
A Fully-Synthesizable Single-Cycle Interconnection
Network for Shared-L1 Processor Clusters

Abbas Rahimi†, Igor Loi‡, Mohammad Reza Kakoee‡, and Luca Benini‡
† CSE Department, University of California, San Diego, La Jolla, CA, USA

‡ DEIS, University of Bologna, Bologna, Italy
abrahimi@cs.ucsd.edu, igor.loi@unibo.it, m.kakoee@unibo.it, and luca.benini@unibo.it

Abstract—Shared L1 memory is an interesting architectural
option for building tightly-coupled multi-core processor
clusters. We designed a parametric, fully combinational
Mesh-of-Trees (MoT) interconnection network to support
high-performance, single-cycle communication between
processors and memories in L1-coupled processor clusters.
Our interconnect IP is described in synthesizable RTL and it
is coupled with a design automation strategy mixing advanced
synthesis and physical optimization to achieve optimal delay,
power, area (DPA) under a wide range of design constraints.
We explore DPA for a large set of network configurations in
65nm technology. Post placement&routing delay is 38FO4
for a configuration with 8 processors and 16
32-bit memories (8x16); when the number of both processors
and memories is increased by a factor of 4, the delay increases
almost logarithmically, to 84FO4, confirming scalability
across a significant range of configurations. DPA tradeoff
flexibility is also promising: in comparison to the max-
performance 16x32 configuration, there is potential to save
power and area by 45% and 12 % respectively, at the expense
of 30% performance degradation.

1. INTRODUCTION
With the flattening out of clock speed improvement and the
increasing focus on energy-efficient architectures, chip
multiprocessors and parallel computing have recently taken the
center stage in research and development. As Moore’s law
continues to apply in the chip multiprocessor (CMP) era, we can
expect to see a geometrically increasing number of processors and
memories on-a-chip which places increasing pressure on the
design of low-latency, high-bandwidth processor-to-memory
interconnection fabrics. The performance of most digital systems
today is indeed interconnect-limited, and the design of a high
performance on-chip interconnection network is crucial, as the
performance impact due to the latency of the interconnection
network in a CMP can be as high as the cache miss [1].
Many-core architectures are a reality in products today, and GPUs
are perhaps the most widely visible example of this trend. One of
the most successful GPUs on the market today, Fermi [2] from
NVIDIA, features 512 cores. The computing tile in Fermi is the
streaming multiprocessor (SM) a tightly coupled processor cluster
where 64-Kbyte configurable scratchpad memory/L1 cache is
shared among 32 CUDA processor cores [3]. Accesses to local
shared memory experience a latency of a couple of cycles. In
contrast, global memory is accessed in hundreds of clock cycles.
In this work we focus on communication between the heavily
shared multi-banked L1 memory and the cores of a tightly
coupled processor cluster. Clearly, L1 processor-to-memory
interconnects must provide a huge bandwidth, coupled with ultra-

low latency. This level of performance is out of reach for
traditional bus-based interconnects [4], even with advanced
features like multiple outstanding transactions and out of order
completion [5][6]. Networks-on-Chip (NoC) [7], provide
bandwidth scalability, but the latency of traditional NoCs is not
adequate for L1 processor-to-memory communication [8], and
highly optimized special-purpose interconnects are required.
The design of NxM (where N is the number of processors, and
M is the number of memory banks) networks for high-
performance architectures usually relies on custom circuit design
techniques such as pass transistors, low-swing drivers etc. [9]-
[11]. Unfortunately this approach is not suitable for architectures
featuring soft cores and third-party IPs, which must be compatible
with standard technology libraries provided by silicon foundries.
An L1 processor-to-memory network provided as a parametric
synthesizable IP is therefore highly desirable in this context. Such
an IP should come with a carefully tailored logic and physical
synthesis strategy, as interconnect delays must be accounted for
and minimized to achieve acceptable quality of results.
This paper provides three contributions. First, a fully
combinational MoT interconnection network suitable for shared-
L1 processor clusters is implemented featuring single-cycle
transfer from processor to memory and vice versa. The network
provides round-robin arbitration for fair access to memory banks,
as well as fine-grained address interleaving to reduce memory
bank conflicts. Second, we developed an advanced synthesis and
physical optimization strategy which leverages standard design
implementation tools, and orchestrates them to achieve high-
quality results in terms of delay, power and area (DPA) even for
large network instantiations. Third, we explored a wide range of
network configurations to analyze scalability and DPA tradeoffs.
Full layout results on realistic floorplans confirm high-
performance and scalability across a significant range of
configurations: delay is increased almost logarithmically when the
number of processors and memories rises. DPA trade-off results
demonstrate the flexibility of our soft-IP approach.

2. RELATED WORKS
Parallel computing requires large memory bandwidth [12]:
maximizing memory bandwidth is essential in many-core, where
the large quantity of parallelism places a heavy request on the
memory system [2][3][13]. For this reason, many research efforts
have focused on developing ultra-high bandwidth interconnects
for multi-banked on-chip memories.

A memory-centric NoC is implemented as an on-chip
interconnection to support efficient data transactions for a multi-
core processor with ten processing elements [14]. The memory-
centric NoC consists of five custom-designed crossbar switches,

978-3-9810801-7-9/DATE11/©2011 EDAA

and eight dual port SRAMs provide shared buffers for inter-PE
data transactions. Although the star-connected on-chip network
supports 11.2GB/s bandwidth [10], its crossbar switches fabric is
partitioned by 4x4 tiles which are implemented by non-
synthesizable NMOS pass-transistor logic [15]. As another
alternative for custom design technique of crossbars, a 128×128
XRAM-a switched swizzle network- is fabricated in 65nm which
achieves a bandwidth 1Tbit/s [8]. These crossbars are not
compatible with standard technology libraries provided by silicon
foundries.

In openSPARC T1 micro-architecture [16], a processor-cache
crossbar has been implemented to accept packets from each of
eight SPARC CPU cores, and deliver the packet to one of the four
L2-cache banks, the I/O bridge, or the floating-point unit.
Although crossbar uses three stage pipelines, it takes more than
one cycle to deliver the packet. Another low latency
interconnection network based on MoT is implemented in [17]
[18], to connect the processing clusters and the memory modules
on-a-chip. It provides unique path between each processor and
memory module using binary trees of switches. Processing
clusters and memory modules are located at the root of trees,
while in the traditional MoT [19]-[22], they will be located at the
leaves of trees which could degrade performance due to the
interference. On the other hand, each packet spends one clock
cycle in each switch: when the number of processors and
memories increases this architecture becomes a latency
bottleneck.

The HyperCore architecture [23] is an example of shared-L1
cluster with high performance-per-Watt. The architecture consists
of a hardware synchronizer/scheduler, compact 32-bit RISC cores,
shared on-chip memory which is accessed by a high-performance
interconnect network. Every path from a RISC processor to the
shared memory passes through a series of combinational switches
where data and addresses move at hardware speed. Another
shared memory system for a tightly-coupled multiprocessor is
patented in [24]. Its Baseline interconnection network is
implemented as a combinational circuit which contributes to
making the interconnection network simple, lean and light-weight.
No information is publicly available on the DPA of these
networks, and their scalability properties have never been
assessed in the open literature.

3. NETWORK ARCHITECTURE
This section provides an architectural description of the proposed
interconnection network based on MoT [17]. It supports non-
blocking communication between the processing clusters (PCs)
and memories modules (MMs), within a single clock. As shown in
Figure 1, a combinational path is created through a network of
primitive building blocks: routing primitives (circles blocks) and
arbitration primitives (square blocks). The former are used to
create independent routing paths (routing trees) from the PCs to
the arbitration tree (and vice-versa). The latter are used to arbitrate
concurrent requests (arbitration tree) and to route them up to the
MMs ports and vice-versa.

3.1 Routing Switches
The routing tree consists of simple routing switches which route
each packet from processor side to memory side, and vice versa.
The packets are routed individually based on packet’s address
field. As shown in Figure 2, the switch has two directions:
forward (PC ports) which sends out the incoming packet form its

input port at processor side to one of its output ports at memory
side; backward which rolls packet back from memory side to
processor side (MM ports). The forward packet contains address,
data write, and control signal of memory while the backward
packet contains the read data, and acknowledgment signal.

Figure 1. Mesh of trees 4x8: empty circles represent routing
switches and empty squares represent arbitration switches.

Each routing switch consists of a MUX, DEMUX, and a simple
combinational control logic which provides a fine-grained address
interleaving. By using the fully combinational routing switch, a
packet with an active request does not need to spend any clock
cycles for traveling from PC side up to end of routing tree.
Similarly, the backward path used to get back the read data, is
active with the request and hold for the entire clock cycle. No
arbitration is performed in this block, and the selection (MUX
selector) between the two MM_in ports is univocally based on the
request address field (PC_in).

PC_in
PC_out0

MM_in1

MM_out

MM_in0

PC_out1

P
ro

ce
ss

or
 s

id
e M

em
ory side

re
q

ad
dr

Control

Figure 2: Routing switch.

3.2 Arbitration Switches
The arbitration tree consists of simple arbitration switches which
route packets through the routing trees to memory, and vice versa.
As shown in Figure 3, the switch has two parallel input ports at
the processor side (PC_in ports) and uses a MUX to route data
from PC_in to MM_out. On the other side, the response packets
(MM_in) from the memory side will be routed to one of the two

possible outputs (PC_out), based on pending grant status. The
round-robin algorithm is used to provide a starvation-free
arbitration; it means if a request from one processor loses the
arbitration in the current clock cycle, it is quarantined to allocate
the output in the next clock cycle. The clock signal is used in
controller of arbitration switches in order to switch the round-
robin flag in case of simultaneous requests.

PC_in1

PC_in0

MM_out

0

PC_out0

0

PC_out1

MM_in

re
q1

re
q0

Controlclk

P
ro

ce
ss

or
 s

id
e M

em
ory side

Figure 3: Arbitration switch.

3.3 Network Datapath
As highlighted in Figure 1, the MoT network connects N=2n PCs
and M=2m MMs. It contains Log2M levels of routing primitives
and Log2N levels of arbitration primitives. Each memory request
issued by PCs must pass through Log2M levels of routing
primitives to reach at one of M×N leaf nodes in the arbitration
switches; and arbitrates among Log2N levels of arbitration
primitives to reach at MM side. In reverse order, memory
responses propagate through arbitration and routing levels to
reach at PC side. Although there is a unique combinational path
between each processor and each memory, packets from different
processors direct to the same memory module are arbitrated while
passing through arbitration primitives.

The equations 1 and 2 show the total number of routing and
arbitration switches needed to connect M PCs to N MMs:

2 1

0

total number of routing switches = 2
Log M

i

i
N

−

=

×� (1)

2

1
total number of arbitration switches =

2

Log N

i
i

N M
=

×� (2)

Thanks to the modularity features, the network can be easily
customized for different cardinalities and different architectural
features.

3.4 Network Operation
During a read/write operation, data and control signals are
asserted by the PCs in the form of packet, as introduced at the
beginning of this section. This packet is routed through routing
switches (Figure 1), until it reaches one of N×M ports of routing
tree. In order to reach the memory module the packet must be
arbitrated among the other simultaneous packets for the same
memory module. After passing through all levels of arbitration
switches, the packet reaches the memory module, and the
read/write operation can be performed.

Packet routing and arbitration are performed in a combinational
way, by using a request and acknowledgment signals for

arbitration, and address for routing across the switches. Once the
request reaches the last level of the arbitration tree and gets the
grant, a valid acknowledgement is asserted and propagated back
to the related PC through the routing switches (backward). By
receiving the acknowledgment signal, PC is able to issue the next
read/write operation at the next clock cycle, otherwise it waits
until it is received.

In order to provide a single-cycle latency system, each read/write
request must be concluded within the clock period. To achieve
this goal, we assume that PCs and network (only for round robin
priority switching) are clocked with the main clock CLK, whereas
MMs are clocked with a skewed_CLK (same frequency and
typically 180° phase shift) as depicted in Figure 4. These two
signals are available at the input ports of the network, and are
generated through an external block (PLL). Thanks to this
strategy, requests asserted on the rising edge of the CLK (1) are
propagated in the timing window (1) to (2); after (2) data must be
stable, in order to be sampled by MMs during the rising edge of
the Skewed_CLK (3). At this point, in case of write, the
transaction is done. In case of read, elapsed the access time, the
memory presents at its interface a stable data in (4), which is
propagated back to PC side through the already allocated
backward path (no arbitration is performed here). Data must reach
the PC side before (5) and be stable up to (7) in order to avoid
setup/hold violations and data corruptions. At the successive
rising edge of the CLK in (6), the PC checks the acknowledgment
signal: in case of active acknowledgment (active high), PC
samples the read data (if any) and injects the next transaction; if
zero it waits the next clock cycle keeping stable the packet on the
PC ports.

In order to avoid timing violations, three conditions must be
satisfied:

• The clock period must be equal or greater than the sum of the
worst case delays from PCs to MMs and from MMs to PCs,
plus the access time of memory module and setup time of the
MM and PC (ref equation 3a). There exists another path from
PCs to PCs, when the request signal is not granted in case of
simultaneous request for a memory module. This latency is
bounded by the entire clock period minus the setup time of
the PC.

• Latency from PCs to MMs must be equal or smaller than the
clock skew minus the setup time of MM (ref equation 3b).

• Latency from MMs to PCs must be equal or smaller than the
clock period minus the skew, the memory access time and
the setup time of PC (ref equation 3c).

These conditions are determined by the equation system 3 and
graphically depicted in Figure 4. As introduced in section 3.3, the
entity of the network latencies increases with the number or
switch levels. Is it clear that, for a given network configuration
(NxM) and technology, the forward and backward latencies are
lower bounded for maximum performances. By playing with the
clock frequency, phase shift and memory access time, it is easy to
solve the equation system, thus avoiding timing violations.

�
�

�
�

�

≤+

−≤+

≤++

Skewtlatc
SkewPeriodtlatb

PeriodlatMMlatlatMaxa

PCsetupPCMM

MMsetupMMPC

PCPCtimeaccesstPCMMMMPC

__2_

__2_

_2___2__2_

:)(
:)(

)|(:)((3)

Figure 4: Clock and Skewed Clock representation, and related timing
requirements. In (1) the PC injects the request and related datapath
signals; stable request is received at MM side in (2), and sampled in
(3). In case of write the operation is concluded, while in read case,
after the memory access time (4) the read data is stable and is
propagated back to PC side; in (5) stable read data reaches the PC
ports and it is sampled in (6).

4. EXPERIMENTAL RESULTS
In this section, we discuss the experimental results for the single-
cycle network in terms of delay, power, and area (DPA). Several
configurations have been analyzed. We quantified the cost of the
entire network for several PC and MM cardinalities. To get these
results, we synthesized the network with the TSMC 65nm
technology library (general purpose process). The front-end flow
(Multi VTH) has been performed with Synopsys Design Compiler
in topographical mode, while the back-end with Cadence SoC
Encounter. The sign off has been made with PrimeTime, while
functional verification is performed with Mentor Graphics’
ModelSim.

4.1 Design Flow
Figure 5 depicts an overview of the specialized design flow used
to maximize speed and explore DPA trade-offs. The network is
generated through our high-level generator which takes as input
the network template (number of PCs and MMs) and user
constraints (BW, datawidth etc.). The output of this stage is a
Verilog synthesizable RTL description of the network, and the
timing constraints at each port of the network. The synthesis
stage is performed in two passes: the first is a pure logic synthesis,
and the network is synthesized without physical constraints. This
preliminary output netlist is used in the P&R tool to perform the
power planning and floorplanning (with pin budgeting), and at the
end of this step, the physical information are exported in a “def”
file and back-annotated in the synthesis tool, with topographical
features enabled. The second synthesis run performs both
remapping and coarse placement plus physical optimization
taking into account physical geometries based on the back-
annotated floorplan1. Using this methodology, good convergence
between post-synthesis and post-layout results is achieved early in
the flow with only one iteration cycle (correlations in the order or
90-95% is achieved).
The P&R flow is based on the top-down approach. To save
runtime, we used dummy hard macros to mimic the timing
behavior and physical obstructions of PCs and MMs. The network
is flatten and placed in a single tile in the center of the die area as
depicted in Figure 9.

1 A Steiner tree model (instead of wire load model) is used to
measure wiring distances and capacitive loads are computed using
these lengths.

Figure 5. Overview of the design flow.

Finally, the extracted netlist, back-annotated parasitic and delays
are used to perform area, delay and power analysis with
PrimeTime. To ensure the correctness and quality of the achieved
results, in parallel with the implementation flow we run the
verification flow. A pass/fail test has been adopted for this
purpose.

4.2 Combinational Network
In this sub-section we present the DPA results for the entire
interconnection network for the following configurations (32bits
data and address):

• 8PCs and 8, 16 and 32MMs
• 16PCs and 16, 32 and 64MMs
• 32PCs and 32 and 64 MMs

We choose to analyze the configurations where the numbers of
MMs are equal or greater than the number of PCs, because
essentially each PCs leads to one or more MMs. Moreover, the
address space can be interleaved in different ranges, and assigned
to different MMs, to reduce the memory contentions while
increasing overall system bandwidth.

0
5

10
15
20
25
30
35
40
45
50

8x8 8x16 8x32 16x16 16x32 16x64 32x32 32x64

Ne
tw

or
k

la
te

nc
y

[F
O

4]

Network Cardinality [PCxMM]

PC to Mem

Mem to PC

Figure 6. Forward and Backward network delay for different
cardinalities (32bit).

Figure 6 shows the post-layout delay results for the explored
network cardinalities (32bit channels width). As described in
section 3.4, equations 3, network performance is determined by
two paths: forward path from PCs to the MMs, backward path in
the reverse direction. The first involves both path arbitration and
switch routing and network traversal, whereas in the backward,
the path is already established and the delay contribution is
entirely due the switches traversal. As shown in Figure 6, the
delay of the network for roundtrip traversal ranges from 32FO4
(8x8) to 84FO4 (32x64). The delay for 8x16 configuration is
38FO4. When the number of both processors and memories rises
by a factor of 4, the delay closely increases logarithmically by 2.2
because the levels of routing and arbitration trees are a
logarithmic function from the number of processors and
memories.

K

50K

100K

150K

200K

250K

300K

350K

400K

8x8 8x16 8x32 16x16 16x32 16x64 32x32 32x64

Eq
ui

va
le

nt
 g

at
es

 [
na

nd
2]

Network Cardinality [PCxMM]

Total cell area

Figure 7: Network area cost for different cardinalities.

Figure 7 depicts the total cell area of the network for several
cardinalities. As described in section 3.3, the area cost is directly
related with the amount of routing and arbitration switches with
O(NM). For the 8x16 configuration the area cost is limited to
32K equivalent gates, while for 32x64 it strictly increases less
than O(NM), 380K equivalent gates . It shows the great ability of
network for saving area while supporting large number of PCs and
MMs.
Finally, Figure 8 shows the power consumption results for a 32bit
based networks in terms of cell internal, switching and leakage
power. Starting from the 16x32 setup, the contribution of net
switching power dominates the overall consumption, mainly
because as the number of macros increases (length of wires is
dominated by the size of the die), the wire-length and related
power rises as well.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

8x8 8x16 8x32 16x16 16x32 16x64 32x32 32x64

To
ta

l D
yn

am
ic

 P
ow

er
 [m

W
]

Network cardinality

Leakage

Switching

Cell Internal

Figure 8: Network power consumption for different
cardinalities.
The layout view of the 32x64 configuration is shown in Figure 9,
where the Network is surrounded by PCs and MM clusters. Since
the network is centralized, in order to minimize the wire-length,
the Network tile is placed in the center of the die, while no

constraints are applied to MMs and PCs (any path from MM
from/to PC is routed through the network).
DPA results show the potential of the proposed to network to
handle such a big system as a high-performance interconnect with
acceptable area and power cost.

Figure 9. Layout of 32x64 configuration.

4.3 Delay-Power-Area Trade-offs
We explore DPA trade-offs for different design constraints for the
16x32 configuration. The trade-offs show the potential of our
synthesizable interconnection network to work with different
target frequencies and achieving area and power saving. So the
interconnection network can be easily adapted to the demands of
the new architectures (featuring soft cores and third-party IPs),
thanks to the fully-synthesizable and fully automated flow. Figure
10 shows the trade-off between total area cell of the network and
its target frequency. Relaxing the target frequency, the tools are
able to infer small (driving strength) and less power hungry cells
(regular or high threshold voltage), thus saving both area and
power. In comparison to the max-performance 16x32
configuration (310 MHz), we can save area up to 12%, at the
expense of 30% performance degradation.

99K
101K
103K
105K
107K
109K
111K
113K
115K

150 170 190 210 230 250 270 290 310

Eq
ui

va
le

nt
 g

at
es

 [n
an

d2
]

Target frequency [MHz]
Figure 10. Area-Performance trade-off for 16x32 network.

The trade-off between power and performance is illustrated in
Figure 11. By changing the target frequency form 310Mhz down
to 210Mhz, 50% total power saving is achieved for network. The
plot shows three regions: starting from the relaxed timing
constraint, the tool maps the architecture on high threshold (HVT)
cells which yield lower power. As the target frequency increases,
the design is mapped on regular voltage threshold (RVT) cells, in
order to achieve simultaneous timing requirements and area

minimization. This trend is sustained until 290MHz; after this
point the timing constraints are very tight and design is dominated
by low voltage threshold (LVT) cells, which are fast and power
hungry (leaky cells).

15

20

25

30

35

40

45

50

55

150 170 190 210 230 250 270 290 310

To
ta

l p
ow

er
 [m

W
]

Target frequency [MHz]
Figure 11. Power-Performance trade-off for 16x32 network.

5. CONCLUSION
In this paper we presented a fully-synthesizable single-cycle
interconnection network for shared-L1 processor clusters which is
coupled with an advanced design automation strategy mixing
advanced synthesis and physical optimization. We explored the
network in terms of delay, power, and area metrics for different
system configurations and design constraint. Our post
placement & routing results show that the delay of interconnects
is just 38FO4 for the 8x16 configuration. Rising the number of
PCs and MMs by a factor of 4 leads to only 2.2X in delay
incensement which is close to a (highly desirable) logarithmic
growth. In terms of DPA trade-offs, the 16x32 configuration has
the potential to power and area saving of 45% and 12%
respectively, at the expense of 30% performance degradation. In
future work, we will focus on multicast support, configurable
address interleaving and topology optimization to further reduce
delay.

6. ACKNOWLEDGMENTS
The financial contribution of FP7 projects Pro3D (GA n. 248776)
and Therminator (GA n.248603) is gratefully acknowledged.

7. REFERENCES
[1] S. Akram, R. Kumar, D. Chen, "Workload adaptive shared

memory multicore processors with reconfigurable
interconnects," in Proc. of the 7th IEEE Symposium on
Application-Specific Processors, SASP, July 2009, pp. 7-14.

[2] NVDIA, The next generation CUDA architecture, code
named Fermi, [online]. Available: www.nvidia.com/object/
fermi_architecture.html

[3] J. Nickolls and W. J. Dally, "The GPU computing era," IEEE
Micro, vol. 30, no. 2, pp 56 - 69, April 2010.

[4] F. Angiolini, P. Meloni, S. Carta, L. Raffo, and L. Benini, "A
layout-aware analysis of networks-on-chip and traditional
interconnects for mpsocs, "IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems," vol. 26,
no. 3, pp. 421-434, March 2007.

[5] STMicroelectronics, The STBus Interconnect. [Online].
Available :www.st.com

[6] ARM Ltd., The Advanced Microcontroller Bus Architecture
(AMBA) Homepage. [Online]. Available: www.arm.com
/products/solutions/AMBAHomePage.html

[7] L. Benini and G. De Micheli, "Networks on chips: A new
SoC paradigm, " Computer, vol. 35, no. 1, pp. 70–78, Jan.
2002.

[8] T. Bjerregaard and S. Mahadevan, "A survey of research and
practices of Network-on-chip," ACM Computing Surveys,
vol. 38, no. 1, 2006.

[9] S. Satpathy, Z. Foo, B. Giridhar, D. Sylvester, T. Mudge, D.
Blaauw, “A 1.07 Tbit/s 128x128 swizzle network for SIMD
processors,” IEEE Symposium on VLSI Circuits (VLSI-
Symp), pp. 81-82, 2010.

[10] K. Lee et al., "A 51 mW 1.6 GHz on-chip network for low-
power heterogeneous SoC platform," in IEEE Int. Solid-State
Circuits Conf. Dig. Tech. Papers, 2004, pp. 152-153.

[11] Se-Joong Lee, et. al., "An 800MHz star-connected on-chip
network for application to systems on a chip", IEEE Digest
of International Solid State Circuits Conference, vol. 1,
2003, pp. 468-489.

[12] M. Horowitz, and W. Dally, "How scaling will change
processor architecture," In IEEE International Solid-State
Circuits Conference (ISSCC), 2004, pp. 132-133.

[13] George L. Yuan , Ali Bakhoda , Tor M. Aamodt,
"Complexity effective memory access scheduling for many-
core accelerator architectures, " in Proc. of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture,
2009, pp. 34-44.

[14] D. Kim et al., "Memory-centric network-on-chip for power
efficient execution of task-level pipeline on a multi-core
processor,” IET Computers & Digital Techniques, vol. 3(5),
pp. 513-524, September 2009.

[15] Kim et al., "Solutions for real chip implementation issues of
NoC and their application to memory-centric NoC, "
Int.Symp. on Networks-on-Chip, 2007, pp.30-39.

[16] OpenSPARC T1. [online].Available: www.opensparc.net/
opensparc-t1/index.html

[17] A. O. Balkan, G. Qu, and U. Vishkin, "A mesh-of-trees
interconnection network for single-chip parallel processing,"
In Proc. of the App.-Specific Systems, Architectures and
Processors (ASAP), 2006, pp. 73 – 80.

[18] Aydin O. Balkan , Gang Qu , Uzi Vishkin, "An area-efficient
high-throughput hybrid interconnection network for single-
chip parallel processing," in Proc. of the 45th annual
conference on Design automation, 2008, pp. 435-440.

[19] R. I. Greenberg and L. Guan, "On the area of hypercube
layouts, " Information Processing Letters, 84:41–46,2002.

[20] A. DeHon, "Compact, multilayer layout for butterfly fat-tree,
" In Proc. of Symposium on Parallel Algorithms and
Architectures (SPAA), 2000, pp. 206–215.

[21] C.-H. Yeh, "Optimal layout for butterfly networks in
multilayer VLSI, " In Proc International Conference on
Parallel Processing (ICPP), 2003, pp. 379 – 388.

[22] C. E. Leiserson, "Fat trees: Universal networks for hardware-
efficient supercomputing, " IEEE Trans. Computer,
34(10):892–901, Oct. 1985.

[23] Plurality, Ltd. The hyperCore architecture, white paper,
January 2010.

[24] N. Bayer, A. Peleg, "Shared memory system for a tightly-
coupled multiprocessor," Pub. no. WO/2009/060459, 2009.

