A functional calculus for Rockland operators on nilpotent Lie groups

ער

ANDRZEJ HULANICKI (Wrocław)

Abstract. Let G be a homogenous Lie group and let L be a positive Rockland operator. Let

$$Lf = \int_{0}^{x} \lambda \, dE(\lambda) f$$

be the spectral resolution of L on $L^2(G)$. It is shown that if $m \in \mathcal{S}(\mathbb{R}^+)$, then if

$$T_{m}f = \int_{0}^{\infty} m(\lambda) dE(\lambda)f,$$

then T_m is of the form $T_m f = f * M$, where $M \in \mathcal{S}(G)$.

Let G be a nilpotent Lie group and let L be a hypoelliptic, positive, left-invariant differential operator on G which satisfies a subelliptic estimate:

For every left-invariant differential operator ∂ on G there exist an integer $\sigma(\partial)$ and a constant C such that

0.1)
$$\|\partial u\|_{L^{2}(G)} \leq C \|(1+L)^{\sigma(\delta)} u\|_{L^{2}(G)}$$
 for $u \in \text{Dom}(\overline{E}^{(\delta)})$ and, consequently, for an integer S and a constant $C \sup_{x \in G} |u(x)| \leq C \|(1+L)^{S} u\|_{L^{2}(G)}$ for $u \in \text{Dom}(\overline{L}^{S})$.

Let $E(\lambda)$ be the spectral resolution of a positive self-adjoint extension of L, which in fact is unique and equal to the closure of L, and let

(0.2)
$$T^{i}f = \int_{0}^{\infty} e^{-i\lambda} dE(\lambda)f, \quad f \in L^{2}(G),$$

be the semi-group of operators on $L^2(G)$ generated by $-\overline{L}$.

Following the program of E. M. Stein formulated in [10] we investigate operators

(0.3)
$$T_{m}f = \int_{0}^{\infty} m(\lambda) dE(\lambda)f,$$

where m is a bounded function R^+ , on other spaces of functions on G under

suitable conditions on m. For instance, a Marcinkiewicz-Myhlin type theorem has been proved by E. M. Stein and the author in the case when L is the sublaplacian on a stratified nilpotent Lie group, cf. [2].

Also in [2] G. B. Folland and E. M. Stein proved that for positive Rockland operators (see definition below) on graded nilpotent groups which by [3] are hypoelliptic and satisfy (0.1) the semi-group (0.2) is of the form

(0.4)
$$T^{i}f = f * \varphi_{i}, \quad \text{where } \varphi_{i} \in \mathcal{S}(G).$$

The aim of this paper is to show that for a positive hypoelliptic L which satisfies (0.1) and the semi-group (0.2) is of the form (0.4), $m \in \mathcal{S}(\mathbf{R}^+)$ implies that the operator (0.3) is of the form

(0.5)
$$T_m f = f * M, \quad \text{where } M \in \mathcal{S}(G).$$

As a matter of fact, we get an evaluation of the number of derivatives and moments for m which guarantee that M has a given number of derivatives and moments.

The main method used in the paper is a C^k functional calculus for L^2 functions on a group of polynomial growth which decay at infinity as $(1++|x|)^{-\alpha}$ for a fixed but rather large α , as in the previous papers (e.g. [4], [6], [2]) a C^k functional calculus for exponentially decaying functions has been used.

Some corollaries follow.

If the semi-group satisfies (0.4), then φ_t depend holomorphically on t, i.e. $\mathbf{R}^+ \ni t \to \varphi_t \in \mathcal{S}(G)$ extends to a holomorphic map $\{z\colon \operatorname{Re} z>0\}\ni z \to \varphi_z \in \mathcal{S}(G)$, which suggests that for Rockland operators the functions φ_t should be real analytic, as they are if the group is \mathbf{R}^d .

Using present functional calculus one can obtain the following Marcinkiewicz-Myhlin multiplier theorem in the same way as it has been done for the sublaplacian in [2].

If L is a positive Rockland operator, there exists a number k such that if

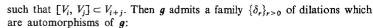
$$\sup |\lambda^j m^{(j)}(\lambda)| < \infty$$
 for $j = 0, 1, ..., k$,

then T_m (as defined by (0.3)) is of weak-type (1, 1) and thus bounded on every $L^p(G)$, 1 .

We should perhaps also mention that in analogy with [1] and [6] Riesz-Bochner and other summability methods for the expansions in eigenfunctions of Rockland operators are available.

1. Preliminaries. A simply connected nilpotent Lie group G is called graded if its (left-invariant) Lie algebra g is endowed with a vector space decomposition

$$(1.1) g = \bigoplus \sum V_j$$



if
$$a = \min\{i: V_i \neq 0\}$$
 we define $\delta_i X = r^{i/a} X$ if $X \in V_i$.

Putting

$$\delta_r \exp X = \exp \delta_r X$$

we obtain a family of automorphisms - dilations - of G.

Let Q be the positive number (the homogeneous dimension of G) defined by

$$f(\delta_r x) dx = r^{-Q} \int f(x) dx, \quad f \in L^1(G).$$

There exists a continuous function

$$G\ni x\to |x|\in R^+$$

such that |x| = 0 iff x = e, $|x| = |x^{-1}|$, for a constant γ , $|xy| \le \gamma(|x| + |y|)$ and $|\delta_x x| = r|x|$.

Let G be an arbitrary locally compact group and let U be a fixed symmetric compact neighbourhood of e. If G is a graded nilpotent Lie group we let

$$U = \{x \in G \colon |x| \leqslant 1\}.$$

We define a subadditive function

$$\tau(x) = \min \{n: x \in U^n\}.$$

The following lemma is used in [2].

LEMMA 1.1. If G is a graded nilpotent group there exist positive constants a, b, c, C such that

$$(1.2) c\tau(x)^a \leq |x| \leq C\tau(x)^b for |x| \geq 1.$$

Remark. It has been proved by Joe Jenkins [7] that a, b can be taken as equal to 1 if and only if G is stratified, i.e. if the smallest Lie subalgebra of g containing V_1 is equal to g.

We write

$$w(x)=1+\tau(x).$$

Then for every $\alpha \ge 0$ we have

(1.3)
$$w^{\alpha}(x) \ge 1$$
, $w^{\alpha}(x) = w(x^{-1})$, $w^{\alpha}(xy) \le w^{\alpha}(x) w^{\alpha}(y)$

and also

$$(1.4) w^{\alpha}(xy) \leqslant C_{\alpha}(w^{\alpha}(x) + w^{\alpha}(y)).$$

Let M(G) be the Banach *-algebra of Borel measures on G and let

$$M_{\alpha} = \{ \mu \in M(G) : \int w^{\alpha}(x) \, d \, |\mu|(x) = ||\mu||_{M_{\alpha}} < \infty \}.$$

In virtue of (1.3) M_{σ} is a Banach *-algebra. We write

$$L_{\alpha} = \{ f \in L^{1}(G) : \int |f(x)| \, w^{\alpha}(x) \, dx = ||f||_{L_{\alpha}} < \infty \}.$$

 L_{α} is, of course, a Banach *-subalgebra of M_{α} .

A locally compact group is called of polynomial growth, if for every compact subset U the Haar measure $|U^n|$ of U^n satisfies

$$(1.5) |U^n| = O(n^R) as n \to \infty.$$

By Lemma 1.1, if G is a graded nilpotent group, then G is of polynomial growth and (1.5) holds for an R such that

$$[aQ] \leqslant R \leqslant [bQ] + 1.$$

Also,

(1.6) if G is of polynomial growth, then w^{-R-2} is integrable.

It has been proved by T. Pytlik [9] that if G is of polynomial growth, then L_{α} , $\alpha > 0$, is a symmetric Banach *-algebra. This implies that for every commutative Banach *-subalgebra A of L_{α} every multiplicative linear functional on A is bounded on the C^* -algebra generated by the operators

$$L^2(G)\ni \xi \to \xi *f \in L^2(G), f \in A.$$

Let G be a nilpotent Lie group and let X_1, \ldots, X_n be a basis of its Lie algebra g. If G is graded, we assume that this basis is selected according to (1.1). For a multi-index $(i_1, \ldots, i_n) = I$ we write

$$X^I = X_1^{l_1} \dots X_n^{l_n}.$$

Let $|I| = i_1 + ... + i_n$.

For a nilpotent, simply connected group G, if

$$\frac{\partial}{\partial x_j} f(x) = \frac{\partial}{\partial x_j} f(\exp(x_1 X_1 + \ldots + x_n X_n))$$

with $x = \exp(x_1 X_1 + \ldots + x_n X_n)$ and

$$\left(\frac{\partial}{\partial x}\right)^{l} = \left(\frac{\partial}{\partial x_{1}}\right)^{l_{1}} \dots \left(\frac{\partial}{\partial x_{n}}\right)^{l_{n}},$$

we have

(1.7)
$$X^{I}f(x) = \sum_{|J| \leq |I|} a_{J}(x) \left(\frac{\partial}{\partial x}\right)^{J} f(x),$$

 $a_1(\exp(x_1 X_1 + ... + x_n X_n))$ being polynomials in $x_1, ..., x_n$. Consequently,

(1.8)
$$|a_J(x)| \le C_J w(x)^N, \quad N = N(J)$$

(cf. e.g. [2]).

For a function u we define

$$||u||_{\alpha,k,p} = \left(\sum_{|I| \leq k} \int |X^I u(x)|^p w(x)^{p\alpha} dx\right)^{1/p}.$$

The following lemma is an immediate consequence of (1.6), (1.7), (1.8) and the ordinary Sobolev lemma.

LEMMA 1.2. For every $1 \le p$, $q \le \infty$ and α , k there exist α' , k' and a constant c such that

$$||u||_{\alpha,k,p} \leqslant c \, ||u||_{\alpha',k',q}.$$

We define $\mathscr{S}_{a,k,p}(G)$ as the space of functions f for which $||f||_{a,k,p}$ is finite and

$$\mathscr{S}(G) = \bigcap_{\alpha,k} \mathscr{S}_{\alpha,k,p}(G).$$

In virtue of Lemma 1.2, $\mathscr{S}(G)$ does not depend on $p, 1 \leq p \leq \infty$. We also note

(1.9) If
$$\mu \in M_{\alpha}$$
 and $f \in \mathcal{S}_{\alpha,k,1}(G)$, then $f * \mu \in \mathcal{S}_{\alpha,k,1}(G)$.

By a Rockland operator on a graded Lie group G (cf. [2]) we mean a differential left-invariant operator L on G which is homogeneous with respect to the dilations and for every irreducible unitary representation π of G the operator π_L is injective on the space of C^{∞} vectors. It has been proved by B. Helffer and J. Nourrigat [3] that such operators are hypoelliptic. Moreover, if L is positive, it satisfies (0.1).

Let L be a positive Rockland operator. As we have mentioned before, G. B. Folland and E. M. Stein proved in [2] that the semi-group generated by -L is of the form (0.4). Moreover, if L is homogeneous of degree D, then

$$\varphi_t(x) = t^{-Q/D} \varphi_1(\delta_{t^{-1/D}} x)$$

and consequently,

$$\{\varphi_t\}_{t\to 0}$$
 is an approximate identity in $\mathscr{S}_{\alpha,k,p}(G)$.

Finally we note that if L satisfies (0.1), then for every d and k there is a positive number s(d, k) such that

$$||(1+L)^k X^I u||_{L^2(G)} \le C ||(1+L)^{s(d,k)} u||_{L^2(G)}$$

for all $|I| \le d$.

2. Functional calculus. Let B be a Banach *-algebra. We say that a function F operates on an element f in B if the Gelfand transform of f with

respect to the smallest commutative Banach subalgebra A containing f is real and there exists a g in A such that $F \circ \hat{f} = \hat{g}$. We then write

$$g = F \cdot f$$
.

For f in B let

$$e(f) = \sum_{j=1}^{\infty} \frac{(if)^j}{j!}.$$

Suppose that

$$||e(nf)||_B = O(|n|^l)$$
 as $|n| \to \infty$

and let $|\hat{f}(\lambda)| < a$. Then for every $F \in C_c^k[-a, a]$ with k > l+1 and F(0)= 0, F operates on f and

$$(2.1) F \cdot f = \sum_{n \in \mathbb{Z}} F(n) e(nf), \text{whence} ||F \cdot f||_{\mathcal{B}} \leqslant C_f ||F||_{C^{k_{[-a,a]}}},$$

cf. e.g. [8] for the details.

In the present paper functional calculus is used in the following way. Suppose for some $\alpha > 0$ and all t > 0 $\varphi_t = \varphi_t^* \in L_\alpha$ and, moreover, φ_{s+t} $= \varphi_s * \varphi_t \text{ and } \lim_{t \to 0} ||f * \varphi_t - \varphi_t||_{L^2(G)} = 0 \text{ for } f \text{ in } L^2(G).$

Let B be the smallest closed Banach *-subalgebra of L_a containing all φ_t , t > 0. Then B is a commutative, semi-imple, symmetric Banach *-algebra and the Gelfand space of B can be identified with R^+ in such a way that $\hat{\varphi}_t(\lambda) = e^{-t\lambda}$. Moreover, there is a spectral measure on $L^2(G)$ such that for M in B

$$f * M = \int_{0}^{\infty} \hat{M}(\lambda) dE(\lambda) f,$$

where \hat{M} is the Gelfand transform of M. Then, clearly, if a function F operates on $M \in B$, then

$$f * F \cdot M = \int_{0}^{\infty} F(\hat{M}(\lambda)) dE(\lambda) f.$$

THEOREM 2.1. Suppose G is of polynomial growth, let U and R be defined as in (0.5). Suppose $\varphi^* = \varphi \in L_n \cap L^2(G)$ with $\alpha > \beta + R/2 + 1$, then

$$||e(n\varphi)||_{L_{\beta}} = O(|n|^{3(\beta+R/2)+4})$$
 as $n \to \infty$.

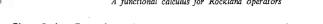
Proof. First we note the following fact:

If $\alpha \geqslant \beta$ and $g \in L_{\alpha}$ with supp $g \subset G \setminus U^{i}$, then

(2.2)
$$||g||_{L_{\beta}} \leq l^{\beta - \alpha} ||g||_{L_{\alpha}}.$$

In fact,

$$||g||_{L_{\beta}} = \int\limits_{G\setminus U^{l}} |g| \, w^{\beta} = \int\limits_{G\setminus U^{l}} |g| \, w^{\alpha} \, w^{\beta-\alpha} \leqslant ||g||_{L_{\alpha}} \, l^{\beta-\alpha}.$$



Since L_{α} is a Banach algebra, $e(\varphi) = \psi \in L_{\alpha}$ and also $\psi \in L^{2}(G)$. Moreover, for $n \ge 0$ we have

$$e(n\varphi) = (e+\psi)^{*n} - e,$$

where e is the unit element in M(G) — the delta measure at the unit element of G.

Now we fix n and replacing φ by $-\varphi$, if necessary, we assume that n > 0. Let

(2.3)
$$f = \psi \mathbf{1}_{mn^2}, \quad g = \psi \mathbf{1}_{cvm^2}.$$

Hence, since $\alpha \ge 1$, by (2.2), we have

For a measure μ in M(G) let

$$\lambda(\mu) = \sup \{ \|\mu * \xi\|_{L^{2}(G)} \colon \|\xi\|_{L^{2}(G)} = 1 \}.$$

Consequently, since

$$e + \psi = \sum_{j=0}^{\infty} \frac{(i\varphi)^{*j}}{j!}$$

and $\varphi = \varphi^*$, by the spectral theorem, $\lambda(e+\psi) = 1$, whence, by (2.4) we have $\lambda(e+f) \leq 1 + ||\psi||_{L} n^{-2}$ (2.5)

We write

(2.6)
$$||e+\psi\rangle^{*n}||_{M_{\beta}} = ||((e+f)+g)^{*n}||_{M_{\beta}}$$

$$\leq \sum_{n=0}^{n} \sum_{i=1}^{n} ||(e+f)^{a_{1}} * g^{b_{1}} * \dots * (e+f)^{a_{n}} * g^{b_{n}}||_{M_{\beta}},$$

where the inner summation extends over all sequences $a = (a_1, \dots, a_n)$ $b = (b_1, \ldots, b_n)$ of zeros and ones such that $a_1 + \ldots + a_n = m$, $b_1 + \ldots + b_n$ = n - m.

Now we fix two such sequences a and b and we estimate

$$(2.7) ||(e+f)^{a_1} * g^{b_1} * \dots * (e+f)^{a_n} * g^{b_n}||_{M_{\beta}}$$

$$\leq \int \dots \int ||(e+f)^{a_1} s_1 * \dots * (e+f)^{a_n} s_n||_{M_{\beta}} |g^{b_1}(s_1)| \dots |g^{b_n}(s_n)| ds_1 \dots ds_n$$

$$\leq \sum_{a=0}^{\infty} \int \int_{\Omega(a)} ||(e+f)^{a_1} s_1 * \dots * (e+f)^{a_n} s_n||_{M_{\beta}} |g^{b_1}(s_1)| \dots |g^{b_n}(s_n)| ds_1 \dots ds_n,$$

where for a measure μ and $M \subset G$ we write $\mu s(M) = \mu(Ms)$ and

$$\Omega(q) = \{(s_1, \ldots, s_n) \in G \times \ldots \times G \colon \max_i \tau(s_j^{b_j}) = q\}.$$

For a (s_1, \ldots, s_n) in $\Omega(q)$ we have

$$(2.8) \quad \|(e+f)^{a_1} s_1^{b_1} * \dots * (e+f)^{a_n} s_n^{b_n}\|_{\mathbf{M}_{\beta}}$$

$$\leq \begin{cases} \sum_{a_j=1} \|(e+f)^{a_1} s_1^{b_1} * \dots * (e+f)^{a_{j-1}} s_{j-1}^{b_{j-1}} * f s_j^{b_j} \dots s_n^{b_n}\|_{L_{\beta}} & \text{if} \quad \mathbf{a} \neq 0, \\ \|s_1 \dots s_n\|_{\mathbf{M}_{\beta}} \leq (1+nq)^{\beta} & \text{if} \quad \mathbf{a} = 0. \end{cases}$$

But, by (2.3),

$$\sup (e+f)^{a_1} s_1^{b_1} * \dots * (e+f)^{a_{j-1}} s_{j-1}^{b_{j-1}} * f s_j^{b_j} \dots s_n^{b_n}$$

$$\subset U^{a_1 n^2} U^q \dots U^{a_{j} n^2} U^q \dots U^q \subset U^{n^3 + nq}.$$

On the other hand, if $\xi \in L^2(G)$ and supp $\xi \subset U^m$, then

$$\|\xi\|_{L_{\beta}} = \int_{Dm} |\xi| \, w^{\beta} \leqslant (1+m)^{\beta} \|U^{m}\|^{1/2} \|\xi\|_{L^{2}(G)}.$$

Consequently, by (2.5),

$$\begin{split} \|(e+f)^{a_1} s_1^{b_1} * \dots * (e+f)^{a_{j-1}} s_j^{b_{j-1}} * f s_j^{b_j} \dots s_n^{b_n} \|_{L_{\beta}} \\ & \leq (1+n^3+nq)^{\beta} \lambda (e+f)^{a_1+\dots+a_{j-1}} (n^3+nq)^{r/2} \|f\|_{L^2(G)} \\ & \leq (1+\|\psi\|_{L_{\alpha}} n^{-2})^n \|\psi\|_{L^2(G)} (1+n^3+nq)^{\beta+R/2} \end{split}$$

and so, by (2.8), for a constant C depending on G and ψ only

$$\|(e+f)^{a_1} s_1^{b_1} * \dots * (e+f)^{a_n} s_n^{b_n}\|_{M_B} \le C(1+q)^{\beta+R/2} (2+n)^{3(\beta+R/2)+1}.$$

On the other hand, since

$$\Omega(q) \subset \bigcup_{b_j=1} \{(s_1, \ldots, s_n): s_j^{b_j} \in U^q \setminus U^{q-1}\},$$

by (2.2), we have

$$\int_{\Omega(q)} |g^{b_1}(s_1)| \dots |g^{b_n}(s_n)| \, ds_1 \dots ds_n$$

$$\leq \begin{cases} 0, & \text{if } \quad \mathbf{b} = 0 \text{ and } q > 1, \\ 1, & \text{if } \quad \mathbf{b} = 0 \text{ and } q = 1, \\ (n-m) ||g||_{L^{1}(G)}^{n-m-1} ||g||_{L^{\infty}} (q-1)^{-\alpha}, & \text{if } \quad \mathbf{b} \neq 0. \end{cases}$$

Thus, since $\alpha > \beta + R/2 + 1$, for $b \neq 0$ we have

$$\begin{split} & \int \dots \int \| (e+f)^{g_1} s_1 * \dots * (e+f)^{a_n} s_n \|_{M_{\beta}} |g^{b_1}(s_1)| \dots |g^{b_n}(s_n)| \, ds_1 \dots ds_n \\ & \leq C \| \psi \|_{L_{\alpha}} \| g \|_{L^1(G)}^{n-m-1} (2+n)^{3(\beta+R/2)+1} (n-m) \sum_{q=1}^{n} (1+q)^{\beta+R/2} (q-1)^{-\alpha} \\ & \leq C' \| g \|_{L^1(G)}^{n-m-1} n^{3(\beta+R/2)+2}, \end{split}$$

where C' is independent of n, a and b. Hence, by (2.6),

$$||(e+\psi)^{*n}||_{M_{\beta}} \leq C' n^{3(\beta+R/2)+2} \sum_{m=1}^{n} \binom{n}{m} ||g||_{L^{1}(G)}^{n-m-1}.$$

But, by (2.2),

$$||g||_{L^1(G)} \leqslant ||\psi||_{L_\alpha} n^{-2},$$

whence

$$\begin{aligned} ||(e+\psi)^{*n}||_{M_{\beta}} &\leq C' \, n^{3(\beta+R/2)+2} \, ||\psi||_{L_{\alpha}}^{-1} \, n^2 \, \sum_{m=0}^{n} \binom{n}{m} (||\psi||_{L_{\alpha}} n^{-2})^{n-m} \\ &\leq C'' \, n^{3(\beta+R/2)+4} \, (1+||\psi||_{L_{\alpha}} n^{-2})^{n}, \end{aligned}$$

which completes the proof of Theorem 2.1.

Corollary 2.2. Suppose $\varphi = \varphi^* \in L_{\alpha} \cap L^2(G) \subset L_{\beta}$, $\lambda(\varphi) < a$, $\alpha > \beta + R/2 + 1$, $F \in C_c^k(-a, a)$ with $k > 3(\beta + R/2 + 2)$ and F(0) = 0, then F operates on φ in L and there exists a measure μ in M_{β} such that

$$F \cdot \varphi = \varphi * \mu$$
.

Proof. We write $\psi = e(\varphi)$ and

$$(e+\psi)^{*n}-e=\psi*[e+(e+\psi)+...+(e+\psi)^{*n-1}].$$

Of course,

$$\psi = \varphi * v$$
, where $v = i \sum_{i=0}^{\infty} \frac{(i\varphi)^{*i}}{(i+1)!} \in M_{\alpha} \subset M_{\beta}$.

Hence, if

$$\mu_n = v * [e + (e + \psi) + ... + (e + \psi)^{*n-1}],$$

by Theorem 2.1,

$$||\mu_n||_{M_R} \leqslant C n^{3(\beta+R/2)+5},$$

whence, by assumption on F and (2.1), we obtain the result with

$$\mu = \sum_{n \in \mathbb{Z}} \widehat{F}(n) \, \mu_n.$$

The following corollary is an immediate consequence of Corollary 2.2 and (1.8).

COROLLARY 2.3. If $\varphi = \varphi^* \in \mathcal{L}_{\alpha,d,1}(G) \cap L^2(G)$ with $\lambda(\varphi) < a$, $\alpha > \beta + R/2 + 1$ and $F \in C_c^k(-a, a)$ with $k > 3(\beta + R/2 + 2)$ and F(0) = 0, then F operates on φ in L_{β} and $F \cdot \varphi \in \mathcal{L}_{\beta,d,1}$ and the map

$$C^k[-a, a] \ni F \to F \cdot \mathcal{L}_{\beta,d,1}$$
 is continuous.

On a nilpotent Lie group G (or more generally a Lie group of polynomial growth) let L be a hypoelliptic, left invariant differential operator which satisfies (0.1). Moreover, let the semi-group T' defined by (0.2) satisfy (0.4).

For a function $m \in C^k(\mathbb{R}^+)$ we write

$$||m||_{k,k'} = \sup \{(1+\lambda)^{k'} |m^{(j)}(\lambda)| : j = 0, ..., k, \lambda \in \mathbb{R}^+ \}$$

and by $\mathscr{S}_{k,k'}(R^+)$ we denote the space of functions m for which $||m||_{k,k'}$ is finite.

Let, finally, T_m be the operator defined by (0.3) for a bounded function m on \mathbb{R}^+ and let S and s(d, k) be the numbers of (0.1) and (1.10).

Then the following theorem holds.

THEOREM 2.4. Given β and d. If $k \geqslant 3(\beta+R/2+2)$ and $k' \geqslant 2+3(\beta+R/2+2)(s(2d,S)+S)$, then $m \in \mathcal{S}_{k,k'}(R^+)$ implies that $T_m f = f * M$, where $M \in \mathcal{S}_{\beta,d,1}(G)$ and $||M||_{\beta,d,1} \leqslant C ||m||_{k,k'}$, where C is independent of m in $\mathcal{S}_{k,k'}(R^+)$.

First we prove

LEMMA 2.5. Let

(2.9)
$$K(x) = \int_{0}^{\infty} e^{-t} \varphi_{t}(x) dt.$$

Then for every $\alpha \ge 0$

$$(2.10) \qquad \int |K(x)| \, w^{\alpha}(x) \, dx < \infty$$

and, if $l \ge s(2d, S) + S$,

$$(2.11) K^{*l} \in S_{\alpha,d,1} for all \ \alpha \geqslant 0.$$

Proof. It is easy to verify (cf. e.g. [5], Lemma 5.1) that if a function φ : $\mathbf{R}^+ \to \mathbf{R}^+$ satisfies

(2.12)
$$\varphi(s+t) \leq C(\varphi(s) + \varphi(t)), \quad \varphi(s+t) \leq \varphi(s) \varphi(t), \\ \sup \{\varphi(t): \ t \in (0, 1]\} < \infty.$$

then for constants C' and k

$$\varphi(t) \leqslant C'(1+t)^k.$$

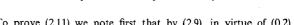
To verify (2.10) we note that by (1.3) and (1.4) the function

$$\varphi(t) = \langle |\varphi_t|, w^{\alpha} \rangle$$

satisfies (2.12). Hence

$$\int |K(x)| w^{\alpha}(x) dx \leq \int_{0}^{\infty} e^{-t} \langle |\varphi_{t}|, w^{\alpha} \rangle dt \leq C' \int_{0}^{\infty} e^{-t} (1+t)^{k} dt < \infty$$

and (2.10) follows.



To prove (2.11) we note first that by (2.9), in virtue of (0.2) and (0.4) $(1+L)u*K=u \quad \text{for} \quad u\in C_c^\infty(G).$

From this it follows that

$$(2.13) XI K*l \in L2(G) for |I| \leq d and I \geq s(d, S).$$

In fact, by (0.1) and (1.10), since
$$u * X^I K^{*l} = X^I (u * K^{*l})$$
,

$$\begin{split} |\langle u^*, \ X^I K^{*l} \rangle| &= |u * X^I K^{*l}(e)| \leqslant C \, ||(1+L)^S (u * X^I K^{*l})||_{L^2(G)} \\ &\leqslant C' \, ||(1+L)^{S(d,S)} (u * K^{*l})||_{L^2(G)} \leqslant C'' \, ||u^*||_{L^2(G)}. \end{split}$$

In particular, $K^{*S} \in L^2(G)$ and so

$$(2.14) X^l K^{*l} \in L^{\infty}(G) \text{for} l \ge s(d, S) + S.$$

We have to show that

$$\int |X^I K^{*l}(x)| w^{\alpha}(x) dx < \infty \quad \text{for} \quad l \ge s(2d, S) + S \quad \text{and} \quad |I| \le d.$$

Let f be a fixed function in $C_c^{\infty}(G)$ such that $f(x) = f(x^{-1}) \ge 0$ and $\int f(x) w^{-4\alpha}(x) dx = 1$. Let

$$w'(x) = w^{4\alpha} * f(x).$$

Then, by (1.3),

(2.16)
$$w'(x) \ge w^{4\alpha}(x) \int w^{-4\alpha}(y) f(y) \, dy = w^{4\alpha}(x),$$

$$w'(x) \le w^{4\alpha}(x) \int w^{4\alpha}(y) f(y) \, dy = C w^{4\alpha}(x).$$

Also for $X \in g$.

$$(2.17) \quad |Xw'(x)| = |w^{4\alpha} * Xf| \le w^{4\alpha}(x) \int w^{4\alpha}(y) |Xf(y)| \, dy = C_X w^{4\alpha}(x).$$

Now we proceed by induction on |I|. For |I| = 0 (2.15) is simply (2.10). Suppose $X^I = X_j X^J$ with |J| < d. We may also assume that α is so big that

$$\int w^{-2\alpha}(x)\,dx < \infty.$$

We have

$$\langle |X^I K^{*I}|, w^{\alpha} \rangle = \langle |X^I K^{*I}| w^{-3\alpha}, w^{4\alpha} \rangle$$

 $\leq \langle (X^I K^{*I})^2, w^{4\alpha} \rangle^{1/2} (\int w^{-2\alpha}(x) dx)^{1/2}.$

But, by (2.16) and (2.17),

$$\begin{split} & \langle (X^I \, K^{*l})^2, \, w^{4\alpha} \rangle \leqslant \langle (X^I \, K^{*l})^2, \, w' \rangle = \langle X^I \, K^{*l}, \, (X_J \, X^J \, K^{*l}) \, w' \rangle \\ & \leqslant |\langle X^I \, K^{*l}, \, X_J (X^J \, K^{*l} \, w') \rangle| + |\langle X^I \, K^{*l}, \, X^J \, K^{*l} \, X_J w' \rangle| \\ & \leqslant C \, \langle |X_J \, X^I \, K^{*l}|, \, |X^J \, K^{*l}| \, w' \rangle + C_{X_J} \, \langle |X^I \, K^{*l}|, \, |X^J \, K^{*l}| \, w' \rangle \\ & \leqslant C \, \langle |X_J \, X^I \, K^{*l}|, \, |X^J \, K^{*l}| \, w^{4\alpha} \rangle + CC_{X_J} \, \langle |X^I \, K^{*l}|, \, |X^J \, K^{*l}| \, w^{4\alpha} \rangle. \end{split}$$

Since $1 + |I| \le 2d$, by (2.14), both $X_j X^I K^{*l}$ and $X^I K^{*l}$ belong to $L^r(G)$ and, by inductive hypothesis, $|X^J K^{*l}| w^{4\alpha}$ belongs to $L^1(G)$. Thus (2.15) follows and the proof of Lemma 2.5 is complete.

Proof of Theorem 2.4. Let

$$F(\xi) = \begin{cases} m(\xi^{-1/l} - 1) & \text{for} \quad 0 < \xi \le 1, \\ 0 & \text{for} \quad -\pi \le \xi \le 0. \end{cases}$$

It is clear that F can be extended to a function in $C_c^k [-\pi, \pi]$ if and only if

$$m \in C^k(\mathbb{R}^+)$$
 and $\lim_{\lambda \to \infty} (1+\lambda)^{1+ji} m^{(j)} = 0$ for $j = 0, ..., k$.

By Lemma 2.5, if $l \ge s(2d, S) + S$, then $K^{*l} \in \mathcal{S}_{\alpha,d,1}(G)$ for all $\alpha \ge 0$, and, by Corollary 2.3, if $k > 3(\beta + R/2 + 2)$, then F operates on K^{*l} and

$$M = F \cdot K^{*l} \in \mathcal{S}_{\beta,d,1}(G).$$

In other words, if $k' \ge 2+3(\beta+R/2+2)(s(2d,S)+S)$, then $m \in \mathcal{S}_{k,k'}(R^+)$ implies that $M \in \mathcal{S}_{\beta,d,1}(G)$. But an easy calculation shows that

$$\widehat{M}(\lambda) = F((1+\lambda)^{-1}) = m(\lambda),$$

which completes the proof.

Another application of the functional calculus is the following Theorem 2.6. Suppose on a Lie group of polynomial growth

$$T^{t}f = f * \varphi_{t}, \quad \varphi_{t} = \varphi_{t}^{*} \in \mathscr{S}(G)$$

is a semi-group of operators strongly continuous on $L^2(G)$. Then the mapping

$$\mathbf{R}^+ \ni t \to \varphi_t \in \mathscr{S}(G)$$

extends to a holomorphic map

$$\{z: \operatorname{Re} z > 0\} \ni z \to \varphi_z \in \mathscr{S}(G).$$

Proof. For a fixed β we let A to be the commutative *-subalgebra of L_{β} generated by φ_t , t > 0. As we know, the Gelfand space of A is R^+ and $\hat{\varphi}_t(\lambda) = e^{-t\lambda}$.

For a fixed number a > 0 we let

$$C_a = \{z \in C : \text{ Re } z > a\}.$$

Let $k > 3(\beta + R/2 + 2)$ and let

$$m = \lceil k/a \rceil + 1$$
.

For z in C_a we select a function $F_z \in C_c^k[-\pi, \pi]$ in such a way that

$$F_z(x) = x^{mz} \quad \text{for} \quad 0 < x \le 1$$

and the map

(2.18)
$$C_a \ni z \to F_z \in C^k[-\pi, \pi]$$
 is continuous.

Since $\varphi_{1/m} \in \mathcal{S}(G)$, by Corollary 2.3, $F_z \cdot \varphi_{1/m} \in \mathcal{S}_{\beta,l,1}(G)$ for all l and, moreover, by (2.18), the map

(2.19)
$$C_a \ni z \to F_z \cdot \varphi_{1/m} \in \mathscr{S}_{\beta,l,1} \subset L_\beta$$
 is continuous.

We put

$$\varphi_z = F_z \cdot \varphi_{1/m}$$

and we see that

$$\hat{\varphi}_z(\lambda) = e^{-z\lambda}$$

which shows that φ_z does not depend on the selection of m and the map $z \to \varphi_z$ is an extension of $t \to \varphi_t$, t > a.

By (2.19), for every C^1 curve y in C_n we have

$$\int_{\gamma} \varphi_z \, dz \in \mathcal{S}_{\beta,l,1}(G) \subset L_{\beta}$$

and for every $\lambda \ge 0$

$$\int_{\gamma} \hat{\varphi}_z(\lambda) dz = 0, \quad \text{whence} \quad \int_{\gamma} \varphi_z dz = 0$$

which shows that $C_a \ni z \to \varphi_z \in \mathscr{S}_{\beta,l,1}(G)$ is holomorphic. Since a, l, β are arbitrary, the proof is complete.

References

- J. Diugosz, Almost everywhere convergence of Riesz means of Laguerre expansions, to appear.
- [2] G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, Princeton University Press, 1982.
- [3] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie gradué, Comm. in Partial Differential Equations, 4 (8) (1978), 899-958.
- [4] A. Hulanicki, Commutative subalgebra of L¹(G) associated with a subelliptic operator on a Lie group, Bull. Amer. Math. Soc. 81 (1975), 121-124.
- [5] -, A class of convolution semi-groups of measures on a Lie group, Lecture Notes in Math. 828 (1980), 82-101.
- [6] -and Joe W. Jenkins, Almost everywhere summability on nilmanifolds, Trans. Amer. Math. Soc. 278 (1983), 703-715.
- [7] Joe W. Jenkins, Dilations and gauges on nilpotent Lie groups, Colloq. Math. 41 (1979), 91-101.
- [8] Y. Katznelson, An introduction to harmonic analysis, John Wiley and Sons, Inc., 1968.

A. Hulanicki

icm[©]

STUDIA MATHEMATICA, T. LXXVIII. (1984)

[9] T. Pytlik, On the spectral radius of elements in group algebras, Bull. Acad. Polon. Sci. 21 (1973), 899-902.

[10] E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. of Math. Studies, Princeton Univ. Press, Princeton 1970.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES WROCŁAW, POLAND

266

Received June 21, 1983

(1772)

An example of a continuum of pairwise non-isomorphic spaces of C^{∞} -functions

by

MICHAEL TIDTEN (Wuppertal, FRG)

Abstract. There is given a family (K_τ) of compact sets K_τ in the Euclidean plane with τ ranging in a real interval such that the Whitney spaces $\mathscr{E}(K_\tau)$ are pairwise non-isomorphic. A successful distinction of the topological structures which is sufficient for this result is managed by a certain topological property involving an increasing monotone function on R_+ . After Zaharyuta had presented a continuum of pairwise non-isomorphic spaces of analytic functions the open question for an analogous example in the frame of C^∞ -functions is clarified by a positive answer.

In papers [2], [3], [8] and [9], e.g., linear topological invariants or special properties of locally convex spaces were used to distinguish the topological structures of (F)-spaces. Zaharyuta presented in his paper [9] a continuum of pairwise non-isomorphic spaces of analytic functions, i.e. a family $\{G_{\tau}\}$ of domains G_{τ} such that τ ranges in [0, 1], e.g., and $\mathcal{O}(G_{\tau})$ is not isomorphic to $\mathcal{O}(G_{\sigma})$ for different σ , τ . The existence of such a continuum of spaces of C^{∞} -functions, however, is an open problem till now.

This paper gives an affirmative answer to this question by presenting a family $\{K_{\tau} | \tau \in [a, b]\}$ of compact sets K_{τ} in \mathbb{R}^2 which describes a continuum of this kind consisting of Whitney spaces $\mathscr{E}(K_{\tau})$. The method applied in the paper is different from Zaharyuta's one and — due to an idea of D. Vogt — makes use of certain properties of (F)-spaces called (\mathbf{DN}_{φ}) here (cf. [1], [6]).

The sets K_{τ} are given by the graphs of monotonically increasing (real) analytic functions Φ_{τ} on R_{+} such that the family $\{\Phi_{\tau}\}$ is monotone in τ . The parameter τ plays an essential role only in the boundary behaviour of Φ_{τ} near the point 0. Larger values of τ cause extremely faster convergence of $\Phi_{\tau}(x)$ to 0 with $x \to 0+$. All the K_{τ} have not the extension property, i.e. there exists no extension operator from $\mathscr{E}(K_{\tau})$ to $\mathscr{E}(R^{2})$ (see [4], Beispiel 2). This is a necessary consequence if the K_{τ} shall have interior points. Since if $K \subseteq R^{n}$ has at least one interior point and has the extension property, then $\mathscr{E}(K)$ is isomorphic to the space s of rapidly decreasing functions (see [7], Satz 4.1).

DEFINITION 1 (cf. [6]). Let $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ be a monotonically increasing function. An (F)-space E is said to have the *property* (\mathbf{DN}_{φ}) if the following