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Abstract

Rationale: The mechanisms underlying cystic fibrosis (CF) lung
disease pathogenesis are unknown.

Objectives: To establish mechanisms linking anion transport with
the functional microanatomy, we evaluated normal and CF piglet
trachea as well as adult swine trachea in the presence of selective
anion inhibitors.

Methods:We investigated airway functional microanatomy using
microoptical coherence tomography, a new imaging modality that
concurrently quantifies multiple functional parameters of airway
epithelium in a colocalized fashion.

Measurements and Main Results: Tracheal explants from
wild-type swine demonstrated a direct link between periciliary
liquid (PCL) hydration and mucociliary transport (MCT) rates,

a relationship frequently invoked but never experimentally
confirmed. However, in CF airways this relationship was completely
disrupted, with greater PCL depths associated with slowest transport
rates. This disrupted relationship was recapitulated by selectively
inhibiting bicarbonate transport in vitro and ex vivo. CF mucus
exhibited increased viscosity in situ due to the absence of
bicarbonate transport, explaining defective MCT that occurs
even in the presence of adequate PCL hydration.

Conclusions: An inherent defect in CF airway surface liquid
contributes to delayed MCT beyond that caused by airway
dehydration alone and identifies a fundamental mechanism
underlying the pathogenesis of CF lung disease in the absence of
antecedent infection or inflammation.
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Cystic fibrosis (CF) causes significant
morbidity and mortality from progressive
lung disease (1). The primary defect in
CF is dysfunction of the CF transmembrane
conductance regulator (CFTR), an
epithelial transporter of chloride and
bicarbonate (2–4). In the lungs, deficient
CFTR-mediated anion transport is believed
to cause delayed mucociliary clearance
(MCC), although the underlying
mechanism remains a topic of importance
and debate. A longstanding hypothesis
suggests that deficient chloride transport
combined with sodium absorption across
the airway epithelia depletes the airway
surface liquid (ASL), including the
periciliary liquid (PCL) and the overlying
mucus (5–7). This hypothesis has been
supported by evidence in CF primary
human bronchial epithelial (HBE) cell
culture models and excised tissues (5, 6, 8,
9). The CFTR defect also reduces mucus
secretion in CF airway glands (10–12),
possibly contributing to inadequate ASL
hydration and decreased MCC.

This hypothesis has been subject to
renewed controversy since the development
of a swine model that recapitulates many
features of CF lung disease (13, 14) but does

not exhibit sodium hyperabsorption or PCL
depletion (15). Alternative mechanisms
for CF pathogenesis have been proposed,
including the suggestion that reduced
airway pH (16, 17) or abnormal mucus
biosynthesis (18–21) may be major
contributors. Quinton has hypothesized
that the absence of CFTR-mediated
bicarbonate transport may cause abnormal
CF mucus in the lungs, renewing interest in
the term “mucoviscidosis” (21). Although
bicarbonate secretion in the airway has
been shown (22), its impact on mucus
adhesion has so far been limited to studies
of murine intestine (18, 19). Others have
suggested that CF mucus is not inherently
abnormal but is altered by secondary
phenomena such as inflammation and
gland hyperplasia (23).

To address these critical questions,
airway parameters must be evaluated
concurrently in situ rather than using
asynchronous measures or fixed tissues.
Recently, we have developed microoptical
coherence tomography (mOCT), which
enables real-time, noninvasive imaging of
the epithelial surface of living airways, at
submicron resolution (24–26). mOCT
images are acquired without use of contrast
dyes, exogenous microparticles, tissue
fixation, or other manipulations that limit
current airway assessment techniques.
Accuracy for simultaneously measuring
microanatomic parameters relevant to the
airway has been validated (24).

In the present study, we investigated
the functional airway microanatomy of the
CF lung using mOCT and state-of-the-art
models, including primary HBE cells and
fresh CFTR (2/2) porcine tissues. Our
findings establish that increased ASL
viscosity is a fundamental aspect of the CF
airway defect, even in the absence of
infection and inflammation, providing
a mechanism of mucoviscidosis operative
in multiple organs affected by CF.

Methods

Detailed methods are provided in the online
supplement.

Study Approvals

Procedures involving human cells and tissue
were approved by institutional review
boards at the University of Alabama
Birmingham (IRB numbers X080625002,
X110916018, and X101111014) and

Massachusetts General Hospital (IRB
number 2008P000178). Animal use was
approved by the University of Alabama
Birmingham Institutional Animal Care and
Use Committee.

Primary HBE Cell Cultures

Primary HBE cells were derived from lung
explants as previously described (27–29).
Collected epithelial cells were grown in
differentiating media for at least 6 to
8 weeks until terminally differentiated.
Cells were apically washed with PBS
48 hours before the experiment. In some
experiments, cells were cultured in
media depleted of bicarbonate, with and
without acetazolamide (100 mM).

Swine Tissue Culture

CFTR (1/1) and CFTR (2/2) piglet
tracheas were obtained from Exemplar
Genetics. We used a modified tissue
handling and preparation protocol based
on the methods of Ballard and colleagues
(30). For ex vivo analysis, tracheae were
equilibrated to steady state at physiologic
conditions for at least 4 hours in an
environmentally controlled chamber then
subsequently imaged by mOCT.

Shear Stress

In some experiments, shear stress was
applied using a rocker from Boekel Scientific
set to 20 rotations per minute to mimic
swine respiratory rate. The peak amplitude
of applied shear stress was 0.114 dynes/cm2

at the luminal surface.

Bicarbonate Inhibition

Normal Yorkshire pigs were obtained
from Auburn University at age 3 to
4 months. Tracheae were treated
with dimethyl sulfoxide vehicle control,
4,4’-dinitrostilbene-2,2’-disulphonic acid
(DNDS, 3 mM), or bumetanide (100 mM)
and were incubated and imaged, as above.
Acetylcholine (100 mM) was subsequently
added to produce mucus for collection.

Image Acquisition

Measurements of functional microanatomic
parameters in cultured cells and tissue were
performed using microoptical coherence
tomography (mOCT) (24).

Image Analysis

Quantitative analysis of images provided
ASL and PCL depths and ciliary beat
frequency (CBF) and MCT rate. For each

At a Glance Commentary

Scientific Knowledge on the

Subject: The mechanisms underlying
cystic fibrosis (CF) airway
pathophysiology are unknown and
remain a topic of debate. Current
hypotheses include depleted airway
surface liquid and altered mucus
biosynthesis secondary to absent CF
transmembrane conductance regulator
(CFTR)-mediate bicarbonate
transport.

What This Study Adds to the

Field: Using innovative technology
enabling concurrent quantification of
multiple functional parameters of
airway epithelium in a colocalized
fashion, we have shown that the
interrelationship between airway
hydration and mucus transport is
altered in CF. This disruption appears to
be mediated by absence of bicarbonate
transport and may constitute
a fundamental mechanism underlying
the pathogenesis of CF lung disease.
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HBE monolayer, images were acquired
1 mm from the filter edge. For trachea,
images were acquired at randomly chosen
locations on the mucosal surface. For
regional analyses, when mucus was absent,
colocalized comparison was not performed
because MCT could not be accurately
measured in the absence of visible mucus.

Histology

Sections of swine trachea were fixed in 10%
neutral buffered formalin and embedded
in paraffin. Sections were stained with
hematoxylin and eosin.

Fluorescence Recovery

after Photobleaching

To measure fluorescence recovery after
photobleaching (FRAP) in HBE cells or
trachea explants, ASL was stained with
fluorescein isothiocyanate (10 ml at 1 mg/ml
in PBS) and incubated for 30 minutes at
378C (20). A circular area of approximately
3- to 5-mm diameter on the ASL surface
was bleached with a 5-mW argon laser and
30-mW diode laser, and then fluorescence
intensity was quantified as fluorescein
isothiocyanate labeled ASL filled the
bleached area. Images were acquired by
confocal microscopy (sequential XY scans)
until maximal recovery was reached. The
recovery curves of normalized values
were plotted using one phase association
equation. Additional detail is provided
online.

Particle Tracking Microrheology

Particle-tracking microrheological
techniques were used to measure viscosity of
mucus on non-CF and CF HBE cell cultures
and from mucus collected from pig tracheae
(31, 32). Fluorescent PEG-PS beads (2.0 3

1011 particles/ml) were added to apical
surface of cells or mucus placed in 1 cm
on glass slides. Samples were incubated at
room temperature to allow distribution of
particles. Fluorescence time-series images
were acquired using an inverted microscope
at a frame rate of approximately 17 frames
per second. Resulting particle tracks were
analyzed with custom MATLAB
procedures.

Statistics

Statistical analysis was performed in
GraphPad Prism version 6.0. Statistics
are presented as mean 6 SEM, except as
indicated. Statistical methods are discussed
in the online supplement.

Results

Altered Functional Microanatomy of

CF-derived (HBE) Cells

mOCT imaging provides an accurate and
precise measure of the length of fully
extended cilia, and thus the PCL layer, and is

colocalized with other parameters of the
epithelial surface (see Figure E1 in the online
supplement) (24). With this advantage in
mind, we evaluated cultured primary HBE
cell monolayers under physiologic
conditions to determine differences in the
functional microanatomy. Representative
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Figure 1. Microoptical coherence tomography (mOCT) imaging of human bronchial epithelial (HBE)

respiratory epithelia. (A) mOCT images of non–cystic fibrosis (CF) HBE cells grown in culture. Cilia tips

(green arrows), mucus layer (mu), airway surface liquid (ASL) layer (yellow bar ), and periciliary liquid

(PCL) layer (red bar) are seen. PCL and cilia tips are more readily discerned in time-averaged image over

10 s (right) as compared with static image (left). ASL depth (yellow bar) is defined by the distance

between the air–mucus interface and the surface of the epithelial layer (ep). PCL depth (red bar) is

defined by the distance between the mucus layer and the epithelial surface. (B) Depleted ASL (yellow

bar) and PCL (red bar) with cilia (green arrow) entangled within the mucus are visible in a mOCT image

of HBE cells derived from a subject with CF. Horizontal and vertical scale bars: 10 mm. See also

Video 1. (C–F ) Analysis of mOCT images from HBE cells derived from non-CF and CF donors and grown

in culture yields numerical values for functional and anatomic parameters. ASL depth (C), PCL depth (D),

ciliary beat frequency (CBF; E), and mucociliary transport (MCT) rate (F) are shown. *P , 0.05, **P ,

0.005, ***P , 0.0005, ****P , 0.00005. Each symbol represents mean value from independent HBE

monolayer; at least four donors were evaluated per condition. Note: a component of non-CF control

data was previously reported (24, 35).
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two-dimensional images are shown in
Figures 1A and 1B, and Video 1. Although
regionally heterogeneous across the
epithelial surface, CF monolayers exhibited
ASL and PCL depletion compared with non-
CF HBE. Cilia in the CF monolayer were
entangled within the mucus, in contrast to
those in the wild-type (WT) HBE monolayer
in which cilia tips can be clearly seen upright
within the PCL and at an angle to the
epithelial surface. Functional parameters
derived from mOCT imaging provided
simultaneous measurements of ASL, PCL,
CBF, and MCT across multiple donors and
various regions of interest (Figures 1C–1F).
The ASL depth of CF HBE cells was
significantly lower than non-CF HBE cells
(3.5 6 0.9 mm CF vs. 17.0 6 3.9 mm non-
CF, P , 0.005); the decrement in PCL depth
was also pronounced (2.4 6 0.6 mm CF vs.
6.7 6 0.2 mm non-CF, P , 0.00005). CBF
was decreased in CF HBE monolayers (3.3 6
0.2 Hz CF vs. 5.3 6 0.3 Hz non-CF, P ,

0.0005), potentially reflecting increased mucus
viscosity, because abnormal ciliary beating is
not believed to be primarily affected by the
absence of CFTR function (33, 34). Although
MCT was regionally variable among WT
controls, CF monolayers uniformly exhibited
minimal MCT (0.8 6 0.4 mm/min CF vs.
10.4 6 4.7 mm/min non-CF, P , 0.05).

Functional Anatomic Defects in CFTR

(2/2) Piglet Trachea

Next, we addressed whether findings from
HBE cultures were consistent with intact

tissues that are more anatomically complex.
We analyzed intact, full-thickness trachea
explants from CFTR (2/2) piglets
(hereinafter referred to as CF pigs) and
CFTR (1/1) littermate control pigs
(referred to as non-CF pigs) with mOCT
under physiologic conditions (i.e., 378C, 5%
CO2, and 100% humidity). The luminal
surface of excised trachea was clearly
visualized and demonstrated structural
features of the anatomy including ASL,
PCL, and both the epithelial layer and
lamina propria (Figures 2A–2D and Video
2). Similar to cultured HBE cells, swine
trachea showed a heterogeneous ASL and
PCL across the epithelial surface that
mirrored the anatomic variation of the
mucosal folds. Nevertheless, compared with
littermate control pigs, the ASL and PCL
were reduced in CF trachea, and the
cilia flattened. Submucosal glands were
also evident by mOCT, enabling three-
dimensional image reconstruction to
evaluate the ductal lumen (Figures 2E and
2F). Within the glands, the non-CF pigs
demonstrated evidence of a thin liquid layer
surrounding the mucus being extruded,
whereas this layer was absent in the CF
trachea, akin to PCL depletion and
indicative of reduced glandular output.

The above qualitative comparisons of
CF and non-CF piglet airway microanatomy
were confirmed using quantitative mOCT
analysis (Figures 2G–2J and Video 2). The
ASL depth of CF piglets was reduced
compared with non-CF littermates (3.2 6

0.8 mm CF vs. 9.2 6 1.8 mm non-CF, P ,

0.05). As observed in HBE monolayers,
differences in the PCL depth were even
more readily detected (3.2 6 0.8 mm CF vs.
6.5 6 0.2 mm non-CF, P , 0.005). The
CBF of CF piglets was lower compared with
control piglets (5.4 6 0.9 Hz in CF vs.
10.6 6 1.5 Hz in non-CF, P , 0.05).
Although unstimulated MCT of non-CF
piglet was brisk (1.8 6 0.9 mm/min) and
similar to measures of non-CF swine trachea
made under physiologic conditions (24, 35,
36), CF MCT was severely delayed (0.2 6

0.1 mm/min, P , 0.05).

The Effect of Shear Stress on

Functional Microanatomy

Shear stress caused by breathing stimulates
non-CFTR–dependent fluid secretion (37),
and its absence in excised piglet tracheal
samples may alter measured PCL depths.
To control for this, we evaluated the effect
of physiologically relevant shear on the
functional microanatomy of excised
trachea. Synchronous regional parameters
were derived for each airway. Paired
analyses of measurements are represented
in Figure E2. Analogous to previous cell
culture experiments (38), the PCL depth in
both CF (6.1 6 1.1 mm static vs. 7.9 6 1.2
mm shear stress, P , 0.00005) and non-CF
(8.6 6 1.4 mm static vs. 10.4 6 1.2 mm
shear stress, P , 0.0005) trachea were
augmented when exposed to shear stress for
4 hours before mOCT imaging (Figure 3A).
Nevertheless, the PCL depth of CF trachea

Video 1. Microoptical coherence tomography (mOCT)

video showing well-differentiated primary human

bronchial epithelial (HBE) cultures derived from a subject

without cystic fibrosis (CF) (top) and a subject with CF

(bottom).
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was less than non-CF trachea, even when
both tissues were under shear (P , 0.0005).
Shear stress augmented CBF, but the effect
was specific to CF piglet trachea (10.0 6

1.2 Hz static vs. 13.8 6 0.6 Hz shear stress,
P , 0.05; Figure 3C). This result suggested
that ciliary beating may be slowed in CF
by abnormally viscous ASL, whereas
normal ASL viscosity in non-CF tissues
does not limit CBF. Changes in MCT
with shear were not as sensitive to
differences between conditions due to
greater heterogeneity across the airway
surface, but generally mirrored changes in
PCL depth (Figure 3D). Additionally, the
CF tracheae without shear stress had scant
mucus particles present, making MCT
comparisons more difficult. ASL depth
increased with shear in non-CF tissues
(P , 0.005; Figure 3B). Under shear, the
CF ASL was less than non-CF ASL (P ,

0.005), although the heterogeneity of
this parameter could explain why the
distinction between CF and non-CF ASL
depths can be difficult to discern with less
precise methods.

Relationships between the Airway

Surface and Mucociliary Transport

Because the role of ASL depletion in CF
pathogenesis remains a topic of
considerable interest (1, 15, 39, 40), we
sought to better understand the
interrelationships between the various
functional parameters of the airway
surface, which were colocalized and
simultaneously obtained using mOCT,
a unique advantage of the assay. In non-
CF piglet trachea, MCT rate was directly
related to PCL depth (m = 0.93 6 0.43,
P , 0.05; Figure 4A), a phenomenon that
has been frequently invoked but never
before experimentally observed (1, 5, 6,
40), and reflects the importance of PCL
hydration on maintaining MCC in the
normal situation. The strong linear
relationship between these parameters was
also augmented by the application of shear
stress, which was associated with the
highest transport rates (Figure E3). In
contrast, in CF trachea, the relationship
between PCL depth and MCT was
completely reversed, with greater PCL
depths associated with the slowest transport
rates (m = 20.52 6 0.42, P , 0.05 vs. non-
CF control; Figure 4B). When analysis was
restricted to regions that exhibited adequate
PCL hydration (>7 mm), MCT was still
reduced in CF (Figure 4C). Together, these
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Figure 2. Microoptical coherence tomography (mOCT) imaging of swine trachea epithelia. (A) mOCT

image of trachea explanted from a cystic fibrosis transmembrane conductance regulator (CFTR)

(1/1) piglet clearly shows cilia tips (green arrow), airway surface liquid (ASL; yellow bar), and

periciliary liquid (PCL; red bar) on the luminal surface (L). Epithelium (ep), lamina propria (lp), a gland

(gl), and a gland duct (gd) transecting the image are also visualized. (B) Depleted ASL (yellow bar) and

PCL (red bar) and flattened cilia (green arrow) are visible in a mOCT image of tracheal lumen (L)

dissected from a CFTR (2/2) newborn piglet. Horizontal and vertical scale bars: 10 mm. (C, D)

Histologic specimen stained with hematoxylin and eosin of corresponding area of CFTR (1/1) (C) and

CFTR (2/2) (D) trachea. Scale bars: 34 mm. (E, F ) Three-dimensional reconstructed en face view of

representative duct glands from mOCT imaging. CFTR (1/1) piglet in E clearly shows a thin

liquid layer (red arrow) surrounding the mucus within the gland duct (yellow arrow), which is not seen

in the CFTR (2/2) piglet (F ). Horizontal and vertical scale bars: 10 mm. See also Video 2. (G–J)

Analysis of mOCT images from explanted swine yields numerical values for functional and anatomic

parameters. ASL depth (G), PCL depth (H), ciliary beat frequency (CBF; I), and mucociliary transport

(MCT) rate (J) are shown. *P , 0.05, **P , 0.005. Each symbol represents mean value from

independent trachea explant taken from five regions of interest. Note: A component of CFTR (1/1)

control data was previously published in tabular format (10, 24).
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findings suggested a primary defect in
the physical properties of airway mucus
attributable to absent CFTR, which would
be expected to disturb the normal
relationship between adequate PCL
hydration and intact MCT. Analysis of
the correlation between ASL depth and
MCT showed similar trends (Figures 4D
and 4E). The aberrant PCL to MCT
relationship in CF was not due to
defective ciliary beating, because
increased MCT was directly related to

accelerated CBF in CF swine (m = 0.33 6

0.18, P = 0.08; Figure 4G). The association
was not evident in non-CF trachea
(m = 0.09 6 0.21, P = not significant for
nonzero slope; Figure 4F), suggesting
mucus viscosity is not limiting in this
situation.

Studies of ASL viscosity in situ by
fluorescence recovery after photobleaching
indicated increased half-life of recovery in
both CF piglet trachea (Figures 5A and 5B)
and primary CF HBE cells (Figure 5C).

These data confirmed that viscosity of
the entire ASL layer was increased,
complementing previous reports of
increased ASL viscosity in excised human
CF explants (8). Complementary studies
evaluating the effective viscosity of the
airway surface in situ using particle tracking
microrheology in the absence of ciliary
beating also identified elevated effective
viscosity of the CF ASL (80.6 cP 6 26.5 CF
vs. 12.0 6 3.6 control, P , 0.05; Figures
5D–5F and Figure E4).

Video 2. Microoptical coherence tomography (mOCT)

video showing intact, full-thickness swine trachea

explants from a cystic fibrosis transmembrane

conductance regulator (CFTR) (1/1) piglet (left) and

a CFTR (2/2) piglet (right).

Video 3. Microoptical coherence tomography (mOCT)

video showing intact, full-thickness swine trachea

explants from a cystic fibrosis transmembrane

conductance regulator (CFTR) (2/2) piglet exposed to

shear stress (left) or control (right) conditions.
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Effect of Bicarbonate on

Mucociliary Transport

Recent evidence suggests that bicarbonate
may be important for normal mucus
secretion and adherence in murine intestine
(18, 19); hence, we hypothesized that
blocking bicarbonate transport would
adversely affect mucus transport even
though it reflects only a small fraction of
CFTR-mediated anion transport (2). Our
findings focused on hydration within the
PCL, because MCT and ciliary beating was
most dependent on the status of this
compartment and best reflected the
influence of acute changes in fluid
transport. As shown in representative time-
averaged images (Figures 6A–6C), when
normal adult pig trachea was treated with
DNDS to inhibit bicarbonate transport
(41), PCL depth was not significantly
affected (7.1 6 0.5 mm DNDS-treated vs.
7.8 6 0.5 mm vehicle control, P = not
significant; Figure 6D) but was reduced by
bumetanide (6.4 6 0.4 mm bumetanide-

treated, P , 0.05; Figure 6D). Although
PCL depth was undisturbed by treatment
with DNDS, MCT was significantly reduced
(1.16 0.2 mm/min DNDS treated vs. 3.66
0.7 mm/min vehicle control, P , 0.05;
Figure 6E); bumetanide also reduced MCT
(1.3 6 0.6 mm/min, P , 0.05; Figure 6E).
The relationship between PCL depth and
MCT with DNDS treatment recapitulated
the disrupted relationship observed in CF
trachea (m = 20.19 6 0.1, P , 0.05;
Figure 6G), whereas bumetanide did not
(m = 20.04 6 0.4, P = not significant;
Figure 6H). The effect of 4, 4-
diisothiocyanatostilbene-2,2-disulfonic acid
(DIDS), an alternative inhibitor of
bicarbonate transport (42), was very similar
(Figure E5). This suggested that the lack of
bicarbonate is specifically responsible for
the altered relationship between airway
hydration and mucociliary transport in CF,
likely secondary to altered physical
properties of CF mucus. To confirm this,
we conducted particle tracking

microrheology on mucus collected from
treated tracheae. Representative particle
tracings are shown in Figure 6I,
demonstrating that particle movement was
more constrained in mucus collected from
tracheae treated with DNDS (or
bumetanide) compared with control. Also
compared with control, both DNDS- and
bumetanide-treated trachea secreted mucus
with higher effective viscosity (Figure 6J,
Figures E6A and E6B). To establish that
bicarbonate transport was critical to these
effects, normal HBE cells were cultured in
bicarbonate-depleted media with and
without the addition of acetazolamide,
and particle tracking microrheology
conducted on the mucus layer in situ.
Particle displacement on the surface of
cells grown in bicarbonate-depleted media
were more constrained than particles on
control cells (Figure 6K) and caused
a significant increase in mucus viscosity,
with or without addition of acetazolamide
(Figure 6L, Figures E7A and E7B).
Hence, bumetanide increased viscosity
by dehydrating the PCL layer but did
not alter the relationship between airway
hydration and mucus transport. In
contrast, lack of bicarbonate transport
increased mucus viscosity and disrupted
MCT without changing the PCL volume.

Discussion

Using mOCT, we established a relationship
between PCL hydration and MCT rate that
has been frequently hypothesized but never
before been proven to operate in normal
lung. By analyzing colocalized, synchronous
measures of the airway functional anatomy,
our findings further indicate that the MCT
apparatus of the CF airway, and the impact
of PCL hydration toward regulating mucus
transport, are profoundly disrupted.
Additional experimentation using FRAP and
particle tracking reveal an abnormally
viscous ASL, even in the absence of airway
infection, which accounts for the abnormal
relationship between PCL and MCT. In the
CF airway, elevated mucus viscosity disturbs
normal MCT by a mechanism that is
independent of ciliary hydration and
function. By selectively inhibiting either
bicarbonate or chloride transport, we
determined that bicarbonate regulates this
abnormal relationship, even in the presence
of adequate PCL hydration, and its absence
recapitulates abnormal mucus viscosity and
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mucociliary transport evident in the CF
airway. Because these studies were performed
in fresh tissues of newborn piglet and sterile
human airway cultures, the results reflect the
underlying mechanisms of CF rather than
secondary phenomena such as infection or
inflammation that can occur in the infected
lung. These findings are significant, because
they show that mucoviscidosis, in addition
to relative PCL depletion, is operative in the
CF airway and prominently contributes to
delayed MCT in the disease (21).

This study reveals an interrelationship
between PCL depth and MCT rates on

a regional basis, based on the analysis of
colocalized and simultaneous measurements
of the functional microanatomy. These results
validate a longstanding hypothesis that PCL
hydration is an essential contributor to the
maintenance of normal MCT (1, 8, 39,
40, 43) and provide a basis for understanding
how “hydration therapies,” such as
hypertonic saline (44, 45), mannitol (46),
or ENaC inhibitors (47), augment airway
defense. However, given that increased
native PCL depth was not associated with
accelerated MCT in CF epithelia, the results
also indicate that PCL depletion is not the

sole contributor to mucus stasis in the CF
airway. Although the biochemical origin of
increased mucus viscosity in CF has not been
proven, abnormal mucin expansion and
adhesion due to molecular events that
require intact CFTR-mediated bicarbonate
secretion have recently been proposed as
features of the CF defect that could result in
increased effective viscosity (18, 19, 48).
Intact bicarbonate transport was crucial
to maintaining acetylcholine-stimulated
MCT in excised swine trachea, leading
Cooper and colleagues to speculate that
viscosity could be a contributing factor
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trachea when PCL depth was >7 mM. †P = 0.06. (D, E) Correlation between airway surface liquid (ASL) depth and MCT in CFTR (1/1) trachea
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(36), findings also reported by Jayaraman
and colleagues in excised tissues using
FRAP (49). Our findings are consistent
with these studies and implicate an
inherent abnormality of CF mucus that
is dependent on bicarbonate transport.
Along with newly recognized defects in
microbial killing due to acidic pH (16, 17)
and abnormal mucus adhesion observed in
the intestine of murine CF models that
may also be dependent on adequate CFTR-
dependent bicarbonate transport (18, 19),
the failure to maintain normal MCT
despite adequate PCL depth represents
a fundamental characteristic of the CF
airway and could impact airway defense
(50). Notably, these conclusions could
account for the disproportionate severity of
lung disease in CF when compared with
other disorders of MCC such as primary
ciliary dyskinesia, which results in complete
abrogation of the MCT apparatus but is
not impacted by innate CFTR-dependent
defects of the mucus itself (51).

Under static, steady-state conditions,
we observed many features traditionally
ascribed to CF pulmonary pathogenesis,
including reduced PCL and ASL depth (6,
52, 53), diminished CBF (34), and delayed
MCT rates (6). These findings were
consistent and observed in both cultured
HBE cells in vitro and living ex vivo piglet
trachea. Our findings in cell culture were
in agreement with studies by several
laboratories using a variety of traditional
imaging techniques, providing additional
confidence in the results (5, 6, 9, 27, 38, 53).
In contrast, the studies in piglet tissues
conflicted with a recent report that did not
demonstrate decreased PCL depth in 1-day-
old CF piglets when studied by OsO4

fixation (15). Because mOCT can measure
the PCL depth by visualizing the fully
extended length of the cilia without
experimental manipulations, the technique
may be more sensitive to differences than
OsO4 fixation and also incorporates the
mucus layer, a parameter that is clearly

more variable across anatomic regions. By
demonstrating that the difference in PCL
depth between WT and CF piglet trachea
persists despite application of shear stress
(Figure 3A), whereas the difference in ASL
was less precise (Figure 3D), our studies
offer a potential explanation for conflicting
results and provide direct evidence that
relative PCL depletion in CF occurs under
physiologic conditions. Given the regional
variation in PCL and ASL depths, ciliary
beating, and MCT rates, it is likely that
specific regions of the CF airway, such as
the smallest airways or branch points, may
be particularly susceptible to PCL depletion
and subsequent mucus stasis due to
defective airway hydration, even in the
setting of normal breathing.

Although CF pigs have closely
resembled human CF lung disease (13, 14,
54, 55), studies of human subjects are
needed to address potential differences in
the human condition, such as the effect of
partially active CFTR alleles. Development
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of colocalized measures of mucus viscosity
within various layers of the ASL could
also provide additional information as
to the origin of the defect and could
be possible with native particle tracking in
the future. n
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