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Abstract

Prediction of genomic breeding values is of major practical relevance in dairy cattle breeding. Deterministic equations have
been suggested to predict the accuracy of genomic breeding values in a given design which are based on training set size,
reliability of phenotypes, and the number of independent chromosome segments (Me). The aim of our study was to find a
general deterministic equation for the average accuracy of genomic breeding values that also accounts for marker density
and can be fitted empirically. Two data sets of 59698 Holstein Friesian bulls genotyped with 50 K SNPs and 19332 Brown
Swiss bulls genotyped with 50 K SNPs and imputed to ,600 K SNPs were available. Different k-fold (k = 2–10, 15, 20) cross-
validation scenarios (50 replicates, random assignment) were performed using a genomic BLUP approach. A maximum
likelihood approach was used to estimate the parameters of different prediction equations. The highest likelihood was
obtained when using a modified form of the deterministic equation of Daetwyler et al. (2010), augmented by a weighting
factor (w) based on the assumption that the maximum achievable accuracy is wv 1. The proportion of genetic variance

captured by the complete SNP sets (w2) was 0.76 to 0.82 for Holstein Friesian and 0.72 to 0.75 for Brown Swiss. When
modifying the number of SNPs, w was found to be proportional to the log of the marker density up to a limit which is
population and trait specific and was found to be reached with ,209000 SNPs in the Brown Swiss population studied.

Citation: Erbe M, Gredler B, Seefried FR, Bapst B, Simianer H (2013) A Function Accounting for Training Set Size and Marker Density to Model the Average
Accuracy of Genomic Prediction. PLoS ONE 8(12): e81046. doi:10.1371/journal.pone.0081046

Editor: Zhanjiang Liu, Auburn University, United States of America

Received July 12, 2013; Accepted October 17, 2013; Published December 5, 2013

Copyright: � 2013 Erbe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was funded by the German Federal Ministry of Education and Research within the AgroClustEr ‘Synbreed – Synergistic plant and animal
breeding’ (Funding ID: 0315528C) in association with the Deutsche Forschungsgemeinschaft (DFG) research training group ‘Scaling problems in statistics’
(RTG1644). The authors gratefully acknowledge co-funding from the European Commission, under the Seventh Framework Program for Research and
Technological Development, for the Collaborative Project LowInputBreeds (Grant agreement No 222623). However, the views expressed by the authors do not
necessarily reflect the views of the European Commission, nor do they in any way anticipate the Commission’s future policy in this area. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors further acknowledge support by the Open Access
Publication Funds of the Göttingen University.

Competing Interests: We have the following interests. Birgit Gredler, Franz Seefried, and Beat Bapst are employed by Qualitas AG in Switzerland. This does not
alter our adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: merbe@gwdg.de

Introduction

In dairy cattle, prediction of genomic breeding values (GBV)

has become a basis for selecting young bulls which are not yet

progeny tested. Often, conventional estimated breeding values,

daughter yield deviations or deregressed proofs are used as quasi-

phenotypes when training genomic prediction models ([1], [2]).

The empirical correlation of predicted GBV and the (quasi-

)phenotypes used that can be obtained via cross-validation or other

empirical validation processes is often used as a measure for the

accuracy of prediction (e.g. [2], [3], [4]). However, for selection

purposes, we are more interested in the correlation of the

predicted GBV and the true breeding value (TBV) which can be

approximated from the obtained correlation of GBV and the

quasi-phenotype ([5], [6]). In this study, we will refer to the

correlation between predicted GBV and TBV (rGBV ,TBV ) as the

accuracy of genomic breeding value prediction.

For determining e.g. the required size of the training set or SNP

density to achieve a predefined level of accuracy, it would be

desirable to be able to assess the expected rGBV ,TBV in advance for

a GBV prediction study with a given design. Respective

deterministic prediction equations have been suggested ([7], [8],

[9], [10]). The approaches have been reported to fit well when

applied to a limited number of data points in empirical studies

([10], [11], [12], [13]) and simulated data sets ([9], [10]). In these

equations information on the number of animals in the training

set, the heritability of the quasi-phenotype used, and the effective

number of independently segregating chromosome segments (Me)

are the factors determining the accuracy. Daetwyler et al. [9]

showed that the accuracy of the GBV obtained with genomic best

linear unbiased prediction (GBLUP) models is independent from

the number of underlying QTL. Therefore, this information is not

accounted for in the deterministic equations when considering

only results from GBLUP approaches. While all approaches

referred to so far do not include information on the marker set

used, Goddard et al. [10] suggested the number of markers as an

additional parameter to account for in the prediction of accuracy.

Derivations of all these deterministic approaches imply that

there are no relationship structures between the individuals.

Wientjes et al. [13] studied the adaptability of such formulas to
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different simulation scenarios where selection candidates are

related to the reference set in specific manner. They showed that

the deterministic equation of [7] as well as the formula of [14]

produced similar results for the reliability in comparison with

reliabilities obtained with cross-validation also in scenarios where

reference and validation individuals were highly related.

The number of independently segregating chromosome seg-

mentsMe is a population parameter and is usually estimated based

on assumptions of the effective population size (Ne) and the genetic

length of the genome in Morgan (L). Different formulas ([8], [10],

[15]) on how to determine Me based on theoretical considerations

lead to quite different Me, which has a major impact on the results

of the deterministic prediction of the accuracy. Another possibility

is to define the number of independent chromosome segments to

be the reciprocal of the variance of the difference of the genomic

relationship matrix and the numerator relationship matrix when

complex family structures are in the data set ([10], [13]).

By using empirical accuracies obtained via cross-validation in a

genomic prediction with real or simulated data, it is possible to

determine Me by rearranging the equation used for predicting of

accuracy. With different levels of training set size this may lead to

different estimates of Me (see e.g. [9] with simulated data). Being a

population parameter, Me should have a constant value within

one data set independently of the size of the training set used for its

estimation, though. Daetwyler [16] proposed using a regression

approach for overcoming this problem.

In our study, we suggest determining Me empirically based on a

systematic multi-level cross-validation using a maximum likelihood

approach and based on this, we will compare various deterministic

prediction equations. We suggest a modified form of the

deterministic prediction equation of [9] with the maximum

accuracy that can be obtained with the given marker set as a

further parameter, which will be shown to be a function of the

natural logarithm of the marker density. All equations will be

compared using two dairy cattle data sets of relevant size, and

possible practical implications will be discussed.

Materials and Methods

Data Sets
To establish and test the methodology, we used a sample of

59698 Holstein bulls, which were genotyped with the Illumina

BovineSNP50 BeadChip. Single nucleotide polymorphisms (SNPs)

with a minor allele frequency lower than 1%, with missing or non-

autosomal position or a call rate lower than 95% were excluded.

After filtering, there were 429551 SNPs remaining for further

analyses. Missing genotypes at these SNP positions were imputed

using Beagle 3.2 ([17]). To study the influence of different marker

densities, we reduced the number of markers to subsets of 309000,

209000, or 109000, respectively. Markers in the subsets were

chosen at random from the complete set.

All bulls used for this study had estimated breeding values based

on progeny testing for somatic cell score and milk yield with an

accuracy .0.84, which were used as quasi-phenotypes for the

following analyses.

To test the proposed approach in a further data set and with

different SNP marker density, we used a set of 19332 Brown Swiss

bulls which was partly genotyped with the Illumina BovineSNP50

BeadChip and partly with the Illumina BovineHD BeadChip with

around 777 K. For the Brown Swiss bulls genotyped with the

Illumina BovineSNP50 BeadChip, genotypes have been imputed

to the Illumina BovineHD BeadChip based on a reference set of

727 Brown Swiss cows and 153 bulls using a combination of family

and population imputation implemented in the software FImpute

([18]). After quality control, there were 6279306 SNPs available for

further analyses. To study different marker densities, the set of

markers was also decreased by using each 2x-th marker where x

was 1, 2, …, 8.

Genotype and phenotype data is available from the authors on

request.

Cross-validation Strategy
Cross-validation was performed in different k-fold scenarios

with k = 2, 3, …, 10, 15 or 20. This resulted in different sizes of

training sets with different values of k. With a k-fold cross-

validation, k-1 folds are used to predict the remaining fold and this

procedure is repeated so that each fold is predicted once. Animals

were assigned to the folds randomly. For the evaluation of the

GBV prediction, the correlation rGBV ,TBV between predicted GBV

and TBV was used, which was calculated as rGBV ,TBV ~
rGBV ,EBV

rEBV ,TBV

(e.g. [6]), where rEBV ,TBV is the accuracy of the estimated breeding

values, which we used as quasi-phenotypes. rGBV ,EBV was

calculated for each GBV prediction in a fold and then averaged

over the k folds within a k-fold scenario. Each k-fold scenario was

replicated 50 times, so that there were 50 values of rGBV ,EBV

available for each k-fold scenario for further analyses.

Genomic BLUP
Genomic breeding values were predicted using genomic best

linear unbiased prediction (GBLUP) based on the model

y~ 10ntmzZuze

where y is a vector of quasi-phenotypes (in our case estimated

breeding values of milk yield or somatic cell score, respectively) for

all bulls in the training set, 10nt is a column vector of ones of length

number of animals in the training set (nt), m is the overall mean, Z

is the incidence matrix for the random genomic effect, u is a vector

containing the random genomic effect (i.e. the genomic breeding

value) for all animals and e is a vector of random error terms. u is

assumed to be distributed N 0,Gs2g

� �

and e is assumed to follow

N 0,Is2e
� �

. G is the genomic relationship matrix following [14].

Since we wanted to study the effect of different number of

markers, we built G based on different SNP sets. For the basic

scenario, we used all SNPs available after quality control (i.e.

429551 SNPs for the Holstein Friesian data set and 6279306 for the

Brown Swiss data set) while for the further scenarios G was based

on a subset of the total available number of SNPs, namely on

309000, 209000 and 109000 SNPs for the Holstein Friesian and

3139653, 1569827, 789414, 399207, 199604, 99802, 49901 and

29451 SNPs for the Brown Swiss data set, respectively. Variance

components were estimated once with the respective complete

data set in combination with a specific SNP set using ASReml 3.0

([19]) and were then used for all respective runs using a subset of

these data, but the same SNP set.

In the following, we will describe available deterministic

equations for prediction of the level of accuracy from the literature

and modifications of these formulas we will conduct.

Equation of Daetwyler et al.
Daetwyler et al. [9] presented an equation (D1) to predict the

accuracy of a genome-wide genomic breeding value prediction:

rGBV ,TBV D1 ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nth
2

nth
2
zMe

s

ðD1Þ

Average Accuracy of Genomic Prediction
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where nt is the number of animals in the training set, h2 is the

heritability of the observed trait and Me is the number of

independently segregating chromosome segments. When estimat-

ed breeding values (EBV) from a conventional breeding value

estimation scheme are used as quasi-phenotypes for genomic

prediction, h2 can be replaced by the reliability of the EBV. This is

also true for all further prediction equations that will be described

later. Daetwyler et al. [9] suggested using the definition of [8] to

calculateMe, but we will take Me as a parameter not further

determined in our study.

Equation of Goddard et al
Goddard et al. [10] proposed a new equation for predicting the

reliability of genomic prediction which also accounts for the

number of markers used. The basic formula in this paper is

r2GBV ,TBV G1 ~b
h

hz1

where

b~
nSNPs

nSNPszMe

and

h~
ntbh

2

Me

Goddard et al. [10] proposed a slightly different definition of

Me than [8] but we will not use any of them but keep Me again as

a population parameter to be determined empirically. Using those

definitions, the prediction formula for the accuracy can be

expressed as

rGBV ,TBV G1~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2nth
2

bnth
2
zMe

s

~

ffiffiffi

b
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nth
2

nth
2
z

Me
b

s

ðG1Þ

which is very similar to the one proposed by [9] but with the

variable b included to account for the finite number of markers.

Note that if b?1, i.e. for a large number of SNPs and a limited

number of Me, D1 and G1 become identical. Goddard et al. [10]

suggested using also a correction factor due to a smaller error

variance when using a multiple marker analysis rather than single

marker analyses. They refer to [9] and present the optimal

prediction equation (G2) for predicting the accuracy as

rGBV ,TBV G2 ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
h

hz1

� �

1z
b h
hz1

� �2

h2

2h

0

B

@

1

C

A

v

u

u

u

u

t

ðG2Þ

Modification of Daetwyler’s Equation
Assuming a finite Me D1 will asymptotically approach 1 when

n??. Daetwyler [16] stated in the general discussion of his PhD

thesis that it may be useful to modify his prediction equation to

deal with the fact that the marker density of the Illumina

BovineSNP50 BeadChip might not be high enough to capture all

genetic variation.

According to [20] the accuracy of the GBV as a predictor of the

true breeding value component that is associated with the

available marker set is a product of the square root of the

proportion of genetic variance associated with the used marker set

(w) and the accuracy of genomic breeding values assuming all

causal variants are known and considered so that

rGBV ,TBV Mj ~w:rGBV ,TBV

The factor 0ƒwƒ1 can be interpreted as the maximum

accuracy that can be obtained with a specific SNP set when the

size of the training set is infinite. Using this in model D1 leads to

the modified equation (D2) of [9]

rGBV ,TBV D2~w:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nth
2

nth
2
zMe

s

ðD2Þ

Modification of Goddard’s Equation
Equations G1 and G2 of [10] include also a weighting factor

which accounts for the fact that not all genetic variance can be

captured if the number of markers is limited. The authors of [10]

defined this factor using the number of SNPs and the number of

Me but this may not be the optimal factor. We thus wanted to

study the results of prediction when using G2 in a modified form

by setting
ffiffiffi

b
p

equal to our w and avoiding any further definition of

b. This leads to prediction equation G3 defined as

rGBV ,TBV G3 ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
~hh

~hhz1

 !

1z
w2 ~hh

~hhz1

� �2

h2

2~hh

0

B

@

1

C

A

v

u

u

u

u

t

ðG3Þ

with

~hh~
ntw

2h2

Me

Maximum Likelihood Approach
A maximum likelihood approach was used to determine the

value of Me in equations D1, G1 and G2, or the combination of w

and Me in equations D2 and G3 that provide the best fit of the

respective model to our cross-validated data over all different

training set sizes. We determined the most appropriate estimate of

Me or w and Me, respectively, by maximizing the Likelihood

function

L~P

nfold

i~1
P

nrep

j~1
f xij
� �

where nfold is the number of different k-fold scenarios, nrep is the

number of replicates within one scenario and xij is the mean

accuracy of prediction obtained by cross-validation in the ith

scenario in the jth replicate. We assumed that xi was approxi-

mately normal distributed with

Average Accuracy of Genomic Prediction
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xi*N E xið Þ,s2i
� �

and observations were independent. E xið Þ was derived from the

respective model to predict the accuracy (i.e. D1–D2, G1–G3,

respectively) and s2i was assumed to be the empirical variance in

the 50 observed values within the ith scenario. To ensure that the

assumption of correlation coefficients being normally distributed

random variables is not violated we tested all k-fold results with the

429551 SNPs in the Holstein Friesian data set with a Shapiro-Wilk

test [21].

Most of the parameters used in E xið Þ were determined by the

empirical data, namely the heritability, number of animals in the

training set and number of markers. Therefore, Me and w remain

the only parameters in all considered equations to be adjusted.

Searching for the maximal likelihood was done using the function

‘‘optimize’’ in R [22] for a one-dimensional search (i.e. for Me in

equations D1, G1, and G2) and the function ‘‘optim’’ in R [22] for

a two-dimensional search (i.e. for Me and w in D2 and G3).

Predicting Prediction Accuracies
In many applications the prediction accuracy obtained with the

data, especially the training set size, at hand is not sufficient. In

such cases it would be desirable to be able to determine accurately

the required training set size to achieve a pre-defined level of

accuracy of genomic prediction. We tried to mimic this exercise to

compare the usefulness of a model accounting for the fact that the

finite marker set does not account for the full genetic variation

(model D2) with that of a model not doing so (model D1). We used

subsets of 49000 Holstein-Friesian bulls to derive the optimal

number of Me (in D1) or Me and w (in D2) and then predicted the

accuracies for a training set in the size of the training set used for

the 20-fold cross-validation runs with the whole Holstein Friesian

data set (i.e. 59413 bulls). For this we chose 49000 bulls randomly

out of the whole sample and performed a variance component

estimation and all k-fold cross-validation runs (k = 2–10, 15, 20) for

the different subsets. Afterwards, we maximized the likelihood as

described above. Since there may be a sampling effect when using

a random subset of 49000 bulls, we repeated the whole procedure

ten times so that we had predictions for ten different subsets of

49000 bulls. The range of predicted values for a training set size of

59413 bulls then was compared with the empirical accuracy from a

20-fold cross-validation with our whole data set, i.e. with a training

set size of 59413 bulls.

Results

The mean and standard errors of the empirical accuracies

obtained from the different cross-validation schemes in the

Holstein Friesian data are displayed in Figures 1 and 2 for the

traits milk yield and somatic cell score. The mean accuracies (6

standard errors) ranged from 0.74360.0005 (0.7360.0007) with a

2-fold cross-validation and training set size 29849 to 0.79860.0002

(0.80860.0002) with a 20-fold cross-validation and training set

size 59413 for milk yield (somatic cell score).

Our observed accuracies were far away from the bounds of

correlation coefficients (21 and 1) and apparently normally

distributed: The results of the Shapiro Wilk test showed that for all

k-fold results with 429551 SNPs in the Holstein Friesian data set

the null hypothesis ‘‘normally distributed’’ was not rejected in a

single case with p,0.01. Therefore, no further transformation of

the data was necessary. Other approaches, like the least squares

principle used by [12] to fit model D1 to sequence-based genomic

predictions in Drosophila melanogaster, can also be used to estimate

the model parameters and in our case would lead to very similar

results (results not shown).

In the following, we will first describe the results for the

estimates of Me obtained based on the original equations from the

literature [9,10] and then based on the modified versions of these

equations (i.e. with w added) with different numbers of markers.

Figure 1. Empirical values and expected values of rGBV,TBV for
milk yield in Holstein-Friesian data. Empirical values of rGBV,TBV

and expected values using the number of Me derived with a Maximum-
Likelihood approach for the Holstein-Friesian data set in the original
equation of Daetwyler et al. (2010) (D1) as well as in a modified form
(D2) and in the equation of Goddard et al. (2011) without (G1) and with
(G2) the proposed correction factor, respectively, and with the factor b
not further determined (G3). For the empirical values, the mean and the
standard deviation over the 50 replicates in each k-fold scenario of the
Holstein-Friesian data set are shown.
doi:10.1371/journal.pone.0081046.g001

Figure 2. Empirical values and expected values of rGBV,TBV for
somatic cell score in Holstein-Friesian data. Empirical values of
rGBV,TBV and expected values using the number of Me derived with a
Maximum-Likelihood approach for the Holstein-Friesian data set in the
original equation of Daetwyler et al. (2010) (D1) as well as in a modified
form (D2) and in the equation of Goddard et al. (2011) without (G1) and
with (G2) the proposed correction factor, respectively, and with the
factor b not further determined (G3). For the empirical values, the mean
and the standard deviation over the 50 replicates in each k-fold scenario
of the Holstein-Friesian data set are shown.
doi:10.1371/journal.pone.0081046.g002
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Table 1 shows the numbers of Me obtained by maximizing the

likelihood of the empirical accuracies under equations D1, G1 and

G2 for both traits. The estimates of Me were of the same

magnitude (,between 29000 and 29800) with all methods while

the likelihood obtained with G1 is highest for both traits. Not

surprisingly, the estimates were similar for both traits since the

empirical accuracies for milk yield and somatic cell score were very

similar.

In Figure 1 and 2, the best curves of predicted accuracy under

equations D1, G1 and G2 based on the respective maximum

likelihood estimates of Me in the Holstein Friesian data set are

shown for the traits milk yield and somatic cell score. None of

these equations provided a curve of predicted accuracies that

matched the empirical data to a sufficient extent. The results

obtained under equations D1 and G2 are very similar while G1

provided a slightly better fit in accordance with the superior

likelihood value for this model. Nevertheless, all equations led to a

downward bias of predicted accuracies for small training set sizes

while they showed an upward bias for large training set sizes.

Maximum likelihood estimates for w and Me for the Holstein

data set with the new equations D2 and G3 used for the

calculation of the expectations of the accuracy are also presented

in Table 1. The obtained likelihoods were dramatically higher

compared to the conventional equations, with D2 slightly

outperforming G3 with the present data sets. The estimates of

Me were clearly lower with both equations compared with the

original equations and were in the range of ,900 to ,19240

depending on method and trait. The optimal weighting factor w

was in all cases between 0.87 and 0.91, suggesting that with the

given marker set the accuracy of prediction will not approach 1

even if a very large training set is used. According to Dekkers

(2007) the squared value of w represents the proportion of genetic

variance associated with the markers which in our case would

range between 75.5 per cent (milk yield with model G3) and 82.3

per cent (somatic cell score with model D2). This indicates that a

large proportion, but not the complete genetic variation in our

data set is captured by the SNP set at hand.

Figures 1 and 2 show prediction curves resulting from the

optimal fit of the equations D2 and G3 for the traits milk yield

(Fig. 1) and somatic cell score (Fig. 2) within the Holstein Friesian

data set. For both traits and with both equations, the predicted

accuracies fit the empirical data extremely well and in any case

much better than with the conventional equations. By fitting two

parameters (Me and w) the curves could accommodate a different

slope of the empirical accuracy values more flexibly than with the

one-parameter equations, which are bound to have their origin in

rGBV ,TBV~0 and asymptotically have to approach rGBV ,TBV?1.

Since we observed that only a specific fraction of the genetic

variance was captured by the available SNP set we were interested

in studying the effect of different SNP densities on the shape of the

curve of expected accuracies and the respective parameters.

Results of the maximum likelihood estimation using equations D2

and G3 with different marker set sizes in the Holstein Friesian data

set are given in Table 2. We observed a decreasing trend in the

weighting factor w when reducing the number of SNPs but the

extent of the decrease was limited, so that even with 109000 SNPs

a high percentage of the genetic variance (71.2% for milk yield and

75.3% for somatic cell score, both with model D2) is captured and

not much is gained by applying a more than four-fold SNP

density. For the optimal number of Me the trend was not that

clear. It was also not expected that the number of Me changes

systematically in one direction since the same animals were used

for all analyses. The likelihoods were in the same range for all

reduced SNP sets compared to the full SNP set for both methods.

Based on our previous results, we next tried to describe the

relationship between the estimates of w obtained and the

underlying marker density.

We hypothesize that the maximum accuracy that can be

obtained, w, is a function of the natural logarithm of the SNP

density. Using the Holstein Friesian data, we found that a function

w~azz
1

ln #SNPs=Lð Þ ð1Þ

where #SNPs=L is the number of SNPs per Morgan, fitted

our empirical data reasonably well (Figure 3). With an intercept

of a~1:001 (1:071) and a regression coefficient of z~

{0:914 ({1:173) for milk yield (somatic cell score), the

coefficient of determination of the fitted regression line was

0.990 (0.971), and the regression coefficients were significant

pv0:05ð Þ for both traits. Note that we had only four data points

available, but nevertheless they showed a very clear trend. An

Table 1. Fitted values of the number of independent chromosome segments (Me) and weighting factors (w) with the Maximum-
Likelihood approach and the corresponding natural logarithm of the likelihoods when using the Holstein-Friesian data set.

Method1 Trait Me fitted w % genetic variance captured Ln(Likelihood)

D1 Milk yield 2783.2 – – 23912.5

D2 Milk yield 1045.6 0.875 76.6 2613.1

G1 Milk yield 2282.4 – – 21903.9

G2 Milk yield 2821.9 – – 24367.6

G3 Milk yield 904.9 0.869 75.5 2611.0

D1 Somatic cell score 2442.3 – – 495.5

D2 Somatic cell score 1241.0 0.907 82.3 2512.9

G1 Somatic cell score 2036.2 – – 1272.7

G2 Somatic cell score 2506.0 – – 340.2

G3 Somatic cell score 1128.4 0.897 80.5 2508.7

1D1 uses the formula of Daetwyler et al. (2010) to calculate the expected values of accuracy, G1 and G2 are based on Goddard et al. (2011) without and with the
proposed correction factor, respectively. D2 is a modified equation of Daetwyler et al. (2010) while G3 is based on Goddard et al. (2011) with the weighting factor not
defined like in the original publication but like in D2.
doi:10.1371/journal.pone.0081046.t001
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intercept of approximately 1 could suggest that with an increasing

SNP density (i.e. decreasing values of the reciprocal of the natural

logarithm of the SNP density) the accuracy of genomic prediction

asymptotically approaches 1. This result also suggested that it will

be necessary to use multi-folds of a given marker density to obtain

a substantial increase of the prediction accuracy.

As we had cross-validation results based on different marker

densities available, we were also interested in finding a global

function for estimating Me and a weighting factor including all

available empirical results. Eq. [1] made it possible to find a global

Me and a factor z depending on the marker density using our

suggested maximum likelihood approach. We used D2 for the

expected value with w~ 1{z 1
ln #SNPs=Lð Þ

� �

and found the highest

likelihood with Me~10151:55 and z~0:853. A comparison

between predicted and empirical values is shown in Figure 4. It

can clearly be seen that the empirical values deviate only slightly

from the predicted values. Deviations are largest for small training

set sizes and/or low marker densities.

To check the results in an independent data set, we applied the

maximum likelihood approach based on D2 also on the Brown

Swiss data set. Empirical values from the 2- to 20-fold cross-

validation when using the full SNP set are shown in Figure 5.

Mean accuracies (6 standard errors) ranged from 0.75760.0013

(0.65960.0015) with a 2-fold cross-validation and training set size

667 to 0.80260.0006 (0.73060.0007) with a 20-fold cross-

validation and training set size 1266 for milk yield (somatic cell

score). Results of the estimation of the number of Me and w with

different SNP sets can be seen in Table 3. Estimates for the

number ofMe ranged from 148 to 214 for milk yield and from 277

to 419 for somatic cell score and were thus clearly lower in Brown

Swiss than in Holstein Friesian. Estimates of the number of Me

were smaller with milk yield than with somatic cell score as was

also observed in the Holstein Friesian data set. The weighting

factor w kept constant in both traits (,0.87 for milk yield, ,0.85

for somatic cell sore) when decreasing the number of markers up

to a point of around 199000 SNP from where on it decreased

Table 2. Fitted values of the number of independent chromosome segments (Me) and weighting factors (w) with the Maximum-
Likelihood approach and the corresponding natural logarithm of the likelihoods for different methods and different SNP sets when
using the Holstein-Friesian data set.

Method1 Trait No. of SNPs Me fitted w % genetic variance captured Ln(Likelih.)

D2 Milk yield 10000 992.3 0.844 71.2 2576.4

D2 Milk yield 20000 1043.9 0.863 74.5 2600.0

D2 Milk yield 30000 1068.6 0.868 75.3 2594.4

D2 Milk yield 42551 1045.6 0.875 76.6 2613.1

G3 Milk yield 10000 791.6 0.838 70.2 2574.2

G3 Milk yield 20000 874.1 0.856 73.3 2597.2

G3 Milk yield 30000 904.1 0.861 74.1 2491.9

G3 Milk yield 42551 904.9 0.868 75.3 2611.0

D2 Somatic Cell Score 10000 1201.3 0.868 75.3 2457.8

D2 Somatic Cell Score 20000 1240.1 0.895 80.1 2496.0

D2 Somatic Cell Score 30000 1250.8 0.904 81.7 2512.3

D2 Somatic Cell Score 42551 1241.0 0.907 82.3 2512.9

G3 Somatic Cell Score 10000 993.5 0.861 74.1 2456.0

G3 Somatic Cell Score 20000 1093.3 0.885 78.3 2491.9

G3 Somatic Cell Score 30000 1127.0 0.894 80.0 2508.1

G3 Somatic Cell Score 42551 1128.4 0.897 80.4 2508.7

1D2 is a modified equation of Daetwyler et al. (2010) while G3 is based on Goddard et al. (2011) with the weighting factor not defined like in the original publication but
like in D2.
doi:10.1371/journal.pone.0081046.t002

Figure 3. Regression of weighting factor w on the reciprocal of
the logarithm of the marker density in Holstein-Friesian.
Regression of the weighting factor w on the reciprocal of the natural
logarithm of the marker density for the traits milk yield and somatic cell
score in the Holstein-Friesian data set. The marker density was defined
as the number of markers used divided by the length of the used parts
of the genome in Morgan. The dots mark the values derived with the
Maximum likelihood approach using the modified equation of
Daetwyler et al. (2010) (D2) to describe the expected value of accuracy
and the empirical data sets.
doi:10.1371/journal.pone.0081046.g003
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considerably. This indicates that the percentage of genetic

variance captured with a given SNP set did not increase further

when using more than 199000 SNPs in this data set. Figure 5

shows the prediction curves with the optimized number of Me and

an optimized w as well as D2 for modeling the expected accuracy

for both traits and the full SNP set of 6279306 SNPs. As already

seen with the Holstein Friesian data, D2 with optimized values for

the number of Me and w fitted the shape of the curve of empirical

values very well.

We also tested the relationship between the weighting factor w

and the marker density for the Brown Swiss data set (same

approach like in the Holstein Friesian data set). The results are

shown in Figure 6. There seems to be a linear relationship up to a

number of markers of around 209000 SNPs (,0.16 when

expressed as 1
ln #SNPs=Lð Þ). A linear regression model w~az

z: ln #SNPs=Lð Þð Þ{1
with a~1:03 and z~{1:08 would lead to a

coefficient of determination R2 of 0.998 for milk yield, for

example. However, with any further increase of the marker density

(i.e. smaller values on the x-axis), the weighting factor did not

increase anymore but stayed on a constant level wmax (e.g.

wmax,0.87 for milk yield). This pattern with a linear relationship

first and constant values beyond a certain marker density was

observed in both traits.

Next we studied if our approach can be used to extrapolate the

accuracy of prediction beyond the data set used to determine the

model parameters. For this, the maximum likelihood approach

was applied to ten data sets of 49000 Holstein Friesian bulls which

were the basis of cross-validation runs as described above.

Figure 7A displays the resulting prediction curves obtained with

model D1 for the trait somatic cell score, for milk yield the picture

was very similar (results not shown). The curves varied over the

data sets but were reasonably consistent in the level of accuracy

and its slope over the different sizes of training sets. The fitted

number of Me ranged between 29000 and 29356. When

extrapolated to the training set size 59413 (the one resulting from

a 20-fold CV in the full data set), the expected prediction accuracy

(averaged over the 10 replicates) was 0.82860.007. The empirical

accuracy obtained from the full data set (0.80860.002) was clearly

outside the range of predicted values obtained with the ten

replicates. This suggests that model D1 (and similarly G1 and G2,

results not shown) systematically overestimate the expected

prediction accuracy when used for extrapolation beyond the

training set size at hand.

In Figure 7B, D2 was used in the maximum likelihood approach

to determine the optimal parameter for the prediction of accuracy

based on the cross-validation runs with the ten different data sets

of 49000 bulls for the trait somatic cell score. The optimal

weighting factor w ranged between 0.874 and 0.906 for the

different data sets while the optimal number of Me was between

979 and 19195. These numbers were of the same magnitude as the

optimal values we found when using cross-validation results with

the total data set of 59698 bulls. Using the proposed weighting

factor made it possible to reflect the increase of accuracy when

enlarging the number of animals in the training set. The empirical

accuracies (0.80860.002) obtained with a training set of 59413

bulls was clearly within the range of accuracies (between 0.793 and

0.815) we would predict when using the parameters optimized for

the ten data sets of 49000 bulls and deviated only slightly from the

average predicted value 0.80360.007.

Figure 4. Predicted and empirical values of rGBV,TBV (grid) for different #SNPs and different #animals for Holstein-Friesian. Predicted
values of rGBV,TBV (grid) for different numbers of markers and different number of animals in the training set when using the modified equation of
Daetwyler et al. (2010) (D2), an Me of 19151.55 and a weighting factor of 1{0:853= ln #SNPS=Lð Þð Þ. Empirical results obtained with cross-validation
experiments with Holstein-Friesian data are symbolized by arrows. Orange arrows represent values that were higher than predicted while blue arrows
indicate that empirical values were lower than the predicted ones.
doi:10.1371/journal.pone.0081046.g004
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Discussion

The aim of our study was to use empirical data to find a

deterministic prediction equation for the accuracy of genomic

breeding values that accounts for factors like sample size of the

training set and marker density used that fits our data best. We

used a maximum likelihood approach to validate different

equations to predict the accuracy of GBV. We showed that the

likelihood of our approach was best when the estimates ofMe were

obtained based on an expected value of the accuracy that also

included a weighting factor reflecting the marker density used.

There are different possible reasons why the accuracy of

genomic prediction with a specific SNP set may not reach one

even if the number of training animals is infinite. First of all, only a

fraction of the variance generated by QTL will be tagged by SNPs,

i.e. the marker density is too low. Furthermore arrays like the

Illumina BovineSNP50 BeadChip were designed such that the

allele frequencies of the markers are more or less uniformly

distributed ([23]) which leads to an underrepresentation of

markers with very low minor allele frequencies. Since similar

allele frequencies between marker and QTL are mandatory for

obtaining high LD values and capturing the variance of the QTL,

QTL with low minor allele frequency may not be represented

adequately by the markers on a common SNP chip.

The weighting factor w can be interpreted as the maximum

accuracy that can be achieved with the specific marker set in the

population at hand assuming an infinite training set size. In our

case, we found w to be in a range of ,0.875 to 0.9 while the

accuracies we could obtain with ,59700 bulls in our Holstein

Friesian data set empirically were around 0.8. This means that

most of the possibly achievable accuracy is already obtained when

having ,59000 bulls in the training set. Genomic heritability (i.e.

heritability in the GBLUP model) may be another good indicator

of how much genetic variance is captured by the SNPs. Estimates

of genomic heritability in our data sets (results not shown) were

higher than the estimated squared w (representing the proportion

of genetic variance captured by the SNPs), but behaved completely

similar in trend (e.g. no increase in genomic heritability in Brown

Figure 5. Empirical values and expected values of rGBV,TBV for
milk yield and somatic cell score in Brown-Swiss. Empirical
values of rGBV,TBV and expected values using the number of Me for the
Brown Swiss data set derived with a Maximum-Likelihood approach in
the modified equation of Daetwyler et al. (2010) (D2). For the empirical
values of milk yield and somatic cell score in the Brown Swiss data set,
the mean and the standard deviation over the 50 replicates in each k-
fold scenario are shown.
doi:10.1371/journal.pone.0081046.g005

Table 3. Fitted values of the number of independent chromosome segments (Me) and weighting factors (w) with the Maximum-
Likelihood approach and the corresponding natural logarithm of the likelihoods for method D2 and different SNP sets when using
the Brown Swiss data set.

Trait No. of SNPs Me fitted w % genetic variance captured Ln(Likelih.)

Milk yield 2451 148.2 0.791 62.6 2111.2

Milk yield 4901 157.2 0.821 67.4 2108.2

Milk yield 9802 192.2 0.849 72.1 2078.3

Milk yield 19604 213.7 0.868 75.3 2075.8

Milk yield 39207 202.2 0.868 75.3 2085.4

Milk yield 78414 199.4 0.868 75.3 2090.9

Milk yield 156827 197.3 0.868 75.3 2095.2

Milk yield 313653 196.5 0.867 75.2 2094.0

Milk yield 627306 196.7 0.866 75.0 2092.2

Somatic Cell Score 2451 277.2 0.735 54.0 1904.7

Somatic Cell Score 4901 354.2 0.792 62.7 1910.0

Somatic Cell Score 9802 378.4 0.824 67.9 1971.9

Somatic Cell Score 19604 418.9 0.850 72.3 1979.7

Somatic Cell Score 39207 405.0 0.845 71.4 1978.6

Somatic Cell Score 78414 411.6 0.849 72.1 1983.0

Somatic Cell Score 156827 414.2 0.850 72.3 1981.4

Somatic Cell Score 313653 412.4 0.850 72.3 1982.0

Somatic Cell Score 627306 412.4 0.851 72.4 1983.9

doi:10.1371/journal.pone.0081046.t003
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Swiss with additional markers from a number of ,209000 markers

on) compared to w2.

Having the estimates of Me and w at hand, one could think

about changes in accuracy when enlarging the training set size.

Using model D2 with w~0:875 and Me~10046 (values obtained

for milk yield) we would need a training set size of 549515 (109246)

animals to reach 99% (95%) of the possibly achievable accuracy

with the given SNP density. Duplication of the number of animals

in the training set from 59000 to 109000 would lead to a mean

increase of accuracy of ,0.04 from 0.79 to 0.83, while going from

109000 to 209000 animals would only lead to an increase of,0.02.

Note that these considerations assume that a further random set of

bulls (i.e. no specific groups like close relatives etc.) is used to

enlarge the training set. In general, increasing the number of

animals in the training set therefore will not add enough beyond a

certain point when set in relation to the additional costs that incur

for genotyping and phenotyping the required animals. Reliable

knowledge about this case of diminishing returns is crucial when

implementing or optimizing genomic selection programs.

Daetwyler [16] used a regression approach to estimate the

maximum genetic variance captured by a SNP, which is the

squared value of our weighting factor w. He observed four data

points within US Holstein data sets for different training set sizes.

However, he did not use different k-fold cross validation but

validated his theory by augmenting the training set with new

animals, including cows, to achieve larger training set sizes. The

maximum genetic variance that is captured by the SNP set

depends also on the population studied. Adding cows thus may

bias the results since a higher genetic variance is expected in the

cow population compared to the highly selected group of progeny

tested bulls.

The maximum genetic variance found in his study was

qmax2~0:8+0:053 in US Holsteins for Net Merit with the 50 k

SNP Chip which equates to a w of ,0.89. This is very close to our

estimate in a European Holstein data set both for milk yield and

somatic cell score. The weighting factor w in principle should be

trait specific, but if conventional estimated breeding values (or

equivalently de-regressed proofs or daughter yield deviations) are

used as quasi-phenotypes for genomic prediction differences

between traits should not be large as long as estimated breeding

values are sufficiently accurate and homogeneous. Daetwyler [16]

also suggested estimatingMe from model D1 based on results from

real data [16] and simulated data [9]. For this, they rearranged D1

multiplied by the square root of qmax2 so that the number of Me

could be obtained directly. Their results for US Holsteins were in a

range of about 900 to 1300 for the number of Me which is in the

same range as the results we obtained with our Holstein data.

All numbers of Me we derived in Holstein Friesian with D2 or

G3 were similar or somewhat smaller than expected compared to

the deterministic approach of [10] Me Goddard~10259ð Þ and

clearly smaller than expected compared to the approach of [15]

Figure 7. Predicted and empirical values of rGBV,TBV when extrapolating the accuracy. Empirical values of rGBV,TBV (black dots) of the ten
replicates with different k-fold scenarios using 49000 individuals and of the 20-fold runs of the fifty replicates using 59698 Holstein-Friesian animals in
total. Expected values (grey lines) use the number of Me derived with a Maximum-Likelihood approach in the original equation of Daetwyler et al.
(2010) (D1, Figure 7A) and in the modified equation of Daetwyler et al. (2010) (D2, Figure 7B).
doi:10.1371/journal.pone.0081046.g007

Figure 6. Regression of weighting factor w on the reciprocal of
the logarithm of the marker density in Brown-Swiss. Regression
of the weighting factor w on the reciprocal of the natural logarithm of
the marker density for the traits milk yield and somatic cell score in the
Brown Swiss data set. The marker density was defined as the number of
markers used divided by length of the used parts of the genome in
Morgan. The dots mark the values derived with the Maximum likelihood
approach using the modified equation of Daetwyler et al. (2010) (D2) to
describe the expected value of accuracy and the empirical data sets.
doi:10.1371/journal.pone.0081046.g006
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Me Hayes~50800
� �

when assumingNe being 100 and the length of

the autosomal genome being 29 Morgan. For Brown Swiss, the

approach of [10] would clearly overestimate Me in comparison to

what we found in the empirical data (Me from 148 to 412). Hayes

et al. [11] showed that expected accuracies were very close to

empirical results from US Holstein Friesian cattle when using his

definition ofMe and an effective population size of 100, a length of

the genome of 30 Morgan, and the original equation of [9]. For

our data, however, the predicted accuracy using the assumptions

of [15] would severely underestimate the accuracies observed in

the cross-validation study (results not shown).

Goddard et al. [10] suggested the factor b~ #SNPs
#SNPszMe

to

estimate the proportion of genetic variance that can be explained

by the markers, i.e. our factor w squared. With Me and #SNPs in

the realistic range reflecting current applications in dairy cattle b

will approach 1 very fast. For example, when Me~10000 and

#SNPs~540000, b would be 0.982 and therefore the square root

of b (i.e.w) would be .0.99, which is clearly higher than found in

experiments with real data ([2], [24], [25]) including this study.

We found a clear linear relationship between the reciprocal of

the logarithm of the marker density and the maximal achievable

accuracy (w) of the form w~azz: ln #SNPs=Lð Þð Þ{1
where a*1

and z is a trait-specific regression coefficient. Such a linear

relationship has also been found by [26] in simulated data. Since

the relationship is linear to the log of the marker density, it is not

surprising that the factor w which can represent the maximal

achievable accuracy did not differ much between our runs with

different number of SNPs in the Holstein data set. We could not

study what will happen with further increasing the marker density

in Holstein Friesian, since we did not have access to a sufficiently

large set of individuals with high density marker genotypes.

Current results have shown that the accuracy of genomic

breeding value prediction within breed did not increase signifi-

cantly when using imputed 777 k SNP marker data rather than

50 k SNP data [24]. It seemed that also the proportion of genetic

variance captured by the markers was only slightly higher. In our

Brown Swiss data set, all bulls had 777 k SNP genotypes and we

actually saw a stagnation of the percentage of genetic variance

explained when the number of markers was greater than,209000.

This means that even with an infinite size of the training set the

accuracy of prediction will not be better even if we use 30 times

more markers. In Holstein Friesian, w still increased up to

,409000 markers roughly linearly with the logarithm of the

marker density. It thus can only be assumed that the plateau has

just not been reached for Holstein Friesian with the observed

marker density, which remains to be verified once sufficiently large

samples with high density genotypes are available for the Holstein

Friesian breed.

The highest possible marker density is achieved when using

whole genome sequence data in genomic prediction. In a data set

of 157 inbred lines genotyped for ,2.5 million SNPs, [12] found

that the prediction equation D1 of [9] adapted for the special

genetic model of Drosophila melanogaster was a good predictor for the

accuracy of sequenced-based genomic breeding value estimation

looking at different sizes of reference sets. Since the fit of the

original equation of [9] to the empirical accuracies was excellent, it

can be concluded that this massive SNP density (,1 Mio SNPs/

Morgan) recovers the complete genetic variability (i.e. w2*1) but

in contrast to our study the small size of the reference set is the

limiting factor in that case.

The results for the estimates of Me were very different in the

two studied breeds. This was surprising because both are modern

dairy breeds and rather similar results would have been expected.

We thus assessed different characteristics of the two populations

(Holstein Friesian and Brown Swiss) to identify potential causes for

the difference in the pattern of observed accuracy functions. First,

we calculated the effective population size Ne based on pedigree

information and found values that were very similar for both

breeds (Ne*75, obtained with POPREP [27], based on [28]).

Based on linkage disequilibrium (using markers available in both

sets and formulas of [29] and [30]), estimates for Ne in 6 to 9

generations back was ,133 in Holstein Friesian and ,125 in

Brown Swiss. Both analyses suggest that there is no difference

between the two breeds regarding Ne. Furthermore, we studied

properties of the genomic relationship matrix, namely the

eigenvectors and eigenvalues of G which reflect the degree of

population substructure in the sample. To avoid a bias due to the

number of SNPs used, we compared the genomic relationship

matrix constructed with 429551 SNPs for Holstein Friesian and

399207 SNPs for Brown Swiss. The first and the second

eigenvectors explained 14.36% (13.32%) and 6.29% (9.96%) of

the variance in the Holstein Friesian (Brown Swiss) data set. The

first 10 eigenvectors explained around 50% of the variance in both

data sets. The differences between the structures of the eigenvec-

tors in the covariance matrix therefore also seem to be negligible.

These results indicate that further parameters have to be found

that can determine the proportion of genetic variance explained

and the SNP density at which the plateau is reached. They also

illustrate that calculating an expected value of Me just based on

the length of the genome and the effective population size may not

be sufficient, since empirical values for Me differ between traits

within populations and even between populations with similar Ne

and the same length of genome. Furthermore, the results may also

indicate that interpretability of population parameters (like e.g.

Me) in such formulas can be limited when they are derived with

the suggested goodness-of-fit-approach.

We further showed that model D2 allowed a realistic

extrapolation of prediction accuracies with increasing training

set sizes, while model D1 systematically overestimated the

accuracy for a training set of 59413 Holstein Friesian bulls when

the model parameters Me and w were derived with a subset of

49000 bulls. The overestimation was not dramatic for this

example, but 59413 is not that much bigger than 49000. However,

if the difference between the number of individuals used for fitting

the curve and the size of the reference set for which the accuracy is

to be predicted increases, the upward bias will accumulate.

Especially, as it is expected that number of animals in the training

sets will increase in real studies up to ten thousands of training

animals, it is critical that a prediction equation is able to fit the

slope of the increasing accuracy correctly.

Equations to predict the accuracy of genomic breeding values

are often derived for the simple case of a random set of animals

that are not related (e.g. [8]) or show an ‘average’ relationship. In

real cattle data, animals are often highly related and stem from

specific selected groups, e.g. progeny-tested sires. A general

equation, though, should be designed primarily as an indicator

for a random animal out of a whole population (e.g. modern dairy

cattle). Parameters like the number of Me and w can be chosen in

a way that they describe the underlying population and trait as

good as possible, but it is not the goal to obtain exact predictions of

accuracies for specific animals in the prediction set. As shown by

many studies (e.g. [31]) the relationship between candidates and

the training set, which also can be seen as a kind of population

stratification, influences the accuracy in a non-random manner.

Goddard et al. [10] showed how relationship structures can be

used to estimate e.g. the parameter b but this works just in the case

where animals have already been genotyped. Another idea on how
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to determine the maximum achievable accuracy has been recently

proposed by de los Campos et al. (2013) [32]. They suggested an

approach for the case of imperfect linkage disequilibrium between

markers and QTL which is not depending on assumptions like

unrelated individuals or parameters like Me. Further approaches

still need to be developed for the ‘‘before data collection’’ case.

Conclusion

We suggest a comprehensive model for the average accuracy of

genomic breeding values and demonstrate how the model

parameters can be estimated using a systematic cross-validation

based on empirical data. Integrating all results, we suggest the

model.

rGBV ,TBV~min azz: ln #SNPs=Lð Þð Þ{1
;wmax

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nth2

nth2zMe

s

with the four parameters a, z, wmax and Me, that can be

empirically determined via systematic cross-validations as de-

scribed in this study.

The suggested modification of the original equation of [9] led to

a substantially improved fit of the predicted accuracies obtained

with cross-validated data and showed its good prediction ability in

the extrapolation to larger training sets. The maximum likelihood

approach used for obtaining an estimate of the number of

independent chromosome segments led to largely consistent values

across different SNP sets. We also propose a function linking the

maximally achievable accuracy of genomic prediction to the

marker density, suggesting strongly diminishing returns when

increasing the sizes of the SNP arrays, which confirms results

obtained with different SNP densities in practical applications with

dairy cattle.
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