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Let a linear regression be given. For detecting change-points, it is
usual to consider the sequence of partial sums of least squares residuals
whence a partial sums process is defined. Given a sequence of exact experi-
mental designs, we consider for each design the corresponding partial sums
process. If the sequence of designs converges to a continuous design, we
derive the explicit form of the limit process of the corresponding sequence
of partial sums processes. This is a complicated function of the Brownian
motion. These results are useful for the problem of testing for change of
regression at known or unknown times.

1. Introduction. In the literature on “detecting change-points” in linear
regression models, it is usual to consider the sequence of the partial sums
of the least squares residuals or variants of it; see, for instance, Gardner
(1969), Brown, Durbin and Evans (1975), Sen and Srivastava (1975), MacNeill
(1978a), Jandhyala and MacNeill (1991), Jandhyala (1993), Watson (1995) and
the references cited there. For solving change-point problems, the so-called
residual partial sums processes are useful; these are the limit processes of
sequences of stochastic processes defined by partial sums of regression resid-
uals [see MacNeill (1978a), Jandhyala and MacNeill (1989, 1991, 1992) and
Tang and MacNeill (1993)]. Under certain conditions, MacNeill (1978b) de-
rived the explicit form of the residual partial sums processes for general linear
regression residuals. These processes are complicated functions of the stan-
dard Brownian motion.

In this paper we consider a generalized approach by assuming that the ob-
servations are taken according to an arbitrary “design” in contrast to their be-
ing sampled equidistantly. We derive the corresponding residual partial sums
processes for general linear regression residuals. By our approach we can gen-
eralize the result of MacNeill (1978b) under weaker assumptions.

There are several points of view from which we are interested in arbitrary
“designs.” First, for economic, technical or ecological reasons or by prior infor-
mation, it is possible that the statistician cannot or will not sample equidis-
tantly. Next, our approach enables us to derive Bayes-type statistics by using a
design according to the prior information on the change-point. This is the nat-
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ural way in contrast to the Bayes-type method [following Chernoff and Zacks
(1964)] for regression models that weights the sums of the residuals according
to a prior; see Jandhyala [(1993), page 324]. Further, let us consider tests for
detecting change-points which are based on the sequence of the partial sums of
the least squares residuals. Usually, the sample is taken equidistantly. But is
this the best design for detecting change-points? This problem can be treated
asymptotically with the help of our generalized approach to residual partial
sums processes. Note that in the literature this problem of designing has not
been handled yet (as far as the author knows). A forthcoming paper, Bischoff
and Miller (1998), determines asymptotically optimal tests and asymptoti-
cally optimal designs for the problem of testing whether a change-point does
or does not occur. There it can be seen that for many problems it is not optimal
to sample equidistantly.

To explain the problem in more detail, let us consider a sequence of real
random variables ε1� ε2� ε3� � � � being independent and identically distributed
with mean 0 and variance σ2 > 0. We assign εεεn = �ε1� � � � � εn�� to the stochas-
tic process �σ√n�−1Tn�εεεn� in C�0�1� where

Tn�a��z� =
�nz�∑
i=1

ai +
(
nz− �nz�)a�nz�+1� z ∈ �0�1��

with a = �a1� � � � � an�� ∈ R
n, �s� = max�n ∈ N0 �n ≤ s� and

∑0
i=1 ai = 0. It is

well-known by Donsker’s theorem [see Billingsley (1968), Theorem 10.1] that
�σ√n�−1Tn�εεεn� converges weakly to the Brownian motion in C�0�1�; note, as
usual, we consider the uniform topology on C�0�1�.

MacNeill (1978b) proved a similar result for the least squares residuals
of a regression model. Throughout the paper we shall consider the following
regression model: let f1� � � � � fm� � → R be known measurable regression
functions where � ⊆ R is the experimental region. As usual we write f�t� for
�f1�t�� � � � � fm�t���, t ∈ � . Let us consider a triangular array tnj, 1 ≤ j ≤ n,
n ∈ N, of arbitrary experimental conditions, that is tnj ∈ � . We assume for
each n ∈ N,

tn1 ≤ tn2 ≤ · · · ≤ tnn�

Each �tn1� � � � � tnn� is called an (exact) design (for n observations). Note that
we do not assume that tni �= tni+1. Corresponding to this array of experimental
conditions, we have a triangular array of random variables Ynj, 1 ≤ j ≤ n,
n ∈ N, defined by

Ynj =
m∑
i=1

βifi�tnj� + εnj

where � = �β1� � � � � βm�� ∈ R
m is the unknown parameter vector of inter-

est and εεεn = �εn1� � � � � εnn�� is a vector of stochastic independent and identi-
cally distributed real-valued random variables with E�εnj� = 0 and var�εnj� =
σ2 > 0.
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Let n ∈ N be fixed. In the usual matrix formulation we have

Yn =Xn�+ εεεn�(1.1)

where Xn is the model matrix corresponding to the design �tn1� � � � � tnn�,
that is the �s� r�th component of Xn is fr�tns�. Then for � being estimable,
rank�Xn� must be equal to m. We assume that rank�Xn� = m for all n ≥ n0
and in the sequel we consider n ≥ n0 only. Given model (1.1) the best lin-
ear unbiased estimation for Xn� is given by the least squares estimation
prXn

Yn = Xn�X�nXn�−1X�nYn and the corresponding least squares residual
vector is given by

rn = �rn1� � � � � rnn�� = prX⊥n Yn = prX⊥n εεεn�

where prXn
= Xn�X�nXn�−1X�n and prX⊥n = In − Xn�X�nXn�−1X�n are

the orthogonal projectors onto range�Xn� and onto the orthogonal comple-
ment of range�Xn�, respectively. Then let us consider the stochastic process
�σ√n�−1Tn�rn��z�, z ∈ �0�1�, in C�0�1� corresponding to rn.

Under the conditions that

� = �0�1� and tni =
i

n
� 1 ≤ i ≤ n� n ∈ N�(1.2)

f1� � � � � fm are continuously differentiable,

J−1 exists where J = lim
n→∞

1
n

(
X�nXn

)
�

MacNeill (1978b) showed that �σ√n�−1Tn�rn� converges weakly in C�0�1� to
the Gaussian process Bf defined by

Bf�z� = B�z� +
(∫ z

0
f�x�dx

)�
J−1

(∫ 1

0
B�x� d

dx
f�x�dx−B�1�f�1�

)
�

z ∈ �0�1��
where B�t� denotes the standard Brownian motion in C�0�1�; see also Re-
mark 3.3. Functionals of Bf�z� can be used as test statistics for change of re-
gression at known or unknown times; see MacNeill (1978a), Jandhyala (1993)
and the references cited there. The expression Bf and the generalization of
Bf given in this paper are called residual partial sums processes. Further, it
is worth mentioning that certain properties of the sample path behavior of
residual partial sums processes are shown in Bischoff (1996). In Bischoff and
Miller (1998) the problem of testing the null hypothesis

H0� a change-point occurs

against the alternative:

K� a change-point does not occur

is considered. Based on Bf (and its generalization, respectively) the most pow-
erful test statistic is determined there. Further, the problem of experimental
design is investigated for the test problem given above.
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There are some practical reasons why we are interested in generalizing the
result of MacNeill to a sequence of designs which does not fulfill (1.2):

1. (Bayesian view.) In the literature on change-point problems, Bayes-type
methods were introduced by Chernoff and Zacks (1964). Following them, it
was suggested for change-point problems in regression models to weight the
partial sums of the residuals according to a discrete prior on the unknown
change-point; see Jandhyala (1993) and the references cited there. But if
some prior information is available on the change-point, that is, if there
exists a probability measure P0 on the experimental region according to
which the change-point is distributed, then it seems to be more convenient
to sample according to the probability measure P0. Note that we do not
consider Bayes-type statistics further in this paper. For more information
we refer the reader to Jandhyala (1993) and Bischoff (1996).

Here we should mention how we can sample according to a probability
measure P0. That is, how an exact design �tn1� � � � � tnn� is chosen according
to P0: choose tni = Q0�i/n − z0� with z0 ∈ �0�1/n� arbitrarily fixed where
Q0 is the quantile function of P0. Note that throughout the paper our
distribution functions and hence our quantile functions are continuous from
the right. Further, a probability measure on the experimental region is
called continuous design below.

2. (Technical or economic view.) There may be technical or economic reasons
preventing sampling equidistantly.

3. (Design of experiments.) Design of experiments can be considered for the
problem of testing for change of regression at known or unknown times.
For solutions for such problems with the help of the functional central limit
theorem given in Section 2, we refer to the forthcoming paper of Bischoff
and Miller (1998).

Moreover, there are some theoretical interests in considering a more general
approach. Obviously, the residual partial sums process Bf depends on the vec-
tor of regression functions f = �f1� � � � � fm��. However, one wonders whether
Bf depends on the sequence of designs �tn1� � � � � tnn�n∈N or only on the “limit”
of the designs �tn1� � � � � tnn� for n → ∞. To make the last sentence precise
we have to explain the meaning of “limit.” To this end, note that each design
�tn1� � � � � tnn� ∈ � n uniquely corresponds to a discrete probability measure Pn

on � by

Pn =
1
n

n∑
i=1

P�tni��(1.3)

where P�t� denotes the one point measure in t. In the sequel we identify a
design with its representation as a discrete probability measure and we call
each probability measure on � continuous design. Coming back to the result
of MacNeill, we see that the sequence of designs �1/n�2/n� � � � �1� converges
to the Lebesgue-measure on �0�1�. (We will explain later in which sense the
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convergence is meant.) Now several questions arise; for instance, the following:

1. Does the limit process Bf in the result of MacNeill depend on the sequence
of designs or only on the limit of the sequence of designs, that is, only on
the Lebesgue-measure on �0�1�? (This means: does an “invariance principle”
hold true?)

2. Can we define a residual partial sums process for each convergent sequence
of designs?

3. Can we define a residual partial sums process for each continuous design?

It is worth mentioning that we need not assume for our result that
f1� � � � � fm are differentiable. It is not even necessary that f1� � � � � fm are
continuous if in return certain conditions are assumed on P0. This is impor-
tant for regression models such as Haar regression [see Herzberg and Traves
(1994)], where the regression functions f1� � � � � fm are not continuous. How-
ever, in the present paper we restrict ourselves to the case that f1� � � � � fm

are continuous and P0 is arbitrary.
The paper is organized as follows. In Section 2 we introduce the residual

partial sums process for a sequence of designs converging to a continuous de-
sign. Moreover, it is discussed there what kind of convergence for the sequence
of designs is needed for the functional central limit theorem which is given
in Section 2 as well. Note that the sequence of partial sums processes in Sec-
tion 2 is defined on �0�1� where z ∈ �0�1� corresponds with the observations
belonging to the experimental conditions tn1� � � � � tn�nz�. It is more convenient,
however, to consider these processes on the experimental region. Therefore we
transform these processes to the experimental region in Section 3. For further
reasons for this transformation, see Section 3. Finally, in the Appendix some
technical proofs are given.

2. Residual partial sums processes.

2.1. Preliminary remarks. Let us consider the regression model defined
in Section 1 with experimental region � = �a� b� ⊆ R; let �tn1� � � � � tnn� be a
design and let Pn be its representation as a probability measure according to
(1.3). In the sequel we do not distinguish between a design, its representation
as a probability measure according to (1.3) and the distribution function Fn,
say, corresponding to Pn. We define Fn� z�t� �= min�Fn�t�� �nz�/n�, z ∈ �0�1�.
Then we have, with the notation f�t� = �f1�t�� � � � � fm�t���,

1
n
X�nXn =

∫
�
f�t�f�t��Pn�dt�

and

1
n

1�n� zXn =
1
n

�nz�∑
j=1

f�tnj
�� =

∫
�
f�t��Fn� z�dt�� z ∈ �0�1��

where 1n� z ∈ R
n is the vector whose first �nz� components are one and the

remainder is zero. For our results we need that the sequence of designs Fn
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converges uniformly to a continuous design F0, say,

sup
t∈�a� b�

∣∣Fn�t� −F0�t�
∣∣→ 0 for n→∞�(2.1)

To avoid misunderstanding we repeat that each probability measure P0 on
the experimental region as well as the corresponding distribution function F0
is called continuous design, but this does not imply that F0 is continuous.

Note that condition (2.1) is equivalent to the fact that Fn� z converges uni-
formly to F0� z for each z ∈ �0�1� where F0� z�t� = min�F0�t�� z�. Hence condi-
tion (2.1) implies

Fn converges weakly to F0 and Fn� z converges weakly to
F0� z for all z ∈ �0�1�.

Under the additional assumption

f1� � � � � fm continuous�

we have then, by using the definition of weak convergence pointwise,

lim
n→∞

1
n
X�nXn = lim

n→∞

∫
�
f�t�f�t��Pn�dt� =

∫
�
f�t�f�t��P0�dt� =� J�

lim
n→∞

1
n

1�n�zXn = lim
n→∞

∫
�
f�t��Fn� z�dt� =

∫
�
f�t��F0� z�dt�� z ∈ �0�1��

Let us assume

rank�J� =m�(2.2)

It is obvious that (2.2) is fulfilled if and only if the regression functions
f1� � � � � fm are linearly independent in L2�P0� where L2�P0� is the Hilbert
space of quadratic integrable functions with respect to P0.

Remark 2.1. Given a continuous design P0, in a natural way we can then
construct a sequence of designs �Pn� with Pn = �1/n�

∑n
i=1 P�tni� converging

uniformly [according to (2.1)] to P0: for example, we can choose tni �= Q0�i/n�,
1 ≤ i ≤ n, where Q0 is the quantile function of P0.

2.2. Functional central limit theorem. In Section 2.1 all integrals are
Lebesgue integrals. But in the following we also consider Riemann–Stieltjes
integrals. Integrals obtained by the Riemann–Stieltjes approach are denoted
by

∫ �R�. To understand this in more detail, have a look at the formula for
Bf�P0

�z� given in Theorem 2.2. Then
∫
� f�t�F0� z�dt� and J are obtained

as limits via weak convergence as described in Section 2.1 above, but∫ �R�
� B�F0�t��f�dt� is obtained as the limit of Riemann–Stieltjes sums. Ob-

viously, the last integral coincides with the corresponding measure integral.
However, for getting more insight into the proof of Theorem 2.2 and where
and why the assumptions are needed, it seems to be more convenient to
distinguish between these integral notions.
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Now we are able to prove a generalization of the theorem given in MacNeill
(1978b).

Theorem 2.2. Let the regression functions f1� � � � � fm be continuous and
of bounded variation. Let the conditions (2.1) and (2.2) be fulfilled for f1�
� � � � fm, the sequence of designs �Pn� and the continuous design P0. Then
�σ√n�−1Tn�rn� converges weakly in C�0�1� to the Gaussian process Bf�P0

,
defined by

Bf�P0
�z� = B�z� +

(∫
�
f�t�F0� z�dt�

)�

×J−1
(∫ �R�

�
B
(
F0�t�

)
f�dt� −B�1�f(Q0�1�

))
�

where∫ �R�
�

B
(
F0�t�

)
f�dt� =

(∫ �R�
�

B
(
F0�t�

)
f1�dt�� � � � �

∫ �R�
�

B
(
F0�t�

)
fm�dt�

)�
�

Proof. Let us consider the following mapping for each n ∈ N:

Vn� C�0�1� → R
n�

u �→
(
u

(
1
n

)
− u�0�� u

(
2
n

)
− u

(
1
n

)
� � � � � u�1� − u

(
n− 1
n

))�
�

The function

φn� C�0�1� → C�0�1�� u �→ Tn

(
prX⊥nVn�u�

)
is continuous, linear and idempotent; that is, φn is a continuous projector. By
Lemma A.1 in the Appendix, we have for u ∈ C�0�1�,

u∗ �= lim
n→∞X�nVn�u�

= f
(
Q0�1�

)
u�1� − f

(
Q0�0�

)
u�0� −

∫ �R�
�

u
(
F0�t�

)
f�dt��

Thus by Section 2.1 we get for u ∈ C�0�1�,
φ�u��z� �= lim

n→∞φn�u��z�

= lim
n→∞

[
Tn

(
Vn�u�

)�z� −Tn

(
Xn�X�nXn�−1X�nVn�u�

)�z�]

= u�z� − u�0� − lim
n→∞

[
1
n

1�n� zXn

(
1
n
X�nXn

)−1

X�nVn�u�
]

= u�z� − u�0� −
∫
�
f�t��F0� z�dt�J−1u∗� z ∈ �0�1��

Note that φ is linear and continuous. Further, the above convergence holds
true with respect to the uniform topology on �0�1� for each u ∈ C�0�1� and
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lim supn→∞ �φn� < ∞. However, we do not have φn → φ with respect to the
operator norm, but we obtain a weaker property of the sequence �φn�. If un

converges to u in C�0�1�, then we get∥∥φ�u� −φn�un�
∥∥ ≤ ∥∥�φ−φn��u�

∥∥+ ∥∥φn

∥∥ ∥∥u− un

∥∥
→ 0 for n→∞�

(2.3)

Note that by construction we have

φn

(
Tn�εεεn�

) = Tn�rn��
Because (2.3) holds true and �1/σ√n�Tn�εεεn� converges weakly to the Brow-
nian motion B, the stochastic process �1/σ√n�Tn�rn� converges weakly to
the limit process φ�B� of φn��1/σ

√
n�Tn�εεεn�� by Theorem 5.5 of Billingsley

(1968). Hence the assertion follows by noting that B�0� = 0 almost surely. ✷

Remark 2.3. Theorem 2.2 and Remark 2.1 imply that for each continuous
design a residual partial sums process exists under the following assumptions:

The regression functions f1� � � � � fm are continuous and of
bounded variation, condition (2.2) is fulfilled.

This process does not depend on the sequence of designs converging uniformly
to the “limit” design P0 but only on P0. That means: we have an “invariance
principle.”

Remark 2.4. If σ2 is unknown, then without altering the asymptotic dis-
tribution theory, σ2 may be replaced with a consistent estimator, such as the
usual variance estimator based on the sum of squares of residuals.

Remark 2.5. Analogous formulas as given in Corollary 3.2 hold true for
Bf�P0

.

3. Transformation to the experimental region. In Theorem 2.2 the
stochastic processes have paths in C�0�1� but it seems to be more convenient
to consider corresponding processes with paths in D�a� b� because �a� b� is
the experimental region. (Note that as usual, D�a� b� is the set of all func-
tions f� �a� b� → R being continuous from the right on �a� b� and with left-
hand limits on �a� b�.) For example, let us take exact k > 1 experiments
with the experimental condition t = a; that is, tn1 = · · · = tnk = a < tnk+1,
and let rn1� � � � � rnk be the corresponding residuals. Then the residual partial
sums process �σ√n�−1Tn�rn��z� for z = i/n is given by �σ√n�−1 ∑i

j=1 rnj,
i = 1� � � � � k. The values of the partial sums process �σ√n�−1Tn�rn��z� for
z ∈ �0� k/n� depend on the numbering of the residuals rn1� � � � � rnk, but the
value for z = k/n is independent of the order and gives the information cor-
responding to the observations taken in t = a. Such problems do not occur for
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the transformed process; note that the value of the transformed process for
s = a is �σ√n�−1Tn�rn��k/n�.

Note that we have to use D�a� b� instead of C�a� b� since Fn, n ∈ N and F0
are elements of D�a� b� in general. We give D�a� b� the uniform topology—the
topology given by the uniform metric ρ�x�y� = supt �x�t�−y�t��. Theorem 2.2
and Lemma A.2 imply the following theorem.

Theorem 3.1. Let the assumptions of Theorem 2.2 be fulfilled. Then
�σ√n�−1Tn�rn� ◦ Fn converges weakly in D�a� b� with respect to the uniform
topology to the process Bf�P0

◦F0 where the limit process may be written as

Bf�P0
◦F0�s� = B�F0�s�� +

(∫
�a� s�

f�t�F0�dt�
)�

×J−1
(∫ �R�

�
B�F0�t��f�dt� −B�1�f�Q0�1��

)
�

Next we give some other useful formulas for Bf�P0
◦F0. These formulas are

consequences of well-known results of the theory of integration. Note that for
parts (i) and (ii), integration by parts is used.

Corollary 3.2. Under the assumptions of Theorem 2.2, the following for-
mulas hold true for the limit process Bf�P0

◦F0:

�i� Bf�P0
◦F0�s� = B�F0�s��

+
(∫
�a� s�

f�t�F0�dt�
)�

J−1
(∫ �R�

�
f�t�B�F0�dt��

)
�

�ii� Bf�P0
◦F0�s� = B�F0�s��

−
(∫
�a� s�

F0�t� f�dt� −F0�s�f�s� +F0�a�f�a�
)�

×J−1
(∫ �R�

�
B�F0�t��f�dt�−B�1�f�Q0�1��

)
�

�iii� If additionally F0 and f are absolutely continuous, then

Bf�P0
◦F0�s� = B�F0�s�� −

(∫
�a� s�

f�t�φ0�t�dt
)�

×J−1
(∫ �R�

�
B�F0�t��h�t�dt−B�1�f�Q0�1��

)
�

where F0�s� −F0�a� =
∫
�a� s�φ0�t�dt and f�s� − f�a� = ∫

�a� s� h�t�dt.

Remark 3.3. The most general result mentioned in MacNeill (1978b) is a
special case of Corollary 3.2(iii). MacNeill (1978b) assumed: F0 is absolutely
continuous and strictly increasing and f is continuously differentiable.
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APPENDIX

Let us denote the support of P0 by D. In order to simplify the notation we
assume that a, b ∈ D. Then �a� b�\D can be written as a disjoint sum of open
intervals:

�a� b�\D =
∞∑
i=1

�ai� bi� with ai ≤ bi�

Indeed the above assumption can be supposed without loss of generality which
can be seen by the same technique as used in part (b) of the proof below.

Lemma A.1. Let the conditions of Theorem 2.2 be fulfilled. Then for each
u ∈ C�0�1� the following equation holds true:

lim
n→∞X�nVn�u� = f

(
Q0�1�

)
u�1� − f

(
Q0�0�

)
u�0� −

∫ �R�
�

u�F0�t��f�dt��
where Vn is defined in the proof of Theorem 2.2.

Proof. The proof is divided in two parts depending on the structure of the
support D of F0.

(a) First, let the support D of F0 be an interval. Then we have � = �a� b� =
D because it is assumed a, b ∈ D.

Let us consider the design �tn1� � � � � tnn� and note that Fn is the distribution
function corresponding to this design. Because F0�D is strictly increasing there
exist numbers

z1�n� < · · · < zl�n��n� ∈ F0�D� = �0�1�
with {

Q0
(
z1�n�

)
� � � � �Q0

(
zl�n��n�

)} = �tn1� � � � � tnn��
where Q0 is the quantile function of F0. Thereby we obtain for fixed u ∈
C�0�1�,

f�tnn�u�1� − f�tn1�u�0� −X�nVn�u�

=
n∑

i=2

�f�tni� − f�tni−1��u
(
i− 1
n

)

=
l�n�∑
j=2

[
f�Q0�zj�n��� − f�Q0�zj−1�n���

]
u�Fn�Q0�zj−1�n���� =� An�

Consider the sum
l�n�∑
j=2

[
f�Q0�zj�n��� − f�Q0�zj−1�n���

]
u�F0�Q0�zj−1�n����

+ �f�Q0�z1�n��� − f�a��u�0� + [
f�b� − f�Q0�zl�n��n���

]
u�1� =� In�

In order to show the assertion of this section it suffices to prove (i) �In−An� → 0
for n→∞ and (ii) In→

∫ �R�
D u�F0�t��f�dt� for n→∞.
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(i) Let ε > 0. Then (2.1) implies

∃n0 ∈ N ∀n ≥ n0 ∀ t ∈ �a� b�� ∣∣u(F0�t�
)− u

(
Fn�t�

)∣∣ < ε�

Further by (2.1) and because F0 is strictly increasing, we have Q0�z1�n�� → a,
Q0�zl�n��n�� → b for n→∞. Thus we obtain for sufficiently great n,

�In −An� =
∣∣∣∣
l�n�∑
j=2

[
f
(
Q0�zj�n��

)− f
(
Q0�zj−1�n��

)]
× [

u
(
F0�Q0�zj−1�n���

)− u
(
Fn�Q0�zj−1�n���

)]
+ [

f
(
Q0�z1�n��

)− f�a�]u�0� + [
f�b� − f

(
Q0�zl�n��n��

)]
u�1�

∣∣∣∣
≤ ε

[l�n�∑
j=2

∣∣f(Q0�zj�n��
)− f

(
Q0�zj−1�n��

)∣∣+ ∣∣u�0�∣∣+ ∣∣u�1�∣∣]�
whence �In−An � → 0 for n→∞ because f has bounded variation on �a� b�.

(ii) Let ε > 0. Let u ∈ C�0�1� be fixed. Then

∃ δ ∈ �0�1� ∀y� z ∈ �0�1�� �y− z� < δ ⇒ �u�y� − u�z�� < ε�

Note, for each choice s1� � � � � sm ∈ �a� b� with

a = s1 < s2 < · · · < sm = b�

we have

1
{
i ∈ �1� � � � �m− 1�� ∣∣F0�si+1� −F0�si�

∣∣ ≥ δ
} ≤ [

1
δ

]
=� q�

Next

∃γ > 0 ∀ s� t ∈ �a� b�� �s− t� < γ ⇒ ∣∣f�s� − f�t�∣∣ < ε

q
�

Let us choose s1� � � � � sm ∈ �a� b� such that

a = s1 < s2 < · · · < sm = b�

si+1 − si < γ for i = 1� � � � �m− 1�

Then with

A �= {
i ∈ �1� � � � �m��∣∣u�F0�si+1�� − u�F0�si��

∣∣ ≥ ε
}

we obtain ∑
i∈A

∣∣f�si+1� − f�si�
∣∣ < q

ε

q
= ε�

Hence, condition (1.2.27) of Stroock (1994) is fulfilled, whence u�F0�·�� is
Riemann–Stieltjes integrable with respect to f. [Note that the above fact can
be shown in another way that we mention shortly. The function f corresponds
to a signed measure µ, say. Because the discontinuties of F0�·� are countable,
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we recognize that u�F0�·�� is µ-a.s. continuous. Hence, u�F0�·�� is Riemann–
Stieltjes integrable with respect to f; see Stroock (1994), Theorem 5.12.]

Further, by (2.1) and because F0 is strictly increasing we get

∃n0 ∈ N ∀n ≥ n0 ∀j ∈ �1� � � � � l�n� + 1� �
λ
(�Q0�zj−1�n���Q0�zj�n���

) = Q0
(
zj�n�

)−Q0
(
zj−1�n�

)
< ε�

where λ is the Lebesgue-measure on R and z0�n� = 0, zl�n�+1�n� = 1. Thus In

converges to the Riemann–Stieltjes integral
∫ �R�
D u�F0�t��f�dt�.

(b) Next let the support D of P0 be arbitrary. Let ε > 0. By (2.1) we can
choose n0 ∈ N such that ∀n ≥ n0 ∀ t ∈ D ∃j ∈ �1� � � � � n�� � t − tnj � < ε/2.
Next, we choose s1� � � � � sr ∈ �a� b�\D such that for the different elements
vn1 < · · · < vnr�n�, say, of the set �tni � i = 1� � � � � n� ∪ �sj �j = 1� � � � � r� the
following hold true:

∀n ≥ n0 ∀ i ∈ {
1� � � � � r�n� + 1

}� vni − vni−1 < ε and vnr�n� ∈ D�

where vn0 = a, vnr�n�+1 = b. Further we have then

n∑
i=2

(
f�tni� − f�tni−1�

)
u
(
Fn�tni−1�

) = r�n�∑
i=2

(
f�vni� − f�vni−1�

)
u
(
Fn�vni−1�

)
�

By these considerations we can ensure that the right-hand side of the above
formula converges to

∫ �R�
� u�F0�t��f�dt� by an analogous argumentation as in

(a) if max�vni − vni−1 � i = 1� � � � � r�n� + 1� → 0, which completes the proof. ✷

Lemma A.2. Let condition (2.1) be fulfilled, let ξn, n ∈ N, ξ be random
variables with values in C�0�1�, and let ξn converge weakly to ξ. Then ξn�Fn�t��
converges weakly to ξ�F0�t��� t ∈ �a� b�, as random variables with values in
D�a� b� which is furnished with the uniform metric.

Proof. Let us consider the mapping

Gn�
{
C�0�1� → D�a� b��

x�·� �→ x�Fn�·���
for each n ∈ N ∪ �0�. If xk converges to x for k→∞ in C�0�1�, then we have

sup
t∈�a� b�

∣∣Gn�xn��t� −G0�x��t�
∣∣

≤ sup
t∈�a� b�

∣∣Gn�xn��t� −Gn�x��t�
∣∣+ sup

t∈�a� b�

∣∣Gn�x��t� −G0�x��t�
∣∣

= sup
t∈�a� b�

∣∣xn�Fn�t�� − x�Fn�t��
∣∣+ sup

t∈�a� b�

∣∣x�Fn�t�� − x�F0�t��
∣∣

≤ sup
z∈�0�1�

∣∣xn�z� − x�z�∣∣+ sup
t∈�a� b�

∣∣x�Fn�t�� − x�F0�t��
∣∣→ 0

because x is uniformly continuous. Thus the assertion is proved by Theorem
5.5 of Billingsley (1968). ✷
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