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Abstract

The paper derives a function that describes the size distribution of incomes. The two
functions most often used are the Pareto and the lognormal. The Pareto function fits
the data fairly well towards the higher levels but the fit is poor towards the low in-
come levels. The lognormal fits the lower income levels better but its fit towards the
upper end is far from satisfactory. There have been other distributions suggested by
Champernowne, Rutherford, and others, but even these do not result in any consid-
erable improvement. The present paper derives a distribution that is a generalization
of the Pareto distribution and the Weibull distribution used in analyses of equipment
failures. The distribution fits actual data remarkably well compared with the Pareto
and the lognormal.

1 Introduction

The derivation of a function that describes the size distribution of incomes and var-
ious other distributions that show similar shapes is the purpose of this paper. The
two functions most often used are the Pareto function and the lognormal. The Pareto
function fits the data fairly well toward the higher levels but the fit is poor toward the
lower income levels. If one considers the entire range of income, perhaps the fit may
be better for the lognormal but the fit toward the upper end is far from satisfactory
(Cramer, 1971).

† Reprint of Singh, S.K. and Maddala, G. S. (1976) A Function for the Size Distribution of Incomes,
Econometrica, 44, 963-970. © The Econometric Society, 1976.
‡ This research is part of an ongoing study on income distributions at the Development Research
Center of the World Bank. Any opinions expressed are those of the authors and not of the Bank.
The authors would like to thank the referees for helpful comments on an earlier draft.

27



28 S. K. Singh and G. S. Maddala

Earlier, some efforts have been made by Champernowne (1953), Rutherford
(1955), Mandelbrot (1960), Fisk (1961) to derive functional forms to describe the
size distribution of incomes, based on reasoning about processes of income gener-
ation. The present paper derives a function based on the concept of hazard rate or
failure rate which has been widely used for deriving distributions in reliability the-
ory and for the analysis of the distribution of life times (see Barlow and Proschan
(1965) and Lotka (1956)). The function derived here was also suggested by Burr
(1942) though with a different purpose and reasoning. Also, there is a discussion of
hazard rates in Gastwirth (1972), though again with a different purpose.

The plan of the paper is as follows: In Section 2 we present a derivation of
the function through a discussion of failure rates. Section 3 presents an alternative
derivation of the same function. Section 4 presents an empirical illustration, and the
final section gives the conclusions.

2 The Genesis of the Function and Characterization
through Failure Rate

If the life time of a person is distributed over the random variable x with prob-
ability density function f (x), the probability of surviving at least up to time x is
R(x) =

∫
∞

x f (x)dx = 1−F(x). The probability of death in a small interval of time
dx is f (x). After one has survived up to age x, the instantaneous death rate at age x,
or the force of mortality, is r(x) = f (x)/(1−F(x)). This ratio is variously known
as the failure rate or the hazard rate and considerable work has been done to study
the characterization of distribution functions from this point of view. Distributions
are characterized as IFR (increasing failure rate) or DFR (decreasing failure rate
distribution) depending upon whether f (x)/(1−F) rises or decreases with x. Gen-
erally speaking, one would not expect decreasing failure rate since time is most
often the random variable and one does not expect a priori in most of the situations
any particular kind of benefit to accrue with time to reduce the failure rate. Most
of the distributions used - exponential, gamma function, normal - give IFR. Log-
normal gives an increasing section of failure rate, followed by a decreasing section.
This property, which appears questionable (see Barlow and Proschan (1965) and
Jorgenson et al. (1967)) for other situations, is perhaps precisely the reason why it
fits, to some extent, the income distribution.

When we change the random variable from time to income, a priori plausibility
on theoretical reasoning for DFR after a point is obvious. While aging, as such,
may not confer any advantage for living longer or the reduction of the hazard rate,
income may help in earning more. The ability to make more money might increase
with one’s income. The various reasons are just a bit too obvious to be enumerated
here. Therefore, it is appealing to consider distributions which are DFR at least
after a point for income distribution. While Pareto is a DFR throughout the range,
lognormal becomes a DFR only beyond a point.
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For certain situations, it is perhaps more instructive to consider the hazard rate in
terms of a transform of x rather than x itself. Consider the transform z = logx. We
may then try to find out the hazard rate with respect to this transform of x : r ∗ (z) =
(dF/dz)/(1−F).

The Pareto diagram in (log(1−F), logx) plane can be interpreted from this point
of view. The first derivative of the Pareto transform is the hazard rate with respect
to z.

A probability density function is defined to be IFR (increasing failure rate) if
(dr(x))/dx≥ 0. It is called DFR (decreasing failure rate) if (dr(x))/dx≤ 0.

Similarly, a probability density function is defined to be IPFR (increasing propor-
tionate failure rate) if (dr ∗ (z))/dz≥ 0 and DPFR (decreasing proportionate failure
rate) if (dr ∗ (z))/dz≤ 0.

It can be easily checked that the Pareto distribution is monotone DFR for r(x)
though r∗ (z) is constant. Lognormal has an r(x) which has an IFR section followed
by a DFR section. However, what is interesting is that r∗(z) is monotone increasing.
This is the reason why the lognormal does not fit well at the high income level. As
an empirical regularity, r ∗ (z) approaching constancy for high incomes appears to
be fairly well accepted.

The intuitive economic meaning of r ∗ (z) is clear. At any income, it measures
the odds against advancing further to higher incomes in a proportionate sense. It is
a variable that should be allowed considerable flexibility because one would be in-
terested in finding out its precise shape at varying levels of income. The restrictions
imposed both by the shape of the Pareto function and the lognormal are rather se-
vere. In the interpretation given above, lognormal asserts that it is easiest for one to
improve one’s relative position at low income groups, and the odds go on increasing
monotonically tending to infinity as one’s income increases. The Pareto distribution
implies a constant value of the odds in the r ∗ (z) sense throughout at all income
ranges.

A good starting point for deriving the distribution function is then the following:
We accept the behaviour of r ∗ (z) toward the upper end of the income, i.e., asymp-
totic constancy on the basis of accumulated findings and received opinion. However,
one must provide for lower r ∗ (z) at the lower income levels. This would mean al-
lowing r ∗ (z) to rise with z and let it reach an asymptote. This can be done again
variously. Should r ∗ (z) rise throughout with decreasing rate? Or should it rise first
with z at an increasing rate, then a decreasing rate, and then asymptotically reach
constancy? We will make the latter assumption.

For purposes of exposition, it is easier to take the negative of the Pareto trans-
form, which is henceforth called y : y =− log(1−F)), z = logx, and y = f (z); y′> 0,
y′′ > 0.

We advance the following assumption:

y′′ = a · y′(α− y′), (2.1)

a being constant. We solve this differential equation to get the distribution func-
tion. The composite assumption consists of three parts: (A-1) r ∗ (z) reaches
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asymptotically a constant value a. (A-2) It first increases with an increasing rate,
and then with a decreasing rate. (A-3) The rate of increase of r ∗ (z) is zero when
the value of r ∗ (z) is zero. Rearranging (2.1) we get

y′′

y′
+

y′′

α− y
= aα. (2.2)

Integrating, we get

logy′− log(α− y′) = aαz+ c1 (2.3)

where c1, is a constant of integration. This can be written as

y′

α− y′
= eaαz+c1

or

y′ =
αeaαz+c1

1+ eaαz+c1
. (2.4)

We note that y′,which is the proportional failure rate, is the three-parameter logistic.
Integrating (2.4) again we get

logy =
1
a

log(1+ eaαz+c1)+ c2 (2.5)

where c2, is another constant of integration. After we substitute − log(1−F) for y
and logx for z in (2.5) we get, with some algebra,

log(1−F) = c− 1
a

log(b+ xaα), (2.6)

where c = (−c2− c1)/α and b = 1/ec1 . Equation (2.6) gives the distribution func-
tion

F = 1− c
(b+ xaα)1/a . (2.7)

The function in (2.7) has four constants. But since F = 0 for x = 0 we get c = b1/a.
Thus the three-parameter function is

F = 1− b1/a

(b+ xaα)1/a (2.8)

or

F = 1− 1
(1+a1xa2)a3

, (2.9)

where a1 = 1/b, a2 = aα , and a3 = 1/a. Note that F = 0 for x = 0 and, as x→ ∞,
F → 1.
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In summary, F as in (2.9) is characterized by a PFR which is a logistic with
respect to “income power”, or z. Also, given that characterization, F as derived in
(2.9) is unique. In upper income tail, the PFR is the same as for Pareto; at lower
incomes it differs.

3 An Alternative Approach

An alternative derivation of the function derived in the previous section can be given
in terms of models of decay. Let F(x) be a certain mass at point x (0≤ x≤∞) which
decays to zero as x→∞. dF/dx is the rate of decay. We standardize the initial mass
to be one. If dF/dx depends only on the left-out mass (1−F) then the process is
said to be ”memoryless”. For the Poisson process, dF/dx = a(1−F). The Pareto
process can also be interpreted as memoryless since it implies

dF/dx = a(1−F)(1+1/a). (2.10)

A process that introduces memory would be the so-called Weibull process which
leads to the Weibull distribution. This implies

dF/dx = axb(1−F). (2.11)

A generalization that combines elements of both (2.10) and (2.11) would be to
start with the equation

dF/dx = axb(1−F)c. (2.12)

It can be readily verified that the solution to (2.12) gives equation (2.9) where
(now, in terms of the parameters in (2.12))

a1 = (c−1)(a/(b+1)), a2 = b+1, and a3 = 1/(c−1).

The above derivation suggests the relationship between the Pareto, Weibull, and
the distribution suggested here. One might wonder what the relationship is between
this distribution and that suggested by Champernowne and Fisk. The distribution
considered by Fisk (1961) is given by

dF
dφ

=
eφ

(1+ eφ )2 where eφ =
(

x
x0

)α

.

It can be easily verified that

dF
dx

=
a1a2xa2−1

(1+a1xa2)2 where a1 =
(

1
x0

)α

and a2 = α.

Thus, putting a3 = 1 we get the function suggested by Fisk.
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4 Empirical Results

Salem and Mount (1974) used the method of maximum likelihood because, for the
gamma density they considered, the estimating equations involve only the arith-
metic and geometric means. For the present distribution, it is not possible to get any
such simple expressions. The estimation of the Pareto distribution is customarily
done by regressing log(1−F) on logx. Fisk (1961) estimates the sech2 distribution
by regressing logF/(1−F) on logx. For the distribution suggested here we have
log(1−F) =−a3 log(1+a1xa2).

Hence, following the customary procedures we estimated the parameters by us-
ing a nonlinear least squares method and minimizing

∑ [log(1−F)+a3 log(1+a1xa2)]2.

The data used were from US Bureau of the Census (1960-1972) and the program
was the nonlinear regression program from the Harvard computing center that uses
the Davidon-Fletcher-Powell algorithm. The estimated parameters are shown in
Table 2.1. The fit, as judged by the R2’s, was very good (they were all uniformly
high around .99). But since this may not be an adequate evidence, we used some
other checks with the results.

Salem and Mount (1974) have given the details of the observed and predicted
probabilities for two years, 1960 and 1968, for the lognormal and the gamma. For
comparison we plot the predicted probabilities from the present function in the same
diagram that Salem and Mount (1974, Fig. 3) used. This is shown in Fig. 2.1. Also,
the sum of squared deviations between the predicted and observed probabilities were
as follows:

Year Lognormal Gamma Present Function

1960 .01187 .00391 .00261
1969 .00752 .00238 .00156

Another check on the fit is to use the procedure suggested by Gastwirth and
Smith (1972) which consists of computing bounds on the Lorenz concentration ra-
tio and computing the implied value of this ratio from the estimated values of the
parameters. For the years 1967 through 1970, we estimated these values by numeri-
cal integration using the estimated values of the parameters. The results are reported
in Table 2.2. As can be easily seen, the estimates of the Lorenz ratio fall within the
bounds.
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Table 2.1:

Year a1 a2 a3

1972 .3070 2.064 2.538
1971 .3125 2.139 2.544
1970 .3102 2.121 2.546
1969 .3101 2.131 2.611
1968 .3071 2.111 2.712
1967 .3120 2.012 2.552
1966 .3109 2.197 2.558
1965 .3082 2.127 2.624
1964 .3184 2.080 2.550
1963 .3084 2.051 2.597
1962 .3079 2.063 5.609
1961 .2735 1.972 3.009
1960 .2931 1.992 2.803

Fig. 2.1: Observed and predicted probabilities of United States families in ten income classes: 1960
and 1969.
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Table 2.2:

Year Bounds Reported by Salem and Mount Estimates Obtained
Lower Higher by the Fitted Function

1967 3,504 3,556 3,517
1968 3,391 3,457 3,402
1969 3,421 3,506 3,429
1970 3,466 3,565 3,484

5 Conclusions

The paper derives a function to describe the size distribution of incomes based on
an analysis of hazard rates or failure rates. The distribution is a generalization of the
Pareto and the Weibull distribution studied extensively in the analysis of equipment
failures. The sech2 distribution suggested by Fisk can also be considered as a special
case of the distribution suggested here. The distribution has been fitted to United
States income data and has been found to fit remarkably well. Earlier, Salem and
Mount found that the gamma distribution gives a better fit than the lognormal. We
find that the function suggested in the paper gives a better fit than the gamma.
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