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Abstract

We use the Baranger model to compute collisional broadening and shift rates for the D1 and

D2 spectral lines ofM + Ng, whereM = K, Rb, Cs and Ng = He, Ne, Ar. Scattering matrix

elements are calculated using the channel packet method, and non-adiabatic wavepacket

dynamics are determined using the split-operator method together with a unitary

transformation between adiabatic and diabatic representations. Scattering phase shift

differences are weighted thermally and are integrated over temperatures ranging from 100 K to

800 K. We �nd that predicted broadening rates compare well with experiment, but shift rates

are predicted poorly by this model because they are extremely sensitive to the near-asymptotic

behavior of the potential energy surfaces.

Keywords: atomic spectra, line broadening, line shift, pressure broadening, collision

broadening, quantum mechanics, computational physics

(Some �gures may appear in colour only in the online journal)

1. Introduction

This research uses the Baranger model to simulate colli-

sional line broadening of relevant alkali vapor–noble gas

mixtures under varied conditions (e.g., varying temperature

and pressure). The particular mixtures of interest are those

in typical use in optically pumped alkali laser (OPAL) sys-

tems. The Baranger model builds directly from the work

of Jabloński [1] and is a fully quantum-mechanical model.

Like Anderson–Talman [2–4], Baranger assumes the refer-

ence frame of the emitter/absorber atom. Baranger uses the

impact approximation, which assumes that the duration of a

1 Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms

of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

collision is much shorter than the time between collisions. The

impact limit forces one to focus more on the core features

of the collision-broadened spectral line than on the wings or

satellite features. The only predictions found in the literature

have calculated broadening and shift under adiabatic potentials

for lighter alkali (Li, Na, K) perturbed by He [5, 6], primarily

for astrophysical application. These calculations are limited by

the semi-classical treatment of collisions [7, 8] and the neglect

of �ne structure transitions [6]. Recent interest in the behav-

ior of the non-adiabatic �ne structure transitions of atomic

alkali as they collide with noble gases has been generated by

applications in astrophysics and the development of OPALs

[9–15].

This research develops a model for line broadening in

which the time evolution of the alkali vapor–noble gas system

is handled through wavepacket propagation. The quantum-

mechanical time-evolution operator for the system is governed
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by the Hamiltonian, and we will use a fast Fourier trans-

form (FFT) and its inverse to transform the wavefunction of

the system between the momentum and position representa-

tions, as appropriate, in order to operate with the momentum-

dependent and position-dependent portions, respectively, of

the time-evolution operator. The normal method of examin-

ing atomic collisions is to approximate the colliding system of

two atoms as a diatomic molecular system. This allows one to

describe the system using appropriate Hund’s states [16, 17].

It is through this approximation to molecular dynamics that we

will utilize difference potentials in the context of this research.

This research exhibits several new features which set it

apart from the current state of the �eld. First, the full ab ini-

tio potential energy surfaces are used; these potential energy

surfaces have been calculated throughmany-body calculations

by Blank [18, 19]. Second, collisions are treated quantum-

mechanically and non-adiabatically and include spin–orbit

and Coriolis coupling. Third, calculations are made with the

only approximations beyond those of the impact limit being

those imposed by the Boltzmann (thermal) distribution of ener-

gies [20]. Finally, this research uses as its foundation the same

potential energy surfaces as the work of Blank [19, 21], which

allows us to compare results from the Anderson–Talman and

Baranger models for the same set of potential energy surfaces.

We can use this approach to deconvolvedifferences in themod-

els from differences in computational methods which might

yield dissonant results.

2. S-matrix elements

The Baranger model requires that we know the S-matrix (scat-

tering matrix) elements in order either to integrate directly

using or to perform the calculation of phase differences which

are then integrated. Here, we begin by generating initial states

which are then used to generate Moller reactant states. The

Moller reactant states are propagated through an interaction

under the action of the Hamiltonian and back out to calculate

Moller product states and then correlation functions. We then

use the Fourier transform of the correlation function to calcu-

late the S-matrix elements which we can use in the Baranger

model.

2.1. Generation of Moller states

The scattering operator Ŝ identi�es how reactants |Ψin〉 in the

in�nite past map to products |Ψout〉 in the in�nite future,

|Ψout〉 = Ŝ|Ψin〉

The scattering operator can be de�ned in terms of the channel

Moller operators [22, 23],

Ŝ = Ω
†
−Ω+

where, in atomic units,

Ω± = lim
t→∓∞

[exp(+iHt) exp(−iHt)].

We can use completeness to write the incoming reactant (or

outgoing product) state in the form

|Ψin(out)〉 =
∫ ∞

−∞
dkγ |kγγ〉〈kγγ|Ψin(out)〉

=

∫ ∞

−∞
dkγη+(−)|kγγ〉

where the |kγγ〉 are a separable set of reactant and product

states and γ represents the full set of internal quantum states of

the reactants and products [24, 25]. The channel Moller oper-

ators are then used to compute reactant and product Moller

states:

|Ψ±〉 = Ω±|Ψin(out)〉.

The method we use is to begin with a Gaussian wavepacket

at t = 0. We propagate the wavepacket backward as if it were

a free particle for a long enough time that it does not over-

lap signi�cantly with the centrifugal effective potential. We

then propagate this ‘intermediateMoller state’ forward in time

under the full Hamiltonian until t = 0. This effectively gener-

ates an intermediate state (at in�nity) that would have evolved

into a pure Gaussian wavepacket under no potential but that

instead evolves into the relevantMoller reactant state under the

full Hamiltonian of the system. Since we calculate the Moller

reactant states in the asymptotic limit of the potential energy

surfaces, they do not depend on the molecular state of the

system but only on J and the reduced mass, µ, of the system.

2.2. Calculation of the correlation function

Having calculated the Moller reactant state, we propagate the

wavepacket through the collision process to determine the

Moller product state. The correlation function is a measure of

the time-dependent overlap between the Moller product state

and the Moller reactant state; that is, the projection of the

Moller product (time-evolved) state onto the Moller reactant

(initial, or t = 0) state or, in our collision process, the projec-

tion of the outbound state (the state after the collision) onto

the inbound state (the state before the collision). The time-

dependent correlation function, C(t), has the form (in atomic

units)

C(t) = 〈Ψ−| exp(−iHt)|Ψ+〉. (1)

We begin our propagation at an interatomic separation of

100Bohr, andwe consider anything farther out than 20 Bohr to

be ‘asymptotic’ with regard to the interaction potential. How-

ever, the centrifugal effective potential reaches farther out for

relevant values of the total angular momentum J, so even if we

place the initial wavepacket at around 100 Bohr we still see a

signi�cant differencewith J. We therefore need to generate the

relevant Moller reactant states, one for each value of J, which

we can use in the channel packet method [24]. Given in�-

nite amounts of time and computational resources, the obvi-

ous method of generating a Moller reactant state would be to

generate a Gaussian wavepacket starting an in�nite amount of

time before the collision (t = −∞) and then propagate that

wavepacket until t = 0 to form the initial state. Since time and

computational resources are �nite, however, we must choose
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a suitably large time for ‘t = −∞’ such that the Moller reac-

tant states can be calculated in a reasonable amount of time

but that the wavepacket at the time we call ‘t = −∞’ does

not overlap so much with the centrifugal effective potentials

for relevant values of J that it misbehaves signi�cantly at low

kinetic energies.

In order to calculate the scattering matrix, or S-matrix, ele-

ments, we �rst calculate the correlation function. We propa-

gate the Moller reactant states through the collision process

to determine the Moller product states and then calculate the

time-dependent correlation functions using equation (1). The

wavepacket is propagated using the split operator method, in

which the time evolution of wavepackets is given in atomic

units by [26]

(
Φ1(R, δt)

...

)
= exp

[
−i

(
H11 . . .
...

. . .

)
δt

�

](
Φ1(R, 0)

...

)

≈ exp

[
−i

(
V11 . . .
...

. . .

)
δt

2�

]

× exp

[
−i

(
T11 . . .
...

. . .

)
δt

�

]

× exp

[
−i

(
V11 . . .
...

. . .

)
δt

2�

](
Φ1(R, 0)

...

)
.

We use a unitary transformation between adiabatic and dia-

batic representations to ensure that the potential and kinetic

energy terms operate correctly.

2.3. The Hamiltonian

For the system of A2
Π1/2, A

2
Π3/2, and B

2Σ1/2 states, the fully-

coupled Hamiltonian is a 6 × 6 matrix [24]:

H = − 1

2µ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d

dR
0 0 0 0 0

0
d

dR
F 0 0 0

0 F
d

dR
0 0 0

0 0 0
d

dR
0 0

0 0 0 0
d

dR
F

0 0 0 0 F
d

dR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

+ Veffective

(2)

where

Veffective =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Π+
a(R)

2
0 0 0 0 0

0
2Σ+Π

3
+
a(R)

2
−
√
2

3
(Σ−Π) 0 0 0

0 −
√
2

3
(Σ−Π)

Σ+ 2Π

3
+ a(R) 0 0 0

0 0 0 Π+
a(R)

2
0 0

0 0 0 0
2Σ+Π

3
+
a(R)

2

√
2

3
(Σ−Π)

0 0 0 0

√
2

3
(Σ−Π)

Σ+ 2Π

3
+ a(R)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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+
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⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

J(J + 1)− 3
4

2µR2
− [3(J − 1

2
)(J + 3

2
)]1/2

2µR2
0 0 0 0

− [3(J − 1
2
)(J + 3

2
)]1/2

2µR2

J(J + 1)+ 13
4

2µR2
0 0 − 2(J + 1)

2µR2
0

0 0
J(J + 1)+ 3

4

2µR2
0 0 − J + 1

2µR2

0 0 0
J(J + 1)− 3

4

2µR2
− [3(J − 1

2
)(J + 3

2
)]1/2

2µR2
0

0 − 2(J + 1)

2µR2
0 − [3(J − 1

2
)(J + 3

2
)]1/2

2µR2

J(J + 1)+ 13
4

2µR2
0

0 0 − J + 1

2µR2
0 0

J(J + 1)+ 3
4

2µR2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(3)

The omission of the J+1
2µR2

terms in the (2, 5), (3, 6), (5, 2),

and (6, 3) elements of the third matrix has a small effect

on our calculations, but it permits that 6× 6 matrix to be

approximated in 3× 3 block-diagonal form. The remainder of

our calculations will use the upper-left 3× 3 block-diagonal

portion of the Hamiltonian with an associated reduction in

computational effort.

2.3.1. Coupled (3× 3 matrix). We begin from equation (3),

which we call the fully-coupled 6 × 6 potential energy matrix

in the diabatic representation. The �rst approximation we

3
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make is the omission of the J+1
2µR2

terms as discussed above,

which transforms equation (3) into block-diagonal form with

two identical 3× 3 blocks; we use the top-left 3× 3 block

with the understanding that each state is two-fold degenerate

in spin. We then have for our 3× 3 coupled potential energy

matrix

Vcoupled =

⎛
⎜⎜⎜⎜⎜⎜⎝

Π+
a(R)

2
+
J(J + 1)− 3

4

2µR2
− [3(J − 1

2
)(J + 3

2
)]1/2

2µR2
0

− [3(J − 1
2
)(J + 3

2
)]1/2

2µR2

2Σ+Π

3
+
a(R)

2
+
J(J + 1)+ 13

4

2µR2
−
√
2

3
(Σ +Π)

0 −
√
2

3
(Σ+Π)

2Σ+Π

3
+
a(R)

2
+
J(J + 1)+ 3

4

2µR2

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

where Π and Σ are diabatic potentials. We use this effective

potential matrix to generate coupled S-matrix elements for

alkali-metal atoms colliding with noble-gas atoms.

2.3.2. Uncoupled (three 1× 1 matrices). We generate

uncoupled S-matrix elements by making the further approx-

imation that the off-diagonal Coriolis terms (the (1, 2) and

(2, 1) elements of the 3× 3 matrix) are zero. This allows us

to diagonalize the potential matrix in terms of the adiabatic

potentials of the three (now uncoupled) excited states:

Vuncoupled =

⎛
⎜⎜⎜⎜⎜⎜⎝

V(Π3/2)+
J(J + 1)− 3

4

2µR2
0 0

0 V(Σ1/2)+
J(J + 1)+ 13

4

2µR2
0

0 0 V(Π1/2)+
J(J + 1)+ 3

4

2µR2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

2.3.3. The ground state (1× 1 matrix). So far we have only

been concerned with excited states, but we also require calcu-

lations for the ground state of the system in order to calculate

scattering phase shift differences, which in turn we need for

integration within the Baranger model. The ground state does

not couple to any of the excited states through collision (only

through radiation), so we can express the ground state poten-

tial as a 1× 1 matrix that can be placed in block-diagonal

arrangement with the 3× 3 matrix to form a 4× 4 matrix.

Such a matrix treatment is not really necessary, however, and

we use it only for the sake of computational ef�ciency. The

1× 1 ground state effective potential matrix is:

Vground =

(
V(ground)+

J(J + 1)+ 1
4

2µR2

)
. (6)

2.4. Calculation of the S-matrix elements

Once we have the correlation functions from equation (1), we

can calculate the scattering matrix elements, S, by calculating

the FFT of the correlation function and dividing by the channel

packet expansion coef�cients:

S =
[|k′‖k|]1/2
2πη∗−η+

∫ ∞

−∞
exp(iHt)C(t) dt. (7)

This yields a scattering matrix element as a function of energy.

Since the total Hamiltonian of the systemdependson J, so does

the scattering matrix element. We thus have S-matrix elements

as functions of J and E.

2.5. Calculation of scattering phase shifts

While one use the squared magnitudes of the S-matrix ele-

ments to calculate associated scattering cross sections [24], we

use their real and imaginary parts to calculate a phase shift

corresponding to each S-matrix element:

φ = arctan
Im(S)

Re(S)
. (8)

Since the arctangent function is periodic, we have to check

for the start of a new cycle in phase, and then add 2π to allow

the total phase to accumulate. We then calculate the scattering

phase shift difference between a given excited state and the

ground state:

θJ(E) = φexcitedstate − φgroundstate. (9)

Once we have the scattering phase shift difference for the

entire range (in J and E) over which the collision can be said

to occur, we can subtract an overall constant phase from the

4
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entire data set; here we determine an arbitrary zero of phase,

in the same way that the zero of potential energy is an arbitrary

choice.

3. Integration of the Baranger equation

Our work with the Baranger model beginswith the line pro�le:

φ(τ ) =
∑

i f

exp(−iωi f τ ) exp[−ng(τ )] (10)

where n is the number density of perturbers (that is, noble gas

atoms) and the function g(τ ) is an integration of the single-

perturber time-evolution operator over the collision phase

space and the distribution of velocities [16, 20, 27–30]:

g(τ ) = α0 + iβ0 + (α1 + iβ1)τ =

∫ ∞

0

f (v) dv

∫ ∞

0

2πbdb

×
∫ ∞

−∞
v dt

[
1−

(
u−1
f f uii

)
AngularAverage

]
. (11)

With an ideal gas, a Boltzmann distribution, and the Langer

modi�cation [31] for the relation between impact parameter

and angular momentum b = L
�k

=
√
l(l+1)
k

, we �nd the broad-

ening and shift coef�cients, respectively:

nα1

P
=

√
π

2µ3
�
2(kBT)

−5/2
∞∑

E=0

exp(− E

kBT
)∆E

×
∞∑

J=0.5

(2J + 1)[1− cos θJ(E)] (12)

nβ1

P
= −

√
π

2µ3
�
2(kBT)

−5/2
∞∑

E=0

exp(− E

kBT
)∆E

×
∞∑

J=0.5

(2J + 1) sin θJ(E). (13)

The left-hand side of each of equations (12) and (13) gives

the broadening and shift, respectively, per unit pressure at a

given temperature. Here we have reinserted � as appropriate

to end up with a calculation of broadening and shift in units of

MHz/torr. These results give half-widths so as to be consistent

with Blank [21].

We can recast these in terms of rates per concentration

rather than rates per pressure. We do this by multiplying

equations (12) and (13) by kBT = P
n
(and making sure to

convert units of pressure appropriately). Results of this con-

version have units of MHz
m−3 or ×1012 s−1

cm−3 and further can be

converted to the usual theoretical units of wavenumbers per

concentration ( cm
−1

cm−3 ) [21] by converting frequencies to cor-

responding wavenumbers (by dividing by the speed of light,

ν̃ = 1
λ
= ν

c
) so we have the correspondence 1

c
· 10−21 MHz

m−3 =

10−9 s−1

cm−3 · 1
c
≈ 10

3
× 10−20 cm−1

cm−3 . The broadening and shift

rates, in wavenumbers per concentration (wpc), are

αwpc
1 =

√
π

2µ3

�
2

c
(kBT)

−3/2
∞∑

E=0

exp(− E

kBT
)∆E

×
∞∑

J=0.5

(2J + 1)[1− cos θJ(E)] (14)

βwpc
1 = −

√
π

2µ3

�
2

c
(kBT)

−3/2
∞∑

E=0

exp(− E

kBT
)∆E

×
∞∑

J=0.5

(2J + 1) sin θJ(E). (15)

In order to calculate the broadening and shift rates, we

must perform the sums in equations (14) and (15) over kinetic

energy (E) and total angular momentum (J). J is constrained

to be of half-integer quantity, while E is quantized by the same

energy resolution as in the calculation of S-matrix elements

[24]. In this case, our energy resolution is ∆E = 2−13 × 0.01
Hartree.

We use the ab initio potentials developed by L Blank

[18, 19] to calculate scattering matrix (S-matrix) elements by

the channel packet method.We use those S-matrix elements to

calculate the phase shift of a given state during a collision. We

use the phase shifts (and, more importantly, the phase differ-

ence between a given excited state and the ground state) rather

than a more direct calculation using S−1
f f Sii because calcula-

tions of the phase differences provides an intermediate check

of the viability of the calculation (that is, whether the phase

difference vanishes at high values of E and J). We then use

the calculated phase difference θJ(E) to numerically integrate

equations (14) and (15) to �nd the broadening and shift rates

of the given spectral line.

Figure 1 is a contour plot of [1− cos θJ(E)] times the Boltz-

mann distribution for the temperature of interest, which gives

usmost of what is summed over energies and angularmomenta

in equation (12). Figure 2 shows a similar plot of [sin θJ(E)]
times the Boltzmann distribution for the temperature of inter-

est, which gives us most of what is summed over energies and

angular momenta in equation (13). We can see immediately

the effective (E, J) ‘collision phase space’, or region of interest

in which the collision can be expected to broaden or shift the

spectral line at that temperature. Here the Boltzmann distribu-

tion acts as an envelope for the function θJ(E), which does not
itself depend on temperature. We can therefore use the same

phase difference data for calculations in a wide range of tem-

peratures, limited primarily by the cutoff energy de�ned by the

limits of our phase difference data (which provides an upper

limit for perturber kinetic energy and thus an upper limit for

temperature).

We then sum the results shown in �gures 1 and 2, as pre-

scribed by equations (12) and (13), respectively, to �nd the

broadening and shift coef�cients at a given temperature.

Now, we will consider addition schemes to account for

collisional coupling between the excited states.

3.1. No addition (no collisional coupling)

Here, we assume no collisional coupling. For example, if the

system is in the A2
Π1/2 state before the collision, it will be

in the A2
Π1/2 state after. This is particularly effective for the

A2
Π1/2 state, which couples negligibly weakly to the other

5
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Figure 1. Contour plot of [1− cos θJ(E)]× Boltzmann distribution for the A2
Π1/2 state of the uncoupled case of Rb + He, at T = 394K.

Figure 2. Contour plot of [sin θJ(E)]× Boltzmann distribution for the A2
Π1/2 state of the uncoupled case of Rb + He, at T = 394K.

states during collision, but we will deal with the coupling of

the A2
Π3/2, and B

2Σ1/2 states in later sections. This allows us

to compare our computational implementation of the Baranger

model with the results of the Anderson–Talman model [2–4,

18, 21].

So far, we have used a Boltzmann distribution of kinetic

energies, whereas the usual implementation of the Ander-

son–Talman model assumes all collisions occur at the ther-

mal average velocity. If we change our implementation of the

Baranger model to use a thermal average kinetic energy, the

broadening and shift rates become

αwpc
1 =

π2

4

�
2

c

√
1

2µ3
Ē1/2

∞∑

J=0.5

(2J + 1)[1− cos θJ(E)]

βwpc
1 = −π2

4

�
2

c

√
1

2µ3
Ē1/2

∞∑

J=0.5

(2J + 1) sin θJ(E).
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Figure 3. Broadening rates for uncoupled states of Rb + He.

Figure 4. Shift rates for uncoupled states of Rb+ He.

Figures 3 and 4 show broadening and shift rates versus tem-

perature for each of the uncoupled states in Rb + He, and we

have calculated the broadening and shift rates for the A2
Π1/2,

A2
Π3/2, and B

2Σ1/2 excited states using the Baranger model

and plotted those results along with equivalent calculations

using the Anderson–Talman model by Blank [21].

3.2. Allard addition

Allard and Kielkopf point out that such a calculation is

‘nontrivial in all but two-level atoms (atoms with only one

potential difference curve, or adiabatic processes) because

of �ne-structure transitions between excited states that occur

during the collision’ [16]. That is, �ne-structure mixing

7
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Figure 5. Broadening rates for D1 lines, Allard coupling.

Figure 6. Shift rates for D1 lines, Allard coupling.

produces a set of coupled equations which must be solved

numerically; further, such calculations were prohibitively

computationally-intensive at that time. However, this is a

critical problem in an OPAL because a two-level system

generally will not perform as a laser. Such effects are part

of the physical processes involved in spectral line broaden-

ing. A perturber can, for instance, propagate inward (toward

the emitter atom) along one potential surface, go through

a transition, and then propagate outward (away from the

emitter atom) along a different potential surface [16, 17,

31, 32].

In order to account for coupling in the 2P3/2 manifold dur-

ing collision, we perform what we call ‘Allard addition’ (or

‘Allard coupling’ [16, 20]), which couples the A2
Π3/2 and

B2Σ1/2 states by weighting their phase differences equally. As

a result, equations (14) and (15) are changed (only for the D2

line; the D1 line is calculated as in the uncoupled case) in the

following way:

8
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Figure 7. Broadening rates for D2 lines, Allard coupling.

Figure 8. Shift rates for D2 lines, Allard coupling.

αwpc
1 =

√
π

2µ3

�
2

c
(kBT)

−3/2
∞∑

E=0

exp(− E

kBT
)∆E

×
∞∑

J=0.5

(2J + 1)[1− 1

2
cos θJf 1(E)−

1

2
cos θJf 2(E)]

(16)

βwpc
1 = −

√
π

2µ3

�
2

c
(kBT)

−3/2
∞∑

E=0

exp(− E

kBT
)∆E

×
∞∑

J=0.5

(2J + 1)[
1

2
sin θJf 1(E)+

1

2
sin θJf 2(E)]

(17)
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Figure 9. Broadening rates for D1 lines, Baranger coupling.

Figure 10. Shift rates for D1 lines, Baranger coupling.

θJf 1 and θ
J
f 2 are the uncoupled scattering phase shift differences

corresponding to the two states on the 2P3/2 manifold (that is,

the A2
Π3/2 and B

2Σ1/2 states). Figures 5 and 6 show the broad-

ening and shift rates as functions of temperature for the D1

lines for all nine M + Ng pairs, and �gures 7 and 8 show the

broadening and shift rates as functions of temperature for the

D2 lines for all nineM + Ng pairs.

3.3. Baranger addition

In the Allard addition case, the states in the 2P3/2 manifold

are coupled in a 50/50 split, as shown by the factors of 1
2
in

equations (16) and (17). We can modify the addition some-

what, to account for a variable coupling during collision; to

do this, we replace the factor of 1
2
with the probability for

being in each corresponding state after the collision, which

10



J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 205403 R D Loper and D E Weeks

Figure 11. Broadening rates for D2 lines, Baranger coupling.

corresponds to the square of each state’s corresponding S-

matrix element [16, 20, 30]. The broadening and shift coef-

�cients that result are similar to those resulting from Allard

addition, except the factors of 1
2
become variable coupling

coef�cients that are based on the S-matrix elements, and the

phase shift differences are calculated using the 3× 3 coupled

Hamiltonian from equation (4). The broadening and shift rates

using Baranger addition are:

αwpc
1 =

√
π

2µ3

�
2

c
(kBT)

−3/2
∞∑

E=0

exp(− E

kBT
)∆E

×
∞∑

J=0.5

(2J+1)[1− QJ
f 1 cos θJf 1(E)− QJ

f 2 cos θJf 2(E)]

(18)

βwpc
1 = −

√
π

2µ3

�
2

c
(kBT)

−3/2
∞∑

E=0

exp(− E

kBT
)∆E

×
∞∑

J=0.5

(2J + 1)[QJ
f 1 sin θJf 1(E)+ QJ

f 2 sin θJf 2(E)]

(19)

or

αwpc

1 ≈
√

π

2µ3

�
2

c
(kBT)

−3/2

∞
∑

E=0

exp(− E

kBT
)∆E

×
∞
∑

J=0.5

(2J + 1)[QJ
f 1(1− cos θJf 1(E))+ QJ

f 2(1− cos θJf 2(E))]

(20)

βwpc

1 ≈ −
√

π

2µ3

�
2

c
(kBT)

−3/2

∞
∑

E=0

exp(− E

kBT
)∆E

×
∞
∑

J=0.5

(2J + 1)[QJ
f 1 sin θJf 1(E)+ QJ

f 2 sin θJf 2(E)] (21)

where QJ
f 1 = |SJf 1(E)|2 = e

−ζJ
f 1 and QJ

f 2 = |SJf 2(E)|2 = e
−ζJ

f 2

are the normalized squares of the scattering matrix elements,

e
−ζJ

f 1 and e
−ζJ

f 2 are decay coef�cients, θJf 1(E) and θJf 2(E) are
the coupled (3× 3) scattering phase shift differences, and

QJ
f 1 + QJ

f 2 = e
−ζJ

f 1 + e
−ζJ

f 2 ≈ 1.

The D1 line broadening and shift coef�cients are calcu-

lated using the coupled (3× 3) scattering phase shift differ-

ences corresponding to the 2P1/2 manifold, and the D2 line

results depend on the two states on the 2P3/2 manifold. Here

we draw a distinction between two different things both called

‘coupling’; we have a coupling of the potential energy sur-

faces through action under the Hamiltonian (which are used

to generate S-matrix elements and phase shifts), and we have

coupling of phase shifts as a way of calculating what we mea-

sure as D1 and D2 lines instead of transitions from individ-

ual surfaces (this coupling we categorize as either ‘Allard’

or ‘Baranger’ coupling or addition). Figures 9 and 10 show

broadening and shift rates as functions of temperature for the

D1 lines of all nine M + Ng pairs in the Baranger addition

case, and �gures 11 and 12 show broadening and shift rates as

functions of temperature for the D2 lines of all nine M + Ng

pairs in the Baranger addition case. Because this form of cou-

pling requires data about the behavior of the scattering matrix

elements and not just phase differences, these results cannot

be extended in the energy regime in the same way as the other
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Figure 12. Shift rates for D2 lines, Baranger coupling.

cases. Thus, the broadening and shift coef�cients must be lim-

ited to lower temperatures in order to prevent error due to

truncation of the Boltzmann distribution at the maximum

energy. In this work, we limit calculations to a maximum

temperature of 500 K for the Baranger addition, whereas we

extend to 800 K for the Allard addition.

4. Discussion

The shift coef�cients are extremely sensitive to the initial

Moller reactant states. This sensitivity is caused by the sine

term in equation (13); for small phase shift differences,

sin θJ(E) ≈ θJ(E) but cos θJ(E) ≈ 1, so small but nonzero

phase shift differences cause the integrand in equation (12) to

vanish but the integrand in equation (13) to remain nonzero.

This nonvanishing term then multiplies the Boltzmann distri-

bution and causes a J-independent ridge. Such a ridge appears

for any nonzero offset phase as well, but a small but nonzero

phase shift difference appears if the Moller reactant state gen-

eration has not propagated far enough into the distant past to

escape the centrifugal effective potential. We also believe that

the broadening is dominated by the close-in behavior of the

potential energy surfaces while the shift is extremely sensi-

tive to the near-asymptotic behavior of the potential energy

surfaces.

To calculate the phase shift differences, phase shifts for

the excited and ground states were extended linearly from

the energy limits of our calculations (E = 0.0075 Hartree) to

a larger energy (E = 0.012 Hartree) in order to accommo-

date calculations at higher temperatures. However, incorpo-

rating higher energy collisions to go to higher temperatures

also requires us to include higher values of J. For example,

the entire collision phase space for Rb + He at 100 K can

be handled with maximum energy of 0.002 Hartree and max-

imum J of 65.5. Increasing the temperature to 394 K requires

us to consider energies up to 0.007 Hartree and a maximum J

of 110.5 to capture the entire collision phase space. Increas-

ing the temperature to 800 K requires a maximum E of 0.012

Hartree andmaximum J of 130.5 to capture the entire collision

phase space. In other words, calculating at higher temperatures

requires larger energies and larger values of J. We can extend

phase shifts linearly in energy, but we cannot extend in J with-

out losing critical information about that part of the collision

phase space. Calculations at signi�cantly higher temperatures

will require calculations at higher values of J (andE) to capture

the full collision process. Such work will be necessary to per-

form broadening and shift calculations at higher temperatures

than about 800 K. There is good work ongoing that compares

with this research [33, 34].

Ultimately, agreement among broadening rates is not suf�-

ciently good to identify conclusively which model is ‘correct’

for a given set of ab initio potential energy surfaces, at least

at the temperatures at which experimental data have been

measured. In most cases, the predictions of the Baranger and

Anderson–Talman models diverge at low temperatures, so

low-temperature experiments may provide a needed discrimi-

nator between the models.

A potential source of error in this implementation of the

Baranger model is that the generation of the reactant Moller

states does not include the off-diagonal Coriolis terms for the

Hamiltonian, but include only the diagonal terms (that is, the

centrifugal effective potential). As before, we can examine the

reactant Moller states (at t = 0) and both the diagonal and

off-diagonal Coriolis terms. We �nd, however, that the off-

diagonal Coriolis terms do not contribute signi�cantly to the
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Hamiltonian at separations as far as where we start the propa-

gation (100 Bohr), and thus ignoring the off-diagonal Coriolis

terms should not introduce a signi�cant source of error.

There is still a great deal of theoretical work to be done in

this area, from the calculation of potential energy surfaces to

re�nement of our scattering model and the Baranger model.

Any error in the ab initio potential energy surfaces is re�ected

in the �nal results. In particular, we suspect errors in the sur-

faces for M + Ar because both the Baranger model and the

Anderson–Talman model give results that vary signi�cantly

from experiment for these pairs. It is not clear to what degree

this implementation of the wavepacket propagation technique

and the Baranger model are sensitive to differences in the

potential energy surfaces. It is a theoretically straightforward,

but computationally intensive, process to replace the poten-

tial energy surfaces with new inputs. One could use different

classes of potential, such as the Lennard-Jones (6–12) poten-

tial [35, 36] that is commonly used in the Anderson–Talman

model. Hager has achieved some success with the Ander-

son–Talman model using a 6–8 potential [37], and such a

potential could be tested in the context of the Baranger model.

Testing different sorts of potentials with more localized and

controllable characteristics might give more information and

con�rmation about what parts of the potential energy surfaces

give rise to which characteristics in the broadening and shift

rates and intermediate calculations such as the scattering phase

shift differences. There is work ongoing to generate better

potential energy surfaces [38] and to utilize them to simulate

reactions involving the higher manifolds [39].

The primary challenge to extending this model to predict

line shape shift and broadening for other atom–atom collisions

of interest is obtaining the appropriate scattering phase shifts

for the collision. This requires the atom–atom potential energy

curves associated with the spectral feature of interest along

with the governing Hamiltonian, here given for alkali-metal

noble-gas collisions in equation (3).

Another approach to generatingMoller states might simply

start with a Gaussian wavepacket at a very large separation

distance, which could ameliorate the problem with generating

reactant Moller states; in essence, the Gaussian wavepacket

becomes our reactant state for which we can generate an ana-

lytic form. However, the improvement of a single problem is

counteracted by the introduction of two additional problems.

First, the reactant state has to be propagated through the colli-

sion process and back out to where it started; this counteracts

any computational savings one might have gleaned from the

lack of Moller state propagation. Second, propagating from a

larger separation requires a larger computational grid in order

to accommodate the space containing the wavepacket and the

origin, which in turn requires FFT code capable of accom-

modating such a large space. This second problem might be

lessened by adopting a moving reference frame that is just

large enough to accommodate the wavepacket as it spreads, but

we have not attempted this and we are unsure to what degree

new error might be introduced through the new propagation

algorithm.

Finally, we see only the distant past (or what we call the

‘in�nite’ past) and distant future before and after the collision

[24]. Because we can only look at the distant past and future,

we are stuck with the impact limit of Baranger, which assumes

that the duration of a collision is short compared with the time

between collisions. Any work to take us out of the impact limit

will necessarily involve being able to view events that occur

during a collision, rather than just the distant past and future,

and will require a complete reworking of the computational

algorithm.
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