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Abstract—Shared L1 memory is an interesting architectural 
option for building tightly-coupled multi-core processor 
clusters. We designed a parametric, fully combinational 
Mesh-of-Trees (MoT) interconnection network to support 
high-performance, single-cycle communication between 
processors and memories in L1-coupled processor clusters. 
Our interconnect IP is described in synthesizable RTL and it 
is coupled with a design automation strategy mixing advanced 
synthesis and physical optimization to achieve optimal delay, 
power, area (DPA) under a wide range of design constraints.  
We explore DPA for a large set of network configurations in 
65nm technology.  Post placement&routing  delay is 38FO4 
for a configuration with 8 processors and 16  
32-bit memories (8x16); when the number of both processors 
and memories is increased by a factor of 4, the delay increases 
almost logarithmically, to 84FO4, confirming scalability 
across a significant range of configurations.  DPA tradeoff 
flexibility is also promising: in comparison to the max-
performance 16x32 configuration, there is potential to save 
power and area by 45% and 12 % respectively, at the expense 
of 30% performance degradation. 

1. INTRODUCTION 
With the flattening out of clock speed improvement and the 
increasing focus on energy-efficient architectures, chip 
multiprocessors and parallel computing have recently taken the 
center stage in research and development.  As Moore’s law 
continues to apply in the chip multiprocessor (CMP) era, we can 
expect to see a geometrically increasing number of processors and 
memories on-a-chip which places increasing pressure on the 
design of low-latency, high-bandwidth processor-to-memory 
interconnection fabrics. The performance of most digital systems 
today is indeed interconnect-limited, and the design of a high 
performance on-chip interconnection network is crucial, as the 
performance impact due to the latency of the interconnection 
network in a CMP can be as high as the cache miss [1]. 
Many-core architectures are a reality in products today, and GPUs 
are perhaps the most widely visible example of this trend.  One of 
the most successful GPUs on the market today, Fermi [2] from 
NVIDIA, features 512 cores. The computing tile in Fermi is the 
streaming multiprocessor (SM) a tightly coupled processor cluster 
where 64-Kbyte configurable scratchpad memory/L1 cache is 
shared among 32 CUDA processor cores [3]. Accesses to local 
shared memory experience a latency of a couple of cycles. In 
contrast, global memory is accessed in hundreds of clock cycles. 
In this work we focus on communication between the heavily 
shared multi-banked L1 memory and the cores of a tightly 
coupled processor cluster. Clearly, L1 processor-to-memory 
interconnects must provide a huge bandwidth, coupled with ultra-

low latency. This level of performance is out of reach for 
traditional bus-based interconnects [4], even with advanced 
features like multiple outstanding transactions and out of order 
completion [5][6]. Networks-on-Chip (NoC) [7], provide 
bandwidth scalability, but the latency of traditional NoCs is not 
adequate for L1 processor-to-memory communication [8], and 
highly optimized  special-purpose interconnects  are required.  
The design of   NxM (where N is the number of processors, and 
M is the number of memory banks) networks for high-
performance architectures usually relies on custom circuit design 
techniques such as pass transistors, low-swing drivers etc. [9]-
[11]. Unfortunately this approach is not suitable for architectures 
featuring soft cores and third-party IPs, which must be compatible 
with standard technology libraries provided by silicon foundries.  
An L1 processor-to-memory network provided as a parametric 
synthesizable IP is therefore highly desirable in this context.  Such 
an IP should come with a carefully tailored logic and physical 
synthesis strategy, as interconnect delays must be accounted for 
and minimized to achieve acceptable quality of results. 
This paper provides three contributions. First, a fully 
combinational MoT interconnection network suitable for shared-
L1 processor clusters is implemented featuring single-cycle 
transfer from processor to memory and vice versa. The network 
provides round-robin arbitration for fair access to memory banks, 
as well as fine-grained address interleaving to reduce memory 
bank conflicts. Second, we developed an advanced synthesis and 
physical optimization strategy which leverages standard design 
implementation tools, and orchestrates them to achieve high-
quality results in terms of delay, power and area (DPA) even for 
large network instantiations. Third, we explored a wide range of 
network configurations to analyze scalability and DPA tradeoffs.   
Full layout results on realistic floorplans confirm high-
performance and scalability across a significant range of 
configurations: delay is increased almost logarithmically when the 
number of processors and memories rises. DPA trade-off results 
demonstrate the flexibility of our soft-IP approach.  

2. RELATED WORKS 
Parallel computing requires large memory bandwidth [12]: 
maximizing memory bandwidth is essential in many-core, where 
the large quantity of parallelism places a heavy request on the 
memory system [2][3][13].  For this reason, many research efforts 
have focused on developing ultra-high bandwidth interconnects 
for multi-banked on-chip memories. 

A memory-centric NoC is implemented as an on-chip 
interconnection to support efficient data transactions for a multi-
core processor with ten processing elements [14]. The memory-
centric NoC consists of five custom-designed crossbar switches, 
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and eight dual port SRAMs provide shared buffers for inter-PE 
data transactions. Although the star-connected on-chip network 
supports 11.2GB/s bandwidth [10], its crossbar switches fabric is 
partitioned by 4x4 tiles which are implemented by non-
synthesizable NMOS pass-transistor logic [15]. As another 
alternative for custom design technique of crossbars, a 128×128 
XRAM-a switched swizzle network- is fabricated in 65nm which 
achieves a bandwidth 1Tbit/s [8]. These crossbars are not 
compatible with standard technology libraries provided by silicon 
foundries. 

In openSPARC T1 micro-architecture [16], a processor-cache 
crossbar has been implemented to accept packets from each of 
eight SPARC CPU cores, and deliver the packet to one of the four 
L2-cache banks, the I/O bridge, or the floating-point unit. 
Although crossbar uses three stage pipelines, it takes more than 
one cycle to deliver the packet. Another low latency 
interconnection network based on MoT is implemented in [17] 
[18], to connect the processing clusters and the memory modules 
on-a-chip. It provides unique path between each processor and 
memory module using binary trees of switches. Processing 
clusters and memory modules are located at the root of trees, 
while in the traditional MoT [19]-[22], they will be located at the 
leaves of trees which could degrade performance due to the 
interference. On the other hand, each packet spends one clock 
cycle in each switch: when the number of processors and 
memories increases this architecture becomes a latency 
bottleneck. 

The HyperCore architecture [23] is an example of shared-L1 
cluster with high performance-per-Watt. The architecture consists 
of a hardware synchronizer/scheduler, compact 32-bit RISC cores, 
shared on-chip memory which is accessed by a high-performance 
interconnect network. Every path from a RISC processor to the 
shared memory passes through a series of combinational switches 
where data and addresses move at hardware speed. Another 
shared memory system for a tightly-coupled multiprocessor is 
patented in [24]. Its Baseline interconnection network is 
implemented as a combinational circuit which contributes to 
making the interconnection network simple, lean and light-weight. 
No information is publicly available on the DPA of these 
networks, and their scalability properties have never been 
assessed in the open literature.  

3. NETWORK ARCHITECTURE 
This section provides an architectural description of the proposed 
interconnection network based on MoT [17]. It supports non-
blocking communication between the processing clusters (PCs) 
and memories modules (MMs), within a single clock. As shown in 
Figure 1, a combinational path is created through a network of 
primitive building blocks: routing primitives (circles blocks) and 
arbitration primitives (square blocks). The former are used to 
create independent routing paths (routing trees) from the PCs to 
the arbitration tree (and vice-versa). The latter are used to arbitrate 
concurrent requests (arbitration tree) and to route them up to the 
MMs ports and vice-versa.  

3.1 Routing Switches 
The routing tree consists of simple routing switches which route 
each packet from processor side to memory side, and vice versa. 
The packets are routed individually based on packet’s address 
field. As shown in Figure 2, the switch has two directions: 
forward (PC ports) which sends out the incoming packet form its 

input port at processor side to one of its output ports at memory 
side; backward which rolls packet back from memory side to 
processor side (MM ports). The forward packet contains address, 
data write, and control signal of memory while the backward 
packet contains the read data, and acknowledgment signal. 

 
Figure 1. Mesh of trees 4x8: empty circles represent routing 
switches and empty squares represent arbitration switches.  

Each routing switch consists of a MUX, DEMUX, and a simple 
combinational control logic which provides a fine-grained address 
interleaving. By using the fully combinational routing switch, a 
packet with an active request does not need to spend any clock 
cycles for traveling from PC side up to end of routing tree. 
Similarly, the backward path used to get back the read data, is 
active with the request and hold for the entire clock cycle. No 
arbitration is performed in this block, and the selection (MUX 
selector) between the two MM_in ports is univocally based on the 
request address field (PC_in). 
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Figure 2: Routing switch. 

3.2 Arbitration Switches 
The arbitration tree consists of simple arbitration switches which 
route packets through the routing trees to memory, and vice versa. 
As shown in Figure 3, the switch has two parallel input ports at 
the processor side (PC_in ports) and uses a MUX to route data 
from PC_in to MM_out. On the other side, the response packets 
(MM_in) from the memory side will be routed to one of the two 



possible outputs (PC_out), based on pending grant status. The 
round-robin algorithm is used to provide a starvation-free 
arbitration; it means if a request from one processor loses the 
arbitration in the current clock cycle, it is quarantined to allocate 
the output in the next clock cycle. The clock signal is used in 
controller of arbitration switches in order to switch the round-
robin flag in case of simultaneous requests. 
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Figure 3: Arbitration switch. 

 

3.3 Network Datapath 
As highlighted in Figure 1, the MoT network connects N=2n PCs 
and M=2m MMs. It contains Log2M levels of routing primitives 
and Log2N levels of arbitration primitives. Each memory request 
issued by PCs must pass through Log2M levels of routing 
primitives to reach at one of M×N leaf nodes in the arbitration 
switches; and arbitrates among Log2N levels of arbitration 
primitives to reach at MM side. In reverse order, memory 
responses propagate through arbitration and routing levels to 
reach at PC side. Although there is a unique combinational path 
between each processor and each memory, packets from different 
processors direct to the same memory module are arbitrated while 
passing through arbitration primitives.  

The equations 1 and 2 show the total number of routing and 
arbitration switches needed to connect M PCs to N MMs: 
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Thanks to the modularity features, the network can be easily 
customized for different cardinalities and different architectural 
features.  

3.4 Network Operation  
During a read/write operation, data and control signals are 
asserted by the PCs in the form of packet, as introduced at the 
beginning of this section. This packet is routed through routing 
switches (Figure 1), until it reaches one of N×M ports of routing 
tree. In order to reach the memory module the packet must be 
arbitrated among the other simultaneous packets for the same 
memory module. After passing through all levels of arbitration 
switches, the packet reaches the memory module, and the 
read/write operation can be performed.  

Packet routing and arbitration are performed in a combinational 
way, by using a request and acknowledgment signals for 

arbitration, and address for routing across the switches. Once the 
request reaches the last level of the arbitration tree and gets the 
grant, a valid acknowledgement is asserted and propagated back 
to the related PC through the routing switches (backward). By 
receiving the acknowledgment signal, PC is able to issue the next 
read/write operation at the next clock cycle, otherwise it waits 
until it is received. 

In order to provide a single-cycle latency system, each read/write 
request must be concluded within the clock period. To achieve 
this goal, we assume that PCs and network (only for round robin 
priority switching) are clocked with the main clock CLK, whereas 
MMs are clocked with a skewed_CLK (same frequency and 
typically 180° phase shift) as depicted in Figure 4. These two 
signals are available at the input ports of the network, and are 
generated through an external block (PLL). Thanks to this 
strategy, requests asserted on the rising edge of the CLK (1) are 
propagated in the timing window (1) to (2); after (2) data must be 
stable, in order to be sampled by MMs during the rising edge of 
the Skewed_CLK (3). At this point, in case of write, the 
transaction is done. In case of read, elapsed the access time, the 
memory presents at its interface a stable data in (4), which is 
propagated back to PC side through the already allocated 
backward path (no arbitration is performed here). Data must reach 
the PC side before (5) and be stable up to (7) in order to avoid 
setup/hold violations and data corruptions. At the successive 
rising edge of the CLK in (6), the PC checks the acknowledgment 
signal: in case of active acknowledgment (active high), PC 
samples the read data (if any) and injects the next transaction; if 
zero it waits the next clock cycle keeping stable the packet on the 
PC ports. 

In order to avoid timing violations, three conditions must be 
satisfied:  

• The clock period must be equal or greater than the sum of the 
worst case delays from PCs to MMs and from MMs to PCs, 
plus the access time of memory module and setup time of the 
MM and PC (ref equation 3a). There exists another path from 
PCs to PCs, when the request signal is not granted in case of 
simultaneous request for a memory module. This latency is 
bounded by the entire clock period minus the setup time of 
the PC. 

• Latency from PCs to MMs must be equal or smaller than the 
clock skew minus the setup time of MM (ref equation 3b). 

• Latency from MMs to PCs must be equal or smaller than the 
clock period minus the skew, the memory access time and 
the setup time of PC (ref equation 3c). 

 
These conditions are determined by the equation system 3 and 
graphically depicted in Figure 4. As introduced in section 3.3, the 
entity of the network latencies increases with the number or 
switch levels. Is it clear that, for a given network configuration 
(NxM) and technology, the forward and backward latencies are 
lower bounded for maximum performances. By playing with the 
clock frequency, phase shift and memory access time, it is easy to 
solve the equation system, thus avoiding timing violations. 
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Figure 4: Clock and Skewed Clock representation, and related timing 
requirements. In (1) the PC injects the request and related datapath 
signals; stable request is received at MM side in (2), and sampled in 
(3). In case of write the operation is concluded, while in read case, 
after the memory access time (4) the read data is stable and is 
propagated back to PC side; in (5) stable read data reaches the PC 
ports and it is sampled in (6).  

4. EXPERIMENTAL RESULTS 
In this section, we discuss the experimental results for the single-
cycle network in terms of delay, power, and area (DPA). Several 
configurations have been analyzed. We quantified the cost of the 
entire network for several PC and MM cardinalities. To get these 
results, we synthesized the network with the TSMC 65nm 
technology library (general purpose process). The front-end flow 
(Multi VTH) has been performed with Synopsys Design Compiler 
in topographical mode, while the back-end with Cadence SoC 
Encounter. The sign off has been made with PrimeTime, while 
functional verification is performed with Mentor Graphics’ 
ModelSim. 

4.1 Design Flow 
Figure 5 depicts an overview of the specialized design flow used 
to maximize speed and explore DPA trade-offs. The network is 
generated through our high-level generator which takes as input 
the network template (number of PCs and MMs) and user 
constraints (BW, datawidth etc.). The output of this stage is a 
Verilog synthesizable RTL description of the network, and the 
timing constraints at each port of the network.  The synthesis 
stage is performed in two passes: the first is a pure logic synthesis, 
and the network is synthesized without physical constraints. This 
preliminary output netlist is used in the P&R tool to perform the 
power planning and floorplanning (with pin budgeting), and at the 
end of this step, the physical information are exported in a “def” 
file and back-annotated in the synthesis tool, with topographical 
features enabled. The second synthesis run performs both 
remapping and coarse placement plus physical optimization 
taking into account physical geometries based on the back-
annotated floorplan1. Using this methodology, good convergence 
between post-synthesis and post-layout results is achieved early in 
the flow with only one iteration cycle (correlations in the order or 
90-95% is achieved). 
The P&R flow is based on the top-down approach. To save 
runtime, we used dummy hard macros to mimic the timing 
behavior and physical obstructions of PCs and MMs. The network 
is flatten and placed in a single tile in the center of the die area as 
depicted in Figure 9. 
                                                                 
1 A Steiner tree model (instead of wire load model) is used to 
measure wiring distances and capacitive loads are computed using 
these lengths. 

 
Figure 5. Overview of the design flow. 

Finally, the extracted netlist, back-annotated parasitic and delays 
are used to perform area, delay and power analysis with 
PrimeTime. To ensure the correctness and quality of the achieved 
results, in parallel with the implementation flow we run the 
verification flow. A pass/fail test has been adopted for this 
purpose.  

4.2 Combinational Network 
In this sub-section we present the DPA results for the entire 
interconnection network for the following configurations (32bits 
data and address):  

• 8PCs and 8, 16 and 32MMs 
• 16PCs and 16, 32 and 64MMs 
• 32PCs and 32 and 64 MMs 

We choose to analyze the configurations where the numbers of 
MMs are equal or greater than the number of PCs, because 
essentially each PCs leads to one or more MMs. Moreover, the 
address space can be interleaved in different ranges, and assigned 
to different MMs, to reduce the memory contentions while 
increasing overall system bandwidth. 
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Figure 6. Forward and Backward network delay for different 
cardinalities (32bit). 



Figure 6 shows the post-layout delay results for the explored 
network cardinalities (32bit channels width). As described in 
section 3.4, equations 3, network performance is determined by 
two paths: forward path from PCs to the MMs, backward path in 
the reverse direction. The first involves both path arbitration and 
switch routing and network traversal, whereas in the backward, 
the path is already established and the delay contribution is 
entirely due the switches traversal. As shown in Figure 6, the 
delay of the network for roundtrip traversal ranges from 32FO4 
(8x8) to 84FO4 (32x64). The delay for 8x16 configuration is 
38FO4. When the number of both processors and memories rises 
by a factor of 4, the delay closely increases logarithmically by 2.2 
because the levels of routing and arbitration trees are a 
logarithmic function from the number of processors and 
memories. 
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Figure 7: Network area cost for different cardinalities. 

Figure 7 depicts the total cell area of the network for several 
cardinalities. As described in section 3.3, the area cost is directly 
related with the amount of routing and arbitration switches with  
O(NM). For the 8x16 configuration the area cost is limited to  
32K equivalent gates, while for 32x64 it strictly increases less 
than O(NM), 380K equivalent gates . It shows the great ability of 
network for saving area while supporting large number of PCs and 
MMs.  
Finally, Figure 8 shows the power consumption results for a 32bit 
based networks in terms of cell internal, switching and leakage 
power. Starting from the 16x32 setup, the contribution of net 
switching power dominates the overall consumption, mainly 
because as the number of macros increases (length of wires is 
dominated by the size of the die), the wire-length and related 
power rises as well. 
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Figure 8: Network power consumption for different 
cardinalities. 
The layout view of the 32x64 configuration is shown in Figure 9, 
where the Network is surrounded by PCs and MM clusters. Since 
the network is centralized, in order to minimize the wire-length, 
the Network tile is placed in the center of the die, while no 

constraints are applied to MMs and PCs (any path from MM 
from/to PC is routed through the network). 
DPA results show the potential of the proposed to network to 
handle such a big system as a high-performance interconnect with 
acceptable area and power cost. 

 
Figure 9. Layout of 32x64 configuration. 

4.3 Delay-Power-Area Trade-offs 
We explore DPA trade-offs for different design constraints for the 
16x32 configuration. The trade-offs show the potential of our 
synthesizable interconnection network to work with different 
target frequencies and achieving area and power saving. So the 
interconnection network can be easily adapted to the demands of 
the new architectures (featuring soft cores and third-party IPs), 
thanks to the fully-synthesizable and fully automated flow. Figure 
10 shows the trade-off between total area cell of the network and 
its target frequency. Relaxing the target frequency, the tools are 
able to infer small (driving strength) and less power hungry cells 
(regular or high threshold voltage), thus saving both area and 
power. In comparison to the max-performance 16x32 
configuration (310 MHz), we can save area up to 12%, at the 
expense of 30% performance degradation.   
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Figure 10. Area-Performance trade-off for 16x32 network. 

The trade-off between power and performance is illustrated in 
Figure 11. By changing the target frequency form 310Mhz down 
to 210Mhz, 50% total power saving is achieved for network. The 
plot shows three regions: starting from the relaxed timing 
constraint, the tool maps the architecture on high threshold (HVT) 
cells which yield lower power. As the target frequency increases, 
the design is mapped on regular voltage threshold (RVT) cells, in 
order to achieve simultaneous timing requirements and area 



minimization. This trend is sustained until 290MHz; after this 
point the timing constraints are very tight and design is dominated 
by low voltage threshold (LVT) cells, which are fast and power 
hungry (leaky cells).  
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5. CONCLUSION 
In this paper we presented a fully-synthesizable single-cycle 
interconnection network for shared-L1 processor clusters which is 
coupled with an advanced design automation strategy mixing 
advanced synthesis and physical optimization. We explored the 
network in terms of delay, power, and area metrics for different 
system configurations and design constraint. Our post 
placement & routing results show that the delay of interconnects 
is just 38FO4 for the 8x16 configuration. Rising the number of 
PCs and MMs by a factor of 4 leads to only 2.2X in delay 
incensement which is close to a (highly desirable) logarithmic 
growth. In terms of DPA trade-offs, the 16x32 configuration has 
the potential to power and area saving of 45% and 12% 
respectively, at the expense of 30% performance degradation. In 
future work, we will focus on multicast support, configurable 
address interleaving and topology optimization to further reduce 
delay. 
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