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Psychology has benefited from an enormous wealth of knowledge about processes
of cognition in relation to how the brain organizes information. Within the categorization
literature, this behavior is often explained through theories of memory construction called
exemplar theory and prototype theory which are typically based on similarity or rule
functions as explanations of how categories emerge. Although these theories work well
at modeling highly controlled stimuli in laboratory settings, they often perform less well
outside of these settings, such as explaining the emergence of background knowledge
processes. In order to explain background knowledge, we present a non-similarity-
based post-Skinnerian theory of human language called Relational Frame Theory (RFT)
which is rooted in a philosophical world view called functional contextualism (FC).
This theory offers a very different interpretation of how categories emerge through
the functions of behavior and through contextual cues, which may be of some
benefit to existing categorization theories. Specifically, RFT may be able to offer
a novel explanation of how background knowledge arises, and we provide some
mathematical considerations in order to identify a formal model. Finally, we discuss much
of this work within the broader context of general semantic knowledge and artificial
intelligence research.

Keywords: functional contextualism, machine learning, Relational Frame Theory (RFT), categorization,
background knowledge

INTRODUCTION

Category learning has been described as fundamental to all aspects of decision-making, and refers
to the process of organizing sensory experience into groups and appears to be key to understanding
the world (Margolis and Laurence, 1999; Lakoff, 2008). The main purpose of the human cognitive
system for developing concepts and categories is cognitive economy, which allows individuals to
process complex information in a manageable way in spite of finite memory storage (Goldstone
et al., 2018). Categorization researchers use models to describe the process of categorization in
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a formal (and sometimes mathematical), principled and lawful
way, in an attempt to achieve prediction over behavior in
particular categorization tasks (Pothos and Wills, 2011).

Categorization processes can be separated into four distinct
areas of research, supervised categorization (Nosofsky, 1988;
Minda and Smith, 2001; Hampton, 2007; Kurtz, 2007; Vanpaemel
and Storms, 2008) and unsupervised categorization (Fleming
and Cottrell, 1990; Ashby et al., 1999; Pothos and Chater, 2002;
Pothos and Close, 2008; Pothos et al., 2011) which can utilize a
similarity or rule based function. There is also the emerging area
of categorization called relational representation (Stewart et al.,
2005; Edwards et al., 2012) which explores inference learning in
categorization, and also an area known as background knowledge
(Heit, 2001) which attempts to incorporate many of the above
approaches to understand how background knowledge emerges
and affects category decision making.

Background knowledge in categorization refers to the beliefs
that individuals may have about the interrelations and causal
connections among features and concepts which emerge through
prior learning, and how this affects category decision making
(Keil, 1989; Murphy, 1993). This differs in some ways from other
approaches which attempt to model knowledge such as theories
in semantics, for example semantic memory. Semantic memory
can be regarded as a category of long-term memory which
involves the recollection of ideas, concepts, and facts commonly
regarded as general knowledge (Zesch et al., 2008; Paradis, 2012;
Russo et al., 2021). However, the focus within semantics has
primarily been on natural language, such as the logical relations
within sentence structures which give meaning to the language
being expressed (Löbner et al., 2021) (however there is modest
overlap – see the section on “The limited success of semantics” for
a more in depth overview). Crucially, background knowledge in
categorization, does not specifically and primarily explore logical
relations within linguistics (as semantics does), but instead,
focuses primarily on the category structure developed because
of prior learning which helps form some general knowledge
about some concept, and facilitates some category decision in
the present moment.

In an example of background knowledge, if you were to ask
a lay person (non-animal specialist) to describe the categorical
features of a bird and a bat, they may respond by saying; “Birds
and bats fly by using their wings to do so. A bat prefers to fly at
night, whilst a bird prefers to fly in the day. Birds has feathers
whilst bats do not.” This relies on prior knowledge learned
perhaps in early school, through parents and general books
the person may have read out of interest. Causal connections
and interrelations then are drawn by the participant from this
knowledge in order for them to describe how wings are used
to allow the bird and bat to fly. Specific differences are also
identified by the participant such as when birds and bats prefer
to fly, but little causal connections are drawn by the lay person as
they lack the essential background knowledge of why this may
be the case. However, if you were to ask an animal specialist,
they may add to this by saying; “A bat uses echolocation to
fly at night, to identify food, and to navigate, whilst a bird
requires light to fly and does not use echolocation. A bat is a
mammal, and feeds on milk from its mother while growing,

whilst a bird is a member of the Aves, and is not a mammal.” This
specialist background knowledge may have been learned during
higher education and allows the specialist to draw stronger and
more accurate causal interrelations and connections amongst the
feature of birds and bats. The study of background knowledge, is
thus to identify how these causal connections and interrelations
between concepts develop, in what context they emerge, and to
identify the different ways in which this knowledge can influence
categorization behavioral decisions in a given categorization task
(Heit, 2001).

In this current review and conceptual development paper, we
(1) firstly broadly explain why existing categorization models
fail to account for background knowledge. We also briefly
highlight why the problem of background knowledge is also
a problem in artificial intelligence (AI) research, for those
who seek to develop artificial general intelligence (AGI), and
for which development in that area may be dependent on
a model for background knowledge. We, therefore, seek this
literature for clues of how we may develop mathematical
models to solve the problem of background knowledge which
may not have been considered previously; (2) We offer a
functional contextual approach to understanding background
knowledge which has not yet been considered in background
knowledge research; (3) Finally, as part of this exploration,
we offer a formal mathematical model of this functional
contextual approach for use with Background knowledge
experiments, which is consistent with the approach made by
many other researchers who offer mathematical accounts of
their categorization models, and for which may be of interest to
categorization as well as AI mathematical modelers. This takes
into consideration the modeling of both similarity as well as
functional contextual properties within a RFT framework. We
then make suggestions for future work, which specifically test
the descriptive and predictive power of this RFT approach for
background knowledge in categorization.

THE PROBLEM OF BACKGROUND
KNOWLEDGE AND WHY EXISTING
MODELING EFFORTS ARE SO FAR
INCOMPLETE

The area of background knowledge has been the most difficult
for categorization researchers to formalize a specific model, and
most attempts have only provided an intuitive account of this
thus far (Heit, 1997; Dreyfus et al., 2000; Pothos and Wills,
2011) with most efforts in this area having now been redirected
to less difficult problems such as simple induction (inference)
modeling (B. K. Hayes and Heit, 2013; Hawkins et al., 2016).
Indeed, approaches based on similarity (i.e., identifying similar
features when categorizing) which have been used to explain
behavior in unsupervised and supervised tasks have not provided
an effective means of explaining the emergence of background
knowledge though some promising progress has been made
in relation to understanding background knowledge effects on
categorization decisions.
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Supervised learning models are often explained by exemplar
and prototype theories which involve matching through
similarity (magnitudes of length, height, color, etc.), either the
individual memory trace of exemplars for the to-be categorized
novel stimuli, or matching a prototype (e.g., a prototypical
average representation of all chairs represented in memory) to the
to-be categorized novel stimuli. This typically involves modeling
how stimuli correspond to points in multidimensional space
(usually Euclidean), and some similarity function is defined based
on some mathematical axioms about how the stimuli should be
categorized on this similarity basis (Lamberts and Shapiro, 2002;
Pothos and Wills, 2011).

Similarity approaches are one of the earliest and most
successful explanations of how people categorize (Posner and
Keele, 1968; Reed, 1972; Rosch and Mervis, 1975; Pothos and
Wills, 2011). In this account, the more similar item X is to what
is known about category A (e.g., the magnitude of size), the
more likely X will be categorized as belonging to A. Consider,
for example, the classification of a novel bird. According to one
similarity model called the prototype account (Rosch and Mervis,
1975), the reasoner would take notice of typical features such as
color, wing-span, type of beak, and where the bird lives. They
would then categorize the bird on these bases as belonging to a
particular bird category if this bird had similar features to the
prototypical list of features identified in that category (e.g., similar
shaped beak, sized wing, etc.).

In typical similarity tasks, such as unsupervised categorization,
participants are asked to put several items into sets of categories
that they feel to be most intuitive. Crucially, the participant
is not informed of any category structure, thus cannot infer
from pre-existing knowledge about category structure. These
unsupervised tasks are thought to involve category coherence
(Rosch and Mervis, 1975; Murphy and Medin, 1985), which
allow researchers to hypothesize about how intuitive the
structures being categorized are, and how participants process
this information without any background knowledge of what the
category structure should look like, in order to form distinct
categories. So, in this case, unsupervised categorization may
be less helpful in facilitating researchers to identify a model
of background knowledge, as these tasks typically do not
require the use of it.

In supervised (also a similarity based account) categorization
tasks (Nosofsky, 1988; Hampton, 2007), participants are shown
the exemplars of each category (such as 20 pictures of two
novel creatures) in addition to a category label (such as Blib or
Chomp), and thus learn the category structure. They are then
asked to decide which category a set of new items (pictures of new
creatures) belong to (either the Blib or Chomp creature category).
Hence, unlike unsupervised tasks, supervised tasks involve some
aspect of learning about the category structure before the
categorization decisions are made, and the categorization process
relies of these previous memory traces of the category structure
when making category decisions. This, therefore, at a conceptual
level may be more helpful in facilitating researchers to identify
a model of background knowledge, as these tasks require the
use of memory trace, and background knowledge presumably
would need to be remembered via such a memory trace. This is

because, if a categorization task asks the participants, ‘is a bat and
a bird in the same category?’, their answer should be dependent
on some memory trace of background knowledge that a “bat is
a mammal, whilst a bird is not,” therefore the participants come
to the conclusion that they are not in the same category. Without
such a memory trace, the participant may determine that a bat
and bird are in the same category on the basis of some more
general similarity function based on the shape and size similarity
of the creatures (i.e., similar to an unsupervised approach which
does not require a strong memory trace).

In both supervised and unsupervised categorization tasks,
many models have been formalized mathematically, and are
typically based on a similarity axiom. For example, the
Generalized Context Model (GCM; Nosofsky, 1986) is a
generalization of the context model by Medin and Schaffer
(1978), integrated with similarity and choice of classical theories
by Garner (1974). It is also one of the most heavily cited
and influential models in categorization research (over 3200
citations). The GCM incorporates multidimensional scaling
(MDS) to model similarity, whereby multidimensional space
is used to represent the exemplars and the similarity is a
decreasing function of their distance in this space. There are,
of course, many other similarity-based models, and a detailed
examination of these is beyond of the scope of this current article.
One example of an unsupervised categorization model is the
simplicity model which predicts the “optimal” categories through
an information reductionism perspective (Pothos and Chater,
2002; Nikolopoulos and Pothos, 2009). This model assumes that
information theory applies to cognition through a simplicity
principle, which states that we tend to prefer simpler and not
more complex perceptual organizations. There are also models,
such as the rational model (Anderson, 1990) which use features
in their description of a categories should emerge. This takes
the dimensional features (e.g., has four legs, barks, and has
tail) and identifies the probability of which category the item
belongs to, based on how similar its features are to the features
within each of the categories (where assignment is made with the
greatest similarity).

However, criticisms of these similarity models as a basis for
natural concepts came as far back as from Murphy and Medin
(1985) in a seminal paper concerning knowledge effects on
concept learning. Rips (1989) then extended this criticism by
reporting a number of cases whereby categorization behavior
was better explained by a rule based account as opposed
to a similarity-based account. For example, he highlighted
the pizza coin experiment, where participants were asked to
imagine an item that was halfway between two categories (a
pizza and a coin), where one of the categories had fixed
magnitudes of properties (such as fixed size – coin) and the
other had variable magnitudes of properties (such as variable
size – pizza). Participants were then asked: (1) whether an
item was more similar to one of the categories than the
other, and (2) whether an item was more likely to be a
member of one category rather than the other. Rips found
that participants were more likely to categorize the imagined
item as belonging to the variable category (pizza) but more
similar to the fixed category (coin). Rips concluded that
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there was sometimes a disassociation between similarity and
categorization, i.e., individuals categorization behavior were not
always consistent with how similar they felt items were with
category members.

Perhaps in an even more convincing example, Rips (1989)
asked participants to imagine a creature which accidentally
metamorphosized from one category (bird) to another (insect).
When asked whether the creature was more similar to a bird or
an insect, most participants selected insect, and yet they more
readily categorized the creature as a bird. In a separate condition,
some participants were asked to judge the similarity of the
creature before it transformed and to assume that metamorphosis
happened naturally. In this condition, the participants deemed
the creature more similar to a bird, and this finding suggested
that some background knowledge about essential qualities (e.g.,
DNA) were being inferred from the detail of metamorphosis
and the extent to which this was a natural process. Again, Rips
proposed that this was evidence that participants were using
formal rules of inference from background knowledge to inform
their categorization decisions, and not merely similarity.

So, in spite of the success of similarity models in predicting
categorization behavior based on essential category structure
in many supervised and unsupervised tasks, they appear less
effective in predicting behavior in tasks which involve a
rules option and involve inferences made through background
knowledge. The view that in addition to perceptual similarity,
rule, and background knowledge information pertaining to the
stimulus context may also be relevant, represented a shift away
from similarity-based explanations, and toward the inclusion
of critical features (Katz, 1972; Komatsu, 1992). In this classic
view of critical features, necessary or sufficient features were
deemed important in categorization that involved generalizable
background knowledge.

In an example of critical features, consider the statement
“not coming from Mars” as a necessary feature of the concept
“human,” which can only be derived through background
knowledge context (i.e., humans do not come from Mars).
However, this classical theory may also be limited as many non-
humans also do not come from mars, so the classification of
“necessary” may be overly simplistic. In another example, the
concept “man” is a necessary feature of “bachelor,” however,
some men are not bachelors. So, again, utilizing the simple
idea of a “necessary” feature is clearly limited. Indeed, one of
the main problems with the naïve theory approach, is that the
formalization of background knowledge into a specific model has
been shown to be very difficult. As a result of this, only an intuitive
account of background knowledge has been achieved through
the cognitive categorization approach (Heit, 1997; Dreyfus et al.,
2000; Pothos and Wills, 2011). The difficulties of tackling the very
complex problem of background knowledge as a formal model,
had led categorization researchers to return to similarity models
and rule-based explanations to explain some of the simpler
elements of knowledge effects on the categorization process.

Neural (connectionist) networks have also been used to model
how people categorize stimuli, which utilize learned weighted
associations between features in order to make classifications.
One example of this is the competitive learning feature detector

neural network (Rumelhart and Zipser, 1985) for unsupervised
categorization. Another example is the adaptive resonance theory
(ART) model, which is based on the stability-plasticity dilemma
(Carpenter and Grossberg, 1988). The dilemma refers to the
problem of how a learning system can remain adaptive or
plastic in response to significant events and can remain stable
against irrelevant events. The mathematical model uses a self-
organizing neural network which organizes arbitrary input
patterns in real time.

Though all of these models provide some basis for exploring
how background knowledge can affect a categorization task,
it is acknowledged these models are incomplete, as the
models do not specify a framework which can be used
in order to specify the relevant information (B. K. Heit,
1997; Hayes and Heit, 2013; Hawkins et al., 2016). This
incompleteness stems in what is generally referred to by Heit
as the knowledge selection problem, and it specifically relates
to the problem, whereby, though the models discussed can
address the processes in which background knowledge and new
information are combined, they cannot address the processes
for how a learner dynamically determines which background
knowledge is most relevant, how this knowledge is generated,
which context are important, and how causal connections
and interrelations amongst concepts emerge within learning.
As an example of this, consider Heit (1994) example of
learning about joggers. In this study, and a follow up study
(Heit, 1995), Heit demonstrated that information at various
times points were being inferred and integrated, whereby
new knowledge was derived from simple combinations of
background knowledge and observations. However, this was
a simple observation about the integration of knowledge,
and was without a precise formal model to specify how
exactly such information was being integrated and within what
specific context.

Heit (1994), had made specific observations that when
participants were asked to categorize whether people in a new
city were joggers, background knowledge was assumed to be
used about joggers in a previous city. While this assumption may
be straightforward in a laboratory context, real life contains an
almost infinite number of possibilities for knowledge selection,
such as cultural background, occupation, hobbies, prior city
experience, etc. This makes the knowledge selection problem very
difficult to circumvent.

One possible way forward which has been proposed is to
explore knowledge inference and induction more formally, as
Heit (1997) suggested, which comes from the reasoning and
memory literature (Anderson, 1991; Ross and Murphy, 1996),
and may give us some clues of how to progress theories
in background knowledge for categorization, albeit still not
a complete model. When utilizing reasoning in the form of
induction, for example, you may expect that if you learn that a
person belongs to a category of “salespersons” you may then infer
that this person will try to sell you something. This of course
is missing the importance of context, as a “salesperson” is only
likely to sell you something in the context of the place where they
work. So, any complete model would need both induction and
sensitivity to context.
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Induction tasks are designed to answer questions about how
participants can draw inferences for the information provided
and when using background knowledge. A simple example of
this would be asking a participant; ‘Crows are likely to contract
a disease, how likely is it that robins will contract a disease?’ If the
participant answers that it is likely that the robin will also contract
the disease, this indicates that knowledge about the similarity
between robins and crows may have been inferred.

Variations of this type of inductive reasoning task have shown
that there are two kinds of inductive information which are
important for understanding how background knowledge is
generated and utilized within categorization tasks (Rips, 1975;
Osherson et al., 1990). The first relates to the suggestion that
when the premise category (e.g., crow) and the conclusion
category (e.g., robin) are more similar, the induction inferences
will have a stronger effect. The second is that lower rather than
higher variability in the category leads to stronger inferences
(Nisbett et al., 1983). In order to model these influences of
inferences in category knowledge a category-based induction
(CBI) model was developed (Osherson et al., 1990) which
addresses some of these effects.

Another effect, called the selective weighting effects, has also
been suggested as evidence of inductive reasoning. Here, focusing
on certain features of the categories based on background
knowledge has been suggested to be important (Heit and
Rubinstein, 1994). For instance, consider this argument being
presented to a participant: ‘Robins travel shorter distances in the
extreme heat. How likely is it that bats travel shorter distances in
extreme heat?’ In this case participants focused on the behavioral
property “to travel” when comparing categories of robins and
bats. As bats and robins are similar in that they both fly, then
most participants inferred that bats and robins would be similar
in the distance of travel when given extreme heat conditions.
However, when asked a different way: ‘Robins have livers with
two chambers. How likely is it that bats have livers with two
chambers?’ Now the feature in comparing categories of bats with
robins was focused on the “anatomy.” As bats are mammals
and robins are birds, participants inferred that it was less likely
that bats and robins would be similar in terms of anatomy (two
chambers in their liver). This selective weighting implies that
knowledge selection is based on context, in this case functional
properties of flying and anatomy.

Other more applied areas to consider, in for example the social
domain (social categories), relate induction within the area of
social psychology and relational memory, such as the influence of
social stereotypes and schema which are social categories. Stangor
and Ruble (1989) demonstrated that congruent commercials
(girls playing with doll) were recalled better than incongruent
commercials (girls playing with trucks). This may represent
some important areas for applied work in the future, where a
background knowledge model could help to identify relevant
functional processes within the background knowledge which
need to be targeted by some social intervention in order to
remediate these types of stereotypes.

However, although these models are very encouraging, and
have demonstrated that background knowledge affects category
learning, where inductive learning and memory have been

identified as important in this process, these models have still
been suggested to be incomplete. Heit (1997) suggested that their
incompleteness relates to the need for more complex conceptions
of representation outside of just exemplars, prototype, and rule
based models. From this perspective, he suggests, a multi-
modal representational scheme which accounts for both the
relations among categories and the knowledge at multiple levels
of abstraction, is needed, rather than overly focusing on whether
one model (e.g., exemplar) provides a slightly better fit than
another (e.g., prototype).

More recently in the last twenty years, specific modeling efforts
for background knowledge categorization tasks have progressed
very little. The more recent efforts of Heit and others have
been to largely focus on similar problems of induction in
categorization but more generally, and tweaking these types of
models under different situations. For example, in one relatively
recent study (B. K. Hayes and Heit, 2013), it was demonstrated
that memory recognition shared some properties of induction.
These category-based inductive inference models involve using
the relations between categories to predict how individuals
generalize novel properties of category exemplars, and reach
conclusions that are likely but not certain given the available
information. Jern and Kemp (2009) also showed that induction
was involved in semantic repository, generalization, discovery,
and identification, in relation to specific categorization tasks. The
study identified, for example, that generalization was a problem
for both supervised and unsupervised tasks, but unsupervised
tasks also included the problem of relation discovery. Heit
and colleagues have also explored how inferences are made
over time, through the development of the Dynamic model
for reasoning and memory (Hawkins et al., 2016). Through
this model and corresponding data, they demonstrated that
sequential sampling based on exemplar similarity and combined
with hierarchical Bayesian analysis provided a more informative
analysis in terms of the processes involved in inductive reasoning
than the examination of choice data alone could provide.

So, induction and context seem to be an important
avenue to further develop models for background knowledge.
Unfortunately, however, many of the studies have focused
on easier and more solvable problems such as congruent vs.
incongruent tasks, or simple inference tasks. This perhaps falls
short of what Heit had previously suggested, about the need for
a multi-modal representational scheme which accounts for both
the relations among categories and the knowledge at multiple
levels of abstraction (Heit, 1997). Although these offer a useful
starting point, they appear to tell us little about how or why
knowledge is selected, i.e., they fail to solve knowledge selection
problem. Developing a model which helps to understand what
context knowledge is selected, or how the knowledge dynamically
develops at a multi-modal representation level, and connects
within a network of inference to allow for multiple levels of
abstraction, are all important details in answering this problem.

In order to achieve this goal, a more general and holistic
approach may be preferred, perhaps with new and fresh
perspectives outside of traditional cognitive science approaches,
and with a different ontological approach altogether. This
approach should also capture a multi-modal representational
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scheme which will allow it to model multiple levels of abstraction
and context. This should allow for greater ability to model more
complex scenarios outside of simple congruence and inference
tasks, such as how we make complex category decisions in the
real world. For this, we propose considering other perspectives
(in line with Heit’s suggestion) outside of the usual memory
trace based exemplar, and prototype domain, and more in
line with his recent work of category induction. In order
to do this, we propose exploring a comprehensive functional
contextual account which considers inference in the form of
derived relations. In addition to this, this will include multiple
modes of non-arbitrary similarity functions and arbitrary non-
similarity learned contextual functions in order to account
for categorization learning which uses background knowledge
processes, and which may be able to offer some greater insights
into solving the knowledge selection problem through modeling
contextual learning more comprehensively.

As such, one approach may be to focus on functions and
equivalent classes more concretely, and in a more formalized way
in the form of functional contextualism. Cognitivism is based
on the theorizing about mental representation, where memory
trace, attention, inference between exemplar representations,
etc., are specified and highlighted. In this way cognitivism
in categorization can be thought of as a philosophy of
science consistent with the ontology of realism which is a
phenomenological paradigm, and which assumes that much
of our perceptual reality exists based on the language and
concepts which our cognitive system produces (Zahidi, 2014).
Functional contextualism, on the other hand, is based on the
ontology of pragmatism, and contextualism (Pepper, 1942; David
and Mogoase, 2015) which instead of mental representation, it
emphasizes the importance of what specific factors predicts and
influences emotion, thoughts and behavior (decision making)
which include categorization tasks. Crucially, it identifies the
context in which the function of concepts, stimuli, thoughts, etc.,
occur, and how these exert different control on behavior and
decision-making, with an emphasis on how an organism interacts
with historically and situationally defined contexts in order to
explain how background knowledge emerges and influences
category decisions.

Through this functional-analytic approach some of the very
specific problems with the knowledge selection problem may be
overcome. This is because ontologically the cognitive mechanism
approaches largely try to define the form of the environment
through similarity and rule based approaches. This contrasts
with a functional contextual approach which tries to define the
context in which stimuli exert some functional control over
the behavior and decision processes of the individual – hence
enabling a more structured way to model learning in context
and therefore enabling greater predictive and descriptive power
over subtle contextual dependencies in which inference learning
arises. These specific conceptual and ontological differences
(form vs. function) may be key to resolving the knowledge
selection problem, as categorization decision making which is
dependent on background knowledge may be largely defined by
our contextualized learning histories which are specific to each
individual given their experiences.

Functional contextualism, therefore, may be helpful in
providing such a philosophical foundation for modeling
and formalizing an account of background knowledge by
incorporating functions and the context of environmental
stimuli at a holistic level, and more concretely than previous
modeling attempts through inference (derived relation) type
processes. This approach focuses on functional properties (such
as functional equivalence) and contextual cues. For example, in
an example of functional equivalence by Sidman (1994), given the
category of cutlery, forks, and knives may be grouped together
because of the background knowledge that these items share the
functional property “to eat with.” However, in a different context,
a knife may be used to peel paint off a wall (if you did not have a
proper paint stripper tool) or defend yourself if you were attacked
in the most extreme setting. Thus, the function is the purpose
or use of that concept within a particular contextual setting.
However, this early functional equivalence approach developed
from Sidman (1994) has matured into a more formal model
today. This approach is now embedded within the philosophical
world view of functional contextualism, which defines that
functions are dependent on context and specifically constitutes
a post-Skinnerian behavior-analytic account of language known
as Relational Frame Theory (RFT) (Barnes-Holmes et al., 2001;
Blackledge, 2003; Torneke, 2010; De Houwer, 2013).

This fits well within the cognitive literature, as researchers
such as Oaksford (2008) suggest that stimulus equivalence can
to some extent explain the origins of reasoning, memory, and
language generation. An equivalence class refers to the shared
functional properties of items within that class (or category)
which can be assumed to be equivalent (Sidman, 1994). For
example, fork and knife are within the same category (or class)
of cutlery and share the function “to eat with.” Goldstone et al.
(2018) accept that the items within a category can be broadly
considered an equivalent class. If a functional-analytic approach
can be adopted with regard to simple category similarity, then
we propose that this approach can also be adopted to our
understanding of the emergence of background knowledge.

THE LIMITED SUCCESS OF
LINGUISTICAL SEMANTICS AND
SEMATIC LOGIC OF ARTIFICIAL
INTELLIGENCE IN ACCOUNTING FOR
BACKGROUND KNOWLEDGE

The related field of semantics refers to the study of cognitive
structures in the brain from a variety of perspectives including
cognitive psychology, neuroscience, linguistics, philosophy, and
AI (Löbner et al., 2021). There are several branches in semantics.
Formal semantics is particularly relevant to the study of
background knowledge in categorization, and can offer some
useful perspectives. For example, it does not focus directly on
cognition, and instead it focuses on natural language, such as
the logical relations within sentence structures (e.g., equivalence)
which give meaning to the language being expressed (Löbner
et al., 2021). As such, one very important observation made in
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some seminal work of the formal semantics domain (Montague,
1970; Lewis, 1976) is that meaning embedded in some linguistic
content is context dependent. Influenced from this early work,
most semantic theories now adopt some form of pluralism
about linguistic content and its attributed meaning based on this
context-dependency (Potts, 2004; Zimmermann, 2012; Ciardelli
and Roelofsen, 2017). Context here can relate to the objective
and subjective meaning of a given linguistic sentence, epistemic
content, intentional content, etc., in order to assign truth-values
to linguistic utterances (Löbner et al., 2021).

This context dependency work has also highlighted cross-
linguistic, and cross cultural linguistic differences that can
alter and shape the meaning of concepts and sentences, which
indicates that linguistic meaning is more complex than the words
formed in a sentence (Machery et al., 2004; Smith et al., 2018).
One of the perhaps most well know theories to have emerged
from this work is called the Sapir-Whorf ’s linguistic relativity
hypothesis which suggests that the structure of language affects
the speaker’s cognitive worldview (e.g., Eskimos have many more
words to describe and conceptualize snow than Europeans), and
that the perception people develop about some concept is relative
to the context of their spoken language (Koerner, 1992; Hussein,
2012; O’Neill, 2015).

Another branch of semantics which is relevant to studies
in categorization theory of background knowledge is lexical
semantics, which emphasizes linguistic concepts in the context
of frames which attribute-value structures (Fillmore, 1976;
Barsalou, 1992, 2014). Here, a cascade is a combinations of
frames in a tree, and category prototypes are structured within
these knowledge trees. The frames mediate the input information
and output behavior through a Bayesian inference model of
category learning (Taylor and Sutton, 2021). Frame-theoretic
representations in the form of recursive attribute-value structures
organized around a central node is clearly an improvement
compared to simple feature list models (Anderson, 1991; Sanborn
et al., 2006; Goodman et al., 2008; Shafto et al., 2011). For
example, a feature list would simply consist of a list of features,
e.g., fur, black, and soft, however, a semantic cascade of frames
can add further information to the features, such as representing
how these features are related by defining each feature as a value
of some attribute. For example, by specifying through a frame
that fur has two attributes – color (black) and texture (soft).
These types of Bayesian models can allow frames to assign more
or less weight to attribute values given their importance in the
category structure.

These semantic theories have not just influenced our
understanding of cognition, but they have a long standing
bidirectional relation with influencing and being influenced by
work in computer science, specifically in the area of attempts
to formalize approaches of logic and linguistics for general
knowledge in the discipline of AI through the development
of knowledge tree attribute-value matrices of computational
linguistics (Gärdenfors, 2004; Gardenfors, 2014). AI was
developed in the 1950, and were largely based on mathematical
logic programming such as propositional logic (assigning truth
and false to statements), first order logic (formulas which specify
some relation to objects) and second order logic (specifying

relations between relations), as well as conditional logic (IF-
THEN rules) (Luger, 2005; Stuart and Peter, 2020). In line with
semantics which seek truth in statements, logical statements of
truth can be interpreted as formal semantics, and drew from
these early AI approaches. In an example of first order logic, the
statement “there is a mother to all children,” can be stated as:

(∀x)
(
child (x)→

(
∃y
) (

mother
(
y, x

)))
(1)

Whereby ∀, expresses “for all instances,” child is x, → is a
connective between the two statements (where this connective is
only true if both statements are true), ∃ expresses “there exists,”
mother is y, y, x, denotes y for instance x. This is constructed
as a statement of truth, through the use of the connective
symbol (i.e., by explicitly stating, when this statement is true, this
statement is also true).

These semantic approaches developed further as cognitive
semantics emerged in the late 1970s out of cognitive linguistics
and mathematical logic, largely based on the initial work of Noam
Chomsky’s (a linguist) semantic structures, theory of generative
grammars (Chomsky, 1957), and largely due to the dissatisfaction
of behavioral approaches (at the time) to explain a model for
natural language (Andresen, 1991; Harris, 2010, 2021). Hence,
this early work in AI and cognition was heavily influenced
by formal approaches of cognitive semantics (Kuznetsov, 2013;
Stuart and Peter, 2020).

However, these approaches have been entirely unsatisfactory,
and have only led to very narrow approaches to AI, and have
not led to the ability of AI to develop broad and deep general
knowledge about the use of language in the world (Floridi,
2020; Stuart and Peter, 2020; Toosi et al., 2021). Perhaps the
biggest limitation with this approach is that, though context was
highlighted early as important, these development were based on
narrow and overly simplistic forms of knowledge trees, which
do not capture rich contextual structure in the real world. The
problem of developing AGI has been suggested (Mitchell, 2021)
to depend on some more generalized accounting of (background)
knowledge that goes beyond simple statistical, or similarity
methods which are limited in nature.

Since this early work on semantics there has been many
breakthrough with machine learning approaches, and
mathematical models of reinforcement learning (behavioral
approaches) are making a return (Silver et al., 2021), and may
(with functional context) be an important part the solution for
AGI. Deep learning neural networks (DNN) have recently been
developed with the advent of powerful processing computers
(which as not the case decades ago) which has allowed researchers
in the area of semantics to exploit (Rogers and McClelland, 2011)
which extends previous work of distributed memory model
(McClelland and Rumelhart, 1986) and the semantic memory
models (Hinton, 1986; Rumelhart, 1990; Rumelhart and Todd,
1993; Hinton and Anderson, 2014). This allows the model to
capture complex structure based attributes as well as relational
components, and is perhaps the most promising work within
semantics (which is relevant to background knowledge) at this
time. This, therefore, may represent a promising way forward
for modeling background knowledge in a categorization setting,
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and general knowledge more widely. However, the relational
attributes within this approach are still very limited (e.g., “can,”
“is,” etc.), representing simple word structures, and may need to
be further developed and updated from a model which specializes
in deep contextual (relational) learning.

A FUNCTIONAL CONTEXTUAL
ACCOUNT OF BACKGROUND
KNOWLEDGE – A POTENTIAL
SOLUTION

One approach which we may look to progress semantic
models is Relational Frame Theory (RFT), which is a modern
behavioral theory of human language and cognition, which is
rooted in functional contextualism (it represents the formal
organizational model of functional contextualism), and offers a
formal model within a functional-analytic approach to higher
cognition (Barnes-Holmes et al., 2001; De Houwer, 2013). In
doing so, the theory extends Skinner’s concept of verbal operants
to include generativity (thus accounting for Chomsky’s criticism
of the behavioral theory) to capture greater complexity within
cognition. From an RFT perspective, language can be thought
of as learned patterns of generalized contextually controlled,
derived relational responding (somewhat similar to inference),
called relational frames (Barnes-Holmes et al., 2001). With its
basis in functional contextualism, the theory focuses on the role
of context (via contextual cues) in facilitating the emergence of
specific patterns of relating and how (behavioral) functions come
to be attached to these patterns.

Relational responding can be either arbitrarily applicable or
non-arbitrary in nature. Non-arbitrary relational responding is
based on physical features (such as magnitudes of size, shape, or
color) of the stimuli involved (not unlike similarity theories in
the categorization literature). By contrast, arbitrarily applicable
relational responding is not based on formal stimulus properties
but is instead largely controlled by historical contextual learning.
The theory specifies several different patterns of arbitrarily
applicable relational responding, including (but not exclusively):
co-ordination (e.g., stimulus X is equivalent to stimulus Y);
comparison (e.g., A is bigger than B); opposition (e.g., up is
the opposite of down); distinction (e.g., C is not the same
as D); hierarchy (e.g., an Alsatian is a type of dog); and
perspective-taking (often referred to as deictic) which involves
the interpersonal (I vs. YOU), spatial (HERE vs. THERE) and
temporal relations (NOW vs. THEN).

Relational Frame Theory appears to share some features with
rule-based categorization but relies specifically on a history of
operant conditioning across a wide range of situations in order
for the early patterns of relating to be established. Indeed,
the focus of a relational frame, and its definition, require the
development of three properties: (1) In mutual entailment (ME),
relating to one stimulus entails relating to a second stimulus. For
example, if A = B, then B = A. Similarly, if you are told that X1 is
smaller than X2, you can derive (entail) that X2 must be bigger
than X1. (2) In combinatorial entailment (CE), relating a first

Male Female

Married Unmarried

Bachelor Male

= distinction relation

= coordination relation

FIGURE 1 | An RFT interpretation of a simple relational frame of coordination
between the concept bachelor and the concept male. This includes a
distinction relation between male and female and a distinction relation
between married and unmarried(Images from adobe stock with license and
permission to use and modify given. Credit for image on right “pathdoc” and
image on left “wedding photography”).

stimulus to a second and relating the second to a third facilitates
entailment between the first and the third stimuli. For example,
if you are told that A is greater than B and B is greater than C,
you will derive (combinatorially entail) that A is greater than C
and C is less than A. (3) The third core property of a relational
frame is known as the transfer (or transformation) of stimulus
function (ToF), through which the functions of any stimulus
that participates within a relational frame may be transferred
or transformed in line with the relations that stimulus shares
with other stimuli also participating in that frame. For example,
consider a situation whereby a shock is delivered to your arm
each time stimulus A appears on a screen. If you are then told
that stimulus B is greater than A, fear in the presence of B can
actually be stronger than fear in the presence of A, even though
shock was directly paired with A and not B. This is because fear
as a behavioral function that is established to A is transferred to B
in greater magnitude because of the established relation that B is
greater than A. In other words, the fear function is transformed
(increased) because of the comparison relation between A and B
(Dougher et al., 2007).

For RFT, complex social concepts or background knowledge
are established as broad patterns of arbitrarily applicable
relational responding (AARR) in the form of complex relational
networks and adjoining behavioral functions. For example, the
accepted social knowledge that “all bachelors are males” involves
at least the following: a co-ordination relation between the
concept bachelors and the concept male; a distinction relation
between male and female; and a distinction relation between
married and unmarried (see Figure 1). In other words, for
RFT we acquire broad and complex knowledge through verbal
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operant conditioning, including how males and females differ,
why a bachelor is a man, but why a man may not be a
bachelor. Each, on the surface, appears to be a simple concept
or a comparison of simple concepts, but for RFT the stimuli
or concepts participate in much more complex patterns of
related or integrated social knowledge. This, therefore, does
away with any need to specify a necessary or sufficient feature,
and instead prefers context dependent relational networks and
associated behavioral functions, which may provide a more
accurate account of how causal connections and interrelations
within background knowledge about these concepts emerge
within their context and influence categorization behavioral
decisions about these and other related concepts. As the next
section will demonstrate, this approach may help extend existing
background knowledge categorization models in interesting
ways to help resolve the knowledge selection problem. It
will do this by offering some insights into how knowledge
is selected in background knowledge categorization tasks, by
specifying the context in which stimuli is presented (i.e., via
contextual clues) and explain how the relevant functions of
stimuli emerge as they dynamically change through inference
based (derived relational) networks. Crucially, this will offer some
explanation as to how category decisions based on background
knowledge are made.

SPECIFIC EXAMPLES OF
CATEGORIZATION MODELING FOR
BACKGROUND KNOWLEDGE AND WHY
A FUNCTIONAL CONTEXTUAL MODEL
MAY IMPROVE ON THESE ACCOUNTS

In one attempt to use a similarity-based model to address
background knowledge, Heit developed the integration model of
categorization (Heit, 1994), which has been explored in a number
of background knowledge studies (Heit, 1994, 1995, 1998). In
this approach, Heit had modified the similarity based exemplar
model (Medin and Schaffer, 1978) in a way which would take
into consideration influences of background knowledge such as
congruence in category learning (Heit, 1994, 1997).

Several studies have found supporting evidence for
congruence in category learning. For example, if a question
is presented to participants which is congruent with their existing
background knowledge, this will more likely facilitate their
memory (Greve et al., 2019), learning of relational properties
(Ostreicher et al., 2010) and the classification of new items as
consistent with the background knowledge they have (Heit,
1994). For example, in a study presented by Heit (1994),
participants were asked a congruent question such as ‘how
likely is it that someone with expensive trainers is a jogger?’,
and this was compared with an incongruent question such as
‘how likely is it that someone who attends parties is shy?’ It
was found that participants were more likely to judge a new
person as being a jogger when asked a question which was
congruent to the background knowledge of the participant rather
than incongruent.

However, in the same study by Heit (1994) it was
demonstrated that congruence with background knowledge was
not always the strongest factor in influencing categorization
behavior. Specifically, Heit found that integration model
outperformed the distortion model in predicting whether a
group of individuals were “joggers” or not, given a set of
categorization behavior. During an experimental setting in
this study, participants were shown a training set of joggers
(including associated behavioral characteristics). The distortion
model predicted that the learned exemplars about these joggers
in this experimental setting would undergo a form of distortion
in memory to fit better with the previous background knowledge
about joggers that the participants had learned over the years
(such as joggers typically have expensive trainers), in order to
be more congruent with their background knowledge. However,
instead of undergoing distortion, the “new joggers” selected
by the participants were more similar to the “jogger” training
set shown, as opposed to features which were consistent with
background knowledge (features typical to joggers).

There are two problems with the above approach. Firstly,
and most importantly, congruence in category learning only
explains why knowledge is selected in very specific cases and
tasks. This is an incomplete model of background knowledge.
Secondly, the model fails to predict or explain in what cases
some similarity function, or some distortion of memory should
be preferred in order to increase congruence with background
knowledge. The ability to capture and predict cases of congruence
with background knowledge may be captured more accurately
utilizing the functional contextual (RFT) model. The RFT
approach assumes that relational framing occurs amongst the
properties of background knowledge of a typical jogger and some
new instance of jogger, which allows for congruence.

So, in this case the non-arbitrary properties would be
consistent with a more similarity based situation, whilst arbitrary
properties would be consistent with the background knowledge
of the jogger. From there, the attributes of the concept “jogger”
are related in the network according to the properties of ME,
CE, and ToF, where information is derived within the network
according to information which can be coordinated, opposed,
or where a distinction is made (hence, for example, coordinated
concepts would be more congruent that those which are opposed
in the network). Hierarchical information can also be held, such
as structuring joggers within the network as containers of their
personal values such as “healthy living,” “fitness,” etc., through
determining the function of their behavior (i.e., why do joggers
jog?) which may give more clues about relevant background
knowledge of a typical jogger, and the crucial knowledge which
needs to be selected dependent on some experimental context.
Crucially, RFT can specify how this knowledge is structured
within a relational network, and how context of a categorization
task (what it asks the participant to categorize exactly) can
help determine which knowledge is specifically selected (i.e., the
context determines this). For example, if a participant in a study
were asked to categorize the personal values of a jogger, then
the hierarchical component of the network may be recalled to
help the participant decide that jogger’s value “healthy living” and
“fitness” based on the participants functional interpretation of
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why a joggers jog (i.e., RFT determines functions within context
are crucial for understanding which knowledge is selected, and
thus provides some insight into overcoming the knowledge
selection problem).

The RFT model also goes beyond simple congruence by
specifying under which conditions equivalence, opposition,
mutual entailment, and combinatorial entailment occur more
globally, so its ability to specify precisely how congruence can
emerge is understood precisely through the models’ ability to
predict under what circumstances entailment is generated in
the relation network given very specific modeling of historical
reinforcing contingences. Some recent evidence has shown that
the model was able to accurately predict relational framing
of categories in three domains, which included non-arbitrary,
arbitrary containment, and arbitrary hierarchical relations
(Mulhern et al., 2017). In that study, language and cognition
which are relevant to background knowledge were assumed
to be patterns of generalized, contextually controlled relational
responding. The researchers suggested that this approach offers
a more global accounting of knowledge generation and is
in contrast with the more localized environment-behavior
interactions prediction of congruence formations as is seen in
many categorization approaches used (Laurence and Margolis,
1999; Murphy, 2002; Palmer, 2002).

In another example, rule-based approaches of categorization
describe how “if” and “then” logical rules are used to define a
category (E. E. Trabasso and Bower, 1968; Smith and Sloman,
1994; E. E. Smith et al., 1998), for example, “if ” X barks “then”
X is a dog. Evidence has shown that in some situations rules do
apply (Rouder and Ratcliff, 2006). It has been suggested that rules
can be applied to many settings, such as when recognizing that
683 is an odd number (Armstrong et al., 1983) and why raccoons’
offspring look like skunks but are not skunks (Keil, 1989).
However, there are some problems within the categorization
literature as current categorization models do not have any means
to specify specific rules, identify the context in which rules emerge
from environmental stimuli, or how they can be organized into
complex background knowledge.

There have been some useful rule based models such as the
competition between verbal and implicit systems (COVIS) model
(Ashby et al., 1998) which suggests that explicit verbal (rules) and
procedural (implicit) systems which integrates information at
the point of pre-decision, are adopted depending on the context
of the situation. Some evidence has suggested that implicit
procedural information is integrated when it is difficult to define
the rules verbally, but when these can be defined verbally, they
usually supersede the procedural system (E. E. Smith et al., 1998).
However, others have acknowledged that the exact interplay
between rules and procedural systems has yet to be discovered
(Milton and Pothos, 2011).

Some more specific rule-based explanations of the effects
of background knowledge on categorization have been applied
in conceptual acquisition tasks. These tasks were developed in
order to identify situations where the background knowledge
may facilitate or hinder concept acquisition. In an example of
this, Pazzani (1991) used conceptual acquisition tasks involving
photos of people performing actions on objects. Each picture

showed either an adult or child performing an action on an
uninflated balloon (dipping it in water or stretching it) that
varied in size and color (it was either large or small, and either
yellow or purple).

Pazzani compared two types of categories – a disjunctive
category, and under what conditions would each of these emerge.
In one experiment the participants were instructed to either learn
about a category of balloons that inflate or learn something about
an arbitrary category simply labeled Alpha. The assumption made
by Pazzani was that participants in the inflate category would be
influenced by their background knowledge about what would be
needed to inflate the balloons, whereas no such influence from
background knowledge would take place.

In their pre-test study, Pazzani found that the action of
stretching a balloon would facilitate participants expectation
that a balloon would inflate, and that adults would be more
successful at inflating the balloon than children. The stimuli
used in the experiment were pictures of scenes which differed
on four dimensions; (1) adult or child; (2) stretched balloon
or balloon dipped in water; (3) yellow or purple balloon; (4)
and small or large balloon. For the disjunctive condition, a
disjunctive rule defined the inflate category, i.e., that these
balloons must be stretched or inflated by an adult. As the pre-
test study showed, this should be consistent with the background
knowledge that the stretching of a balloon by an adult is more
likely to lead to the balloon being inflated (i.e., adults are
stronger and more capable to inflating a balloon than children,
as well as the knowledge that balloons are stretched when they
inflate). In the conjunctive condition, the target category (Alpha)
was defined by the arbitrary rule, that these must be small
and yellow. This rule is not consistent with any background
knowledge about inflating a balloon. As expected, Pazzani found
that learning was faster for the disjunctive-inflate condition
than the conjunctive-Alpha condition. It was concluded that
as the disjunctive-inflate condition was consistent with the
existing background knowledge, it was easier to learn than the
inconsistent disjunctive-Alpha condition. Pazzani concluded that
this was evidence that demonstrated that a simple similarity
function in the form of feature selection does not connect
category knowledge, rather it is background knowledge which
bind the category knowledge in these tasks.

The functional contextual (RFT) approach may be able to
improve both the descriptive and predictive power of why the
disjunctive rule was followed and not a simple similarity function.
Here RFT can account and explain the specific context in which
background knowledge emerges based on some hierarchical
organization of rules which supersede a similarity function. More
specifically, RFT can explain the context in why the disjunctive
rule was followed in the Pazzani (1991) study, as derived relations
between predicting whether the balloon would inflate, and the
background knowledge provides relational clues about likely
hypotheses such as the age of the person carrying out the action,
and this (according to RFT) is structured within a complex
hierarchical and relational network (i.e., inflating the balloon
action “belongs to” a specific person who was stretching the
balloon). Similar to the previous example about joggers, the
context of the study provides clues as to what the relevant
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functions of the behavior are (i.e., someone inflating a balloon
may be doing so to stretch it), and may, therefore, help determine
which knowledge should be selected in the participant’s hierarchal
relational network in order to make a category decision. The
specification of an explicit rule which is consistent with the
hierarchical background knowledge associated with stretching a
balloon, may supersede any similarity function in a similar way
as any explicit rules supersede implicit integrated knowledge in
procedural tasks. This RFT approach, again, may help provide
greater context for solving the knowledge selection problem
by specifying the functions relevant to a specific context, and
outlining how this knowledge is connected dynamically within
a participant’s relational network, and utilized in a categorization
task that draws on background knowledge.

To support this claim, there has been much empirical
evidence for the way RFT structures knowledge within relational
networks. For example, evidence of RFT has been able to
accurately predict and specify complex ruled based organizations
of hierarchical responding in categorization tasks (Greene, 1994;
Slattery et al., 2011) which may be seen as a particular type
of relational responding called hierarchical relational framing,
and which may form via a non-arbitrary relational pattern
such as containment. For hierarchical classification, the classes
themselves are categorized into higher order classes (Greene,
1994; Slattery et al., 2011). An example of hierarchal classification
could be ordering “Alsatian” into (contained within) the category
“dog” and “dog” into (contained within) the category “Animal.”

This distinction of hierarchy seems similar to the cognitive
interpretation of hierarchy, except the RFT model is providing
a broader relational framework in which hierarchical processes
occur. For example, in one study of hierarchical relational
responding of categories (Gi et al., 2012), there were five
phases to the study. In phase one, four arbitrary shaped stimuli
were established as, and several contextual cues were given
such as “includes,” “belongs to,” “same (similarity).” In the
second phase, the arbitrary shaped stimuli were trained and
tested for derived arbitrary sameness (equivalence), i.e., between
the arbitrary stimuli and some nonsense words. In the third
phase, deriving relations of containment between lower (novel
and additional) and higher levels (identified through the cues
“includes,” and “belongs to”), induced responding in accordance
with higher levels in the hierarchical network. In the fourth
phase, particular functions were established in particular stimuli
(i.e., some stimuli were directly trained to associate a function,
e.g., the function of fear) at different levels of the hierarchical
network. In the final phase, patterns of ToF were demonstrated
where stimuli acquired novel untrained functions because of
their position in the network. Therefore, again, RFT can specific
complex hierarchical networks for which background knowledge
can be stored, relationally structured with other concepts and
knowledge, and recalled to help the participant identify a category
decision based on clues of functions relating to concepts, events,
and behaviors given some specific context, and drawn to make
categorization decisions.

Connectionist models in the form of neural networks
have also been used to explain the influence of background
knowledge (Gluck and Bower, 1988; Shanks, 1991). In these

models, category learning is thought to correspond to a set
of weighted association of nodes, which activate in response
to an input pattern. Choi et al. (1993) used connectionist
neural networks to model how learning disjunctively defined
concepts is easier than learning conjunctively defined concepts.
In connectionist neural networks these hypotheses can be
simulated with negative (inhibitory) links between nodes for
conjunctions and output nodes which correspond to category
labels. After many variations, Choi and colleagues incorporated
background knowledge into Kruschke (1992) attention, learning,
covering map (ALCOVE) model which represents a hybrid
between an exemplar (similarity) and connectionist model. In
the original version of a two layer backpropagation model of
ALCOVE, this did not fit rule-based data very well, however,
when implementing background knowledge biases into and
adapted version which consisted of a neural network, whereby
the biases were captured by the network weighting (through
training), categorization performance improved dramatically.
This demonstrates the usefulness and flexibility of neural
networks for the study of approximating background knowledge
in category learning.

Other notable connectionist methods have included the, and
the knowledge resonance model (KRES) (Rehder and Murphy,
2003) and the Baywatch model which is a Bayesian and
connectionist model (Heit and Bott, 2000). The KRES model
is a connectionist model which takes account of background
knowledge, but unlike other approaches, it uses a recurrent
network with bidirectional symmetric connections whereby
the weights are updated by a Hebbian learning rule instead
of a feedforward network which relies on a delta rule or
backpropagation. Rehder and Murphy assume that knowledge is
directly learned or attributed through an inferential process, and
they have shown that some inferential properties can be captured
through their network. The Baywatch model is very interesting
and has had some success in tackling the knowledge selection
problem. This is a neural network model which includes Bayesian
probability, and converts the networks activation outputs into a
probability measure of the likelihood categorizing in a particular
way based on some given background knowledge. In order to
do this, the model uses the logistic transformation as outlined
in Gluck and Bower (1988) (see formal mathematical approach
section below, there, this is utilized and expanded on for an
RFT interpretation). The network was able to progressively learn
which sources of background knowledge correspond to some
target categories – hence identifies in some instances which
knowledge is selected in these types of tasks.

However, though these connectionist models are useful,
and heading in the right direction, they are currently overly
simplistic with a single hidden layer and with only three
layers in total. Much of the AI literature suggest that deep
(multi-layered) networks are more able to capture knowledge
properties (Mitchell, 2021). Furthermore, RFT goes beyond
simple inference learning (which the connectionist networks
are trying to capture). For example, evidence has shown that
by using the RFT model, researchers are able to predict how
relationally framed patters of ToF emerged throughout the
network, and this makes this framework unique when compared
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FIGURE 2 | An RFT interpretation of a simple example of trained vs. derived relations(Images from adobe stock with license and permission to use and modify.
Credit for image on top “kuritafsheen,” bottom right “Coloures-Pic,” and bottom left “iushakovsky”).

to simple hierarchical or Bayesian inference frameworks of order
which are typically described within the categorization literature
(Murphy and Lassaline, 1997). The RFT approach, instead,
precisely defines the controlling function of the stimuli and
under what context does such inference occur. For example,
Slattery and Stewart (2014) demonstrated many knowledge based
properties which could be captured via the RFT approach,
and argued that hierarchical relational framing involves two
forms of hierarchical responding, both hierarchical classification
as well as hierarchical containment. They found multiple
properties of unilateral property induction, transitive class
containment, and asymmetrical class containment, which again
shows how RFT was able to model complex relational networks
within hierarchical organizations applicable to categorization,
and beyond the simple inference accounting and knowledge
induction of previous connectionist models such as the Baywatch
model (Heit and Bott, 2000).

One of the core advantages of RFT’s approach to background
knowledge, over and above the previous categorization models
mentioned lies not only in its ability to account for high
levels of complexity, inference, and context, but also to account
for meaning and the effect of a given stimulus, through
ToF. Consider the real world example where in a laboratory
experiment participants are asked (these would be the dependent
measures) to (1) categorize whether the woods are safe, and
(2) whether the woods are safe enough to walk through. In
this experiment, the participants are told that poisonous snakes
live in these woods. The participant when deciding whether the

woods are safe or not, may draw on their background knowledge
about the snake and themselves. For example, when considering
the concept of a snake, the relevant background knowledge
can include the common rule “Stay away from snakes, they’re
dangerous,” and the very real fear that likely emerges for some
when you are near a snake, even when it is in a terrarium. For
RFT, fear is an established function of actual snakes and the word
“snake” (fear and snake will be coordinated even if you have never
seen a real snake). This also applied to the written word “snake”
which is also coordinated with the actual “snake” and the verbal
word “snake” (see Figure 2).

So, in a condition when the participant is told that there may
be snakes in the woods. Even without seeing a snake there, the
function of fear will be transferred to the woods as soon as you
hear about the possibility of snakes living in the woods. This is
because the concept of snakes (and the attached fear function)
is contained (relationally) within the concept of woods, so that
the fear of snakes transfers to woods and now you are afraid of
just entering the woods (see Figure 3). In other words, woods
helplessly evoke fear of snakes. It is even possible that if you are
very afraid of snakes, you would avoid woods altogether, without
consciously intending to do so (i.e., an avoidance function is
established to woods).

As a result, the background knowledge of the participant’s
concept for woods as well as their behavior regarding woods
can be altered considerably, and RFT provides a model
for how background knowledge develops and changes over
time. So, it is clear to see through this framework how
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FIGURE 3 | An RFT interpretation of a simple example of transformation of stimulus function, as the individual learns in this context the category “woods are
dangerous”(Images from adobe stock with license and permission to use and modify. Credit for image on top: “kuritafsheen,” bottom right: “iQoncept,” bottom left
“AA + W”).

the background knowledge of snake and woods are derived.
In a background knowledge categorization task, where an
individual is asked to categorize whether the woods in this
circumstance (which contain snakes) is safe, then the knowledge
selection clearly involves derived (induced) knowledge of fear
functions about snakes and the woods. Of course, though,
these derived relations can be scaled up and without any
limit on scalability, to include many other derived relations
which the individual may network together in terms of the
concepts of safe and woods. RFT allows for this continuous
scaling up, as new relevant information can be continually
added to the relational network model as they are identified,
and the framework can thus explain how the processes
then further build in additional new background knowledge,
and how this will affect a background knowledge related
category decision.

It is also important to note that this background knowledge
may not have been directly trained and is not based on any
form of similarity function between woods and snakes, such
as would be stipulated in the exemplar model such as the
GCM that try to model background knowledge. In contrast,
RFT can explain complex arbitrarily applied relationships
among concepts and how these can activate complex behavioral

functions in specific contexts. This approach thus goes some
way in explaining what types of background information are
relevant given the specific learning history of the individual and
the context of the categorization task, thus providing greater
context for further research to tackle the knowledge selection
problem more generally.

In relation to a background knowledge categorization tasks
specifically, for example, where we are trying to predict how
an individual will categorize whether a particular woods is safe
enough to walk through or not, then as suggested, this can be
scaled up beyond simple fear of snake. RFT’s framework for
describing behavioral outcomes over a wide range of situations,
through the frames defined of ME, CE, and ToF, may be helpful as
this can help specify complex contextual histories which may help
identify how background knowledge is developed, and changes
over time, given different contextual settings.

In scaling up, further relations can be added. For example, if
you had experienced many accidents within your life, and felt that
something always bad happens to you, you may frame yourself
in the context of “I” as “bad” and “a failure” where “always bad
things happen to me,” thus is “likely to get bitten.” This may then
have affected your self-esteem and confidence in a negative way
(see Figure 4), and with low self-esteem and confidence, with an
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FIGURE 4 | An RFT interpretation of a simple example of transformation of stimulus function, as the individual learns and derives a relation of “self”(Images from
adobe stock with license and permission to use and modify. Credit for image on top “Tardigrade,” bottom right “Riska,” and bottom left “Coloures-Pic”).

expectation that something is always bad is going happen to you,
this may cause more avoidant type behavior, and lead to greater
certainty you would indeed categorize the woods as “something
unsafe and to be avoided” (see Figure 5).

Alternately, if the persons contextual history contained many
examples of success, and praise from others, they may derive that
their derived concept of self “I” is “good” and “successful” where
“only good things happen to me” and this may lead to higher
levels of self-esteem and confidence (see Figure 6). This may then
lead you to conclude that despite feeling fear of the woods, you
are confident that you will not get bitten, and as a result may still
categorize the woods as “unsafe” but do not categorize the woods
as “something to be avoided” (see Figure 7).

RECENT HYPERDIMENSIONAL
RELATIONAL FRAME THEORY
DEVELOPMENTS WHICH EXPANDS THE
DYNAMICS OF RELATIONAL FRAMING
WITHIN THE CONTEXT OF
BACKGROUND KNOWLEDGE

There have been recent developments of the RFT model
worth noting, which maybe additionally useful for studying
background knowledge in categorization. The first is the recent
development of an RFT framework called multidimensional,

multilevel (MDML) framework (Barnes-Holmes et al., 2017,
2020). According to this framework, AARR is assumed explicitly
to be able to account for much more complexity than suggested
by the standard RFT model (Barnes-Holmes et al., 2001). MDML
(RFT) assumes that AARR can develop from not just; (1)
mutual entailment; and (2) simple networking involving frames
(coordination, distinction, etc.); but also (3) more complex
networking involving rules; (4) the relating of relations such
as involved in analogical reasoning; and (5) relating relational
networks which are involved in extended narratives, and
advanced problem solving (which maybe typical for complex
background knowledge narratives). The framework also specifies
each of these five levels as having multiple dimensions: coherence,
complexity, derivation, and flexibility, so has a broader analytic
framework, which again maybe particularly useful in the study of
background knowledge of categorization.

Coherence refers to the extent to which patterns of AARR
are consistent with other patterns of AARR. For example,
stating “A motorbike is larger than a train” would be lacking
coherence with the wider verbal community (who may state the
reverse, i.e., “a train is larger than a motorbike”). However, in
another context the statement maybe coherent, if for example,
the person verbalizing the statement was playing a game,
where the objective of the game was to “state the opposite
of how you believe concepts actually relate” (Barnes-Holmes
et al., 2020). It is perhaps important to note that this extends
the notion of coherence as expressed in the categorization
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FIGURE 5 | An RFT interpretation illustrating complex frames of derived background knowledge, and how concepts can transfer functions in category learning to
develop new functional categories, thus building up the complexity of existing background knowledge(Images from adobe stock with license and permission to use
and modify. Credit for image from left clockwise around: “Tardigrade,” “AA + W,” “kuritafsheen,” and “iQoncept”).

literatures (Rosch and Mervis, 1975; Murphy and Medin, 1985)
which assumes it relates to a similarly function of intuition,
instead MDML (RFT) framework refers to the coherence of more
specifically defined (contextual) derived learning.

Complexity refers to the level of detail or density of
the AARR. For example, a mutually entailed relation of
coordination maybe seen as less complex than a mutually
entailed relation of comparison, because the later has two
types of relations (if X is faster than Y, then Y must be
slower than X) vs. the former which only has one relation
(If X is the same as Y, then Y is the same as X). This is
likely naturally important for studying background knowledge
as some instances of knowledge will be more complex than
others and therefore likely to require more modeling efforts
to successfully capture such complexity. An important measure
here, from a cognitive perspective, could be the level of entropy
(uncertainty) in the network, with more complex networks
naturally carrying more entropy. The success of the networks
could be ultimately assessed by their ability to reduce entropy
across the network by accurately capturing environmental
patterns of AARR.

Derivation refers to how often a particular derived relational
response has been emitted previously. The greater the derivation,
the less derived those emitted responses become, because it
establishes its own history beyond that of the derived relation
that was initially made (the baseline relation). Again, this is an
interesting dimension in this framework, and similar patterns
of establishment have been observed in cognitive science such
as within the unitization of sequence information. After much
practice, the sequence information have been found to become
compressed into their own unit of information inseparable to that
of its sub-components (Perlman et al., 2010, 2016).

Flexibility refers to the extent to which a given instance of
AARR is modifiable by current contextual variables. For example,
if someone is asked to respond with the wrong answer to the
question “Which is larger, a motorbike or a train?”, the easier
this would be for the participants to achieve, the more flexible
their corresponding AARR network would be. Flexibility maybe
particularly important when modeling background knowledge
under changing context such as during task switching studies,
and maybe heavily related to the other dimensions in this MDML
framework such as coherence.

The MDML (RFT) framework, however, has been even further
developed, as it focused mainly on entailment relation (Crel)
properties of AARR and largely ignored functional (Cfunc)
properties of AARR. So, it was further integrated with another
RFT adapted framework called differential arbitrary applicable
relational responding; DAARRE (Finn et al., 2018) specifically for
specifying functional (Cfunc) properties explicitly in the model.
This integrated framework (integrating MDML with DAARRE)
has been now called the hyperdimensional multilevel (HDML)
framework (Barnes-Holmes et al., 2020). The HDML framework
for RFT builds on the previous properties of RFT (DARRE and
MDML) and specifies the dynamic interplay of AARR (called
ROE; relating, orientation, and evoking) in verbally able humans,
whereby: (1) relating refers to the myriad ways of events maybe
verbally related; (2) orientating refers to noticing or attending to
stimulus events; and (3) evoking refers to whether some noticed
stimulus (e.g., a concept) or event is functionally appetitive,
aversive, or neutral.

This recent work is likely useful in the study of background
knowledge of categorization, as background knowledge is likely
to involve complex extended narratives, which HDML (RFT)
can account for through specifying, for example, the coherence,
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FIGURE 6 | An RFT interpretation of simple example of transformation of stimulus function, as the individual learns and derives relation of “self”(Images from adobe
stock with license and permission to use and modify. Credit for image on top “Maridav,” bottom right “Riska,” and bottom left “Coloures-Pic”).
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FIGURE 7 | An RFT interpretation illustrating complex frames of derived background knowledge, and how concepts can transfer functions in category learning to
develop new functional categories, thus building up the complexity of existing background knowledge(Images from adobe stock with license and permission to use
and modify. Credit for image from left clockwise around: “Tardigrade,” “AA + W,” “kuritafsheen,” and “iQoncept”).
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complexity, derivation, and flexibility of relevant AARR, and
dynamically under different context. Specifying relating of
relations and relating relational networks maybe particularly
relevant, as background knowledge may compromise relating
several networks which are related in some way. For example,
this maybe applicable to the network for jogger, and a network
for city location as in the study example given by Heit (1994),
or a network for snake type, a network for the self, and a
network for woods in the example provided in Figures 5, 7. This
may encourage analysis of the knowledge networks that extend
beyond the simple level of the frame and to take into account Crel
and Cfunc within a broader relational framework.

In an example of complexity, consider the example given in
Figures 5, 7. Here, a specification of AARR was given about the
individual (verbal) self (“I am. . . good or bad”) in these scenarios.
Here, verbal self becomes a network (see Figures 4, 6) with deictic
(perspective-taking) relations (I-You, Here-There, Now-Then)
which explain the self as becoming increasingly entangled as the
complexity of the AARR network increases (Barnes-Holmes et al.,
2020). So, in the example of whether the woods is safe enough
to walk through, the verbal self plays an important role in this
categorical decision, as well as its associated entangled relating
networks. Figures 5, 7 (which are examples of relating relational
networks) involve the (network 1) hierarchical relation of “I”
within the woods and this naturally brings about the relevant
AARR network relations that may define the verbal self (“I”)
in that context. For example, Figure 4 demonstrates an AARR
network relation of an “I” that has derived failure, which then
can be explained by HDML (RFT) as the network orientating
thoughts about failing and getting hurt, and evoking feelings of
failure, hopeless, low-level esteem, and therefore leads to a greater
behavioral tendency for avoidance when confronted by difficult
situations (such as a possible dangerous snake in the woods).
In contrast, Figure 5 demonstrates an AARR network relation
of an “I” that has derived success so orientates thoughts about
being successful, and evokes feelings of being safe and confident,
which therefore lead to a greater behavioral tendency for taking
greater risk in the face of difficult situations such as when possibly
confronted with a dangerous snake in the woods.

These scenarios (Figures 5, 7) relates (relating relational
networks) of the verbal self-network 1 with another network
(network 2) of the woods, whereby the snake specialist orientates
the participant toward the danger of the woods, through
relating Crel snake with danger, which evokes the feelings of
fear and avoidance. This network extends the function (Cfunc)
of fear of snakes to fear to the woods (through the relation
of woods contains snakes), and relating with the network of
self (network 1) which may then ultimately define the outcome
of the background knowledge category decision. Therefore, in
this framework it is the AARR relating of relational networks
which is the correct level of analysis in order to explain
the relevant background network knowledge in this case as
accounted for by HDML (RFT). Modeling work here could
also assess the levels of coherence and derivation there across
these networks, and the complexity required to accurately predict
categorization decisions involving complex AARR relational
networks, as well as the flexibility of the networks under different

contextual settings, to further increase the accuracy of the models
prediction of some category decision based on some background
network knowledge.

Some specific and relevant (to background knowledge)
examples of empirical work which support the MDML and
HDML frameworks in this area includes rule-governed behavior,
which from a traditional behavioral perspective refers to verbal
antecedents of stimuli that specify the dependence of relations
between stimuli and events (Skinner, 1966). The standard RFT-
based operant account (Barnes-Holmes et al., 2001), extends this
to involve relations frames of similarity, difference, opposition,
coordination, equivalence, temporal, hierarchy, and conditional
if-then relations, etc. It is perhaps interesting to note that some of
these properties are similar to that of logical semantic rules such
as the conditional frames. However, some interesting (HDML)
recent work has extended this work even further, specifically
analyzing the relationship between rule following and coherence.
For example, researchers (Bern et al., 2020) have found that
coherence significantly impacted upon levels of rule resurgence,
and that by manipulating coherence significantly impacted self-
report measures relating to certainty in their responding. In
other areas of work, participants have shown that they prefer to
follow rules which are coherent with the reinforced patterns of
relational responding in contrast to rules which are not coherent
(Bianchi et al., 2021).

Work on rules and derived relations has also been conducted
(Harte et al., 2017), which demonstrated that when participants
were either given a direct rule, a derived relation, or no rule,
they found that the direct rule led to most rule-persistence,
and the rule which contained a derived relation led to more
rule persistence than the no rule condition. Another study
(Harte et al., 2018) showed that lower levels of derivation
generally produced more persistent rule-following than higher
levels of derivation. Work has also systematically examined
the impact of coherence on persistent rule-following at varying
levels of derivation (Harte et al., 2020). The researchers found
that by manipulating whether feedback was either present
or absent for relevant derived relations when derivation was
high influenced the outcomes of rule persistence, contingency
sensitivity, and resurgence, as well as (a marginal significance)
for rule compliance. They also found that associations between
increased rule persistence and increased levels of self-reported
compliance were positive.

Ultimately, this recent empirical work is promising and
provides and important extension to the RFT analytic level
required to study background knowledge for categorization, and
to identify an appropriate model for. For example, it applies
properties already generally accepted within existing cognitive
categorization literature such as equivalence (Oaksford, 2008;
Goldstone et al., 2018) but places it within a broader framework
for which rules within categories can be studied (e.g., relating
rules to other rules, assessing their coherence, and how they
are derived, etc.), as well as specifying coherence more broadly,
as the framework can draw on analysis of the coherence of
any AARR networks which may be involved, and also the
complexity, and flexibility of relations specified given some
context of the background knowledge information provided. As
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such, the model has perhaps matured enough to accommodate
a comprehensive mathematical framework for the study of
background knowledge.

SOME MATHEMATICAL
FORMALIZATION CONSIDERATIONS

In summary of existing mathematical models, similarity
(mathematical) models such as GCM and many other exemplar
based models have some advantage as they can model non-
arbitrary components of similarity based on physical magnitude
features (color, shape, size – form), but are limited in that they
cannot model arbitrary (rule type) properties. The COVIS
model, is designed specifically to capture arbitrary explicit
verbal (rules) as well as some procedural (implicit) system
components. However, outside of rules and procedural tasks,
it cannot explain which knowledge is important to select,
which context information is selected in, or how functional
properties are determined and can carry through a relational
network in a dynamic way. Therefore, in many ways, the
COVIS model is limited for the study of background knowledge
in categorization and the knowledge selection problem.
Models such as ALCOVE, KRES, Baywatch model are neural
network models (connectionist methods). These have perhaps
the most potential for modeling important constructs in
background knowledge which are relevant when making
decisions in categorization tasks. ALCOVE (a similarity and
connectionist model) was able to model biases in background
knowledge. Baywatch is perhaps the most exciting approach
in the connectionist categorization as it has made some
progresses specifically modeling how background knowledge
affect categorization decisions based on a Bayesian probability
output of how likely a categorization decision is based on some
background knowledge.

Our RFT approach extends the Baywatch model, with some
inspiration from recent development of the AI literature which
has suggested that deep neural (layered) networks (DNN) are
more able to capture deep and rich context within a data set
(i.e., the learning history in this case of background knowledge),
but structure our DNN in line with a semantic network (Rogers
and McClelland, 2011). We utilize the GCM for non-arbitrary
similarity matching, expert system based on set theory, as well as
deep neural network model to capture arbitrary properties of RFT
(i.e., ME, CE, and ToF). This, approach, we believe, demonstrates
that RFT can provide a useful and formalized framework to
not just model the physical and functional similarities which
occur in categories, but precisely how individuals participants
engage and select relevant background knowledge in patterns
of contextually controlled relational responding which can bring
behavior under contextual control (i.e., to determine the category
decision), thus, extending work beyond similarity of physical
features, as well as simple inference modeling within existing
connectionist approaches.

One potential problem with the RFT approach in the context
of categorization research, is that a full mathematical model of
this approach has not yet be formulated, so it is difficult to

directly compare this with other categorization models such as
the GCM, ALCOVE, COVIS, KRES, Baywatch, etc., which are
all mathematically defined. A formal mathematical account for
categorization research may give the model some advantages
in terms of setting out very precise and testable predictions in
the context of background knowledge. Some researchers (Shull,
1991; Myung and Pitt, 2002) suggest that mathematical models
allow for greater precision and succinct predictions about how
conceptual terms are related to one another, and provide higher
descriptive and predictive power than models which are not
defined in mathematical terms. Alternatively, they suggest that
models which do not offer some mathematical description can
be clumsy for describing the precise conceptual relationships
of a model. This is perhaps why in many areas of science
such as in medicine, biology, and neuroscience, these have
provided such mathematical models in many of their work
(Costanza and Sklar, 1985; Kaplan and Craver, 2011; Benzekry
et al., 2014). So, as many of the other categorization models
mentioned have specified a mathematical description of their
model, here, we attempt to ensure consistency with this approach
by offering some mathematical considerations when specifically
modeling background knowledge effects using RFT. As such,
some mathematical description of RFT is provided, for those
who are mathematical modelers and who may be interested in
these developments.

This section is structured in the following way; (1)
demonstrating that the literature on AI indicates that DNNs
have made huge advances in deep discovery of properties
(such as with the game of Go) and are highly applicable for
developing a model of context and background knowledge in
which the properties of RFT emerge such as relational frames
of coordination, opposition, etc. This will allow for precise
and testable predictions to be made in laboratory experiments;
(2) non-arbitrary properties of RFT can be modeled through
a similarity function of the GCM, whilst the more important
(for background knowledge) arbitrary properties of RFT can
be modeled through expert systems based on set theory (built
from the feature outputs of the DNN); (3) that the DNN
learning approaches from the AI literature can be applied
to neural networks of Background knowledge such as by
extending the Baywatch and semantic network architectures
model specifically; (4) that these multi-modal approaches
combined offer the most promising position to formalize the
RFT model suitable for testing predictions of how background
knowledge emerges and affects category decisions such as in
a situation where an experimenter were to ask a participant
to categorize, for example, whether the woods safe or not
given some context.

So, starting with the AI literature, it can perhaps be assumed
that any mathematical model for background knowledge may
benefit from drawing upon the many resources and recent
developments in the field of machine learning (Silver et al.,
2017; Brown et al., 2020), as many of these approaches are
tackling a similar problem to background knowledge in AGI
research, so, they may be of some benefit here. RFT is largely
a relational networking of concepts defined through arbitrary
language processes, so some of the developments within the AI
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community toward developing a machine learning approach,
such as those suggested for natural language processing (NLP)
may be directly applicable here (Greenway et al., 2010; Berkout
et al., 2019).

The relevance of natural language is that it often draws upon
background information in identifying the meaning and context
of words. This is therefore an important area, however, there
is an important difference, as the focus here is on background
knowledge, and implementation of such knowledge specifically
relevant to categorization studies, and not the generation of
language (e.g., parsing and token tagging parts of speech
into syntax trees, which occupies much of NLP) (Collins
and Koo, 2005; Abebe and Tonella, 2010; Dos Santos and
Zadrozny, 2014). It is also perhaps important to note that any
implementation of an RFT mathematic model within the context
of background knowledge, should be considered developed for
the purposes of modeling category learning of background
knowledge specifically, and not a general model, which may
have to be adapted for other studies and context to fit specific
purposes (such as NLP).

There have been some interesting advances in the area
of machine learning artificial intelligence (AI), worth noting
(as some of these approaches will be utilized in our model),
such as DeepMind’s AlphaGo (Silver et al., 2017) winning
against the highest ranked player in the world at the time
of play (Lee Sedol) in the game of Go. This used novel
applications of a Monty Carlo tree search algorithm, as
well as deep learning and reinforcement learning approaches.
Open AI’s GPT3, on the other hand, has made some
advances in the area of NLP (Brown et al., 2020) which
utilize novel deep learning methods such as the use of
a transformer based neural network which is specialized
for text classification, and allows it to predict, and create
natural sounding text.

Perhaps the most interesting part of Deep Mind and
GPT3 and may be key to their success, was their use of
modeling with high accuracy very complex and noisy data
through the use of deep learning networks. However, GPT3
is not designed to build on any knowledge structures, instead
it utilizes vast DNNs (currently 175 billion parameters for
GPT3) to scrape (learn from) the internet such as Twitter
and Wikipedia, through application programming interfaces
(APIs), to understand patterns of text but without any
knowledge development policies of the text itself. Hence,
this approach does not involve any account of knowledge
representation, however, these kinds of deep learning methods
could be applied for the purposed of modeling feature
representations and associated RFT relational frames (context)
within complex and noisy background knowledge information
in order to identify what properties are important under what
relational context.

Deep learning networks can be thought of as a regression and
classification approach, which can pick up non-linearity within
the data (Detienne et al., 2003; Lowe et al., 2003, 2017). However,
like DeepMind and GPT3, it is unlikely that deep learning alone
will be sufficient for background knowledge categorization tasks,
as an expert system would need to specify how RFT organizes the

knowledge (i.e., ME, CE, and ToF), and specifically how complex
relations emerge between relational networks identified by the
DNN (as specified by RFTs most recent HDML framework)
relating relational networks which seem relevant in the context
of background knowledge.

Deep networks are able to identify non-linearity well, but
for simple problems they tend to overgeneralize (Rumelhart
et al., 1986). So, an expert system can be usefully applied to
avoid problems such as the bias-variance dilemma which is
defined as the trade-off between data fitting and generalization
when dealing with simple vs. complex background knowledge
problems (Geman et al., 1992). In this case, here we propose
a model which has several policy modules (expert and neural
networks) to account for both arbitrary and non-arbitrary
components of the RFT model.

It is important to remember that RFT specifies two key
types of relational responding, that is the arbitrary and non-
arbitrary responding. Arbitrary responding (the most interesting
component of the RFT model) relates to relating through
relations (and networks of relations) such as equivalence,
opposition, distinction, etc. (see section on a functional
contextual account of background knowledge), so for example, an
object may be 1 by1 meters and another 10 by 10 meters, but they
can arbitrarily be labeled as equivalent (despite obvious physical
differences in size) given some context. However, non-arbitrary
responding relates to a similarity function, i.e., which objects
are most similar to each other in terms of physical magnitude
(i.e., 1 by 1 meter objects are similar only to other 1 by 1 meter
objects). RFT can define both of these properties, and so can our
implemented RFT model through the different modules.

So, the GCM similarity model may be well placed for
categorizing non-arbitrary physical feature based information
of RFT, whilst both unsupervised and supervised deep learning
networks may be optimal for learning the non-arbitrary
components of relational representation. Hence, the specialized
GCM module based on similarity functions and RFT expert
module are useful for localized problems whilst the networks
learning structure can be used to identify learning context
about where ToF, ME, and CE occur, as well as when specific
contextual functions play a role in background knowledge. So,
the combining expert network components may be optimal, as
suggested in previous studies (Ogidan et al., 2018).

Therefore, in our specification of non-arbitrary cases where
physical features and dimensions are given, an expert system,
in the form of the GCM model for simple similarity-based
processing, and within the context of background knowledge,
could be usefully applied. This approach is similar to that
applied in the attention, learning, covering map (ALCOVE)
model (Kruschke, 1992), whereby a feedforward neural network
was combined with the GCM specifically for exemplar learning.
The specific difference here is that Kruschke only modeled
similarity in the form of exemplar theory whilst we were utilizing
the GCM for only non-arbitrary situations where similarity
exemplar modeling may be useful (arbitrary relational functions
are modeled through the neural networks separately).

The GCM assumes that a new exemplar is categorized on the
basis of greatest summed similarity. In this way, the similarity of a
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new item is summed with all of the items in each of the categories
and a classification is made into the category with the greatest
summed similarity. Thus, a new exemplar will be classified with
category A and not category B if it is more similar to A’s exemplars
than B’s exemplars. Specifically, a mathematical description of
this model utilizes multidimensional space (Euclidean distance
and city-block metric) to represent the exemplars. This can
be denoted as follows, whereby the decision (or behavioral)
probability of making a category A classification when given
stimulus Si, when given only two possible categories (A and B),
is expressed:

P (A |X ) =
βA ηXA

βA ηXA + βA ηXB
(2)

Where, P is the probability of making a category A response,
when given instance (stimulus exemplar) X. βA is a response
bias toward category A, whilst ηXA and ηXB are the similarity
measures in the form of summed similarity (with quantifiable
magnitudes such as size, color sound, etc.) of stimulus X
toward all stored (in memory) exemplars of categories A and B,
respectively. The summed similarity, can be given specifically as:

ηXA =
∑

j∈A
exp

{
−c
[(∑D

k=1
wk|yxk − yjk|

r
)1/r ]q }

(3)

Where, c is an overall scaling (sensitivity) parameter, r is
a Minkowski distance metric parameter, whereby r = 1 is a
city-block metric, and r = 2 results in Euclidean distances. q
determines the shape of the similarity function, yxk and yjk are
the coordinates of stimulus X and the jth stored exemplar on
dimension k, respectively, and wk are the dimensional attention
weight of dimension k.

In order to formulate the arbitrary RFT components, a
similarity function such as the GCM is not applicable. Instead,
an expert system denoted through set theory can be used
mathematically describe the expert non-arbitrary relational
constructs (for ME, CE, and ToF). Hence, equivalence from
RFT can be stated as follows for equivalent relational properties
between two sets using set theory (the three horizontal bars sign
denotes equivalence):

ARxB ≡ ARyB (4)

However, equation 4 can be expressed more succinctly in the
form of ME if the symbol | | | is used to denote a shared relation
(AND) within the set as suggested in a previous studies (Gilroy,
2015; Edwards, 2021). In the following example of ME, describing
a five stripe snake (A) as being “more dangerous” (Rx) than
a three stripe snake (B) derives the relation through ME that,
therefore, a three stripe snake (B) must be “less dangerous” (Ry)
than a five stripe snake (A), whereby a contextual relation is
expressed by Crel within the set. In this way, ME can therefore
be denoted as:

Crel{ARxB|||BRyA} (5)

Or in plain English:

In the woods (Crel). . .{a 5 stripe snake (A) is “more dangerous”
(Rx) than a 3 stripe snake (B) AND (| | |) a 3 stripe snake (B) is
“less dangerous” (Ry) than a 5 stripe snake (A)}.

An additional condition can be included for CE, which can be
denoted as:

Crel{ARxB and BRyC|||ARpC and CRqA} (6)

Or in plain English:
In the woods (Crel). . ..{a 5 stripe snake (A) is “more

dangerous” (Rx) than a 3 stripe snake (B) and a 3 stripe snake
(B) is “more dangerous” (Ry) than a 2 stripe snake (C) AND (| |
|) therefore, a 5 stripe snake (A) is “more dangerous” Rp than a 2
stripe snake (C) and a 2 stripe snake (C) is “less dangerous” (Rq)
than a 5 stripe snake (A)}.

A further condition can be included to account for ToF,
wherebyf 1 is the function “fear,” can be denoted as:

Cfunc[Crel{ARxB and BRyC{Bf1
Rp and Cf2

RqB|||Af3
}}] (7)

Or in plain English:
Cfunc – WHEN told dangerous 5 stripe snakes

live IN the woods.
Crel – WHILE talking to a snake specialist, and deciding

whether to walk through the woods or not.
Here → is used to show the direction of the ToF from one

stimuli to another.
Woods (A) is “related to” (Rx) you (B; as you decide to

walk through the woods) and you (B) are thus “related to” (Ry)
dangerous 5 stripe snakes (C; who you are told live in the woods
and may encounter one if you decide to walk through the woods)
THEN you (B) are “fearful” (share functional property of fear –
f 1

Rp) of woods (C→A ToF; as you have been told the snakes that
live in the woods are dangerous, so the fear of snakes entails with
the fear of woods as you become afraid of the woods) AND woods
(C→A ToF) is “feared by” (f 2

Rq) you (B; as the ToF is mutually
entailed). This implies that the woods (A) through ToF now has
the function of fear (f 3), and causes the feeling of fear when you
think about walking through it.

In addition to this expert system, this may be supplemented
by unsupervised learning neural network, in the form of a
self-organizing map (SOM) (Kohonen, 2012) to support the
discovery of learning context, such as under what context
should (as predicted by the RFT model) mutual entailment,
combinatorial entailment, and transfer of functions occur. This
approach is an unsupervised clustering method which has
already been formulated in the context of relational learning
for RFT specifically (Ninness et al., 2005) to identify situations
(types of learning problems) where ToF was not learned (i.e.,
there were errors in a task) after training, and which learning
situations ToF occurred. This type of methodology could thus
be applied more concretely to the area of background knowledge
in categorization, in identifying the types of learning parameters
and context for which ToF, ME, or CE, arise in background
knowledge (e.g., to identify what learning context allows ToF to
emerge as in the example outlined in Figures 5, 7).
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A generic version of the SOM (Kohonen, 2001) used in
the Ninness et al. study for ordering the mapping into a two-
dimensional grid, giving a model mi whereby data can then be
considered n-dimensional Euclidean vectors, can be given here.
Here, t is the index of data items in a given sequence and ξ is a
given weight. This can be denoted as follows:

x (t) = [ξ1 (t) , ξ2 (t) , . . . , ξn (t)] (8)

The model is iteratively updated. The ith model is defined as
mi (t) and the new value mi (t + 1) is computed iteratively from
the old value of mi(t) as new data item xt . The index i refers to the
model under processing, and c refers to the index of the model
which has the smallest distance from x (t) in the Euclidean signal
space. α (t) is a scalar factor that defines the size of the correction,
and its value decreases with the step indexed t. The factor hci is
a smoothing kernel, called neighborhood function. When i = c
the neighborhood function is equal to 1. Its value decreases when
the distance between the models mi and mc on the grid increases.
This can be denoted as the following:

mi (t + 1) = mi (t)+ α (t) hci (t) [x (t)− mi (t)] (9)

Then new models are computed as the following, whereby nj is
the number of computed inputs into node j and node j runs over
other nodes in the neighborhood of node i. In order to update
mi, this scheme is iterated a few times using the same data to
determine the mean x̄j:

mi =
∑

j

njhjix̄j
∑

j

njhji (10)

In addition to the unsupervised SOM approach, deep learning
a DNN (as the literature on AGI suggests) can also be utilized
which has some unique advantages over SOM in some instances.
One problem with SOM is that the mapping topography needs
to be specified by the user, and it does not explore deep
learning association properties (Golden, 2001). DNNs, on the
other hand, can explore these deeper associations in order to
identify what relational frames are relevant, and under what
context, in situations where background knowledge is utilized in
categorization tasks. Deep learning approaches have been used in
combination with SOM in other studies to optimize task results
(Asghar et al., 2019).

One implementation of deep learning which may be helpful
in modeling deep abstract arbitrary features in the form of
functional properties, and can extend the SOM, is from the
machine learning (AI) literature, called backpropagation neural
network (BPN). Previous background models have focused on
Bayesian and connectionist (network) model approaches such as
by Heit and Bott (2000). However, Heit and Bott employed a
shallow network (3 layer network), and it has only been in the
last few years (Jeff Dean et al., 2018; Sejnowski, 2018; Buntine,
2020; Jeffrey Dean, 2020) that advances in computational power
has allowed for deep learning networks to effectively process the
many levels of weight adjustments and gradient decent required
for modeling complex and noisy datasets which background
knowledge involves.

This massive scalability of deep learning increases its
predictive power immensely as shown in thee AI literature, and
is one of the main reasons for the successes of OpenAI’s GPT3
NPL program in modeling complex information patterns (Brown
et al., 2020), which has increased the size of its deep network to
175 billion parameters and 96 layers (from 1.5 billion parameters
in GPT2), as well as DeepMind’s AlphaGo which also has a large
scale deep learning network (Silver et al., 2017; Li and Du, 2018).

So, a DNN maybe useful for learning in what situation and
context functional control over behavior and decision making
occur within background knowledge categorization tasks. In
order to implement this DNN, this starts with the summation of
inputs x = (x0, . . . , xk) multiplied by weights w = (w0, . . . ,wk)
and adding in a bias value (usually 1):

n∑
i=1

(xiwi)+ bias (11)

The next step is specifying the activation function for each layer.
There are various functions which can be chosen, a useful and
commonly used non-linear function is the sigmoid function σ:

σ =
1

1+ e−z (12)

A cost function C (usually sum of squared error) needs to then
be defined to allow the network to adjust weight and bias. This
can be defined as the average C, over the cost function Cx for
individual training examples, x:

C =
1
n

∑
x

Cx (13)

Gradient decent can be computed through partial
derivatives ∂C/∂w and ∂C/∂b of the cost function C with
respect to any weight w or bias b, so that these weights and
biases can be adjusted to minimize the cost (error) function. The
gradient of the error which is expressed as ∇C and decent can be
formulated as (and b can replace w in the case of bias):

∇C =
(
∂C
∂w0

)
, . . . ,

(
∂C
∂wn

)
(14)

Perhaps most interesting in Heit and Bott (2000) Baywatch
neural network model of is the inclusion of Bayesian probability,
which converts the networks activation outputs into a probability
measure of categorizing in a particular way based on some given
background knowledge. In order to do this, the model uses the
logistic transformation as outlined in Gluck and Bower (equation
7) (Gluck and Bower, 1988). Standard Bayes rule can be expressed
as the following, whereby P is the probability of some hypothesis
(H) being true, given some evidence (E), and denoted as:

P (H|E) =
P (E|H) P(H)

P(E)
, (15)

In our model, the same Bayesian probability equation as of Gluck
and Bower (equation 7) (Gluck and Bower, 1988), can be utilized
at the expert output level. If one lets Sk represent one of the
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possible stimulus patterns, the logistic function can be denoted as
the following, whereby P (R|Sk) is the probability of responding
in a particular way given Sk. Ok, denotes the activation in the
output node which results from Sk being presented at the input
nodes, θ is a positive scaling parameter, and e is the error term
(cost) which in learning the network attempts to reduce.

Pk = P (R|Sk) =
1

1+ e−θ(0K )
, (16)

Given the complexity of background knowledge modeling,
this approach of utilizing several modules of supervised,
unsupervised, and expert systems seem the most promising
approach. However, although there is perhaps universal
agreement that the cortex and other areas of the brain processes
information through a connectionist system of connected
neurons (Levine, 1995; McLeod et al., 1998; Coltheart, 2004; Lin,
2017), one problem with existing (connectionist) neural networks
is that they are unlikely biologically plausible in the sense that
there is no evidence that the brain uses backpropagation when
learning (Crick, 1989; O’reilly and Munakata, 2000; Whittington
and Bogacz, 2017), therefore backpropagation may not be the
best way to implement the network. More specifically, in a DNN,
the change in each synapse is calculated as a global function
of activities and weights of many neurons. However, in order
to be biologically plausible (closer to how real neurons signal),
the network must perform its learning algorithm locally, and
the change in each synaptic weights must entirely depend on
just the activity of pre and post-synaptic neurons (O’reilly and
Munakata, 2000; O’Reilly et al., 2016; Whittington and Bogacz,
2017).

As a result of this, a large amount of effort has been made
into applying more biologically plausible connectionist DNNs,
and these have been in the form of Hebbian learning networks
which have been shown to approximate the backpropagation
learning algorithm, whereby the local synaptic weights depend
on the pre and post synaptic activity (O’reilly and Munakata,
2000; O’Reilly et al., 2016; Whittington and Bogacz, 2017). It
has been suggested that these biologically plausible DNNs should
ensure the following (O’reilly and Munakata, 2000; Whittington
and Bogacz, 2017): (1) Local computation, whereby a neuron
performs computation on the input it receives from other
neurons and weights by the strengths of these local synaptic
connections; (2) Local plasticity, synaptic weight changes is
dependent on the neurons the synapse connects with; (3)
Minimal external control, whereby computation of neurons
is performed autonomously with little external control; (4)
plausible architecture, where the connectivity patterns in the
network should be consistent with the basic constraints of
connectivity in the neocortex.

One very interesting adaptation of this comes in the form
of predictive coding, from some of the most prominent and
widely accepted models of neuron functioning proposed by Karl
Friston and colleagues (Rao and Ballard, 1999; Friston, 2003,
2005) and is related to the autoencoder framework (Ackley et al.,
1985; Hinton and McClelland, 1988; Dayan et al., 1995), which
O’Reilly and colleagues’ Hebbian learning GeneRec algorithm
was also based upon, utilized in their Leabra DNN architecture

(O’Reilly, 1996; O’Reilly et al., 2016) as well as other autoencoder
versions implemented in a biological plausible DNN (Bengio,
2014; Bengio et al., 2015).

Here the backpropagation algorithm can be approximated
with the predictive error term in a biologically plausible way,
whereby instead of computing the backpropagation gradients via
a chain rule which is used in the form of derivatives from calculus
in the typical backpropagation network which shows how much
the vi (which denotes the vector of activations in a layer) need to
change in order to minimax the cost function C:

∂C
∂v0
=
∂C
∂v1

∂v1

∂v0
(17)

Instead, a biologically plausible predictive coding (Hebbian
learning) algorithm is utilized:

v0 = −∈0 + ∈1
∂v1

vo
(18)

Where, in predictive coding, ∈i is the prediction errors (errors
made by parent nodes about the activation prediction of locally
connected child nodes). Here, predictions and prediction errors
are updated in parallel with only local information. Also, see
Whittington and Bogacz (2017); Millidge et al. (2020) for full
details. Prediction errors are computed in the following way:

v(a)b = ε
(a)
b +

∑n(a−1)

i=1
ε
(a−1)
i θ

(a)
i,b f ′

(
v(a)b

)
(19)

Here, prediction errors ∈(l)i are computed from the excitation
activity of corresponding nodes v(l)i and the inhibition of the
nodes on the next (a higher) layer v(l+1)

j weighted by the strength

of the synaptic connection θ
(l+1)
i,j . The nodes v(l)i themselves

also make predictions, but on the prediction error from the
corresponding level and the lower level which are weighted by the
synaptic weights. f ′

(
v(a)b

)
refers to the non-linear transformation

function which transforms and scales incoming input from
lower-level nodes to a variable node. Once the network has
reached its steady state it then updates its parameter weights θ

(l)
i,j

in this locally Hebbian driven learning which captures synaptic
plasticity of real neurons.

DEEP LEARNING NEURAL NETWORK
SEMANTIC ARCHITECTURE WITH
REPRESENTATION AND RELATIONAL
LAYERS

The DNN we use here (see Figure 8A), is similar to the structure
of a semantic network (Rogers and McClelland, 2011) which
extends previous work of distributed memory model (McClelland
and Rumelhart, 1986) and the semantic memory models (Hinton,
1986; Rumelhart, 1990; Rumelhart and Todd, 1993; Hinton and
Anderson, 2014). This is optimized for processing information
which involve both context independent and context (relational
frame) dependent aspects and has been specifically designed for
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FIGURE 8 | Illustrates RNN encodings for each layer – a representation layer, and a relation sub-input layer for determining output category classifications utilizing
relational fames which represent context. For section B (Edges, Textures, Patters, Parts, and Objects), these were taken from Chris Olah (Google Brain Team),
Alexander Mordvintsev (Google Research), Ludwig Schubert (Google Brain Team) (2017) (CC-BY 4.0, with permission) https://distill.pub/2017/feature-visualization/.
(A) represents the neural network encoding relation information; (B) illustrates progress layer feature granularity in a typical CNN; (C) illustrates progressive
contextualized word patterns which detect context in language; (D) illustrates decreased mutual information between input and output as the network places focus
on important information whilst discarding irrelevant information.

complex contextual knowledge representation which is suitable
for emulating basic RFT properties.

This network structure is a parallel distributed processing
approach to cognition (McClelland et al., 1986), and assumes
cognitive (or behavioral) phenomena arises from the propagation
of action amongst connected neuron-like processing units. These
neuron unit nodes explicitly encode the state of the environment

via direct sensory inputs. The hidden layer nodes mediate the
flow of activation encodings between the input and output, and
the output nodes explicitly encode representations of potential
responses. The propagation of activation is constrained by
weighted synaptic-like connections between neuron nodes, and
the internal environmental representation take the form of
distributed patterns of activations across some subset of hidden
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units which update overtime in response to input data from
the environment.

The function of the semantic network architecture is
to generate context and item appropriate inferences about
the properties of the inputted data (concepts). It contains
representation (concept) inputs as well as relation inputs (see
Figure 8A), whereby the relation inputs provide information
about the context that influences the representation inputs
in the hidden layers (Rogers and McClelland, 2011) as well
as similarity structure across relational contexts (Rogers and
McClelland, 2008). The input layer directly encodes localist
environmental representations of individual concepts, whilst the
relation layer encodes localist environmental representations of
different relational contexts relevant to the inputted corpus.
In the example given the relation al frames are coordination,
opposition, containment, but these can be extended to include
all of the relational frames within RFT, and the network
could learn through a larger training corpus that sentences
within a corpus such as “lives in” involves the containment
and coordination relations. So, the network develops its own
equivalence class for word vectors in order to correctly encode
and active the correct relational frames within the relation
layer. Crucially, the representation layer encodes a context
independent internal representation whilst the hidden layers
encodes (receiving input from the relation layer) context-
dependent representations.

In this framework, the internal representations that govern
how knowledge generalizes are not considered discrete category
representations, but instead are patterns of activations across
continuously valued nodes distributed across the representation
and hidden layers. The patterns of activity can be considered
a point in a continuous high dimensional space, which each
node encoding one dimension. Unlike exemplar theories in
categorization, here, the dimensions of the space do not
correspond to interpretable semantic features and there is no
storage of exemplars – hence the information is only interpretable
when considering patterns of activity across nodes within
separate layers. Categories can be output form this model
but are not contained within it, and instead correspond to
densely occupied regions of the representation (nodes within
layers) space.

This approach has the advantage of not needing to specify
which categories are stored within background knowledge
hence gets around the knowledge selection problem, instead
the semantic network derived a function between the input
and output properties through its distributed activations across
layers. Further to this, it is important to note that this model
could be expanded further (as an additional module) to include
a reinforcement learning agent structured through a Markov
decision process (MDP) as specified in previous work (Edwards,
2021), when more complex decision making is needed which
requires the extracting of background knowledge for category
decision making. This specifies the probability P given some
action a, and is denoted as Pa

(
s, s
′
)

1, s is the current state of

1See (Edwards, 2021) for full details of this extended reinforcement framework.

the environment and s
′

is some new state transition if action a is
carried out. This would help specify which concepts and instances
are being reinforced and under which context as knowledge
develops into more complex networks.

ENCODING OF INFORMATION TO
NETWORK LAYERS AND GRAPH VISUAL
EMBEDDINGS

As with the semantic network of previous work (Hinton, 1986;
McClelland and Rumelhart, 1986; Rumelhart, 1990; Rumelhart
and Todd, 1993; Rogers and McClelland, 2011; Hinton and
Anderson, 2014), our proposed network (see Figure 8A) will
store binary encodings to represent the concepts contained
within the inputted corpus (within a representation layer), as well
as the relational frames (of the RFT model in the relational layer),
which will ultimately represent the background information
needed to make some category decision (such as whether it is
safe to walk through the woods). The output of this network,
therefore, will be some category which is relevant in order to
make some category decision (the semantic network has been
adapted for this purpose).

In terms of granularity of encoding, it is anticipated that like
convulsion neural network and other network representation
layers (see Figures 8B,C) the level of detail (granularity) increases
layer by layer within the DNN (such that layer one captures just
the most basic features – edges for images or word structures
for a text corpus, layer two captures textures or word relations,
etc.), and therefore learning occurs layer to layer, and that each
layer has all the information it needs to predict target output
plus some noise, whereby noise decreases as the number of layers
increase. Figure 8A shows that at the third layer the relational
frame (from the RFT model) properties are integrated with
the representation properties to forms relational representations
(e.g., snake lives in the woods).

From this perspective, every layer becomes a partition of
information, and these are known within the information
theory literature as successive refinement of relevant information
(Equitz and Cover, 1991; Gregor et al., 2015; Liu Y. et al., 2018).
So, the input is slowly being encoded and decoded into the
target output. From information theory, this can be expressed
as the amount of information or entropy (uncertainty or noise)
is contained at each layer (see Figure 8D; Tishby and Zaslavsky,
2015; Tax et al., 2017; Achille and Soatto, 2018; Yu et al., 2020).
In other words, how much entropy H is removed from X (input
information) at each layer if Y (output, respective categories)
is known. Here, H(X) denotes the entropy of X, H(X|Y) is
the conditional entropy of X given Y , and I (X,Y) = H (X)−
H(X|Y) denotes the mutual information (between X and Y). The
mutual information between X and Y should decrease as the
important and relevant information is selected, and the noise
(non-relevant information) is discarded. This can be represented
as a Markov Chain whereby every hidden layer becomes a
single variable h, in a Markov Chain, represented as h1 , h2 ,
etc. As each variable in a Markov chain is only dependent
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Transfer of func�on (ToF)
Cfunc [Crel {A Rx B and B Ry C { Bf1Rp and Cf2Rq B ||| Af3 }}]                                 

1 2

3

4

Community network 3. Verbal self and relational
a�ributes: self esteem

Community network 1.
Concept snake and rela�onal a�ributes:
Is dangerous, lives in woods

Community 
network 2. 
Woods and 
rela�onal
a�ributes:
Contains 
dangerous snake

FIGURE 9 | A network structure shows how three community clusters (relating relational networks – of the HDML framework) in a network graph can emerge
whereby each cluster has related concepts and are connected (related) to other clusters in the graph where properties such as a ToF from one cluster can influence
other cluster networks. Each node represents a unique concept and are connected together in a strong or weak way (depicted by the width of the connecting lines)
to other nodes within a cluster. The community clusters (blue, green, and orange) containing the connected nodes are related to one another through some
properties of RFT, in this case a transfer of stimulus function. The red arrow indicates the transfer of function “fear” from green community (snake category), to the
blue community (woods category), and finally to the orange community (verbal self).

on the previous layer, each layer can be observed as its own
partition of information.

There are several ways to determine and interpret the
specific encodings made on neurons within layers and plot them
(for visualization purposes) in graphical form (see Figure 9).
Coming out of the graph theory literature, explanatory graph
analysis (Golino and Epskamp, 2017; Golino, Shi et al., 2020)
has been recently introduced. These types of approaches have
been useful in estimating a network and then developing
clusters of communities of variables from the relationships
between the variables within the network (Golino and Epskamp,
2017). This has been particularly useful in psychology in
regards to applications of this framework for modeling network
psychometrics (Epskamp et al., 2016), through the development
of the network graph which are based on identifying the strength
of correlations between psychometric variables (Christodoulou
et al., 2019; Baker and Berghoff, 2021).

Despite the advantages of the network analysis approaches
of direct correlations between psychometric variables, DNNs
have the advantage over other approaches of network analysis.
This is because they can leverage large amounts of complex
data to identify some underlying function that describes some
pattern in the data with high dimensionality such as speech,
visual, and natural language processing (Liu B. et al., 2017; Deng
and Liu, 2018; Voulodimos et al., 2018; Young et al., 2018;
Nassif et al., 2019) which is particularly relevant to background
knowledge categorization tasks, and emulates the way our brain
actually process information (via a Hebbian learning error driven
neuronal network) (O’Reilly, 1996; O’reilly and Munakata, 2000;
O’Reilly et al., 2016; Whittington and Bogacz, 2017).

This DNN approach has been inspired by recent developments
in neuroscience of brain network analysis methods (Liu J.
et al., 2017; Garcia et al., 2018), which have shown that
analyzing brain neural connections can give important insights
into the architecture, development, and evolution of the brain
networks. Applied into a DNN framework, here, instead
of identifying the direct correlations between psychometric
variables (Christodoulou et al., 2019; Baker and Berghoff, 2021),
allows for a graph to develop directly from the neural network
weight distributions, whereby correlations would be calculated
between neuron nodes in order to identify communities within
the network (Horta et al., 2021). As weight distributions within
a network are difficult to visualize and interpret, Graphs can
help the network distributions to become more comprehensible
to humans who can then visualize the encodings within
the network, allowing for the classic black box problem of
interpretability to be overcome.

This problem of interpretability and explainability of how
or why the DDN has made some set of connections is not
trivial, and makes it difficult for researchers to traditionally
understand what is being encoded on each neuron in each
layer of the DNN (Towell and Shavlik, 1993; Liu X. et al.,
2018; Kumar et al., 2020; Erasmus et al., 2021). This ability
to understand some of the encodings can be important with
applications such as medical decision making, law enforcement,
financial analysis (Horta et al., 2021) as well as when attempting
to model and explain the cognitive system (Cichy and Kaiser,
2019; Oita, 2019; Monte-Serrat and Cattani, 2021) such as
in tasks relating to background knowledge which my further
help researchers understand distributed knowledge encodings

Frontiers in Psychology | www.frontiersin.org 25 March 2022 | Volume 13 | Article 745306

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-745306 February 26, 2022 Time: 12:32 # 26

Edwards et al. Functional Contextualism and General Knowledge

across layers and what the weight distributions actually mean
in graphical form.

For many years, there been several attempts to extract
meaningful encodings from what is traditionally understood as
a black box of the DNN connectionist layers (Towell and Shavlik,
1993; Bartlett, 1994; Mak and Blanning, 1998), however it has
only been with recent progress in computational resources has
this been possible (Horta et al., 2021). Several approaches have
made considerable progress in solving interpretability problem
(Gilpin et al., 2018) by extracting knowledge from the DNN,
such as the pedagogical rule extraction method (de Fortuny
and Martens, 2015), and more recently architecture agnostic
approaches which do not depend on fully connected networks
(Horta et al., 2021).

These recent developments are inspired by co-activation
graph methods (Horta and Mileo, 2019) which are similar to
functional graphs based on statistical correlations between nodes
in the DNN. Within a DNN, nodes represent neurons and the
weighted relations between nodes indicate a statistical correlation
between activation values. This allows for assessing connection
pairs between any layer (including hidden layers) of the network
and the output layer. Unlike in previous approaches, this makes
it possible to study the relations between neurons within a
DNN, whereby knowledge encoded on the in the co-activation
graph reflect the knowledge acquired by the DNN in its learning
phase (and the stages of evolution of this learning, encoded
by the layers). This, therefore, allows for precise measures of
encodings across the network (Horta and Mileo, 2019; Horta
et al., 2021).

A co-activation graph can be represented (see Figure 9; Horta
et al., 2021) through an undirected graph G = (V, E) where
V =

{
v0,v1,...,vn,

}
is a set of nodes that represent the neurons of a

DNN and E is a set of weighted relationships (expressed as edges
in the graph) eij = (vi,vj,w) between pairs of neurons vi and vj
with weights wij are obtained by applying a statistical correlation
on A(vi, S) and A(vj, S) as depicted in the equation below:

wij = Spearman_corr
(
A(vi, S

)
, A(vj, S)). (20)

Spearman coefficient is chosen as linear relations are not expected
between the neuron’s activations values. Edge weights vary from
−1 to 1, and there are three steps on how to develop a co-
variation graph. For example, consider a DNN with neurons n
and a data sample S = {s0, s1, . . . , sn} . The three steps are as
follows:

The first step is to extract activation values. Here, the
DNN needs to be input S, then for each neuron vi,
and each data input sh ∈ S, where 0 ≤ h < m , a single
activation neuron aih, needs to be extracted. The result
is a set {A (v0, S) ,A (v1, S) , . . . ,A (vn, S)} where A (vi, S)
represents for the whole dataset S, all activation values of each
neuron in the network.

The second step is to define and calculate edge weights, which
requires defining the relationships between pairs of neurons.
For each pair of neurons vi and vj the correlation equation
20 is applied and utilizes activations A (vi, S) and A

(
vj, S

)
in

order to establish the statistical correlation for the relationship

weights wij between each pair of neurons. This allows for
a mathematical matrix which contains wij for every neuron
pair vi and vj which can then be utilized to construct a set
of edges E within a graph and between neuron nodes, and
for every neuron pair in the network in order to develop
a complete graph.

The third step is to build and analyze the co-activation graph.
In order to visualize the graph being developed this needs
to be constructed within a computational tool for graphing
structures such as Neo4j2. This provides a graph, whereby nodes
represent neurons at any layer within the DNN that the research
wishes to analyze the encodings from, and the weighted edges
represents the non-linear correlations between the neuron node
activation values.

The final part this approach is the analysis method adopted.
Here, we first need to demonstrate that the co-activation
graph is encoding the same knowledge as the DNN. This
approach has been successfully tested with DNNs, whereby
a community structure analysis and centrality analysis are
conducted over several data sets (Horta and Mileo, 2019),
which helps to observe how a graph algorithm applied
to the co-activation graph can explain the DNN model.
The community analysis applied to a deeper model helps
to establish whether the results are consistent with more
complex environments and therefore DNN models. The
centrality analysis is applied to study and understand
the association between node centrality and neurons
which are important in the DNN (Horta and Mileo, 2019;
Horta et al., 2021).

The community structure analysis is also important in
order to identify interesting properties of the graph and the
knowledge held locally with each community. The Louvain
community detection algorithm (Blondel et al., 2008) has been
applied effectively in previous work (Horta and Mileo, 2019;
Horta et al., 2021), and it is useful as it can output
a modularity coefficient which indicates how different the
community structures identified differ from random graphs.
It includes a parameter which allows for the resolution to
be adjusted, when seeking larger or smaller communities.
Horta et al. (2021) also explored the similarities within the
communities and identified that the Louvain algorithm was
able to cluster information within the communities which
were semantically similar. For example, they found that
community one included animals (deer, dog, horse, frog, bird,
and cat) in one community whilst in another community
this included means of travel (airplane, ship, truck, and
automobile). They also found at a higher resolution, the
algorithm was able to detect hierarchical class information
such as clothing in community one (T-shirt, pullover, shirt,
and dress) and footwear in community two (sandal, sneaker,
and ankle boot).

Centrality analysis plays an important role in graph analysis,
whereby identifying the centrality of a node provides valuable
insights of the importance of the neuron node in a graph (and
corresponding DNN). There are two different centralities used in

2See https://neo4j.com/
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this analysis, which are degree centrality and PageRank centrality
(Page et al., 1999). Degree centrality of some node ni presents the
number of relationships ni has with other neural nodes. This can
be calculated by simply summing of the weights in the edges that
connect ni with other nodes as in the equation below:

D (ni) =
∑N−1

j=0
Aij (21)

Here, A is an adjacent mathematical matrix of size N, where Aij,
0 ≤ i < N and 0 ≤ j < N. The PageRank expands this equation,
one step further by highlighting the importance of a given node’s
neighbors, and not just its centrality. Each node’s PageRank is
initialized to the value of 1 and then iteratively updated through
equation 22, as stated below:

PR (ni) =
1− d

N
+ d

∑
nj∈Sni

Aij
PR (ni)

D
(
nj
) (22)

Here, the total nodes is denoted by N,whilst Sni is a set containing
the neighboring nodes of ni, Aij, like in equation 21, denotes
the weighted edge between nodes ni and nj. d is a damping
factor which controls how often random jumps are made to other
nodes, whilst D (ni) is the degree centrality as in equation 21.

From this, a graph (see Figure 9) is generated from the weight
distributions, whereby each node represents a unique concept
and are connected together in a strong or weak way (depicted
by the width of the connecting lines) to other nodes within a
cluster (broadly forming an equivalence class). In the figure, the
clusters (blue, green, and orange) containing the connected nodes

are related to one another through some properties of RFT, in
this case a transfer of stimulus function. Th red arrow indicates
the transfer of function “fear” from the green community (snake
category) to the blue community (woods category), then finally
to the orange community (verbal self). Here, in the example
we gave in Figures 5, 7, community network 1 shows the
relational attributes of the concept dangerous snakes living in
(contained) in the woods, community network 2 shows the
relational attributes of the woods also containing dangerous
snakes, and network 3 which is the relational attribute of the
verbal self. This impacts the decision as to whether the woods are
ultimately categorized as safe enough to walk through or not, and
is largely based on whether the verbal self has positive relational
components (confident and successful), as depicted in Figure 6
or negative relational components (feeling of failing and low self-
esteem), as depicted in Figure 4. As each community network
is a relational network and are connected to other relational
community networks (such as community network 1 and 2)
through ToF in this example, this represents relating relational
networks as explained by the HDML RFT framework.

It is perhaps important to note that by avoiding the woods,
this may further strengthen the individual’s feelings of failure
and low self-esteem so may have important consequences in
processed based therapy (PBT) work (Hayes and Hofmann, 2017,
2018; Hofmann and Hayes, 2019), and could be applied a clinical
analysis and diagnostic tool.

As can be seen in Figure 9, the strength of the connection
(edge) a is between nodes 1 and 2 and is weak to moderate in

SOM – Unsupervised, TOF 
detec�on

GCM Nonarbitrary 
similarity based

Expert RFT, strength of associa�on, and Bayesian components
Mutual entailment (ME)– Crel {A Rx B ||| A Ry B}                                                                             
Combinatorial entailment (CE) – Crel{A Rx B and B Ry C ||| A Rp C and C Rq A}                                              
Transfer of func�on (TOF) etc. – Cfunc [Crel {A Rx B and B Ry C {Af1 ||| Bf2

Rp and Cf3
Rq}}]  

Bayesian: = ( | ) = 1
1+ −Ɵ(0 ),

Input data about the world 
– is the woods safe? 

RFT:
Arbitrary 
features
rela�ons

RFT: Non-arbitrary 
feature rela�ons

Probability (P) of a decision/behavior x – the 
woods are scary but not something to be 
avoided = categorizes the woods are most 
probably safe from background knowledge

Transfer of func�on (ToF)

ANN – Supervised, large data rela�onal detec�on 
and classifica�on of shared func�onal proper�es

( | ) =
+ , 

FIGURE 10 | A simple schematic illustration of a multi-level computational model, which identifies GCM similarity in non-arbitrary situations and RFT relations
through both unsupervised and supervised network components for learning the RFT framework.
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strength, so in this case the transfer of function may also be
considered weak to moderate in strength and influence over the
network. In contrast, the connection (edge) b is more bold and
this represents a strong connection and increased influence over
the network. This means that the verbal self would have a strong
influence over the decision whether to decide to walk through
the woods, and it also suggests that in the case of an avoidance
response, then the negative impact on the verbal self would
be strong. In a PBT setting, these techniques could be utilized
in a way which brings about relating relational networks in a
clinical graph (or structural equation) type approach helping the
clinician or researcher to visualize the strength of these relations
and therefore judge how likely one relational network would
influence another (and hence where to target the intervention).
This, therefore, could expand the toolbox of PBT diagnosis on
what has already been proposed (Hofmann et al., 2021).

Finally, based on the network and graph weighted outputs,
the probably of some decision such as whether the woods
is safe to walk through can be made. This relies on an
aggregation of the data from the networks in graphical form
(to visualize). The expert system then finally can connect
community graph networks within the sets of ToF, mutual
entailment, or combinatorial entailment as a form of relating
relational networks as described in the HDML (RFT) framework,
which may be easier than connecting two or more DNNs
given the complexity of this task. The complete model with all
modules explained in this section can be summarized as depicted
in Figure 10.

SOME NOVEL EXPERIMENTAL
CONSIDERATIONS

With the machine learning approaches suggested, it is perhaps
important to note that novel experimental methods can be
developed which expand on that utilized by Ninness et al. (2005).
Ninness et al. identified situations (types of problems) where ToF
was and was not learned after training (i.e., by clustering specific
errors in learning ToF with specific learning tasks and context).

Similar approaches for deep learning could be developed, for
example, which utilize participant confidence scales as inputs
within a backpropagation network to represent individuals’
background knowledge (e.g., confidence that the typical jogger
in the United States is “healthy,” “runs once a week,” “is honest,”
“owns running trainer,” “has two legs,” etc.) and this could be
trained on a target of actual jogger reports on how confident
they are they have these same features or factual reports about
joggers (e.g., 70% of joggers in the United States are healthy,
whilst 30% are obese).

Such an approach would allow for the identification of
relevant perceived attributes and functions of the target category
(e.g., jogger and woods) for specific participant subgroups. For
example, given a background knowledge feature list, clustering
methods such as k-means on the upper hidden layer could
represent a novel way to explore which of the background
features given by a given population subgroup are assumed to be
important about a concept (e.g., what United States participants

believe about joggers in the United States vs. what European
participants believe about joggers in the United States), and
how this relates to actual properties that “joggers” believe about
themselves or other facts known. This type of approach has
been used in other areas such as identifying important subgroup
predictors in health psychology and other areas (Kimoto et al.,
1990; Lowe et al., 2003, 2017).

For this to work, data is converted into z scores a two-stage
cluster analysis is performed (Milligan, 1980; Clatworthy et al.,
2007) which involves a Ward (squared Euclidean distance) to
identify the number of clusters (i.e., through the agglomeration
schedule and dendrogram), then data conversion into cluster
centroids (middle of cluster) followed by a K-means cluster
method. This allows subgroups partitions to be identified
which contain the relevant background knowledge features and
functions. The final step allows the experiment to then compare
each feature variable in each group “x” against the mean for that
variable across all groups through a comparison of effect sizes
calculated from the mean scores and pooled standard deviation.

CONCLUSION

The examples above illustrate how RFT offers a compelling
explanation of how complex background knowledge emerges,
with contextual sensitivities, without relying upon simple
rules or formal similarly, as is typically the case with
categorization models.

In relation to broader philosophical considerations, cognitive
psychology typically takes a perspective of mentalism, such as in
categorization research Margolis and Laurence (1999) assume a
concept is a mental representation. However, there has been some
accepting of functional aspects such as the functional equivalence
of Sidman (1994) in the cognitive community (Goldstone et al.,
2018), and these can be considered within a pure behavioral
perspective or incorporated as part of mentalism and cognition.
Indeed, some authors have suggested that this functional-
analytic approach could be fruitfully incorporated into a
cognitive account, once cognitive phenomena are conceived of
as complex environment-behavior relations that are mediated
by information processing (Liefooghe and De Houwer, 2016;
De Houwer et al., 2018).

This review and conceptual paper sought to outline and
explore the various approaches cognitive psychologists have
used to study the influence of background knowledge on
categorization processes. In doing this it was recognized that
although much progress had been made in relation to identifying
how background knowledge may affect a task such a when
presenting congruent vs. incongruent information, induction,
and similarity approaches, much progress was still needed. As
such, the current review points to further uses of RFT, to provide
some perspective on how to address the knowledge section
problem, by expanding on some of the work developed in terms
of exemplar, relational induction, and contextual inferences in
learning categories.

Naturally, the development of this relationship would be
assisted by work such as formalizing a mathematical account
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(as we have done) of this by incorporating aspects of more
traditional cognitive approaches such as connectionist, and
induction models. This may be fruitful as both approaches are
specialized in different ways, categorization for similarity, rules,
and induction, and RFT for modeling functional contextual
properties, derived relations, and strength of associations. Future
work should now explicitly test implementation of the RFT model
specified and within the context of background knowledge.
We suggest that attention should be made to some of the
novel methodological approaches to test context and situations
where RFT properties (e.g., ToF, ME, and CE) arise such as
through the clustering approaches suggested (SOM and the
deep learning network). This work represents some exciting
opportunities for the formal representation of background
knowledge, and new insights into how to address the knowledge
selection problem, through applying various approaches and
levels of heuristics (cognitive and behavioral). It also offers
some novel avenues to help facilitate novel approaches in
the AGI literature for accounting for crucial background
knowledge and broadens existing work in semantic theories of
general knowledge.

There are of course some limitations with the mentioned
DNN connectionist approach. We explored the use of a
biologically plausible network based on Hebbian learning
instead of backpropagation (which is not biologically plausible).
However, though this is closer to how real neurons learn
within the neocortex and other brain areas when compared to

standard backpropagation methods, more research should be
conducted which ensures that these networks are able to capture
the limitations of the human cognitive system (or behavioral
learning) when modeling human learning performance.

Finally, the approaches within this modeling, could have
some potential clinical applications in the form of process
based therapy (PBT) work (Hayes and Hofmann, 2017, 2018;
Hofmann and Hayes, 2019). As this models relations of relational
networks within RFT and the HDML framework, it could help
formulate visual graphs of community networks (as depicted in
Figure 10) whereby relational networks could then be integrated
and mathematically modeled further within the PBT work. This,
therefore, could help researchers and clinicians design complex
prediction models which relate RFT with background knowledge
in categorization, to the structural equation modeling of PBT
(Hofmann et al., 2021), and potentially could have important
clinical implications.

AUTHOR CONTRIBUTIONS

DE designed and wrote the manuscript. YB-H and CM helped
with the RFT articulation and provided some conceptual
assistance. The mathematical equations and mathematical
interpretation, as well as the illustrative figures, were developed
solely by DE. All authors contributed to the article and approved
the submitted version.

REFERENCES
Abebe, S. L., and Tonella, P. (2010). “Natural language parsing of program element

names for concept extraction,” in Paper presented at the 2010 IEEE 18th
International Conference on Program Comprehension, (New Jersey, NJ: IEEE).
doi: 10.1109/ICPC.2010.29

Achille, A., and Soatto, S. (2018). Emergence of invariance and disentanglement in
deep representations. J. Machine Learn. Res. 19, 1947–1980. doi: 10.1109/ITA.
2018.8503149

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for
Boltzmann machines. Cognit. Sci. 9, 147–169. doi: 10.1207/s15516709cog0901_
7

Anderson (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence
Earlbaum Associates. Inc.

Anderson (1991). The adaptive nature of human categorization. Psychol. Rev.
98:409. doi: 10.1037/0033-295X.98.3.409

Andresen, J. (1991). Skinner and Chomsky 30 years later. Or: The return of the
repressed. Behav. Anal. 14:49. doi: 10.1007/BF03392552

Armstrong, S. L., Gleitman, L. R., and Gleitman, H. (1983). What some concepts
might not be. Cognition 13, 263–308. doi: 10.1016/0010-0277(83)90012-4

Asghar, M. Z., Abbas, M., Zeeshan, K., Kotilainen, P., and Hämäläinen, T. (2019).
Assessment of deep learning methodology for self-organizing 5g networks.
Appl. Sci. 9:2975. doi: 10.3390/app9152975

Ashby, F. G., Alfonso-Reese, L. A., and Waldron, E. M. (1998). A
neuropsychological theory of multiple systems in category learning. Psychol.
Rev. 105:442. doi: 10.1037/0033-295X.105.3.442

Ashby, F. G., Queller, S., and Berretty, P. M. (1999). On the dominance of
unidimensional rules in unsupervised categorization. Percept. Psychophys. 61,
1178–1199. doi: 10.3758/BF03207622

Baker, L. D., and Berghoff, C. R. (2021). Embracing complex models: Exploratory
network analyses of psychological (In) Flexibility processes and unique
associations with psychiatric symptomology and quality of life. J. Context.
Behav. Sci. 23, 64–74. doi: 10.1016/j.jcbs.2021.12.002

Barnes-Holmes, D., Barnes-Holmes, Y., and McEnteggart, C. (2020). Updating
RFT (more field than frame) and its implications for process-based therapy.
Psychol. Record 2020, 1–20. doi: 10.1007/s40732-019-00372-3

Barnes-Holmes, D., Barnes-Holmes, Y., Luciano, C., and McEnteggart, C.
(2017). From the IRAP and REC model to a multi-dimensional multi-level
framework for analyzing the dynamics of arbitrarily applicable relational
responding. J. Context. Behav. Sci. 6, 434–445. doi: 10.1016/j.jcbs.2017.
08.001

Barnes-Holmes, D., Hayes, S. C., and Roche, B. (2001). Relational frame theory:
A post-Skinnerian account of human language and cognition. Berlin: Springer
Science & Business Media. doi: 10.1016/S0065-2407(02)80063-5

Barsalou, L. W. (1992). Frames, concepts, and conceptual fields. Washington, D.C.:
APA.

Barsalou, L. W. (2014). Cognitive psychology: An overview for cognitive scientists.
East Sussex: Psychology Press. doi: 10.4324/9781315807485

Bartlett, E. B. (1994). Self determination of input variable importance using neural
networks. Neural Parallel Sci. Computat. 2, 103–114.

Bengio, Y. (2014). How auto-encoders could provide credit assignment in deep
networks via target propagation. arXiv. [Preprint].

Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T., and Lin, Z. (2015). Towards
biologically plausible deep learning. arXiv. [Preprint].

Benzekry, S., Lamont, C., Beheshti, A., Tracz, A., Ebos, J. M., Hlatky, L.,
et al. (2014). Classical mathematical models for description and prediction of
experimental tumor growth. PLoS Comput. Biol. 10:e1003800. doi: 10.1371/
journal.pcbi.1003800

Berkout, O. V., Cathey, A. J., and Kellum, K. K. (2019). Scaling-up assessment
from a contextual behavioral science perspective: Potential uses of technology
for analysis of unstructured text data. J. Context. Behav. Sci. 12, 216–224. doi:
10.1016/j.jcbs.2018.06.007

Bern, R., Persdotter, T., Harte, C., and Barnes-Holmes, D. (2020). Relational
coherence and persistent rule-following: The impact of targeting coherence in
a ‘non-critical’component of a relational network. Psychol. Record 2020, 1–12.
doi: 10.1007/s40732-020-00414-1

Frontiers in Psychology | www.frontiersin.org 29 March 2022 | Volume 13 | Article 745306

https://doi.org/10.1109/ICPC.2010.29
https://doi.org/10.1109/ITA.2018.8503149
https://doi.org/10.1109/ITA.2018.8503149
https://doi.org/10.1207/s15516709cog0901_7
https://doi.org/10.1207/s15516709cog0901_7
https://doi.org/10.1037/0033-295X.98.3.409
https://doi.org/10.1007/BF03392552
https://doi.org/10.1016/0010-0277(83)90012-4
https://doi.org/10.3390/app9152975
https://doi.org/10.1037/0033-295X.105.3.442
https://doi.org/10.3758/BF03207622
https://doi.org/10.1016/j.jcbs.2021.12.002
https://doi.org/10.1007/s40732-019-00372-3
https://doi.org/10.1016/j.jcbs.2017.08.001
https://doi.org/10.1016/j.jcbs.2017.08.001
https://doi.org/10.1016/S0065-2407(02)80063-5
https://doi.org/10.4324/9781315807485
https://doi.org/10.1371/journal.pcbi.1003800
https://doi.org/10.1371/journal.pcbi.1003800
https://doi.org/10.1016/j.jcbs.2018.06.007
https://doi.org/10.1016/j.jcbs.2018.06.007
https://doi.org/10.1007/s40732-020-00414-1
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-745306 February 26, 2022 Time: 12:32 # 30

Edwards et al. Functional Contextualism and General Knowledge

Bianchi, P. H., Perez, W. F., Harte, C., and Barnes-Holmes, D. (2021). Effects of
coherence on speaker preference and rule-following. Perspect. Em Análise Do
Comportamento 12, 214–227. doi: 10.18761/PAC.2021.v12.RFT.07

Blackledge, J. T. (2003). An introduction to relational frame theory: Basics and
applications. Behav. Anal. Today 3:421. doi: 10.1037/h0099997

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast
unfolding of communities in large networks. J. Statist. Mechan. Theory Exp.
2008:10008. doi: 10.1088/1742-5468/2008/10/P10008

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., et al.
(2020). Language models are few-shot learners. arXiv. [Preprint].

Buntine, W. L. (2020). Machine learning after the deep learning revolution. Front.
Comput. Sci. 14:146320. doi: 10.1007/s11704-020-0800-8

Carpenter, G. A., and Grossberg, S. (1988). The ART of adaptive pattern
recognition by a self-organizing neural network. Computer 21, 77–88. doi:
10.1109/2.33

Choi, S., McDaniel, M. A., and Busemeyer, J. R. (1993). Incorporating prior biases
innetwork models of conceptual rule learning. Mem. Cognit. 21, 413–423. doi:
10.3758/BF03197172

Chomsky, N. (1957). Syntactic structures. Berlin: De Gruyter Mouton. doi: 10.1515/
9783112316009

Christodoulou, A., Michaelides, M., and Karekla, M. (2019). Network analysis:
A new psychometric approach to examine the underlying ACT model
components. J. Context. Behav. Sci. 12, 285–289. doi: 10.1016/j.jcbs.2018.10.002

Ciardelli, I., and Roelofsen, F. (2017). An inquisitive perspective on modals and
quantifiers. Annu. Rev. Linguist. 4, 1–22. doi: 10.1146/annurev-linguistics-
011817-045626

Cichy, R. M., and Kaiser, D. (2019). Deep neural networks as scientific models.
Trends Cognit. Sci. 23, 305–317. doi: 10.1016/j.tics.2019.01.009

Clatworthy, J., Hankins, M., Buick, D., Weinman, J., and Horne, R. (2007).
Cluster analysis in illness perception research: A Monte Carlo study to identify
the most appropriate method. Psychol. Health 22, 123–142. doi: 10.1080/
14768320600774496

Collins, M., and Koo, T. (2005). Discriminative reranking for natural language
parsing. Computat. Linguist. 31, 25–70. doi: 10.1162/0891201053630273

Coltheart, M. (2004). Brain imaging, connectionism, and cognitive
neuropsychology. Cognit. Neuropsychol. 21, 21–25. doi: 10.1080/
02643290342000159

Costanza, R., and Sklar, F. H. (1985). Articulation, accuracy and effectiveness of
mathematical models: a review of freshwater wetland applications. Ecol. Modell.
27, 45–68. doi: 10.1016/0304-3800(85)90024-9

Crick, F. (1989). The recent excitement about neural networks. Nature 337, 129–
132. doi: 10.1038/337129a0

David, D., and Mogoase, C. (2015). Acceptance and Commitment Therapy’s
Philosophical Foundation under Scrutiny: An In-Depth Discussion of
A-Ontology. J. Evid. Based Psychotherap. 15:169.

Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. (1995). The helmholtz
machine. Neural Computat. 7, 889–904. doi: 10.1162/neco.1995.7.5.889

de Fortuny, E. J., and Martens, D. (2015). Active learning-based pedagogical rule
extraction. IEEE Transact. Neural Netw. Learn. Syst. 26, 2664–2677. doi: 10.
1109/TNNLS.2015.2389037

De Houwer, J. (2013). Advances in relational frame theory: Research and application.
Oakland, CA: New Harbinger Publications.

De Houwer, J., Barnes-Holmes, D., and Barnes-Holmes, Y. (2018). “What is
cognition? A functional-cognitive perspective,” in Core Processes of Cognitive
Behavioral Therapies, eds S. C. Hayes and S. G. Hofmann (Oakland, CA: New
Harbinger).

Dean, J. (2020). “1.1 The Deep Learning Revolution and Its Implications for
Computer Architecture and Chip Design,” in Paper presented at the 2020 IEEE
International Solid-State Circuits Conference-(ISSCC), (New Jersey, NJ: IEEE).
doi: 10.1109/ISSCC19947.2020.9063049

Dean, J., Patterson, D., and Young, C. (2018). A new golden age in computer
architecture: Empowering the machine-learning revolution. IEEE Micro 38,
21–29. doi: 10.1109/MM.2018.112130030

Deng, L., and Liu, Y. (2018). Deep learning in natural language processing. Berlin:
Springer. doi: 10.1007/978-981-10-5209-5

Detienne, K. B., Detienne, D. H., and Joshi, S. A. (2003). Neural networks as
statistical tools for business researchers. Organizat. Res. Methods 6, 236–265.
doi: 10.1177/1094428103251907

Dos Santos, C., and Zadrozny, B. (2014). “Learning character-level representations
for part-of-speech tagging,” in Paper presented at the International Conference
on Machine Learning, (Baltimore, ML: International Conference on Machine
Learning).

Dougher, M. J., Hamilton, D. A., Fink, B. C., and Harrington, J. (2007).
Transformation of the discriminative and eliciting functions of generalized
relational stimuli. J. Exp. Anal. Behav. 88, 179–197. doi: 10.1901/jeab.2007.45-
05

Dreyfus, H., Dreyfus, S. E., and Athanasiou, T. (2000). Mind over machine.
New York, NY: Simon and Schuster.

Edwards, D. J. (2021). Ensuring Effective Public Health Communication: Insights
and Modeling Efforts From Theories of Behavioral Economics, Heuristics, and
Behavioral Analysis for Decision Making Under Risk. Front. Psychol. 12:715159.
doi: 10.3389/fpsyg.2021.715159

Edwards, D. J., Pothos, E. M., and Perlman, A. (2012). Relational versus absolute
representation in categorization. Am. J. Psychol. 125, 481–497. doi: 10.5406/
amerjpsyc.125.4.0481

Epskamp, S., Maris, G. K., Waldorp, L. J., and Borsboom, D. (2016). Network
psychometrics. arXiv. [preprint].

Equitz, W. H., and Cover, T. M. (1991). Successive refinement of
information. IEEE Transact. Informat. Theory 37, 269–275. doi: 10.1109/18.
75242

Erasmus, A., Brunet, T. D., and Fisher, E. (2021). What is interpretability? Philosop.
Technol. 34, 833–862. doi: 10.1007/s13347-020-00435-2

Fillmore, C. J. (1976). “Frame semantics and the nature of language,” in Paper
presented at the Annals of the New York Academy of Sciences: Conference on
the origin and development of language and speech, (New York, NY: New York
Academy of Sciences). doi: 10.1111/j.1749-6632.1976.tb25467.x

Finn, M., Barnes-Holmes, D., and McEnteggart, C. (2018). Exploring the single-
trial-type-dominance-effect in the IRAP: Developing a differential arbitrarily
applicable relational responding effects (DAARRE) model. Psychol. Record 68,
11–25. doi: 10.1007/s40732-017-0262-z

Fleming, M. K., and Cottrell, G. W. (1990). “Categorization of faces using
unsupervised feature extraction,” in Paper presented at the 1990 IJCNN
International Joint Conference on Neural Networks, (Glasgow: IJCNN). doi:
10.1109/IJCNN.1990.137696

Floridi, L. (2020). AI and its new winter: from myths to realities. Philosop. Technol.
33, 1–3. doi: 10.1007/s13347-020-00396-6

Friston, K. (2003). Learning and inference in the brain. Neural Netw. 16, 1325–
1352. doi: 10.1016/j.neunet.2003.06.005

Friston, K. (2005). A theory of cortical responses. Philosop. Transact. R. Soc. B Biol.
Sci. 360, 815–836. doi: 10.1098/rstb.2005.1622

Garcia, J. O., Ashourvan, A., Muldoon, S., Vettel, J. M., and Bassett, D. S. (2018).
Applications of community detection techniques to brain graphs: Algorithmic
considerations and implications for neural function. Proc. IEEE 106, 846–867.
doi: 10.1109/JPROC.2017.2786710

Gärdenfors, P. (2004). Conceptual spaces: The geometry of thought. Cambridge, CA:
MIT press.

Gardenfors, P. (2014). The geometry of meaning: Semantics based on conceptual
spaces. Cambridge, CA: MIT press. doi: 10.7551/mitpress/9629.001.0001

Garner, W. R. (1974). The processing of information and structure. Washington,
D.C: APA.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the
bias/variance dilemma. Neural Computat. 4, 1–58. doi: 10.1162/neco.1992.4.1.1

Gi, E., Ruiz, F., Luciano, C., and Valdivia-Salas, S. (2012). A preliminary
demonstration of transformation of functions through hierarchical relations.
Rev. Int. Psicol. Ter. Psicol. 12, 1–19.

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., and Kagal, L. (2018).
“Explaining explanations: An overview of interpretability of machine learning,”
in Paper presented at the 2018 IEEE 5th International Conference on data science
and advanced analytics (DSAA), (New Jersey, NJ: IEEE). doi: 10.1109/DSAA.
2018.00018

Gilroy, S. P. (2015). Technology for establishing deictic repertoires in
autism. Philadelphia, PA: Temple University. doi: 10.1016/j.rasd.2015.
04.004

Gluck, M. A., and Bower, G. H. (1988). From conditioning to category learning: An
adaptive network model. J. Exp. Psychol. General 117:227. doi: 10.1037/0096-
3445.117.3.227

Frontiers in Psychology | www.frontiersin.org 30 March 2022 | Volume 13 | Article 745306

https://doi.org/10.18761/PAC.2021.v12.RFT.07
https://doi.org/10.1037/h0099997
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1007/s11704-020-0800-8
https://doi.org/10.1109/2.33
https://doi.org/10.1109/2.33
https://doi.org/10.3758/BF03197172
https://doi.org/10.3758/BF03197172
https://doi.org/10.1515/9783112316009
https://doi.org/10.1515/9783112316009
https://doi.org/10.1016/j.jcbs.2018.10.002
https://doi.org/10.1146/annurev-linguistics-011817-045626
https://doi.org/10.1146/annurev-linguistics-011817-045626
https://doi.org/10.1016/j.tics.2019.01.009
https://doi.org/10.1080/14768320600774496
https://doi.org/10.1080/14768320600774496
https://doi.org/10.1162/0891201053630273
https://doi.org/10.1080/02643290342000159
https://doi.org/10.1080/02643290342000159
https://doi.org/10.1016/0304-3800(85)90024-9
https://doi.org/10.1038/337129a0
https://doi.org/10.1162/neco.1995.7.5.889
https://doi.org/10.1109/TNNLS.2015.2389037
https://doi.org/10.1109/TNNLS.2015.2389037
https://doi.org/10.1109/ISSCC19947.2020.9063049
https://doi.org/10.1109/MM.2018.112130030
https://doi.org/10.1007/978-981-10-5209-5
https://doi.org/10.1177/1094428103251907
https://doi.org/10.1901/jeab.2007.45-05
https://doi.org/10.1901/jeab.2007.45-05
https://doi.org/10.3389/fpsyg.2021.715159
https://doi.org/10.5406/amerjpsyc.125.4.0481
https://doi.org/10.5406/amerjpsyc.125.4.0481
https://doi.org/10.1109/18.75242
https://doi.org/10.1109/18.75242
https://doi.org/10.1007/s13347-020-00435-2
https://doi.org/10.1111/j.1749-6632.1976.tb25467.x
https://doi.org/10.1007/s40732-017-0262-z
https://doi.org/10.1109/IJCNN.1990.137696
https://doi.org/10.1109/IJCNN.1990.137696
https://doi.org/10.1007/s13347-020-00396-6
https://doi.org/10.1016/j.neunet.2003.06.005
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1109/JPROC.2017.2786710
https://doi.org/10.7551/mitpress/9629.001.0001
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1016/j.rasd.2015.04.004
https://doi.org/10.1016/j.rasd.2015.04.004
https://doi.org/10.1037/0096-3445.117.3.227
https://doi.org/10.1037/0096-3445.117.3.227
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-745306 February 26, 2022 Time: 12:32 # 31

Edwards et al. Functional Contextualism and General Knowledge

Golden, R. (2001). Artificial neural networks: Neurocomputation. Berlin:
ResearchGate. doi: 10.1016/B0-08-043076-7/00563-5

Goldstone, R. L., Kersten, A., and Carvalho, P. F. (2018). Categorization and
concepts. Stevens’. Handb. Exp. Psychol. Cognit. Neurosci. 3, 1–43. doi: 10.1002/
9781119170174.epcn308

Golino, H. F., and Epskamp, S. (2017). Exploratory graph analysis: A new approach
for estimating the number of dimensions in psychological research. PLoS One
12, e0174035. doi: 10.1371/journal.pone.0174035

Golino, Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R.,
et al. (2020). Investigating the performance of exploratory graph analysis and
traditional techniques to identify the number of latent factors: A simulation and
tutorial. Psychol. Methods 25:292. doi: 10.1037/met0000255

Goodman, N. D., Tenenbaum, J. B., Feldman, J., and Griffiths, T. L. (2008). A
rational analysis of rule-based concept learning. Cognit. Sci. 32, 108–154. doi:
10.1080/03640210701802071

Greene, T. R. (1994). What kindergartners know about class inclusion
hierarchies. J. Exp. Child Psychol. 57, 72–88. doi: 10.1006/jecp.1994.
1004

Greenway, D. E., Sandoz, E. K., and Perkins, D. R. (2010). “Potential
applications of relational frame theory to natural language systems,” in Paper
presented at the 2010 Seventh International Conference on Fuzzy Systems and
Knowledge Discovery, (New Jersey, NJ: IEEE). doi: 10.1109/FSKD.2010.556
9078

Gregor, K., Danihelka, I., Graves, A., Rezende, D., and Wierstra, D. (2015). “Draw:
A recurrent neural network for image generation,” in Paper presented at the
International Conference on Machine Learning, (Baltimore, ML: International
Conference on Machine Learning).

Greve, A., Cooper, E., Tibon, R., and Henson, R. N. (2019). Knowledge is power:
Prior knowledge aids memory for both congruent and incongruent events, but
in different ways. J. Exp. Psychol. General 148:325. doi: 10.1037/xge0000498

Hampton, J. A. (2007). Typicality, graded membership, and vagueness. Cognit. Sci.
31, 355–384. doi: 10.1080/15326900701326402

Harris, R. A. (2010). Chomsky’s other revolution. Chomskyan Evolut. 2010, 238–
264. doi: 10.1075/z.154.08har

Harris, R. A. (2021). The Linguistics Wars: Chomsky, Lakoff, and the Battle
Over Deep Structure. Oxford: Oxford University Press. doi: 10.1093/oso/
9780199740338.001.0001

Harte, C., Barnes-Holmes, D., Barnes-Holmes, Y., and McEnteggart, C. (2018). The
impact of high versus low levels of derivation for mutually and combinatorially
entailed relations on persistent rule-following. Behav. Proces. 157, 36–46. doi:
10.1016/j.beproc.2018.08.005

Harte, C., Barnes-Holmes, D., Barnes-Holmes, Y., and McEnteggart, C. (2020).
Exploring the impact of coherence (through the presence versus absence of
feedback) and levels of derivation on persistent rule-following. Learn. Behav.
2020, 1–18. doi: 10.3758/s13420-020-00438-1

Harte, C., Barnes-Holmes, Y., Barnes-Holmes, D., and McEnteggart, C. (2017).
Persistent rule-following in the face of reversed reinforcement contingencies:
The differential impact of direct versus derived rules. Behav. Modificat. 41,
743–763. doi: 10.1177/0145445517715871

Hawkins, G. E., Hayes, B. K., and Heit, E. (2016). A dynamic model of reasoning
and memory. J. Exp. Psychol. General 145:155. doi: 10.1037/xge0000113

Hayes, S. C., and Hofmann, S. G. (2017). The third wave of cognitive behavioral
therapy and the rise of process-based care. World Psychiatry 16:245. doi: 10.
1002/wps.20442

Hayes, S. C., and Hofmann, S. G. (2018). Process-based CBT: The science and
core clinical competencies of cognitive behavioral therapy. Oakland, CA: New
Harbinger Publications.

Hayes, B. K., and Heit, E. (2013). How similar are recognition memory and
inductive reasoning? Mem. Cognit. 41, 781–795. doi: 10.3758/s13421-013-
0297-6

Heit, E. (1994). Models of the effects of prior knowledge on category learning.
J. Exp. Psychol. Learn. Mem. Cognit. 20:1264. doi: 10.1037/0278-7393.20.6.1264

Heit, E. (1995). “Belief revision in models of category learning,” in Paper presented
at the Proceedings of the 17th annual conference of the cognitive science society,
(Austin, TX: Cognitive Science Society).

Heit, E. (1997). Knowledge and concept learning. Knowledge Concepts Categor.
1997, 7–41.

Heit, E. (1998). Influences of prior knowledge on selective weighting of category
members. J. Exp. Psychol. 24:712. doi: 10.1037/0278-7393.24.3.712

Heit, E. (2001). Background knowledge and models of categorization. Washington,
D.C.: APA. doi: 10.1093/acprof:oso/9780198506287.003.0009

Heit, E., and Bott, L. (2000). Knowledge selection in category learning. Psychol.
Learn. Motivat. 39, 163–199. doi: 10.1016/S0079-7421(00)80034-1

Heit, E., and Rubinstein, J. (1994). Similarity and property effects in inductive
reasoning. J. Exp. Psychol. 20:411. doi: 10.1037/0278-7393.20.2.411

Hinton, G. E. (1986). “Learning distributed representations of concepts,” in Paper
presented at the Proceedings of the eighth annual conference of the cognitive
science society, (Austin, TX: Cognitive Science Society).

Hinton, G. E., and Anderson, J. A. (2014). “Implementing semantic networks in
parallel hardware,” in Parallel models of associative memory, eds G. E. Hinton
and J. A. Anderson (East Sussex: Psychology Press), 201–232. doi: 10.4324/
9781315807997-12

Hinton, G. E., and McClelland, J. L. (1988). “Learning representations by
recirculation,” in Paper presented at the Neural information processing systems,
(Cambridge, MA: MIT Press).

Hofmann, S. G., and Hayes, S. C. (2019). The future of intervention
science: Process-based therapy. Clin. Psychol. Sci. 7, 37–50. doi: 10.1177/
2167702618772296

Hofmann, S. G., Hayes, S. C., and Lorscheid, D. N. (2021). Learning process-based
therapy: A skills training manual for targeting the core processes of psychological
change in clinical practice. Oakland, CA: New Harbinger Publications.

Horta, V. A., and Mileo, A. (2019). “Towards explaining deep neural networks
through graph analysis,” in Paper presented at the International Conference on
Database and Expert Systems Applications, (Munich: DEXA). doi: 10.1007/978-
3-030-27684-3_20

Horta, V. A., Tiddi, I., Little, S., and Mileo, A. (2021). Extracting knowledge from
Deep Neural Networks through graph analysis. Future Generat. Comput. Syst.
120, 109–118. doi: 10.1016/j.future.2021.02.009

Hussein, B. A.-S. (2012). The sapir-whorf hypothesis today. Theory Pract. Lang.
Stud. 2, 642–646. doi: 10.4304/tpls.2.3.642-646

Jern, A., and Kemp, C. (2009). “A taxonomy of inductive problems,” in Paper
presented at the Proceedings of the Annual Meeting of the Cognitive Science
Society, (Austin, TX: Cognitive Science Society).

Kaplan, D. M., and Craver, C. F. (2011). The explanatory force of dynamical and
mathematical models in neuroscience: A mechanistic perspective. Philosop. Sci.
78, 601–627. doi: 10.1086/661755

Katz, J. J. (1972). Semantic theory. New York, NY: Harper & Row.
Keil, F. (1989). Concepts, kinds, and cognitive development. Cambridge, MA: MIT

Press.
Kimoto, T., Asakawa, K., Yoda, M., and Takeoka, M. (1990). “Stock market

prediction system with modular neural networks,” in Paper presented at the
1990 IJCNN international joint conference on neural networks, (San Diego, CA:
IJCNN). doi: 10.1109/IJCNN.1990.137535

Koerner, E. K. (1992). The Sapir-Whorf hypothesis: A preliminary history and a
bibliographical essay. J. Linguist. Anthropol. 2, 173–198. doi: 10.1525/jlin.1992.
2.2.173

Kohonen, T. (2001). “Learning vector quantization,” in Self-organizing maps,
(Berlin: Springer), 245–261. doi: 10.1007/978-3-642-56927-2_6

Kohonen, T. (2012). Self-organizing maps, Vol. 30. Berlin: Springer Science &
Business Media.

Komatsu, L. K. (1992). Recent views of conceptual structure. Psychol. Bull. 112:500.
doi: 10.1037/0033-2909.112.3.500

Kruschke, J. K. (1992). ALCOVE: an exemplar-based connectionist model of
category learning. Psychol. Rev. 99:22. doi: 10.1037/0033-295X.99.1.22

Kumar, A., Howlader, P., Garcia, R., Weiskopf, D., and Mueller, K. (2020).
“Challenges in interpretability of neural networks for eye movement data,”
in Paper presented at the ACM Symposium on Eye Tracking Research and
Applications, (New York City: ACM). doi: 10.1145/3379156.3391361

Kurtz, K. J. (2007). The divergent autoencoder (DIVA) model of category learning.
Psychonomic Bull. Rev. 14, 560–576. doi: 10.3758/BF03196806

Kuznetsov, O. (2013). Cognitive semantics and artificial intelligence. Sci. Technic.
Informat. Proces. 40, 269–276. doi: 10.3103/S0147688213050067

Lakoff, G. (2008). Women, fire, and dangerous things. Chicago: University of
Chicago press.

Frontiers in Psychology | www.frontiersin.org 31 March 2022 | Volume 13 | Article 745306

https://doi.org/10.1016/B0-08-043076-7/00563-5
https://doi.org/10.1002/9781119170174.epcn308
https://doi.org/10.1002/9781119170174.epcn308
https://doi.org/10.1371/journal.pone.0174035
https://doi.org/10.1037/met0000255
https://doi.org/10.1080/03640210701802071
https://doi.org/10.1080/03640210701802071
https://doi.org/10.1006/jecp.1994.1004
https://doi.org/10.1006/jecp.1994.1004
https://doi.org/10.1109/FSKD.2010.5569078
https://doi.org/10.1109/FSKD.2010.5569078
https://doi.org/10.1037/xge0000498
https://doi.org/10.1080/15326900701326402
https://doi.org/10.1075/z.154.08har
https://doi.org/10.1093/oso/9780199740338.001.0001
https://doi.org/10.1093/oso/9780199740338.001.0001
https://doi.org/10.1016/j.beproc.2018.08.005
https://doi.org/10.1016/j.beproc.2018.08.005
https://doi.org/10.3758/s13420-020-00438-1
https://doi.org/10.1177/0145445517715871
https://doi.org/10.1037/xge0000113
https://doi.org/10.1002/wps.20442
https://doi.org/10.1002/wps.20442
https://doi.org/10.3758/s13421-013-0297-6
https://doi.org/10.3758/s13421-013-0297-6
https://doi.org/10.1037/0278-7393.20.6.1264
https://doi.org/10.1037/0278-7393.24.3.712
https://doi.org/10.1093/acprof:oso/9780198506287.003.0009
https://doi.org/10.1016/S0079-7421(00)80034-1
https://doi.org/10.1037/0278-7393.20.2.411
https://doi.org/10.4324/9781315807997-12
https://doi.org/10.4324/9781315807997-12
https://doi.org/10.1177/2167702618772296
https://doi.org/10.1177/2167702618772296
https://doi.org/10.1007/978-3-030-27684-3_20
https://doi.org/10.1007/978-3-030-27684-3_20
https://doi.org/10.1016/j.future.2021.02.009
https://doi.org/10.4304/tpls.2.3.642-646
https://doi.org/10.1086/661755
https://doi.org/10.1109/IJCNN.1990.137535
https://doi.org/10.1525/jlin.1992.2.2.173
https://doi.org/10.1525/jlin.1992.2.2.173
https://doi.org/10.1007/978-3-642-56927-2_6
https://doi.org/10.1037/0033-2909.112.3.500
https://doi.org/10.1037/0033-295X.99.1.22
https://doi.org/10.1145/3379156.3391361
https://doi.org/10.3758/BF03196806
https://doi.org/10.3103/S0147688213050067
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-745306 February 26, 2022 Time: 12:32 # 32

Edwards et al. Functional Contextualism and General Knowledge

Lamberts, K., and Shapiro, L. (2002). Exemplar models and category-specific
deficits. Category Specific. Brain Mind 2002, 291–314.

Laurence, S., and Margolis, E. (1999). Concepts: core readings. Cambridge, MA: Mit
Press.

Levine, D. S. (1995). Learning and encoding higher order rules in neural networks.
Behav. Res. Methods Instrum. Comput. 27, 178–182. doi: 10.3758/BF03204727

Lewis, D. (1976). “General semantics,” in Montague grammar, (Amsterdam:
Elsevier), 1–50. doi: 10.1016/B978-0-12-545850-4.50007-8

Li, F., and Du, Y. (2018). From AlphaGo to power system AI: What engineers can
learn from solving the most complex board game. IEEE Power Energy Magazine
16, 76–84. doi: 10.1109/MPE.2017.2779554

Liefooghe, B., and De Houwer, J. (2016). A functional approach for research on
cognitive control: Analysing cognitive control tasks and their effects in terms of
operant conditioning. Int. J. Psychol. 51, 28–32. doi: 10.1002/ijop.12179

Lin, J.-W. (2017). Artificial neural network related to biological neuron network: a
review. Adv. Stud. Med. Sci. 5, 55–62. doi: 10.12988/asms.2017.753

Liu, B., Wei, Y., Zhang, Y., and Yang, Q. (2017). “Deep Neural Networks for High
Dimension, Low Sample Size Data,” in Paper presented at the IJCAI, (Stockholm:
IJCAI). doi: 10.24963/ijcai.2017/318

Liu, J., Li, M., Pan, Y., Lan, W., Zheng, R., Wu, F.-X., et al. (2017). Complex brain
network analysis and its applications to brain disorders: a survey. Complexity
2017:8362741. doi: 10.1155/2017/8362741

Liu, X., Wang, X., and Matwin, S. (2018). “Improving the interpretability of
deep neural networks with knowledge distillation,” in Paper presented at the
2018 IEEE International Conference on Data Mining Workshops (ICDMW),
(New Jersey, NJ: IEEE). doi: 10.1109/ICDMW.2018.00132

Liu, Y., Fan, B., Wang, L., Bai, J., Xiang, S., and Pan, C. (2018). Semantic labeling in
very high resolution images via a self-cascaded convolutional neural network.
ISPRS J. Photogramm. Rem. Sens. 145, 78–95. doi: 10.1016/j.isprsjprs.2017.12.
007

Löbner, S., Gamerschlag, T., Kalenscher, T., Schrenk, M., and Zeevat, H. (2021).
Concepts, frames and cascades in semantics, cognition and ontology. Berlin:
Springer Nature. doi: 10.1007/978-3-030-50200-3

Lowe, R., Bennett, P., Walker, I., Milne, S., and Bozionelos, G. (2003). A
connectionist implementation of the theory of planned behavior: Association
of beliefs with exercise intention. Health Psychol. 22:464. doi: 10.1037/0278-
6133.22.5.464

Lowe, R., Norman, P., and Sheeran, P. (2017). Milieu matters: Evidence that
ongoing lifestyle activities influence health behaviors. PLoS One 12:e0179699.
doi: 10.1371/journal.pone.0179699

Luger, G. F. (2005). Artificial intelligence: structures and strategies for complex
problem solving: Pearson education. London: Pearson.

Machery, E., Mallon, R., Nichols, S., and Stich, S. P. (2004). Semantics,
cross-cultural style. Cognition 92, B1–B12. doi: 10.1016/j.cognition.2003.
10.003

Mak, B., and Blanning, R. W. (1998). An empirical measure of element
contribution in neural networks. IEEE Transact. Syst. Man Cybernet. Part C 28,
561–564. doi: 10.1109/5326.725342

Margolis, E., and Laurence, S. (1999). Concepts: core readings. Cambridge, MA: Mit
Press.

McClelland, J. L., and Rumelhart, D. E. (1986). “A distributed model of human
learning and memory,” in Parallel distributed processing: Explorations in the
microstructure of cognition, Vol. 2: Psychological and biological models, eds
J. L. Mcclelland and D. E. Rumelhart (Cambridge, MA: MIT Press), 170–215.
doi: 10.7551/mitpress/5237.001.0001

McClelland, J. L., Rumelhart, D. E., and Group, P. R. (1986). Parallel distributed
processing, Vol. 2. Cambridge, MA: MIT press. doi: 10.7551/mitpress/5236.001.
0001

McLeod, P., Plunkett, K., and Rolls, E. T. (1998). Introduction to connectionist
modelling of cognitive processes. Oxford: Oxford University Press.

Medin, D. L., and Schaffer, M. M. (1978). Context theory of classification learning.
Psychol. Rev. 85:207. doi: 10.1037/0033-295X.85.3.207

Millidge, B., Tschantz, A., and Buckley, C. L. (2020). Predictive coding
approximates backprop along arbitrary computation graphs. arXiv. [preprint].

Milligan, G. W. (1980). An examination of the effect of six types of error
perturbation on fifteen clustering algorithms. Psychometrika 45, 325–342. doi:
10.1007/BF02293907

Milton, F., and Pothos, E. M. (2011). Category structure and the two learning
systems of COVIS. Eur. J. Neurosci. 34, 1326–1336. doi: 10.1111/j.1460-9568.
2011.07847.x

Minda, J. P., and Smith, J. D. (2001). Prototypes in category learning: the effects
of category size, category structure, and stimulus complexity. J. Exp. Psychol.
27:775. doi: 10.1037/0278-7393.27.3.775

Mitchell, M. (2021). Why AI is harder than we think. arXiv. [Preprint]. doi: 10.
1145/3449639.3465421

Montague, R. (1970). Universal grammar. Theoria 36, 373–398. doi: 10.1111/j.
1755-2567.1970.tb00434.x

Monte-Serrat, D. M., and Cattani, C. (2021). Interpretability in neural networks
towards universal consistency. Int. J. Cognit. Comput. Enginee. 2, 30–39. doi:
10.1016/j.ijcce.2021.01.002

Mulhern, T., Stewart, I., and Mc Elwee, J. (2017). Investigating Relational Framing
of Categorization in Young Children. Psychol. Record 67, 519–536. doi: 10.1007/
s40732-017-0255-y

Murphy, G. L., and Lassaline, M. E. (1997). Hierarchical structure in concepts and
the basic level of categorization. Knowl. Concepts Categor. 1997, 93–131.

Murphy, G. L., and Medin, D. L. (1985). The role of theories in conceptual
coherence. Psychol. Rev. 92:289. doi: 10.1037/0033-295X.92.3.289

Murphy, G. L. (1993). Theories and concept formation. Washington, D.C: APA.
Murphy, G. L. (2002). The Big Book of Concepts. Cambridge, MA: MIT Press.

doi: 10.7551/mitpress/1602.001.0001
Myung, I. J., and Pitt, M. A. (2002). “Mathematical modeling,” in Stevens’ handbook

of experimental psychology, eds J. T. Wixted, E. A. Phelps, and L. Davachi
(New Jersey, NY: Wiley). doi: 10.1002/0471214426.pas0411

Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., and Shaalan, K. (2019). Speech
recognition using deep neural networks: A systematic review. IEEE Access 7,
19143–19165. doi: 10.1109/ACCESS.2019.2896880

Nikolopoulos, D. S., and Pothos, E. M. (2009). Dyslexic participants show intact
spontaneous categorization processes. Dyslexia 15, 167–186. doi: 10.1002/dys.
375

Ninness, C., Rumph, R., McCuller, G., Vasquez, E., Harrison, C., Ford, A. M.,
et al. (2005). A relational frame and artificial neural network approach to
computer-interactive mathematics. Psychol. Record 55, 135–153. doi: 10.1007/
BF03395503

Nisbett, R. E., Krantz, D. H., Jepson, C., and Kunda, Z. (1983). The use of statistical
heuristics in everyday inductive reasoning. Psychol. Rev. 90:339. doi: 10.1037/
0033-295X.90.4.339

Nosofsky, R. M. (1986). Attention, similarity, and the identification–categorization
relationship. J. Exp. Psychol. General 115:39. doi: 10.1037/0096-3445.1
15.1.39

Nosofsky, R. M. (1988). Similarity, frequency, and category representations. J. Exp.
Psychol. 14:54. doi: 10.1037/0278-7393.14.1.54

O’Reilly, R. C., Hazy, T. E., and Herd, S. A. (2016). The leabra cognitive
architecture: How to play 20 principles with nature. Oxford HandBook Congn.
Sci. 91, 91–116.

Oaksford, M. (2008). Stimulus equivalence and the origins of reasoning,
language, and working memory. Cognit. Stud. Bull. Jap. Cognit. Sci. Soc. 15,
392–407.

Ogidan, E. T., Dimililer, K., and Ever, Y. K. (2018). “Machine learning for expert
systems in data analysis,” in Paper presented at the 2018 2nd International
Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT),
(New Jersey, NJ: IEEE). doi: 10.1109/ISMSIT.2018.8567251

Oita, M. (2019). “Reverse engineering creativity into interpretable neural
networks,” in Paper presented at the Future of Information and Communication
Conference, (San Francisco, CA: FICC). doi: 10.1007/978-3-030-12385-7_19

O’Neill, S. P. (2015). Sapir–Whorf Hypothesis. Int. Encyclop. Lang. Soc. Interact.
2015, 1–10. doi: 10.1002/9781118611463.wbielsi086

O’Reilly, R. C. (1996). Biologically plausible error-driven learning using
local activation differences: The generalized recirculation algorithm. Neural
Computat. 8, 895–938. doi: 10.1162/neco.1996.8.5.895

O’reilly, R. C., and Munakata, Y. (2000). Computational explorations in cognitive
neuroscience: Understanding the mind by simulating the brain. Cambridge, MA:
MIT press. doi: 10.7551/mitpress/2014.001.0001

Osherson, D. N., Smith, E. E., Wilkie, O., Lopez, A., and Shafir, E. (1990). Category-
based induction. Psychol. Rev. 97:185. doi: 10.1037/0033-295X.97.2.185

Frontiers in Psychology | www.frontiersin.org 32 March 2022 | Volume 13 | Article 745306

https://doi.org/10.3758/BF03204727
https://doi.org/10.1016/B978-0-12-545850-4.50007-8
https://doi.org/10.1109/MPE.2017.2779554
https://doi.org/10.1002/ijop.12179
https://doi.org/10.12988/asms.2017.753
https://doi.org/10.24963/ijcai.2017/318
https://doi.org/10.1155/2017/8362741
https://doi.org/10.1109/ICDMW.2018.00132
https://doi.org/10.1016/j.isprsjprs.2017.12.007
https://doi.org/10.1016/j.isprsjprs.2017.12.007
https://doi.org/10.1007/978-3-030-50200-3
https://doi.org/10.1037/0278-6133.22.5.464
https://doi.org/10.1037/0278-6133.22.5.464
https://doi.org/10.1371/journal.pone.0179699
https://doi.org/10.1016/j.cognition.2003.10.003
https://doi.org/10.1016/j.cognition.2003.10.003
https://doi.org/10.1109/5326.725342
https://doi.org/10.7551/mitpress/5237.001.0001
https://doi.org/10.7551/mitpress/5236.001.0001
https://doi.org/10.7551/mitpress/5236.001.0001
https://doi.org/10.1037/0033-295X.85.3.207
https://doi.org/10.1007/BF02293907
https://doi.org/10.1007/BF02293907
https://doi.org/10.1111/j.1460-9568.2011.07847.x
https://doi.org/10.1111/j.1460-9568.2011.07847.x
https://doi.org/10.1037/0278-7393.27.3.775
https://doi.org/10.1145/3449639.3465421
https://doi.org/10.1145/3449639.3465421
https://doi.org/10.1111/j.1755-2567.1970.tb00434.x
https://doi.org/10.1111/j.1755-2567.1970.tb00434.x
https://doi.org/10.1016/j.ijcce.2021.01.002
https://doi.org/10.1016/j.ijcce.2021.01.002
https://doi.org/10.1007/s40732-017-0255-y
https://doi.org/10.1007/s40732-017-0255-y
https://doi.org/10.1037/0033-295X.92.3.289
https://doi.org/10.7551/mitpress/1602.001.0001
https://doi.org/10.1002/0471214426.pas0411
https://doi.org/10.1109/ACCESS.2019.2896880
https://doi.org/10.1002/dys.375
https://doi.org/10.1002/dys.375
https://doi.org/10.1007/BF03395503
https://doi.org/10.1007/BF03395503
https://doi.org/10.1037/0033-295X.90.4.339
https://doi.org/10.1037/0033-295X.90.4.339
https://doi.org/10.1037/0096-3445.115.1.39
https://doi.org/10.1037/0096-3445.115.1.39
https://doi.org/10.1037/0278-7393.14.1.54
https://doi.org/10.1109/ISMSIT.2018.8567251
https://doi.org/10.1007/978-3-030-12385-7_19
https://doi.org/10.1002/9781118611463.wbielsi086
https://doi.org/10.1162/neco.1996.8.5.895
https://doi.org/10.7551/mitpress/2014.001.0001
https://doi.org/10.1037/0033-295X.97.2.185
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-745306 February 26, 2022 Time: 12:32 # 33

Edwards et al. Functional Contextualism and General Knowledge

Ostreicher, M. L., Moses, S. N., Rosenbaum, R. S., and Ryan, J. D. (2010). Prior
experience supports new learning of relations in aging. J. Gerontol. Ser. B
Psychol. Sci. Soc. Sci. 65, 32–41. doi: 10.1093/geronb/gbp081

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The PageRank citation
ranking: Bringing order to the web. Stanford, CA: Stanford InfoLab.

Palmer, D. C. (2002). Psychological essentialism: A review of E. Margolis and S.
Laurence (EDS.), Concepts: Core readings. J. Exp. Anal. Behav. 78, 597–607.
doi: 10.1901/jeab.2002.78-597

Paradis, C. (2012). “Lexical semantics,” in The encyclopedia of applied linguistics,
(New Jersey, NJ: Wiley-Blackwell). doi: 10.1002/9781405198431.wbeal0695

Pazzani, M. J. (1991). Influence of prior knowledge on concept acquisition:
Experimental and computational results. J. Exp. Psychol. Learn. Mem. Cognit.
17:416. doi: 10.1037/0278-7393.17.3.416

Pepper, S. C. (1942). World hypotheses. California, CA: University of California
Press.

Perlman, A., Hoffman, Y., Tzelgov, J., Pothos, E. M., and Edwards, D. J. (2016). The
notion of contextual locking: Previously learnt items are not accessible as such
when appearing in a less common context. Quart. J. Exp. Psychol. 69, 410–431.
doi: 10.1080/17470218.2015.1054846

Perlman, A., Pothos, E. M., Edwards, D. J., and Tzelgov, J. (2010). Task-relevant
chunking in sequence learning. J. Exp. Psychol. 36:649. doi: 10.1037/a0017178

Posner, M. I., and Keele, S. W. (1968). On the genesis of abstract ideas. J. Exp.
Psychol. 77:353. doi: 10.1037/h0025953

Pothos, E. M., and Chater, N. (2002). A simplicity principle in unsupervised human
categorization. Cognit. Sci. 26, 303–343. doi: 10.1207/s15516709cog2603_6

Pothos, E. M., and Close, J. (2008). One or two dimensions in spontaneous
classification: A simplicity approach. Cognition 107, 581–602. doi: 10.1016/j.
cognition.2007.11.007

Pothos, E. M., and Wills, A. J. (2011). Formal approaches in categorization.
Cambridge: University Press. doi: 10.1017/CBO9780511921322

Pothos, E. M., Perlman, A., Bailey, T. M., Kurtz, K., Edwards, D. J., Hines, P., et al.
(2011). Measuring category intuitiveness in unconstrained categorization tasks.
Cognition 121, 83–100. doi: 10.1016/j.cognition.2011.06.002

Potts, C. (2004). The logic of conventional implicatures, Vol. 7. Oxford: OUP
Oxford. doi: 10.1093/acprof:oso/9780199273829.001.0001

Rao, R. P., and Ballard, D. H. (1999). Predictive coding in the visual cortex:
a functional interpretation of some extra-classical receptive-field effects. Nat.
Neurosci. 2, 79–87. doi: 10.1038/4580

Reed, S. K. (1972). Pattern recognition and categorization. Cognit. Psychol. 3,
382–407. doi: 10.1016/0010-0285(72)90014-X

Rehder, B., and Murphy, G. L. (2003). A knowledge-resonance (KRES) model
of category learning. Psychonomic Bull. Rev. 10, 759–784. doi: 10.3758/
BF03196543

Rips, L. J. (1975). Inductive judgments about natural categories. J. Verb.
Learn. Verb. Behav. 14, 665–681. doi: 10.1016/S0022-5371(75)80
055-7

Rips, L. J. (1989). Similarity, typicality, and categorization. Similar. Anal. Reason.
1989:2159. doi: 10.1017/CBO9780511529863.004

Rogers, T. T., and McClelland, J. L. (2008). A simple model from a powerful
framework that spans levels of analysis. Behav. Brain Sci. 31, 729–749. doi:
10.1017/S0140525X08006067

Rogers, T. T., and McClelland, J. L. (2011). Semantics without categorization.
Formal Approac. Categoriz. 2011, 88–119. doi: 10.1017/CBO9780511921322.
005

Rosch, E., and Mervis, C. B. (1975). Family resemblances: Studies in the internal
structure of categories. Cognit. Psychol. 7, 573–605. doi: 10.1016/0010-0285(75)
90024-9

Ross, B. H., and Murphy, G. L. (1996). Category-based predictions: influence of
uncertainty and feature associations. J. Exp. Psychol. 22:736. doi: 10.1037/0278-
7393.22.3.736

Rouder, J. N., and Ratcliff, R. (2006). Comparing exemplar-and rule-based theories
of categorization. Curr. Direct. Psychol. Sci. 15, 9–13. doi: 10.1111/j.0963-7214.
2006.00397.x

Rumelhart, D. E. (1990). Brain style computation: Learning and generalization.
Introduct. Neural Electr. Netw. 1990, 405–420.

Rumelhart, D. E., and Todd, P. M. (1993). Learning and connectionist
representations. Attent. Perform. XIV Synerg. Exp. Psychol. Artific. Intellig.
Cognit. Neurosci. 2, 3–30.

Rumelhart, D. E., and Zipser, D. (1985). Feature discovery by competitive learning.
Cognit. Sci. 9, 75–112. doi: 10.1207/s15516709cog0901_5

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
representations by back-propagating errors. Nature 323, 533–536. doi: 10.1038/
323533a0

Russo, C., Madani, K., and Rinaldi, A. M. (2021). Knowledge acquisition and design
using semantics and perception: A case study for autonomous robots. Neural
Proces. Lett. 53, 3153–3168. doi: 10.1007/s11063-020-10311-x

Sanborn, A., Griffiths, T., and Navarro, D. (2006). A more rational model of
categorization. Mahwah NJ: Lawrence Erlbaum.

Sejnowski, T. J. (2018). The deep learning revolution. Cambridge, MA: Mit Press.
doi: 10.7551/mitpress/11474.001.0001

Shafto, P., Kemp, C., Mansinghka, V., and Tenenbaum, J. B. (2011). A probabilistic
model of cross-categorization. Cognition 120, 1–25. doi: 10.1016/j.cognition.
2011.02.010

Shanks, D. R. (1991). Categorization by a connectionist network. J. Exp. Psychol.
17:433. doi: 10.1037/0278-7393.17.3.433

Shull, R. L. (1991). “Mathematical description of operant behavior: An
introduction,” in Techniques in the behavioral and neural sciences, Vol. 6,
(Amsterdam: Elsevier), 243–282. doi: 10.1016/B978-0-444-81251-3.50014-X

Sidman, M. (1994). Stimulus equivalence: A research story. Boston: Authors
Cooperative.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
et al. (2017). Mastering the game of go without human knowledge. Nature 550,
354–359. doi: 10.1038/nature24270

Silver, D., Singh, S., Precup, D., and Sutton, R. S. (2021). Reward is enough. Artific.
Intellig. 2021:103535. doi: 10.1016/j.artint.2021.103535

Skinner, B. F. (1966). An operant analysis of problem solving. Prob. Solv. 1966,
225–257.

Slattery, B., and Stewart, I. (2014). Hierarchical classification as relational framing.
J. Exp. Anal. Behav. 101, 61–75. doi: 10.1002/jeab.63

Slattery, B., Stewart, I., and O’Hora, D. (2011). Testing for transitive class
containment as a feature of hierarchical classification. J. Exp. Anal. Behav. 96,
243–260. doi: 10.1901/jeab.2011.96-243

Smith, E. E., and Sloman, S. A. (1994). Similarity-versus rule-based categorization.
Mem. Cognit. 22, 377–386. doi: 10.3758/BF03200864

Smith, E. E., Patalano, A. L., and Jonides, J. (1998). Alternative strategies of
categorization. Cognition 65, 167–196. doi: 10.1016/S0010-0277(97)00043-7

Smith, V., Florence, K., and Maria, F. (2018). Semantics in cultural perspective
overview. Linguist. Cult. Rev. 2, 24–31. doi: 10.37028/lingcure.v2n1.9

Stangor, C., and Ruble, D. N. (1989). Differential influences of gender schemata
and gender constancy on children’s information processing and behavior. Soc.
Cognit. 7, 353–372. doi: 10.1521/soco.1989.7.4.353

Stewart, N., Brown, G. D., and Chater, N. (2005). Absolute identification by relative
judgment. Psychol. Rev. 112:881. doi: 10.1037/0033-295X.112.4.881

Stuart, R., and Peter, N. (2020). Artificial Intelligence: A Modern Approach. Upper
Saddle River, NJ: Prentice Hall.

Tax, T., Mediano, P. A., and Shanahan, M. (2017). The partial information
decomposition of generative neural network models. Entropy 19:474. doi: 10.
3390/e19090474

Taylor, S. D., and Sutton, P. R. (2021). “A frame-theoretic model of Bayesian
category learning,” in Concepts, frames and cascades in semantics, cognition and
ontology, (Cham: Springer), 329–349. doi: 10.1007/978-3-030-50200-3_15

Tishby, N., and Zaslavsky, N. (2015). “Deep learning and the information
bottleneck principle,” in Paper presented at the 2015 IEEE Information Theory
Workshop (ITW), (New Jersey, NJ: IEEE). doi: 10.1109/ITW.2015.7133169

Toosi, A., Bottino, A. G., Saboury, B., Siegel, E., and Rahmim, A. (2021). A brief
history of AI: how to prevent another winter (a critical review). PET clinics 16,
449–469. doi: 10.1016/j.cpet.2021.07.001

Torneke, N. (2010). Learning RFT: An introduction to relational frame theory and
its clinical application. Oakland, CA: New Harbinger Publications.

Towell, G. G., and Shavlik, J. W. (1993). Extracting refined rules from knowledge-
based neural networks. Machine Learn. 13, 71–101. doi: 10.1007/BF00993103

Trabasso, T., and Bower, G. H. (1968). Attention in learning: Theory and research.
New Jersey, NJ: John Wiley and sons.

Vanpaemel, W., and Storms, G. (2008). In search of abstraction: The varying
abstraction model of categorization. Psychonomic Bull. Rev. 15, 732–749. doi:
10.3758/PBR.15.4.732

Frontiers in Psychology | www.frontiersin.org 33 March 2022 | Volume 13 | Article 745306

https://doi.org/10.1093/geronb/gbp081
https://doi.org/10.1901/jeab.2002.78-597
https://doi.org/10.1002/9781405198431.wbeal0695
https://doi.org/10.1037/0278-7393.17.3.416
https://doi.org/10.1080/17470218.2015.1054846
https://doi.org/10.1037/a0017178
https://doi.org/10.1037/h0025953
https://doi.org/10.1207/s15516709cog2603_6
https://doi.org/10.1016/j.cognition.2007.11.007
https://doi.org/10.1016/j.cognition.2007.11.007
https://doi.org/10.1017/CBO9780511921322
https://doi.org/10.1016/j.cognition.2011.06.002
https://doi.org/10.1093/acprof:oso/9780199273829.001.0001
https://doi.org/10.1038/4580
https://doi.org/10.1016/0010-0285(72)90014-X
https://doi.org/10.3758/BF03196543
https://doi.org/10.3758/BF03196543
https://doi.org/10.1016/S0022-5371(75)80055-7
https://doi.org/10.1016/S0022-5371(75)80055-7
https://doi.org/10.1017/CBO9780511529863.004
https://doi.org/10.1017/S0140525X08006067
https://doi.org/10.1017/S0140525X08006067
https://doi.org/10.1017/CBO9780511921322.005
https://doi.org/10.1017/CBO9780511921322.005
https://doi.org/10.1016/0010-0285(75)90024-9
https://doi.org/10.1016/0010-0285(75)90024-9
https://doi.org/10.1037/0278-7393.22.3.736
https://doi.org/10.1037/0278-7393.22.3.736
https://doi.org/10.1111/j.0963-7214.2006.00397.x
https://doi.org/10.1111/j.0963-7214.2006.00397.x
https://doi.org/10.1207/s15516709cog0901_5
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s11063-020-10311-x
https://doi.org/10.7551/mitpress/11474.001.0001
https://doi.org/10.1016/j.cognition.2011.02.010
https://doi.org/10.1016/j.cognition.2011.02.010
https://doi.org/10.1037/0278-7393.17.3.433
https://doi.org/10.1016/B978-0-444-81251-3.50014-X
https://doi.org/10.1038/nature24270
https://doi.org/10.1016/j.artint.2021.103535
https://doi.org/10.1002/jeab.63
https://doi.org/10.1901/jeab.2011.96-243
https://doi.org/10.3758/BF03200864
https://doi.org/10.1016/S0010-0277(97)00043-7
https://doi.org/10.37028/lingcure.v2n1.9
https://doi.org/10.1521/soco.1989.7.4.353
https://doi.org/10.1037/0033-295X.112.4.881
https://doi.org/10.3390/e19090474
https://doi.org/10.3390/e19090474
https://doi.org/10.1007/978-3-030-50200-3_15
https://doi.org/10.1109/ITW.2015.7133169
https://doi.org/10.1016/j.cpet.2021.07.001
https://doi.org/10.1007/BF00993103
https://doi.org/10.3758/PBR.15.4.732
https://doi.org/10.3758/PBR.15.4.732
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-745306 February 26, 2022 Time: 12:32 # 34

Edwards et al. Functional Contextualism and General Knowledge

Voulodimos, A., Doulamis, N., Bebis, G., and Stathaki, T. (2018). Recent
developments in deep learning for engineering applications, Vol. 2018. London:
Hindawi. doi: 10.1155/2018/8141259

Whittington, J. C., and Bogacz, R. (2017). An approximation of the error
backpropagation algorithm in a predictive coding network with local Hebbian
synaptic plasticity. Neural Computat. 29, 1229–1262. doi: 10.1162/NECO_a_
00949

Young, T., Hazarika, D., Poria, S., and Cambria, E. (2018). Recent trends in deep
learning based natural language processing. IEEE Computat. Intellig. Magazine
13, 55–75. doi: 10.1109/MCI.2018.2840738

Yu, S., Wickstrøm, K., Jenssen, R., and Principe, J. C. (2020). Understanding
convolutional neural networks with information theory: An initial exploration.
IEEE Transact. Neural Netw. Learn. Syst. 32, 435–442. doi: 10.1109/TNNLS.
2020.2968509

Zahidi, K. (2014). Non-representationalist cognitive science and realism.
Phenomenol. Cognit. Sci. 13, 461–475. doi: 10.1007/s11097-013-9310-6

Zesch, T., Müller, C., and Gurevych, I. (2008). “Extracting Lexical Semantic
Knowledge from Wikipedia and Wiktionary,” in Paper presented at the LREC,
(Marrakech: LREC).

Zimmermann, T. E. (2012). “89. Context dependence,” in Handbücher
zur Sprach-und Kommunikationswissenschaft/Handbooks of Linguistics

and Communication Science, eds J. Darquennes, J. C. Salmons,
and W. Vandenbussche (Berlin: De Gruyter Mouton), 2360–2407.
doi: 10.1515/9783110253382.2360

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Edwards, McEnteggart and Barnes-Holmes. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Psychology | www.frontiersin.org 34 March 2022 | Volume 13 | Article 745306

https://doi.org/10.1155/2018/8141259
https://doi.org/10.1162/NECO_a_00949
https://doi.org/10.1162/NECO_a_00949
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1109/TNNLS.2020.2968509
https://doi.org/10.1109/TNNLS.2020.2968509
https://doi.org/10.1007/s11097-013-9310-6
https://doi.org/10.1515/9783110253382.2360
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	A Functional Contextual Account of Background Knowledge in Categorization: Implications for Artificial General Intelligence and Cognitive Accounts of General Knowledge
	Introduction
	The Problem of Background Knowledge and Why Existing Modeling Efforts Are So Far Incomplete
	The Limited Success of Linguistical Semantics and Sematic Logic of Artificial Intelligence in Accounting for Background Knowledge
	A Functional Contextual Account of Background Knowledge – a Potential Solution
	Specific Examples of Categorization Modeling for Background Knowledge and Why a Functional Contextual Model May Improve on These Accounts
	Recent Hyperdimensional Relational Frame Theory Developments Which Expands the Dynamics of Relational Framing Within the Context of Background Knowledge
	Some Mathematical Formalization Considerations
	Deep Learning Neural Network Semantic Architecture With Representation and Relational Layers
	Encoding of Information to Network Layers and Graph Visual Embeddings
	Some Novel Experimental Considerations
	Conclusion
	Author Contributions
	References


