b1,k = 1 gives Sk = 4 in Figure 2. In turn, binary values

are selected for the corresponding bit in the parity frame

b2 and, in the case of the upper convolutional encoder, the

systematic frame b3, according to b2,k = b2(Sk−1, Sk) and

b3,k = b3(Sk−1, Sk). In the example of Figure 2, Sk−1 = 0
and Sk = 0 gives b2,k = 0 and b3,k = 0, while Sk−1 = 0 and

Sk = 4 gives b2,k = 1 and b3,k = 1.

B. LTE turbo encoder

The LTE turbo encoder [1] employs the state transition

diagram of Figure 2, which has M = 8 states and K = 2
transitions per state. Furthermore, the LTE turbo encoder

employs an odd-even interleaver [17] that supports various

frame lengths N in the range 40 to 6144 bits. However, in

contrast to the simplified turbo encoder of Figure 1(a), the

LTE turbo encoder [1] employs twelve additional termination

bits to force each convolutional encoder into the final state

SN+3 = 0. More specifically, the upper encoder generates the

three message termination bits bu1,N+1, bu1,N+2 and bu1,N+3, as

well as the three parity termination bits bu2,N+1, bu2,N+2 and

bu2,N+3. The lower convolutional encoder operates in a sim-

ilar manner, generating corresponding sets of three message

termination bits bl1,N+1, bl1,N+2 and bl1,N+3, as well as three

parity termination bits bl2,N+1, bl2,N+2 and bl2,N+3. Owing to

this, the LTE turbo encoder uses a total of (3N + 12) bits to

represent the N bits of the message frame b
u
1 , giving a coding

rate of R = N/(3N + 12).

C. WiMAX turbo encoder

Like the LTE turbo encoder, the WiMAX turbo encoder

[2] employs an odd-even interleaver, supporting various frame

lengths N in the range 24 to 2400 bits. However, in contrast

to the LTE turbo encoder, the WiMAX turbo encoder is duo-

binary [2]. More specifically, the upper WiMAX convolutional

encoder encodes two N -bit message frames at once bu
1 and b

u
2 .

In response, it produces four N -bit encoded frames, namely

two parity frames b
u
3 and b

u
4 , as well as two systematic

frames bu
5 and b

u
6 . Meanwhile, the message frames bu

1 and b
u
2

are interleaved, in order to obtain the two N -bit interleaved

message frames b
l
1 and b

l
2. These are encoded by the lower

convolutional encoder, in order to generate two parity frames

b
l
3 and b

l
4. Therefore, the WiMAX turbo encoder represents

the 2N bits of the message frames b
u
1 and b

u
2 using six

encoded frames, comprising a total of 6N bits and resulting

a coding rate of R = (2N)/(6N) = 1/3. In the WiMAX

turbo encoder, the upper and lower convolutional encoders

operate on the basis of a state transition diagram having K = 4
transitions from each of M = 8 states, in correspondence to

the four possible combinations of the two message bits. Rather

than employing termination, WiMAX employs tailbiting to

ensure that SN = S0, which may require SN and S0 to have

non-zero values.

III. THE PROPOSED FULLY-PARALLEL TURBO DECODER

This section describes the operation of the proposed fully-

parallel turbo decoding algorithm, which is compatible with all

turbo codes. Section III-A considers the generalized applica-

bility of the proposed algorithm, using an example of a parallel

turbo decoder that corresponds to the simplified turbo encoder

of Section II-A. Following this, Sections II-B and II-C discuss

how the proposed fully-parallel turbo decoding algorithm may

be applied to the LTE and WiMAX turbo codes, respectively.

A. Simplified turbo decoder

Following their transmission over a wireless channel, the

three encoded frames b
u
2 , b

u
3 and b

l
2 may be demodulated

and provided to the turbo decoder of Figure 1(b). However,

owing to the effect of noise in the wireless channel, the

demodulator will be uncertain of the bit values in these

encoded frames. Therefore, instead of providing frames com-

prising N hard-valued bits, the demodulator provides three

frames each comprising N soft-valued a priori Logarithmic

Likelihood Ratios (LLRs) b̄
u,a
2 = [b̄u,a2,k]

N
k=1, b̄

u,a
3 = [b̄u,a3,k]

N
k=1

and b̄
l,a
2 = [b̄l,a2,k]

N
k=1. Here, an LLR pertaining to the bit bj,k

is defined by

b̄j,k = ln
Pr(bj,k = 1)

Pr(bj,k = 0)
, (1)
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The proposed fully-parallel turbo decoding algorithm.

δ̄k(Sk−1, Sk) =





L
∑

j=1

[

bj(Sk−1, Sk) · b̄
a
j,k

]



+ ᾱk−1(Sk−1) + β̄k(Sk) (2)

ᾱk(Sk) =

[

max*
{Sk−1|c(Sk−1,Sk)=1}

[

δ̄k(Sk−1, Sk)
]

]

− β̄k(Sk) (3)

β̄k−1(Sk−1) =

[

max*
{Sk|c(Sk−1,Sk)=1}

[

δ̄k(Sk−1, Sk)
]

]

− ᾱk−1(Sk−1) (4)

b̄ej,k =

[

max*
{(Sk−1,Sk)|bj(Sk−1,Sk)=1}

[

δ̄k(Sk−1, Sk)
]

]

−

[

max*
{(Sk−1,Sk)|bj(Sk−1,Sk)=0}

[

δ̄k(Sk−1, Sk)
]

]

− b̄aj,k (5)

where the superscripts ‘a’, ‘e’ or ‘p’ may be appended to

indicate an a priori, extrinsic or a posteriori LLR, respectively.

The demodulator provides these a priori LLRs to the fully-

parallel turbo decoder’s 2N algorithmic blocks, which are

shown in Figure 1(b) arranged in two rows. More specifically,

the a priori parity LLR b̄u,a2,k and the a priori systematic LLR

b̄u,a3,k are provided to the kth algorithmic block in the upper

row shown in Figure 1(b). Furthermore, the interleaver of

Figure 1(b) provides the kth algorithmic block in the upper

row with the a priori message LLR b̄u,a1,k, as will be detailed

below. Meanwhile, the kth algorithmic block in the lower row

is correspondingly provided with the a priori LLRs b̄l,a1,k and

b̄l,a2,k. Note that the algorithmic blocks in the lower row of

Figure 1(b) are not provided with any a priori systematic

LLRs, hence eliminating the requirement to interleave b̄
u,a
3 .

In addition to the above-mentioned LLRs, the kth algorithmic

block in each row is also provided with a vector of a priori

forward state metrics ᾱk−1 = [ᾱk−1(Sk−1)]
M−1
Sk−1=0 and a

vector of a priori backward state metrics β̄k = [β̄k(Sk)]
M−1
Sk=0,

as will be detailed below. All algorithmic blocks operate in

an identical manner, using the equations provided in (2) –

(5). Note that these equations are stated in a fully generalized

manner, allowing them to be applied to any turbo code, having

any state transition diagram and any number L of a priori

LLRs per algorithmic block.

More specifically, (2) is employed in order to combine the

L a priori LLRs with the a priori state metrics of ᾱk−1 and

β̄k. Here, each algorithmic block in the upper row employs

L = 3 a priori LLRs b̄u,a1,k, b̄u,a2,k and b̄u,a3,k, while L = 2 a

priori LLRs b̄l,a1,k and b̄l,a2,k are employed for the lower row.

This produces an a posteriori metric δ̄(Sk−1, Sk) for each

transition in the state transition diagram, namely for each pair

of states Sk−1 and Sk for which c(Sk−1, Sk) = 1. These a

posteriori transition metrics are then combined by (3), (4) and

(5), in order to produce the vector of extrinsic forward state

metrics ᾱk = [ᾱk(Sk)]
M−1
Sk=0, the vector of extrinsic backward

state metrics β̄k−1 = [β̄k−1(Sk−1)]
M−1
Sk−1=0 and the extrinsic

message LLR b̄e1,k, respectively. These equations employ the

Jacobian logarithm, which is defined for two operands as

max*(δ̄1, δ̄2) = max(δ̄1, δ̄2) + ln
(

1 + e−|δ̄1−δ̄2|
)

(6)

and may be extended to more operands by exploiting its

associativity property. Alternatively, the exact max* operator

of (6) may be optionally replaced with the approximation [4]

max*(δ̄1, δ̄2) ≈ max(δ̄1, δ̄2), (7)

in order to reduce the complexity of the proposed fully-

parallel turbo decoder, at the cost of slightly degrading its

error correction performance.

The proposed fully-parallel turbo decoder is operated itera-

tively, where each of the I iterations comprises the operation of

all algorithmic blocks shown in Figure 1(b). The turbo decoder

may be considered to be fully-parallel, since each iteration is

completed within just T = 1 time period, by operating all

2N of the algorithmic blocks simultaneously. In general, the

extrinsic information produced by each algorithmic block in

Figure 1(b) is exchanged with those provided by the connected

algorithmic blocks, to be used as a priori information in the

next decoding iteration. More specifically, the kth algorithmic

block in each row provides the vectors of extrinsic state

metrics ᾱk and β̄k−1 for the neighboring algorithmic blocks

to employ in the next decoding iteration. Furthermore, the kth

algorithmic block in each row passes the extrinsic message

LLR b̄e1,k through the interleaver, to be used as an a priori

LLR by the connected block in the other row during the

next decoding iteration. Meanwhile, this block in the other

row provides an extrinsic message LLR which is used as

the a priori message LLR b̄a1,k during the next decoding

iteration. Note that the interleaver of Figure 1(b) may be hard-

wired if only a single interleaver pattern is required or it

may adopt a reconfigurable design in order to support any

arbitrary interleaver pattern. At the start of the first decoding

iteration however, no extrinsic information is available. In

this case, the kth algorithmic block in each row employs

zero values for b̄a1,k, ᾱk−1 and β̄k. As an exception to this

however, the first algorithmic block in the each row employs

ᾱ0 = [0,−∞,−∞, . . . ,−∞] throughout all decoding iter-

ations, since the convolutional encoders always begin from

an initial state of S0 = 0. Similarly, the last algorithmic

block from the each row employs β̄N = [0, 0, 0, . . . , 0]
throughout all decoding iterations, since the final state of the

the convolutional encoders SN is not known in advance to

the receiver, when termination is not employed. Following
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the completion of the final decoding iteration, an a posteriori

LLR pertaining to the kth message bit bu1,k may be obtained

as b̄u,p1,k = b̄u,a1,k + b̄u,e1,k. An estimation of the message bit bu1,k
may then be obtained as the result of the binary test b̄u,p1,k > 0.

B. LTE turbo decoder

As described in Section II-B, the LTE turbo code employs

an odd-even interleaver [17]. More explicitly, the LTE inter-

leaver only connects algorithmic blocks from the upper row

having an odd index k to blocks from the lower row that also

have an odd index k. Similarly, blocks having even indices k in

the upper row are only connected to blocks having even indices

k in the lower row. Owing to this, the 2N algorithmic blocks

of Figure 1(b) can be grouped into two sets, where all blocks

within a particular set are independent, having no connections

to each other. The first set comprises all algorithmic blocks

from the upper row having an odd index k, as well as all

blocks from the lower row having an even index k, which

are depicted with light shading in Figure 1(b). Meanwhile,

the second set is complementary to the first, comprising the

algorithmic blocks having dark shading in Figure 1(b). In this

way, the iterative exchange of extrinsic information between

2N algorithmic blocks can be instead thought of as an iterative

exchange of extrinsic information between the two sets.

In the general case where the interleaver pattern prevents

grouping into sets of independent algorithmic blocks, the

approach described in Section III-A is recommended, where

all algorithmic blocks are operated in every time period,

corresponding to T = 1 time period per decoding iteration.

However, in the case of an odd-even interleaver, the simul-

taneous operation of both sets of independent algorithmic

blocks is analogous to juggling two balls, which are simul-

taneously thrown between two hands, but remain independent

of each other. In the proposed fully-parallel turbo decoder, this

corresponds to two independent iterative decoding processes,

which have no influence on each other. Therefore, one of these

independent iterative decoding processes can be considered to

be redundant and may be discarded. This can be achieved

by operating the algorithmic blocks of only one set in each

time period, with consecutive time periods alternating between

the two sets. With this approach, each decoding iteration

can be considered to comprise T = 2 consecutive time

periods. Although this is double the number required by the

T = 1 approach described in Section III-A, this T = 2
approach requires half as many decoding iterations in order to

achieve the same error correction performance. Therefore, the

T = 2 approach maintains the same processing throughput and

latency as the T = 1 approach, but achieves a 50% reduction in

complexity per message frame. Note that the Log-BCJR turbo

decoder cannot exploit an odd-even interleaver to achieve a

similar improvement, as will be described in Section IV-A.

As described in Section II-B, the LTE turbo code employs

twelve termination bits to force each of its convolutional

encoders into the final state SN+3 = 0. In the receiver,

the demodulator provides the corresponding LLRs b̄u,a1,N+1,

b̄u,a1,N+2, b̄u,a1,N+3, b̄u,a2,N+1, b̄u,a2,N+2 and b̄u,a2,N+3 to the upper row,

while the lower row is provided with b̄l,a1,N+1, b̄l,a1,N+2, b̄l,a1,N+3,

b̄l,a2,N+1, b̄l,a2,N+2 and b̄l,a2,N+3. As shown in Figure 3, these LLRs

can be provided to three additional algorithmic blocks, which

are positioned at the end of each row in the proposed fully-

parallel turbo decoder.
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Fig. 3. Schematic of the proposed fully-parallel algorithm, when employing
the termination technique of the LTE turbo code.

The three additional algorithmic blocks at the end of each

row do not need to be operated iteratively, within the iterative

decoding process. Instead, they can be operated just once, be-

fore the iterative decoding process begins, using a backwards

recursion. More specifically, the algorithmic blocks with the

index k = N +3 may employ Equations (8) and (10) in order

to process the L = 2 LLRs b̄a1,N+3 and b̄a2,N+3. Here, the state

metrics β̄N+3 = [0,−∞,−∞, . . . ,−∞] should be employed

since a final state of SN+3 = 0 is guaranteed. The resultant

state metrics β̄N+2 can then be provided to the algorithmic

block having the index k = N + 2. In turn, this uses the

same process in order to obtain β̄N+1, which is then provided

the block where k = N + 1 in order to obtain β̄N in the

same way. The resultant values of β̄N may then be employed

throughout the iterative decoding process, without any need

to operate the three additional algorithmic blocks again. Note

that there is no penalty associated with adopting this approach,

since Equations (8) and (10) reveal that the values of β̄N

are independent of all values that are updated as the iterative

decoding process proceeds.

C. WiMAX turbo decoder

Like the LTE turbo code, the WiMAX turbo code employs

an odd-even interleaver [17], allowing it to benefit from a

50% reduction in the complexity of the fully-parallel turbo

decoder, as described in Section III-B. The algorithm of (2)

– (5) supports the duo-binary nature of the WiMAX turbo

code. Here, the algorithmic blocks in the upper row consider

L = 6 a priori LLRs, while those in the lower row consider

L = 4 LLRs. More specifically, the kth algorithmic block in

the upper row is provided with six a priori LLRs b̄u,a1,k, b̄u,a2,k,

b̄u,a3,k, b̄u,a4,k, b̄u,a5,k and b̄u,a6,k, using these to generate two extrinsic

LLRs b̄u,e1,k and b̄u,e2,k. By contrast, b̄l,a1,k, b̄l,a2,k, b̄l,a3,k and b̄l,a4,k are

provided to the kth algorithmic block in the lower row, which

generates b̄l,e1,k and b̄l,e2,k in response. Tailbiting can be achieved
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TABLE I
VARIOUS CHARACTERISTICS OF THE PROPOSED FULLY-PARALLEL ALGORITHM, THE LOG-BCJR ALGORITHM AND THE STATE-OF-THE-ART ALGORITHM

OF [10], WHEN IMPLEMENTING THE LTE AND WIMAX TURBO DECODERS USING THE APPROXIMATE max* OPERATOR OF (7).

Characteristic
Fully-parallel

LTE
N ∈ [40, 6144]

Fully-parallel
WiMAX

N ∈ [24, 2400]

Log-BCJR
LTE

N ∈ [40, 6144]

Log-BCJR
WiMAX

N ∈ [24, 2400]

State-of-the-art
LTE

N ∈ [2048, 6144]

State-of-the-art
WiMAX

N ∈ [1440, 2400]

Time periods
per decoding
iteration T

2 2 4N 4N N/32 N/16

Time period
duration D

8
(7)

9 9 11 3 3

Complexity per
decoding

iteration C
155N 348N 171N 436N 320N 640N

Decoding
iterations
required I

48 32 8 8 8 8

Computational
resource

requirement X

79N
(80N)

176N 87 220 14144 14144

Register
resource

requirement Y

20N
(21N)

24N 8 8 1792 1792

RAM resource
requirement Z

0 0 28N 48N 14N

3
+ 8320 28N

3
+ 8320

Overall
throughput

1/(T ·D · I)

1

768
(

1

672

)

1

576

1

288N

1

352N

4

3N

2

3N

Overall latency
T ·D · I

768
(672)

576 288N 352N 3N

4

3N

2

Overall
complexity

C · I
7440N 11136N 1368N 3488N 2560N 5120N

Overall resource
requirement

9X + 5Y + Z

811N
(825N )

1704N 28N + 823 48N + 2020 14N

3
+ 144576 28N

3
+ 144576

by employing ᾱ0 = [0, 0, 0, . . . , 0] and β̄N = [0, 0, 0, . . . , 0]
in the first iteration. In all subsequent iterations, the most-

recently obtained values of ᾱN and β̄0 can be employed for

ᾱ0 and β̄N , respectively.

IV. COMPARISON WITH THE LOG-BCJR TURBO DECODER

This section compares the proposed fully-parallel turbo

decoder algorithm with the Log-BCJR turbo decoder al-

gorithm, as well as with the state-of-the-art turbo decoder

algorithm of [10], as summarized in Table I. For each of

these schemes, Sections IV-A – IV-F quantify the number of

time periods required per decoding iteration, the computational

complexity per decoding iteration, the time period duration,

the computational resource requirements, the memory resource

requirements and the number of decoding iterations required to

achieve a particular error correction performance, respectively.

In Section IV-G, these characteristics are combined in order to

quantify the overall throughput, latency, computational com-

plexity and resource requirements of the various algorithms,

when employed for both LTE and WiMAX turbo decoding.

The comparisons of Table I assume that the turbo code is

employed in a proprietary application that only uses a single

interleaver pattern, as is typically assumed for fully-parallel

LDPC decoders [9]. This allows the interleaver of the proposed

fully-parallel turbo decoder algorithm to be hard-wired, which

has the advantage of requiring no computational or memory

resources and necessitating only a simple system controller.

By contrast, the interleavers and controllers of the Log-BCJR

and state-of-the-art turbo decoder algorithms require signifi-

cant computational or memory resources [17], although these

resources typically allow many different interleaver patterns

to be supported at little or no additional cost. Since the

interleavers and controllers of the various algorithms cannot

be compared on a like-for-like basis, the comparisons of

this section are restricted only to the algorithmic blocks, as

depicted in Figure 1. As described in Section V, our future

work will consider applications of the turbo code that require

it to support multiple interleaver patterns.

A. Operation

Figure 1(c) depicts a simplified Log-BCJR turbo decoder,

which corresponds to the simplified turbo encoder of Fig-

ure 1(a). Like the fully-parallel turbo decoder of Figure 1(b),

the Log-BCJR turbo decoder is operated iteratively, where

each of the I iterations comprises the operation of all algo-

rithmic blocks shown in Figure 1(c). However as shown in

Table I, T = 4N consecutive time periods are required to

complete each decoding iteration, so that the 4N algorithmic
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blocks can be operated sequentially, in the order indicated

by the bold arrows of Figure 1(c). These arrows indicate the

data dependencies of the Log-BCJR algorithm, which impose

the forward and backward recursions shown in Figure 1(c).

Therefore, when implementing the LTE or WiMAX turbo

decoders, the number of time periods per iteration required by

the Log-BCJR algorithm is 2N times higher than the proposed

fully-parallel algorithm’s T = 2 time periods.

During the forward and backward recursions of the Log-

BCJR algorithm, the kth pair of algorithmic blocks in the

upper and lower rows operate on the basis of Equations (8) –

(12) [4]. During the forward recursion, the corresponding kth

algorithmic block in the upper row employs (8) to combine

the L = 3 a priori LLRs b̄u,a1,k, b̄u,a2,k and b̄u,a3,k, while the

L = 2 a priori LLRs b̄l,a1,k and b̄l,a2,k are combined for the

lower row. This results in an a priori metric γ̄(Sk−1, Sk)
for each transition in the state transition diagram. Following

this, (9) combines these a priori transition metrics with the a

priori forward state metrics of ᾱk−1, in order to obtain the

extrinsic forward state metrics of ᾱk. These extrinsic state

metrics are then passed to the (k + 1)th algorithmic block,

to be employed as a priori state metrics in the next time

period. During the backward recursion, the corresponding kth

algorithmic block in the upper and lower rows employs (10)

to combine the a priori metric γ̄(Sk−1, Sk) of each transition

with the a priori backward state metrics of β̄k. This produces

the extrinsic backward state metrics of β̄k−1, which may be

passed to the (k−1)th algorithmic block, to be employed as a

priori state metrics in the next time period. Furthermore, the

kth algorithmic block in the backward recursion of the upper

rows employs (11) to obtain an a posteriori metric δ̄(Sk−1, Sk)
for each transition in the state transition diagram. Finally, the

extrinsic message LLR b̄e1,k is obtained using (12). As in the

proposed fully-parallel turbo decoder of Section III-A, zero-

values are employed for the a priori message LLRs in the first

decoding iteration of the Log-BCJR turbo decoder. In addition

to supporting the simplified turbo decoder of Figure 1(c), the

Log-BCJR algorithm of (8) – (12) supports the algorithmic

blocks of the LTE turbo decoder having L = 3 and L = 2
a priori LLRs, as well as the blocks of the WiMAX turbo

code having L = 6 and L = 4. Depending on whether

termination or tailbiting is employed, the values described in

Section III for ᾱ0 and β̄N can be employed in the Log-

BCJR turbo decoder. Note that in the LTE turbo decoder,

there is a computational complexity, computational resource

requirement and memory resource requirement associated with

processing the a priori LLRs corresponding to the twelve

termination bits. However, for the sake of simplicity, these

are not considered in the following discussions, since they

are common to each algorithm considered and because they

are small compared to the overall characteristics of these

algorithms.

As may be expected, the proposed fully-parallel turbo

decoding algorithm of (2) – (5) is related to that of the

Log-BCJR turbo decoder (8) – (12). More explicitly, (2) can

be derived by substituting (8) into (11). Using the identity

max*(δ̄1 − δ̄3, δ̄2 − δ̄3) = max*(δ̄1, δ̄2)− δ̄3, (3) and (4) can

be derived by rearranging (11) and substituting it into (9) and

(10), respectively.

Note that unlike the proposed fully-parallel turbo decoder,

the Log-BCJR turbo decoder cannot exploit an odd-even

interleaver to reduce its computational complexity by 50%,

as mentioned in Section III-B. This is because the data depen-

dencies within the Log-BCJR algorithm ensures that all LLRs

and state metrics depend on those generated during previous

iterations, to varying degrees. Owing to this, the Log-BCJR

turbo decoder cannot be decomposed into two independent

sets of algorithmic blocks. Likewise, the operation of the

Log-BCJR turbo decoder cannot be considered to correspond

to two independent iterative decoding processes, one of which

is redundant. This prevents the Log-BCJR turbo decoder from

exploiting an odd-even interleaver in order to achieve a 50%

reduction in complexity, using the technique that may be

employed by the proposed fully-parallel turbo decoder, as

described in Section III-B.

Note that while the simplified Log-BCJR turbo decoder of

Figure 1(c) requires T = 4N time periods to complete each

decoding iteration, several techniques have been proposed for

significantly reducing this. For example, the NSW technique

[10] may be employed to decompose the algorithmic blocks of

Figure 1(c) into 32 windows, each comprising an equal number

of consecutive blocks. Here, each window’s recursions are

initialized by results provided by the adjacent windows in the

previous decoding iteration, eliminating the data dependency

between windows in the current iteration and allowing them

to be processed simultaneously. Furthermore, within each win-

dow, the NSW technique performs the forward and backward

recursions simultaneously, only performing Equations (11) and

(12) once these recursions have crossed over. Additionally,

the Radix-4 transform [10] allows the number of algorithmic

blocks employed in Figure 1(c) to be halved, along with

the number of time periods required to process them. Here,

each algorithmic block corresponds to the merger of two state

transition diagrams into one, effectively doubling the number

of a priori LLRs L considered by each algorithmic block.

By combining the NSW technique and the Radix-4 transform,

the state-of-the-art LTE turbo decoder [10] can complete each

decoding iteration using just T = N/32 time periods, provided

that the frame length satisfies N ∈ [2048, 6114], as shown

in Table I. Note however that this number is N/64 times

higher than that of the proposed fully-parallel turbo decoder

of Section III-A, which requires only T = 2 time periods per

decoding iteration. When employing the maximum LTE frame

length of N = 6144 bits, the number of time periods per

decoding iteration required by the state-of-the-art LTE turbo

decoder is nearly two orders-of-magnitude above the number

required by the proposed fully-parallel algorithm.

As described above, the state-of-the-art LTE turbo decoding

algorithm of [10] employs the Radix-4 transform to double

the number of a priori LLRs considered by each algorithmic

block, resulting in L = 6 for the blocks in the upper row

and L = 4 for those in the lower row. Owing to this, the

state-of-the-art algorithm can also be employed for WiMAX

turbo decoding, since this naturally requires algorithmic blocks

that consider L = 6 and L = 4 a priori LLRs, as described
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The Log-BCJR turbo decoding algorithm.

γ̄k(Sk−1, Sk) =

L
∑

j=1

[

bj(Sk−1, Sk) · b̄
a
j,k

]

(8)

ᾱk(Sk) = max*
{Sk−1|c(Sk−1,Sk)=1}

[γ̄k(Sk−1, Sk) + ᾱk−1(Sk−1)] (9)

β̄k−1(Sk−1) = max*
{Sk|c(Sk−1,Sk)=1}

[

γ̄k(Sk−1, Sk) + β̄k(Sk)
]

(10)

δ̄k(Sk−1, Sk) = γ̄k(Sk−1, Sk) + ᾱk−1(Sk−1) + β̄k(Sk) (11)

b̄ej,k =

[

max*
{(Sk−1,Sk)|bj(Sk−1,Sk)=1}

[

δ̄k(Sk−1, Sk)
]

]

−

[

max*
{(Sk−1,Sk)|bj(Sk−1,Sk)=0}

[

δ̄k(Sk−1, Sk)
]

]

− b̄aj,k (12)

TABLE II
THE NUMBER OF OPERATIONS PER ALGORITHMIC BLOCK. THE NUMBER OF THESE OPERATIONS THAT CONTRIBUTE TO THE CRITICAL PATH OF THE

ALGORITHMIC BLOCK IS PROVIDED IN CURLY BRACKETS.

Turbo code Operation

Fully-parallel Log-BCJR

Forward recursion Backward recursion
Total

Eq. (2) Eq. (3) Eq. (4) Eq. (5) Total Eq. (8) Eq. (9) Eq. (10) Eq. (11) Eq. (12)

LTE
+ or − 29.5 {3} 8 8 2 {2} 47.5 {5} 1.5 12 12 {1} 28 {2} 2 {2} 55.5 {5}

max* 0 8 8 14 {3} 30 {3} 0 8 8 {1} 0 14 {3} 30 {4}

WiMAX
+ or − 74 {3} 8 8 4 {2} 94 {5} 12 30 30 {1} 62 {2} 4 {2} 138 {5}

max* 0 24 24 32 {4} 80 {4} 0 24 24 {2} 0 32 {4} 80 {6}

in Section III-C. Note however that in this application, the

turbo decoder does not benefit from halving the number of

algorithmic blocks required, as is achieved when applying

the Radix-4 transform to an LTE turbo decoder. On the

other hand, the WiMAX turbo decoder can benefit from the

NSW technique of the state-of-the-art algorithm, provided that

N ∈ [1440, 2440], resulting in T = N/16 time periods per

decoding iteration, as shown in Table I. This number is N/32
times higher than that of the proposed fully-parallel turbo

decoder of Section III-A.

B. Computational complexity

The energy that is consumed by a practical hardware

implementation of a turbo decoder in order to decode a

message frame depends on the computational complexity of

the underlying algorithm. The number of additions, subtrac-

tions and max* operations that are employed within each

algorithmic block of the proposed fully-parallel and the Log-

BCJR algorithms are quantified in Table II, for both the LTE

and WiMAX turbo decoder. A number of techniques have been

employed to minimize the number of operations that are listed

in Table II. More specifically, the a priori metrics γ̄(Sk−1, Sk)
of some particular transitions are equal to each other, allowing

them to be computed once and then reused. Furthermore, some

a priori metrics γ̄(Sk−1, Sk) are zero-valued and so there

is no need to add them into the corresponding δ̄(Sk−1, Sk),
ᾱk(Sk) or β̄k−1(Sk−1) calculations. Finally, when computing

the extrinsic LLR b̄e1,k in the WiMAX turbo decoder, the

results of some max* operations can be reused to compute

b̄e2,k. Note that the algorithmic blocks in the upper row of the

LTE and WiMAX turbo decoders consider a higher number of

a priori LLRs L than those of the lower row. Owing to this, the

computation of (2) or (8) in the algorithmic blocks of the upper

row of the LTE turbo decoder requires one more addition than

in the blocks of the lower row. Likewise, two more additions

are required for the algorithmic blocks in the upper row of the

WiMAX turbo decoder, compared to the blocks in the lower

row. Therefore, Table II presents the average of the number of

operations that are employed by (2) and (8) in the algorithmic

blocks of the upper and lower rows, resulting in some non-

integer values.

For both the LTE and WiMAX turbo decoders, the pro-

posed fully-parallel turbo decoding algorithm requires fewer

additions and subtractions than the Log-BCJR algorithm, as

well as an equal number of max* operations. When the

approximation of (7) is employed, max* operations can be

considered to have a similar computational complexity to

additions and subtractions [18]. Table I quantifies the total

number of operations performed per iteration C, among all

of the algorithmic blocks in the upper and lower rows. As

shown in Table I, the computational complexity per decoding

iteration C of the Log-BCJR algorithm is 1.1 and 1.25 times

higher than that of the proposed algorithm, when implementing

the LTE and WiMAX turbo decoders, respectively.

Note that the state-of-the-art LTE turbo decoder [10] em-

ploys the Radix-4 transform, as well as the approximation of

(7). When employing the Radix-4 transform, the Log-BCJR

LTE turbo decoder has the same complexity per algorithmic

block as that presented in Table II for the Log-BCJR WiMAX

turbo decoder. However, it should be noted that the Radix-

4 transform halves the number of algorithmic blocks that
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are required, as discussed in Section IV-A. Furthermore, as

will be described in Section IV-E, the state-of-the-art LTE

turbo decoder recalculates the a priori transition metrics and

5/6 of the extrinsic state metrics during the forward and

backward recursions, in order to reduce the corresponding

memory resource requirement. Therefore, the state-of-the-art

LTE turbo decoder has a complexity per decoding iteration C
that is 2.06 times higher than that of the proposed algorithm,

as shown in Table I. When applying the state-of-the-art al-

gorithm’s recalculation technique to the WiMAX turbo code,

its complexity per decoding iteration C corresponds to 1.84

times higher than that of the proposed algorithm, as shown in

Table I.

C. Time period duration

As described in Sections III and IV-A, it may be assumed

that the operation of an algorithmic block in the schematics

of Figure 1 can be completed within a single time period.

However, the amount of time D that is required for each

time period depends on the computational requirements of

the algorithmic blocks. In a practical hardware implementation

of a turbo decoder, each time period may correspond to one

clock cycle, in which case the maximum clock frequency and

hence the processing throughput is inversely proportional to

the duration D of the time periods in the underlying algorithm.

More specifically, the required duration D depends on the

critical path through the data dependencies that are imposed by

the computational requirements of the algorithmic blocks. For

example, in the proposed fully-parallel algorithm, Equations

(3), (4) and (5) are independent of each other, but they all

depend upon (2). As a result, the computation of (2) must

be completed first, but then (3), (4) and (5) can be computed

in parallel. Of these three equations, it is (5) that requires

the most time for computation, since it is a function of more

variables than (3) and (4). Therefore, the critical path of the

algorithmic blocks in the proposed fully-parallel algorithm

depends on the computational requirements of (2) and (5).

Equation (2) is employed to obtain an a posteriori metric

δ̄(Sk−1, Sk) for each transition in the state transition diagram.

However, these can all be calculated in parallel, using an

addition of five variables in the case of the algorithmic blocks

in the upper row of the LTE turbo decoder, which consider

L = 3 a priori LLRs, for example. By contrast, an addition

of just four variables is required in the case of the algorithmic

blocks in the lower row, for which L = 2. A summation of v
number of variables requires v − 1 additions, some of which

can be performed in parallel. More specifically, the variables

can be added together in pairs and then in a second step, the

resultant sums can be added together in pairs. This process

can continue until only a single sum remains, requiring a

total of ⌈log2(v)⌉ steps. Accordingly, Equation (2) contributes

three additions to the critical path of the algorithmic blocks

in the upper row of the proposed fully-parallel LTE turbo

decoder, as well as two additions for the blocks in the lower

row. The maximum of these two critical path contributions is

presented in the corresponding curly brackets of Table II, since

it imposes the greatest limitation on the time period duration.

A similar analysis can be employed to determine each of the

other critical path contributions that are provided in the curly

brackets of Table II.

As shown in Table II, the critical path of the Log-BCJR

algorithm is longer than that of the proposed fully-parallel

algorithm, requiring time periods having a longer duration D
and resulting in slower operation. When the approximation

of (7) is employed, max* operations can be considered to

make similar contributions to the critical path as additions

and subtractions. As shown in Table I, the critical path and

hence the required time period duration D of the Log-BCJR

algorithm is therefore 1.13 and 1.22 times higher than that

of the proposed algorithm, when implementing the LTE and

WiMAX turbo decoders, respectively.

Note however that the state-of-the-art LTE turbo decoder

[10] employs the Radix-4 transform, as well as the approx-

imation of (7). When employing the Radix-4 transform, the

Log-BCJR LTE turbo decoder has the same critical path as

that presented in Table II for the Log-BCJR WiMAX turbo

decoder. However, the state-of-the-art LTE turbo decoder em-

ploys pipelining [10] to spread the computation of Equations

(8) – (12) over several consecutive time periods. This reduces

the critical path to that of Equation (10) alone, namely one

addition and two max* operations. By contrast, the proposed

fully-parallel algorithm has a critical path comprising five

additions and three max* operations, as shown in Table I.

Note however that the contribution of one addition can be

eliminated from this total by employing a technique similar to

pipelining. More specifically, the sum of the a priori parity

LLRs b̄u,a2 and the a priori systematic LLRs b̄u,a3 may be

computed before iterative decoding commences. As will be

described in Section IV-E, the result may be stored and used

throughout the iterative decoding process by the algorithmic

blocks in the upper row of the proposed fully-parallel LTE

turbo decoder. This reduces the critical path contribution of

Equation (2) in the upper row to two additions, which is

equal to that of the lower row. This reduces the critical

path of the proposed fully-parallel LTE turbo decoder to 7

operations, as shown in brackets in Table I. Therefore, the

critical path and time period duration D of the state-of-the-art

LTE turbo decoder can be considered to be 0.43 times that of

the proposed algorithm. Similarly, when applying the state-of-

the-art algorithm to WiMAX turbo decoding, the result is the

same critical path of one addition and two max* operations.

As shown in Table I, this critical path is 0.33 times that of

the proposed algorithm, which requires five additions and four

max* operations.

D. Computational resource requirement

In a practical hardware implementation of a turbo decoder,

the chip area or hardware resource requirement depends on the

computational resource requirement X of the underlying algo-

rithm. In the proposed fully-parallel turbo decoder algorithm

of Figure 1(b), the algorithmic blocks each have an average

computational resource requirement that is quantified by the

totals provided in Table II. When an odd-even interleaver is not

employed, every algorithmic block is operated in every time
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period, resulting in a total computational resource requirement

X of 2N algorithmic blocks. However, when employing an

odd-even interleaver like that of those of the LTE and WiMAX

turbo decoders, the computational resource requirement X
is reduced to just N algorithmic blocks. This is because

algorithmic blocks in the upper row of Figure 1(b) are not

operated simultaneously with the corresponding blocks in

the lower row in this case, as described in Section III-B.

This allows computational resources to be shared between

each pairing of blocks from the upper and lower rows. Note

however that in this case, the computational resource require-

ments become slightly higher than the averages provided in

Table II, since they must accommodate the higher number L
of a priori LLRs that are considered by the blocks in the

upper row. Furthermore, a set of N adders is required for

computing the a posteriori LLR b̄u,p1,k = b̄u,a1,k + b̄u,e1,k for each

algorithmic block in the upper row following the completion

of the iterative decoding process. When the approximation

of (7) is employed, max* operations can be considered to

have a similar computational resource requirement to additions

and subtractions [18]. Based upon these observations, Table I

quantifies the total computational resource requirement X of

the proposed fully-parallel turbo decoder when employed for

LTE and WiMAX turbo decoding. Note that if the pipelining

technique of Section IV-C is employed for reducing the time

period duration D of the LTE turbo decoder, then a set of N
adders is required in order to accommodate the computation

of b̄u,a2 + b̄u,a3 for each algorithmic block in the upper row, as

shown in brackets in Table I.

Similarly, the Log-BCJR turbo decoder algorithm of Fig-

ure 1(c), the algorithmic blocks each have an average computa-

tional resource requirement that is quantified by the totals pro-

vided in Table II. However, in contrast to the proposed fully-

parallel turbo decoder, the Log-BCJR turbo decoder algorithm

has a computational resource requirement of just one of the

algorithmic blocks used during the forward recursion and one

used during the backward recursion. This is because only one

of the algorithmic blocks shown in Figure 1(c) is operated in

each time period, allowing the same computational resources

to be reused for each algorithmic block. Note however that

the computational resource requirements are slightly higher

than the average values provided in Table II, since they must

accommodate the higher values of L that are used for the

blocks in the upper row. Furthermore, one more adder is

required for computing the a posteriori LLRs following the

completion of the iterative decoding process, although this

adder can be shared between the different algorithmic blocks.

Based upon these observations, Table I quantifies the total

computational resource requirement X of the Log-BCJR turbo

decoder algorithm.

As in the Log-BCJR turbo decoder algorithm, computational

resources are reused during the forward and backward recur-

sions of the state-of-the-art LTE turbo decoder algorithm of

[10]. However, this algorithm requires 64 sets of computational

resources since it employs the NSW technique to perform a

forward and backward recursion simultaneously, in each of 32

windows of algorithmic blocks. Furthermore, each of these 64

sets requires computational resources for simultaneously recal-

culating the a priori transition metrics and the extrinsic state

metrics, in order to reduce the corresponding memory resource

requirement, as mentioned in Section IV-B. Overall, each of

the 64 sets requires computational resources for performing

each of (8) – (12). Since it employs the Radix-4 transform, the

state-of-the-art LTE turbo decoder has computational resources

that are quantified by the corresponding values presented

in Table II for the Log-BCJR WiMAX turbo decoder, as

described in Section IV-B. This allows the state-of-the-art

LTE turbo decoder to also be applied for the WiMAX turbo

decoder, without any change to the computational resource

requirements. Based upon these observations, Table I quan-

tifies the total computational resource requirement X of the

state-of-the-art turbo decoder algorithm, when considering the

higher values of L used in the upper row and the computation

of the a posteriori LLRs, as described above. As shown in

Table I, the computational resource requirement X of the

proposed fully-parallel turbo decoder algorithm can be orders

of magnitude higher than those of the Log-BCJR and state-

of-the-art turbo decoder algorithms, depending on the frame

length N . However, it will be shown in Section IV-G that the

comparison is significantly more favorable, when additionally

considering the memory resource requirement and processing

throughput of the algorithms.

E. Memory resource requirement

In addition to the computational resource requirement X
of Section IV-D, the chip area or hardware resource require-

ments of a practical turbo decoder hardware implementation

also depend on the underlying algorithm’s memory resource

requirement, which comprises two parts. Firstly, the register

resource requirement Y quantifies the amount of memory

that is arranged into registers, which store values that can

be accessed all at once, as often as in every time period.

By contrast, the Random Access Memory (RAM) resource

requirement Z quantifies the amount of storage that is arranged

into RAM, which stores different values in different addresses

that are accessed in different time periods.

In the proposed fully-parallel turbo decoder algorithm of

Figure 1(b), memory resources are required for storing the

forward state metrics, backward state metrics and extrinsic

LLRs of Equations (3), (4) and (5), respectively. These outputs

are produced whenever an algorithmic block is operated and

must be stored into the next time period, where they are

consumed by the connected blocks. However, when employing

an odd-even interleaver like that of those of the LTE and

WiMAX turbo decoders, the algorithmic blocks in the upper

row of Figure 1(b) are not operated simultaneously with the

corresponding blocks in the lower row, as described in Sec-

tion III-B. This allows the corresponding memory resources to

be shared between each pairing of blocks from the upper and

lower rows. In the case of the LTE turbo decoder, memory

resources are therefore required for storing N extrinsic LLRs,

MN = 8N forward state metrics and MN = 8N backward

state metrics. Memory resources are also required for storing

3N of the a priori LLRs provided by the demodulator, so that

they can be used throughout the iterative decoding process.
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In the case of the WiMAX turbo decoder, memory resources

are required for storing 2N extrinsic LLRs, MN = 8N
forward state metrics, MN = 8N backward state metrics

and 6N a priori LLRs. Owing to the fully-parallel operation

of the algorithm of Figure 1(b), all of the above-mentioned

memory resources are accessed in every time period, implying

a register resource requirement Y , as quantified in Table I.

Note that if the pipelining technique of Section IV-C is

employed for reducing the time period duration D of the LTE

turbo decoder, then additional registers are required in order

to store b̄u,a2 + b̄u,a3 for each algorithmic block in the upper

row, as shown in brackets in Table I.

Like the proposed fully-parallel turbo decoder algorithm,

the Log-BCJR turbo decoder algorithm of Figure 1(c) requires

memory for storing the a priori LLRs provided by the de-

modulator. More specifically, memory is required for storing

3N a priori LLRs in the case of the LTE turbo decoder

and 6N a priori LLRs in the case of the WiMAX turbo

decoder, as described above. Similarly to when an odd-even

interleaver is employed in the proposed fully-parallel turbo

decoder algorithm, the algorithmic blocks in the upper rows

of the Log-BCJR turbo decoder algorithm are not operated

simultaneously with the blocks in the lower rows. Owing

to this, memory resources are only required for storing N
extrinsic LLRs in the case of the LTE turbo decoder and

2N extrinsic LLRs in the case of the WiMAX turbo decoder,

since these resources can be shared between each pairing of

blocks from the upper and lower rows, as described above.

Furthermore, this allows the upper and lower rows to share

memory resources that are used for storing intermediate values

generated during the forward recursion. More specifically,

memory resources are required for storing the MKN a priori

transition metrics of (8) and the MN forward state metrics of

(9), so that they can be used during the backward recursion

by (10) and (11), respectively. Since N time periods are used

to successively activate the blocks within each forward or

backward recursion, the above-mentioned memory resources

correspond to N addresses within a RAM resource require-

ment Z, as quantified in Table I. Furthermore, this allows the

memory reuse technique to be extended further, during the

backwards recursions. More specifically, the M state metrics

output by (10) in a particular time period only need to be

stored for use as an input to (10) in the next time period.

This allows same set of M memory resources to be reused

in each successive time period of the backward recursion,

corresponding to a register resource requirement Y , as shown

in Table I.

The state-of-the-art turbo decoder algorithm of [10] has the

same RAM resource requirement as the Log-BCJR algorithm

for storing a priori and extrinsic LLRs. However, this RAM

must be arranged into a small number of addresses, since the

NSW technique and the Radix-4 transform use only a small

number of consecutive time periods to access all LLRs in

each set. For example, 48 addresses are accessed during 48

consecutive time periods in the case of the N = 6144 LTE

turbo code [10]. Note that the Radix-4 transform halves the

number of extrinsic state metrics that are generated in the

LTE turbo code. Furthermore, the state-of-the-art algorithm

uses a re-computation technique [10] to further reduce the

RAM resource requirement for both the LTE and WiMAX

turbo codes. Rather than storing the a priori transition metrics

during the forward recursion, so that they can be reused during

the backward recursion and vice versa, the re-computation

technique simply recalculates these metrics when they are

needed for a second time. In addition to this, the state-of-the-

art LTE turbo decoder stores only 1/6 of the extrinsic state

metrics during the forward recursion and recalculates the other

5/6 of these metrics during the backward recursion, and vice

versa. However, the associated RAM must be arranged into

an even smaller number of addresses, since it is only accessed

in 1/6 of the time periods. For example, eight addresses are

required in the case of the N = 6144 LTE turbo code, since the

extrinsic state metrics are only accessed in 1/6 of the above-

mentioned 48 time periods. Furthermore, these recalculations

require a small amount of additional memory resource to

complement each of the 64 sets of computational resources

described in Section IV-D. More specifically, each set requires

RAM resources having five addresses, which is used for

storing the five groups of M recalculated extrinsic forward or

backward state metrics. Additionally, RAM resources having

six addresses are required for storing the six groups of the 15

possible non-zero values that can be adopted by the a priori

transition metrics. Furthermore, register resources are required

for storing 28 intermediate values that are produced by the

pipelining of the computations performed within each set of

computational resources, as described in Section IV-C. Table I

quantifies the total register and RAM resource requirements Y
and Z of the state-of-the-art turbo decoder.

F. Error correction performance

The Bit Error Ratio (BER) of the proposed fully-parallel

turbo decoding algorithm is compared with that of the Log-

BCJR algorithm in Figures 4 and 5. In each case, BPSK

modulation is employed for transmission over an uncorrelated

narrowband Rayleigh fading channel having a range of Signal

to Noise Ratio (SNR) per bit Eb/N0, where Eb/N0 [dB] =
SNR [dB] − 10 log10(R) in this case. In Figure 4, the al-

gorithms are compared for the case of LTE turbo decoding

using the exact max* operator of (6), for frame lengths of

N ∈ {48, 480, 4800} and for various numbers of decoding

iterations I . Figure 4 shows that regardless of the frame

length N , the proposed fully-parallel algorithm can converge

to the same error correction performance as the Log-BCJR

algorithm. However, the proposed fully-parallel algorithm can

be seen to converge relatively slowly, requiring significantly

more decoding iterations I than the Log-BCJR algorithm. This

is because information is not propagated from each algorithmic

block to all others using forward and backward recursions in

the proposed algorithm, which instead relies upon a sufficient

number of decoding iterations to propagate information. Note

the requirement for an increased number of decoding iterations

is not unexpected, since LDPC decoders employing a parallel

scheduling are known to require more decoding iterations than

those employing a serial scheduling [19]. Figure 4 suggests

that the number of decoding iterations I required by the Log-

BCJR algorithm to achieve a particular BER is consistently



IEEE TRANSACTIONS ON COMMUNICATIONS 12

Log-BCJR N = 48
Fully-parallel N = 48

Exact max∗ LTE turbo decoder

I

(c)

Eb/N0

B
E
R

76543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Log-BCJR N = 480
Fully-parallel N = 480

Exact max∗ LTE turbo decoder

I

(b)

Eb/N0

B
E
R

76543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Log-BCJR N = 4800
Fully-parallel N = 4800

Exact max∗ LTE turbo decoder

I

(a)

Eb/N0

B
E
R

76543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Fig. 4. The error correction performance of the LTE turbo decoder when using the exact max* operator of (6) to decode frames comprising (a) N = 4800,
(b) N = 480 and (c) N = 48 bits. Here, BPSK modulation is employed for transmission over an uncorrelated narrowband Rayleigh fading channel.
Plots are provided for the case where I ∈ {1, 2, 4, 8, 16, 32, 64, 128} decoding iterations are performed using the proposed fully-parallel algorithm, as
well as I ∈ {1, 2, 4, 8, 16} decoding iterations using the conventional Log-BCJR algorithm. MATLAB code for producing these plots is available at
http://dx.doi.org/10.5258/SOTON/378330.
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Fig. 5. The error correction performance of (a) the WiMAX turbo decoder when using the exact max* operator of (6), (b) the WiMAX turbo decoder when
using the approximate max* operator of (7) and (c) the LTE turbo decoder when using the approximate max* operator. Here, BPSK modulation is employed
for transmission over an uncorrelated narrowband Rayleigh fading channel. Plots are provided for the case where I = 32 or I = 48 decoding iterations are
performed using the proposed fully-parallel algorithm, as well as I = 8 decoding iterations using the conventional Log-BCJR algorithm. Frame lengths of
N ∈ {48, 480, 4800} are adopted for the LTE turbo code, while N ∈ {24, 240, 2400} for the WiMAX turbo code. MATLAB code for producing these
plots is available at http://dx.doi.org/10.5258/SOTON/378330.

around 1/7 times that of the proposed algorithm, for the

case of LTE turbo decoding using the exact max* operator

of (6). However, when employing the approximate max*

operator of (7), this number changes to 1/6 times that of

the proposed algorithm, as shown in Figure 5(c) and Table I.

More specifically, Figure 5(c) shows that regardless of the

frame length N ∈ {48, 480, 4800}, the Log-BCJR algorithm

employing I = 8 decoding iterations achieves the same BER

as the proposed fully-parallel algorithm employing I = 48
iterations. In the case of the WiMAX turbo code, Figures 5(a)

and (b) reveal that the number of decoding iterations I required

by the Log-BCJR algorithm is 1/4 times that of the proposed

algorithm, regardless of the frame length N and whether the

exact or the approximate max* operator is employed. Note

that the error correction performance of the state-of-the-art

algorithm of [10] is slightly degraded by its employment

of the NSW technique, although this degradation can be

considered to be insignificant. Therefore as shown in Table I,

the number of decoding iterations I required by the state-

of-the-art algorithm can also be considered to be 1/6 and 1/4
times that of the proposed algorithm, for the LTE and WiMAX

turbo codes, respectively.

G. Overall characteristics

The latency D × T × I of a turbo decoder is given by the

product of the time period duration D, the number of time

periods per decoding iteration T and the required number of

decoding iterations I . Meanwhile, the processing throughput is

inversely proportional to the latency D×T × I . For both LTE

and WiMAX turbo decoding, Table I quantifies the latency

and throughput of the proposed fully-parallel algorithm, the

Log-BCJR algorithm and the state-of-the-art algorithm of [10].

In the case of an LTE turbo code employing the longest

supported frame length of N = 6144 bits, the latency and
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throughput of the proposed fully-parallel algorithm are more

than three orders-of-magnitude superior to those of the Log-

BCJR algorithm. Furthermore, when compared with the state-

of-the-art algorithm of [10], the proposed fully-parallel algo-

rithm has a latency and throughput that is 6.86 times superior.

Note however that the advantage offered by the proposed

fully-parallel algorithm is mitigated if the frame length N is

reduced. In the case of the shortest frame length N = 2048
that is supported by the considered parametrization of the

state-of-the-art algorithm’s NSW technique, the superiority

of the proposed fully-parallel algorithm is reduced to 2.29

times. When applying the state-of-the-art algorithm to the

WiMAX turbo decoding of frames having lengths in the

range N ∈ [1440, 2400], the superiority of the proposed

fully-parallel algorithm ranges from 3.75 times, up to 6.25

times. Compared to the Log-BCJR algorithm for WiMAX

turbo decoding, the proposed fully-parallel algorithm is more

than three orders-of-magnitude superior, when employing the

maximum frame length of N = 2400.

The state-of-the-art LTE turbo decoder ASIC of [10]

achieves a processing throughput of 2.15 Gbit/s and a latency

of 2.85 µs, when decoding frames comprising N = 6144 bits.

This is achieved using a clock frequency of 450 MHz, which

corresponds to a time period duration of 2.22 ns. The results of

Table I suggest that a fully-parallel turbo decoder ASIC could

achieve a processing throughput of 14.7 Gbit/s and a latency

of 0.42 µs, using a clock frequency of 194 MHz. Furthermore,

it may be assumed that the state-of-the-art turbo decoder ASIC

of [10] could maintain a processing throughput of 2.15 Gbit/s

when applied for WiMAX decoding. If so, then this suggests

that the a fully-parallel turbo decoder ASIC could achieve a

processing throughput of 13.4 Gbit/s and a latency of 0.36

µs, when decoding frames having a length of N = 2400 bits.

Note that these multi-gigabit throughputs are comparable to

those that are offered by fully-parallel LDPC decoders [9].

While the proposed fully-parallel algorithm offers signifi-

cant improvements to processing throughput and latency, this

is achieved at the cost of requiring an increased computational

complexity. The overall computational complexity C × I is

given as the product of the computational complexity per

decoding iteration C and the required number of decoding

iterations I . For both LTE and WiMAX turbo decoding,

Table I quantifies the overall computational complexity of

the proposed fully-parallel algorithm, the Log-BCJR algorithm

and the state-of-the-art algorithm of [10]. As shown in Ta-

ble I, the computational complexity of the proposed fully-

parallel algorithm can be more than five times higher than

that of the Log-BCJR algorithm. Compared to the state-of-

the-art algorithm of [10] however, the proposed fully-parallel

algorithm has a computational complexity that is 2.90 and 2.18

times higher in the case of the LTE and WiMAX turbo codes,

respectively.

Furthermore, the proposed fully-parallel algorithm has an

increased overall resource requirement, which is given by

combining the computational-, register- and RAM-resource

requirements, according to 9X + 5Y + Z. This is justified,

since adders and registers can be implemented using nine

and five NAND gates per bit, respectively. Meanwhile, RAM

comprising a sufficiently high number of addresses can be

implemented using similar hardware resources per bit as a

NAND gate [20]. Indeed, the overall resource requirements

of the proposed fully-parallel turbo decoder algorithm are

significantly greater than those of the Log-BCJR and state-

of-the-art algorithms, as shown in Table I. However, in order

to achieve the same processing throughput as the proposed

algorithm, several instances of the Log-BCJR and state-of-

the-art algorithms could be operated in parallel. Note however

that this approach assumes that several frames are available for

simultaneous decoding and this also proportionally increases

the associated resource requirements. When normalized by

the processing throughput in this way, the overall resource

requirements of the proposed fully-parallel turbo decoder al-

gorithm are 80 and 42 times lower than those of the Log-BCJR

algorithm, in the case of the N = 6144 LTE turbo code and

the N = 2400 WiMAX turbo code, respectively. However, the

normalized resource requirements of the proposed algorithm

are 4.27 times higher than that of the state-of-the-art algorithm

in the case of the N = 6144 LTE turbo code and 3.92 times

higher in the case of the N = 2400 WiMAX turbo code.

Note however that this comparison may be regarded as rather

pessimistic, owing to a number of implementational issues that

cannot be accurately captured by the algorithmic analysis of

Table I. Firstly, the RAM resources employed in the state-of-

the-art algorithm have only between 5 and 48 addresses. Since

the overhead associated with the input and output hardware

resources of the RAM is shared over so few addresses, the

associated hardware resources per bit are significantly higher

than those of a NAND gate. Owing to its employment of

centralized RAM, the state-of-the-art turbo decoder implemen-

tation of [10] requires both a significantly larger controller

and cache-memories than would be required to implement the

proposed fully-parallel turbo decoder algorithm. In addition

to this, the employment of the Radix-4 technique in the state-

of-the-art algorithm requires it to employ a high number of

bits to represent each state metric and LLR [10]. Finally,

while operating several instances of the state-of-the-art turbo

decoder in parallel is capable of improving its processing

throughput, this does not improve its processing latency. So,

while the overall computational complexity and normalized

resource requirements of the proposed algorithm are higher

than those of the state-of-the-art algorithm of [10], its key

benefit is a processing latency which is up to 6.86 times

superior. This trade-off is attractive in applications such as

low-latency capital market trading, in which enormous profits

are earned by financial institutions having the lowest latency

wireless communication links to stock exchanges in different

cities [21].

V. CONCLUSIONS

This paper has proposed a novel turbo decoding algorithm,

which eliminates the data dependencies of the state-of-the-art

algorithm and facilitates fully-parallel operation. The proposed

fully-parallel algorithm is compatible with all turbo codes,

including those of the LTE and WiMAX standards. These

standardized turbo codes employ odd-even interleavers, fa-

cilitating a novel technique for reducing the complexity of
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the proposed algorithm by 50%. More specifically, odd-even

interleavers allow the proposed algorithm to alternate between

processing the odd-indexed bits of the first component code

at the same time as the even-indexed bits of the second

component, and vice-versa. Furthermore, the proposed fully-

parallel algorithm was shown to converge to the same error

correction performance as the state-of-the-art turbo decoding

algorithm, regardless of which turbo code it is applied for.

Owing to its significantly increased parallelism, the proposed

algorithm facilitates throughputs and latencies that are up to

6.86 times superior to those of the state-of-the art algorithm,

when employed for the LTE and WiMAX turbo codes. Using

these applications as examples, it may be expected that the

proposed algorithm facilitates ASIC processing throughputs

of up to 14.7 Gbit/s, as well as latencies as small as 0.42

µs, satisfying the requirements of next-generation wireless

communication standards for the first time. However, this

is achieved at the cost of a computational complexity and

normalized resource requirement that are several times higher

than those of the state-of-the-art algorithm, although these

comparisons may be considered to be pessimistic, as described

in Section IV-G.

Our future work will consider the design of fully-parallel

turbo decoders that support multiple interleaver patterns. A

fully-reconfigurable interleaver could be implemented using

an arbitrary-size Beneš network [22]. For the N = 6144 LTE

turbo code, the Beneš network would comprise S(N) = 73728
switches, where S(N) is defined in [22]. In order to facilitate

interleaving and deinterleaving, these switches would have to

be bi-directional. Therefore, each switch would comprise four

2-to-1 multiplexers, which corresponds to 12 NAND gates

per bit, as well as a single inverter that is shared by all

bits. Ignoring the negligible contribution of the inverters, this

would therefore increase the overall resource requirement from

(825 · 6144) to (825 · 6144 + 12 · 73728), which represents a

17.5% increase. However, our future work will exploit the

regular structure of the LTE interleaver in order to mini-

mize this multiplexing resource requirement. Furthermore, the

Beneš network will be designed to allow different groups of

algorithmic blocks to simultaneously decode different frames

having any combination of different lengths and different

interleaver patterns. Provided that there is a sufficient number

of unassigned algorithmic blocks, the decoding of each frame

can begin as soon as it is received, without interrupting the

decoding of any frames already in progress. However, this

will require a relatively complicated controller, which may

be expected to have a resource requirement exceeding that

of the above-mentioned switches, perhaps resulting in a 40%

increase to the overall resource requirement, rather than a

17.5% increase. In an alternative approach to a Beneš network,

we will allow the extrinsic state metrics to bypass some

of the algorithmic blocks, at the cost of only a negligible

multiplexing resource requirement. This will allow a hard-

wired interleaver to be used for decoding shorter frames

having particular compatible interleaver patterns. We will

design a family of compatible interleaver patterns having

similar lengths and error correction capabilities as the LTE

interleaver. As a further extension to this work, we will enable

full compatibility with the LTE interleaver by combining this

bypass technique with a small Beneš network.

Our future work will also consider the practical ASIC,

FPGA, NoC and GPGPU implementation of the proposed

fully-parallel algorithm, in order to determine the processing

throughputs and latencies that may be achieved in practice.

Furthermore, this study will reveal how the proposed al-

gorithm’s increased computational complexity and resource

requirements translate into energy consumption and chip area

or hardware requirements. By jointly designing the proposed

algorithm with its practical implementation, it may be expected

that further innovations can be found which close the gap

to the energy consumption and normalized chip area of the

state-of-the-art design of [10], while maintaining the high

processing throughput and low latency mentioned above.
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