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Abstract. The standard paradigm in Affective Computing involves acquiring one/several markers (e.g., physiological signals) of
emotions and training models on these to predict emotions. However, due to the internal nature of emotions, labelling/annotation
of emotional experience is done manually by humans using specially developed annotation tools. To effectively exploit the re-
sulting subjective annotations for developing affective systems, their quality needs to be assessed. This entails, (i) evaluating
the variations in annotations, across different subjects and emotional stimuli, to detect spurious/unexpected patterns; and (ii) de-
veloping strategies to effectively combine these subjective annotations into a ground truth annotation. This article builds on our
previous work by presenting a novel Functional Data Analysis based approach to assess the quality of annotations. Specifically,
the bivariate annotation time-series are transformed into functions, such that each resulting functional annotation then becomes a
sample element for analysis like Multivariate Functional Principal Component Analysis (MFPCA) that evaluate variation across
all annotations. The resulting scores from MFPCA provide interesting insights into annotation patterns and facilitate the use of
multivariate statistical techniques to address both (i) and (ii). Given the presented efficacy of these methods, we believe they offer
an exciting new approach to assessing the quality of annotations.
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1. Introduction

In the past two decades, the number of gadgets that
humans interact with has been on the rise. This trend
continues as the next generation of gadgets (e.g., per-
sonal robot-companions, autonomous cars) enter our
lives. This ever-increasing technologisation brings nu-
merous challenges pertaining to effective and con-
tinuously engaging user-interaction. Addressing these
challenges effectively is the goal of Affective Com-

puting (AC), which aims to develop systems that can
recognise and process human emotions [26], such that
they continuously adapt to the user’s needs [31]. To
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this end, researchers in this field often investigate how,
e.g., physiological signals [32,40], speech [2,32], fa-
cial expressions [32,36] and other modalities [31], act
as markers for emotional experience. The aim being,
that if the relation between these signals and emo-
tions can be robustly modelled, then machines can
‘learn’ to recognise and adapt to their users’ emotional
state. Given the far-reaching impact such a technology
would have on user-interaction, interest in the field of
AC has been steadily growing. Accordingly, in recent
years, several interesting research/applications in AC
have come to the fore. These include, among others,
an affective music player that adapts the music being
played to user’s emotional state [39], an investigation
on the role of AC in monitoring workplace health and
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safety [38], and a study on the use of AC methods for
continuous pain intensity assessment [21].

In spite of the burgeoning interest and research ef-
forts, several hurdles restrict a more widespread utili-
sation of AC. Principal among these is the internal na-
ture of human emotions that leads to them not being
easily accessible to external entities [40]. To address
this, the link between measurable emotion modalities
and internal emotions needs to be established. This is
still largely an unsolved problem, but a commonly fol-
lowed approach in laboratory settings involves elic-
iting emotional response from humans using stimuli
like pictures [25], videos [33,40], music [25], etc.,
while simultaneously acquiring modalities and anno-
tations pertaining to the emotional experience. These
annotations are usually provided in form of either dis-
crete emotion categories [31,40] (e.g., fear, joy, etc.)
or in terms of Valence and Arousal (V–A) values as per
the continuous 2-dimensional Circumplex model of Af-

fect [30]. Traditionally, these annotations were manu-
ally acquired using Likert-scale based questionnaires,
where a single emotional-label or V–A pair-value rep-
resents the emotional response to the stimulus. How-
ever, in recent years, there has been a growing real-
isation that this approach does not adequately repre-
sent the emotional response elicited by dynamic stim-
uli (e.g., videos) [20,25,36]. Thus, greater emphasis
is now placed on continuous annotation of emotional
experience using specially developed interfaces like
FEELTRACE [7], GTrace [8] and EmuJoy [25]. While
these interfaces laid the groundwork for continuous an-
notation, in recent years, several shortcomings with re-
spect to their setup, annotation-strategy and usability,
have been widely reported [3,23,24,43]. To improve
upon these, we developed a new Joystick-based Emo-

tion Reporting Interface (abbreviated as DLR–JERI or
JERI) [33], that: (i) uses a joystick instead of the less
ergonomic (and commonly used) mouse (see Fig. 1),
(ii) unlike some current interfaces, allows for simulta-

neous V–A annotation, and (iii) guides users through
more widely interpretable Self-Assessment Manikin
(SAM) [4]. This interface has also been formally eval-
uated through a user-study, where it was rated as hav-
ing ‘excellent’ usability [33].

Irrespective of the annotation interface used, a com-
mon issue is the quality of the acquired subjective
annotations [20,24,41]. This issue can be best sum-
marised in form of the following questions: (a) given
an emotional stimulus, do the annotations exhibit some
agreement?, (b) do different stimuli with similar in-
tended V–A attributes lead to similar annotations?,
(c) how do annotation patterns vary across different
stimuli and are they discriminable from each other?,
and (d) given multiple annotations, how to best de-
termine the underlying ground truth annotation? Ad-
dressing these questions is highly relevant when col-
lecting emotional corpora and/or developing emotion
prediction models, as undesired effects, such as diverg-
ing annotator behaviour, ill-chosen stimuli, etc., can be
detected and mitigated [20,28]. For continuous anno-
tations, addressing these quality issues is analytically
more challenging [20]. Existing approaches to the
same, including our previous work [1,33,34], fall into
the following two categories. In the first, the continu-
ous aspect is ignored. Accordingly, (a) and (b) are ad-
dressed using inter-rater reliability measures [24,43],
(c) using ANOVA (or MANOVA for multivariate case)
models [29,33], and (d) by simply calculating point-
by-point arithmetic mean [14,37]. The approaches in
the second category account for the continuous nature,
but only for the univariate case. Thus, (b) and (c) can
be addressed using univariate sequence analysis [33],
and (d) using regression-based approaches [33,35].
For Likert-scale or univariate continuous annotations,
these approaches are often sufficient. However, for
continuous and bivariate annotations (as for JERI), ap-
proaches that account for the inherent correlation be-
tween valence and arousal need to be developed.

Fig. 1. Typical annotation setup using JERI with the joystick circled (left). A video-stimulus with the embedded annotation user-interface (center),
where the Self-Assessment Manikin (SAM) were added to valence-arousal axes (right).
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Table 1

The type, label, source, intended valence-arousal attributes and duration of each video used in the experiment

Type Label Source (year of release) Intended attributes Duration
[s]Valence Arousal

Amusing am1 Hangover (2009) mid/high mid/high 185

am2 When Harry met Sally (1989) mid/high mid/high 173

Boring bo1 Europe travel advisory (2013) low low 119

bo2 Japanese tea ceremony (2012) low low 160

Relaxing re1 Pristine beach (2011) mid/high low 145

re2 Zambezi river (2011) mid/high low 147

Scary sc1 Shutter (2004) low high 197

sc2 Mama (2008) low high 144

To this end, in this work we extend our previous ef-
fort [33] by presenting a novel Functional Data Anal-

ysis (FDA) based approach to address the aforemen-
tioned quality issues. The main advantage of FDA
techniques is that, unlike the aforementioned discre-
tised approach, they are applied to complete bivariate
annotations. The contribution of this work is twofold.
First, a foundational framework for converting annota-
tions into functions is presented. Second, several FDA
based approaches to evaluate the quality of annotations
are developed. To the best of our knowledge, this is
the first attempt at using FDA for analysing continuous
annotations in AC.

The rest of the paper is organised as follows. In
Section 2, the experiment setup, annotation data, pro-
cessing steps for converting annotations into functions
and a theoretical background for Multivariate Func-

tional Principal Component Analysis (MFPCA), are
presented. Section 3 presents the results of the anal-
yses undertaken on functional annotations. Namely,
(i) MFPCA analysis to investigate the variance, (ii) a
distance-based measure to showcase concordance of
annotation patterns, (iii) the use of Fisher Discriminant
Ratio and (iv) Gaussian Support Vector Machines to
discern the discriminability between annotations, and
(v) an approach to ascertain ground truth annotations,
are presented. A discussion of the results is also pre-
sented. Lastly, in Section 4, the conclusions and the
outlook from this work are presented.

2. Methods

2.1. Setup

To test and validate annotations from JERI, an ex-
periment involving 30 volunteers (15 males, age 28.6±

4.8 years and 15 females, age 25.7 ± 3.1 years; range
of age 22–37 years) was set up. The experiment was
approved by the DLR Ethics Committee. The partici-
pants of the study watched 8 videos and self-reported
their experienced affect (in form of simultaneous V–A
annotations) by appropriately positioning the joystick
pointer (i.e., the red dot in Fig. 1) in the annotation in-
terface. The videos used for the test were selected so
as to elicit the following 4 intrinsic emotions: amuse-

ment, boredom, relaxation, and scaredness. For every
emotion, 2 videos were used, so as to facilitate com-
parisons. The source of the excerpted videos and their
expected intrinsic V–A are listed in Table 1. More de-
tails on the setup can be found in [33].

2.2. Annotation data

The raw annotation data acquired from the experi-
ment is in form of 2-D sequence of points within the
interval [0.5, 9.5] (see Fig. 2). Each data point has
a time-stamp associated with it. Since there were 8
videos and 30 participants in the study, a single data
point in an annotation sequence can be expressed as:

xvs(tk) =
[

x1(tk), x2(tk)
]

∈ R
2 (1)

where v = 1, 2, . . . , 8 for videos, s = 1, 2, . . . , 30
for subjects, tk ∈ {t1, . . . , tnvs } are timestamps and nvs

is the number of points in an annotation sequence for
video v by participant s. Through pre-processing nvs

is made uniform to nv across all subjects for a given
video v.

2.3. Basis expansion using P-splines

The fundamental notion of FDA is that discrete data
points (x1, x2, . . . , xn), such that xi ∈ R, observed at
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Fig. 2. Annotations from 15 subjects (different colours) for video
sc2.

time/location (t1, t2, . . . , tn) are generated by an un-
derlying continuous process (i.e., smooth function x̃)
[42]. Accordingly,

x(t) = x̃(t) + ε(t) (2)

where ε is the noise/error. To ascertain the function
x̃ from the observed data x, which is non-linear (see
Fig. 2), basis expansion (B1(·), B2(·), . . . , Bd(·)) is
often used. Thus, the function is expressed as a linear
combination of these basis functions [11,17]:

x̃(t) =

d
∑

j=1

γjBj (t) (3)

where B are the basis functions, γ are the model pa-
rameters and d is the number of basis functions used.
Amongst the several possible basis expansions, pe-

nalised B-splines (P-splines), which are a modified
form of basis-splines (B-splines), were used. To elab-
orate the workings of P-splines basis expansion, first
the innards of B-splines are presented.

B-splines were used for the given dataset because
of their efficacy in representing non-linear and non-
periodic data [17]. B-splines are a form of piecewise-

polynomials representation, whereby the input data is
divided into contiguous intervals and local polynomi-
als are used to represent the underlying function in that
interval [9]. Thus, B-splines representation is contin-
gent to the ‘knots’ defining the intervals and the de-
gree of the polynomials used. A basis function B0

j of

degree = 0 at some knot κj can be expressed as:

B0
j (t) =

{

1 if κj � t < κj+1,

0 otherwise,

j = 1, 2, . . . , d − 1 (4)

Higher degree polynomial basis functions (e.g.,
degree = l) are accordingly expressed recursively
[11], as:

B l
j (t) =

t − κj−l

κj − κj−l

B l−1
j−1(t)

+
κj+1 − t

κj+1 − κj+1−l

B l−1
j (t) (5)

The recursive definition leads to an augmented knot
sequence, where 2l outer knots are added to m ini-
tial knots (where, m = #interior + 2 boundary-knots),
leading to total length of knots sequence to be = m +

2l. The number of basis functions is d = m + l − 1.
Given the discrete data and the basis functions,

Least Squares minimisation [11] is used to compute
the estimated model parameters γ̂ , such that:

γ̂ = arg min
γ

n
∑

j=1

(

x(tj ) − x̃(tj )
)2

= arg min
γ

n
∑

j=1

(

x(tj ) −

d
∑

k=1

γkBk(tj )

)2

(6)

Equation (3) can be stated in a vectorised form as:

x̃ = Zγ (7)

Accordingly, through further evaluation Eq. (6) can be
expressed as:

γ̂ = arg min
γ

‖x − Zγ ‖2
2

= Z+x (8)

where x and γ are n×1 and d×1 vectors, respectively,
and Z+ is the pseudoinverse of Z, which is a n × d

matrix of basis functions, such that:

Z =

⎡

⎢

⎣

B l
1(t1) · · · B l

d(t1)
...

...

B l
1(tn) · · · B l

d(tn)

⎤

⎥

⎦
(9)
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As is evident from Eqs (8) and (9), γ̂ is dependent
on the number of basis functions d used for represen-
tation. Thus, a sub-optimal value of d , i.e., too large or
small, leads to overfitting or underfitting, respectively
[17]. To address this problem, the smoothing parame-

ter λ is used to regularise the least squares estimate,
leading to the following modified form of Eq. (6):

n
∑

j=1

(

x(tj ) − x̃(tj )
)2

+ λ

∫

(

x̃′′(t)
)2

dt (10)

Here, λ penalises the curvature of the ‘fit’ function to
prevent overfitting, thus resulting in the moniker Pe-

nalised B-splines (P-splines) [11]. Accordingly, based
on Eq. (8), the Penalised Least Squares (PLS) estimate
for γ can now be evaluated as:

γ̂ =
(

ZT Z + λK
)−1

ZT x (11)

where the matrix K is the penalty matrix whose el-
ements are the integrated products of second order
derivatives of B-spline basis functions [9].

By substituting the value of γ̂ from Eq. (11) into
Eq. (7), the estimated function x̃ can be evaluated, as
follows:

x̃ = Z
(

ZT Z + λK
)−1

ZT x

= Sλ,Zx (12)

where S is known as smoother matrix [17]. This equa-
tion can be extended to 2-D annotation data, such that
the estimated annotation function for video i and sub-
ject j , i.e., x̃ij , can be expressed as:

x̃ij = (x̃1, x̃2)ij =
(

S
(i,j)

λ,Z x1, S
(i,j)

λ,Z x2

)

(13)

2.4. Parameters for functional representation

From Eqs (9) and (12) it is evident that the func-
tional representation is contingent to three parameters:
(i) the degree l of the basis-splines, (ii) the number d

of basis functions, and (iii) the smoothing parameter λ.
Optimal values of these parameters are required to ob-
tain a ‘good’ and denoised approximation of the under-
lying function x̃(t). These values can be determined
individually for different subjects and videos but here
one suitable set of values was determined.

To this end, splines of order 4 (degree l = 3),
i.e., cubic splines, were chosen because: (i) they have
continuous first and second derivatives at the knots,

thus the derivatives of obtained functional representa-
tion are also smooth, and (ii) the smoothing param-
eter λ in Eq. (10) is defined in terms of the squared
second derivative. The choice of d is less trivial, as
large values result in a richer basis representation, but
tend to overfit the data and require considerable com-
putational effort (O(nd2 + d3) flops) for the evalua-
tion of least squares minimisation [17]. While the for-
mer problem was mitigated through regularisation, the
latter requires that an optimal d , such that d ≪ n is
chosen. To this end, the longest video, i.e., sc1 with
n = 3939, was used to evaluate d that would also gen-
eralise to other videos. Accordingly, for different val-
ues of d (where d was increased in steps of 200 in
the range of d = 220, . . . , n), the computation-time
and the ‘quality of fit’ (quantified by Sum of Squared
Errors (SSE)) were computed and consequently d =

820, that represents a balance between quantities, was
chosen. Finally, the smoothing parameter λ was de-
termined using Generalised Cross-Validation (GCV)
[17], where the GCV(λ) criterion was calculated for
different videos, as:

GCV(λ) =
1

n

n
∑

i=1

(

x(ti) − x̃(ti)

1 − tr(S)/n

)2

(14)

and the optimal λ was determined by comparing
GCV(λ) for different values of λ and selecting the
one with minimum GCV(λ) across all videos. Accord-
ingly, λ∗ = 10−4 was chosen.

2.5. Multivariate Functional Principal Component

Analysis (MFPCA)

Functional-PCA (FPCA) is analogous to PCA as the
main aim of both these methods is to determine the
dominant modes of variation in the data [19]. FPCA
is however applied to functions, instead of multi-
dimensional vectors as in PCA [27]. Standard FPCA
approaches are not suitable for the given dataset, as
they – (i) only operate on univariate functions, (ii) re-
quire that all functions are of same time-duration.
Therefore, for the annotation functions, the state-of-
the-art MFPCA [16] was used. MFPCA is an advanced
statistical method and its thorough presentation is be-
yond the scope of this article. The rest of this sub-
section presents an abridged introduction to MFPCA,
such that an intuition about it can be developed. More
details on MPFCA can be found in [15,16].

At its core, the used MFPCA method is based on
the truncated Karhunen–Loève expansion. According
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to which, a function can be approximated by a finite
sum of its functional principal components [22], so the
basis expansion defined in Eq. (3) can be modified as:

X(j)(tj ) =

d
∑

m=1

γmBm(tj )

=

K
∑

m=1

θ
(j)
m b

(j)
m (tj ) (15)

where X(j) and tj are the j th univariate function and

its time-duration, respectively. b
(j)
m are orthonormal

basis functions with coefficients θ
(j)
m . The estimation

of MFPCA can then be generalised by using univariate
functional basis expansion with weighted scalar prod-
uct, where the weights allow for rescaling such that the
univariate principal component expansion in Eq. (15)
can be extended to the multivariate case. Thus, given
weights w1, . . . , wp > 0 for each univariate function
and demeaned observations x1, . . . , xN of X with es-
timated basis function coefficients θ̂

(j)

i,m for each ele-
ment, the eigen-analysis problem for MFPCA can then
be expressed as:

(N − 1)−1BD�T �Dc = vc (16)

where B ∈ RK+×K+ with K+ =
∑p

j=1 Kj is a

block diagonal matrix of scalar products 〈b
(j)
m , b

(j)
n 〉2

of univariate basis functions associated with each el-
ement X(j). The matrix D = diag(w

1/2
1 , . . . , w

1/2
p )

accounts for the weights. The matrix � with rows

(θ̂
(1)
i,1 , . . . , θ̂

(1)
i,K1

, . . . , θ̂
(p)

i,1 , . . . , θ̂
(p)

i,Kp
) contains the

scores for each observation and (N − 1)−1�T � is
an estimate for the covariance matrix Q. The vectors
c and ν are the eigenvectors and eigenvalues, respec-
tively. The associated scores ρi,m for ith functional ob-
servation on the mth functional principal component
can be then evaluated as:

ρ̂i,m = (v̂m)1/2(ĉT
mQ̂w ĉm

)−1/2
�i,.Dĉm (17)

3. Results

3.1. MFPCA on all annotations

Based on methods presented in Sections 2.3 and
2.4, 240 (30 subjects × 8 videos) bivariate annota-
tion functions were generated. Similar to PCA, the
MFPCA method is contingent to the number of prin-

Fig. 3. Scatterplot of the MFPCA scores on the first two fPC for all
annotations of the videos (see Table 1) used in the experiment.

cipal components M used for the representation [16].
To this end, the optimal M was determined based on
how much of the total variance is explained by the dif-
ferent principal components [19]. For the annotation
functions, M was set to 10, as based on scree plot anal-
ysis the subsequent increase in explained variance for
M > 10 was insignificant. Thus, MFPCA (with M =

10) applied to 240 annotation functions, results in a
240 × 10 score matrix where each row contains scores
for a function on the 10 functional Principal Compo-
nents (fPC). The scores on the first and second fPC
(i.e., 1.fPC and 2.fPC) for all functions are visualised
in Fig. 3. These two fPC account for 88% explained
variance, which increases to 95% for the first 4 fPC.

Discussion. Fig. 3 shows that the annotations for
scary videos (i.e., sc1 and sc2) have low scores on
1.fPC and are easily separable from other videos. The
amusing, boring and relaxed annotations are not sepa-
rable based on 1.fPC scores and only marginally sepa-
rable based on their 2.fPC scores. Table 1 provides an
initial reasoning for this result, where besides the scary
videos, the V–A attributes of other videos are compar-
atively similar to each other. Another expected result
from Fig. 3 is that annotation scores of 2 videos of the
same emotion type tend to cluster together.

3.2. Analysis of annotation patterns

To determine the efficacy of both, the used stimuli
and the annotation strategy, in eliciting desired V–A
response from the participants, an analysis of concor-
dance in annotations is necessary. To this end, the Eu-
clidean distances between the MFPCA scores of an-
notations on the first 4 fPC (95% explained variance)
were used. Such that, relatively higher distance values
signify low concordance between the annotations. For
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Fig. 4. Distance-heatmap for all annotations, where distances are in-
versely related to concordance between annotations.

the given 240 bivariate annotation functions, this anal-
ysis evaluates the pair-wise distance between annota-
tions resulting in 240 × (240 − 1)/2 unique distance
values. Due to the large number of values, this result
is best presented in form of a symmetric 240 × 240
heatmap (see Fig. 4), where the continuous colourmap
(ranging from blue–yellow–red) signifies increasing
distance between the annotations.

Discussion. A major trend evident from Fig. 4 is that
within a given type (i.e., within-type concordance), the
annotations for scary, amusing and boring videos, with
largely blue regions, are relatively concordant to each
other. This result is along expected lines. However, the
relaxed videos only exhibit marginal within-type con-
cordance. The within-video concordance, that is char-
acterised by the distance amongst annotations for a
video, is high for most videos except re1 and sc1. The
unexpected results for relaxed videos (specifically re2)
and sc1, can be attributed to stronger than expected
concordance with amusing and boring videos, and
comparatively high between-subject disagreement, re-
spectively.

3.3. Separability of annotations

The analyses in Sections 3.1 and 3.2 present an intu-
ition about the separability of annotations, which can

now be formally evaluated using discriminant analy-
sis. To this end, we used Fisher’s Discriminant Ratio

(FDR) to determine the relative cluster separability be-
tween the scores of all videos on different fPC [10].
FDR between two videos for each fPC is calculated as:

FDRi,j =
(µi − µj )

2

σ 2
i + σ 2

j

(18)

where i and j are the videos whose separability is
being evaluated. µ and σ 2 are the arithmetic mean
and variance of the scores across all subjects for these
videos. Since the first 4 fPC account for 95% explained
variance, FDR between the videos was calculated on
each of these fPC and the results are presented in
Fig. 5.

Discussion. In Fig. 5 (leftmost), the comparatively
large FDR values of the scary videos for first fPC
(61.38% explained variance) indicate higher separabil-
ity from other videos. Similarly, FDR values for the
2.fPC (second to left, 26.89% explained variance) indi-
cate that this fPC is essential for separating the boring

from amusing videos. Also, re1 is marginally separable
from amusing videos in this fPC, so is re2 from bor-

ing videos. These results however also indicate that re1
and re2 are not highly discriminable from boring and
amusing videos, respectively. The issue of low separa-
bility of re2 from amusing videos persists when com-
paring FDR values in the third (second to right, 3.9%
explained variance) and fourth (rightmost, 2.84% ex-
plained variance) fPC. Also, the FDR values in 3.fPC
and 4.fPC show that these fPC allow for discrimination
between sc1 and sc2.

3.4. Classification of annotations

The results presented in Sections 3.1 and 3.3 indi-
cate that two (in turn, four) principal components of
the annotations can already be used for a qualitative
analysis of the characteristics of each type which are
invariant across subjects. We now turn to a quantitative
analysis of separability using a standard classification
method. To this aim, we use the complete score vec-
tor (10-D) for the annotations as the input space to a
Support Vector Machine (SVM, [5]) with Radial Basis
Function kernel, while the label of each annotation is
the type of clip. As a measure of accuracy we employ
the balanced classification accuracy, defined as one mi-
nus the balanced error rate (average of the classifica-
tion errors for each type of clip). We employ the stan-
dard SVM library libsvm [6] and let it perform one-
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Fig. 5. FDR values from the first four fPC (left to right).

Table 2

Classification balanced accuracy [%] and number of Support Vectors, per video type and overall, for the 25/5 training/testing set [33], and for
the leave-one-subject-out (LoSo) schema (mean values ± one standard deviation, all percentages rounded to the nearest integer)

Classification balanced accuracy [%] Number of support vectors

Amusing Boring Relaxed Scary Overall Amusing Boring Relaxed Scary Overall

25/5 80 70 70 100 80 29 39 45 7 120

LoSo 80 ± 31 68 ± 36 47 ± 39 92 ± 27 72 ± 16 39 ± 4 45 ± 3 56 ± 2 13 ± 3 152 ± 12

versus-one multiclass classification [18]; notice that,
since the problem has four classes, a balanced classi-
fication accuracy of 25% represents the minimum ac-
ceptable result (chance level).

We perform two kinds of analyses, each charac-
terised by a different way of generating the training
and testing set. In the first analysis, analogously to
what is done with characteristic time sequences in
[33], the training set consists of the annotations from
the 25 participants chosen in that paper (200 anno-
tations), whereas the testing set consists of the data
from the remaining 5 participants (40 annotations).
The optimal hyper-parameters of the SVM, C and γ ,
are found via grid search [5] within ranges of γ =

10(log 1
10 +[−2,...,2]) and C = 10[0,...,3], in steps of 0.1.

The resulting optimal model (with C∗ = 200 and
γ ∗ = 0.04) has 120 support vectors (29, 39, 45, 7
in turn for amusing, relaxed, boring and scary videos)
and obtains a balanced classification accuracy of 80%
(80%, 70%, 70%, 100% – round percentages are to be
expected since the testing set only contains 10 annota-
tions per type of clip).

Secondly, we perform a deeper analysis, namely a
Leave-one-Subject-out (LoSo) classification: for each
of the 30 subjects in turn, her annotations are used as
the testing set, and the annotations of the remaining 29
subjects constitute the training set. The ranges for the
grid search of the optimal parameters are as above. The
balanced classification accuracy is 71.67% ± 15.72%
(average value plus/minus one standard deviation). Ta-

ble 2 summarises the results (percentages rounded to
the nearest integer).

Discussion. The classification accuracy in both
problems is high if compared to that found in our pre-
vious work [33]: in that case the overall accuracy was
52% or 60% (as opposed to 80% and 72% ± 16% in
the present case) but it must be remarked that the two
datasets are hardly comparable: in the former case the
input space was represented by points in time whereas
here we deal with samples, each one of which repre-
sents a whole trajectory in the V–A space. Overall, it
seems that MFPCA is hereby to some extent captur-
ing essential information about a trajectory, and this
is reflected in the results, much higher than chance
levels. As expected, the accuracy values per-type-of-
video confirm the impressions of the previous sections,
namely, that the scary videos are clearly different from
all others, that the amusing ones are too, albeit to a
lesser extent, and that boring and relaxed videos are
harder to discriminate from other ones. The analysis
of the number of support vectors confirms the previous
claims: very few SVs are necessary to form a support
for the scary videos (13 ± 3), more of them for the
amusing ones (39 ± 4) and even more for boring and
relaxed videos.

3.5. Characteristic annotation

Given multiple subjective annotations pertaining to
an emotional stimulus, a major challenge in AC is to
determine a ground truth (also known as characteris-
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Table 3

Calculation of the characteristic annotation for videos used in the
experiment: The video label, the number of fPC required to account
for 95% explained variance, the variance explained (in %) by the
first two fPC and the number of annotations detected to be outlying
based on robust mahalanobis distance

Video
label

No. of fPC for
95% explained

variance

Explained variance
(in %) by 1.fPC

and 2.fPC

No. of
outlying

annotations

am1 6 75.3 5

am2 6 71.1 7

bo1 3 88.7 0

bo2 6 77.3 9

re1 4 84.4 3

re2 6 74.1 3

sc1 6 81 0

sc2 6 75.4 7

tic) annotation for that stimulus. To this end, the afore-
mentioned MFPCA approach can be used. This en-
tails, first, undertaking the MFPCA analysis separately
for each video stimulus. The M used for this analysis
was determined to be 10, which is the same as used
for the MFPCA analysis for all annotations (see Sec-
tion 3.1). However, the number of fPC that account
for 95% explained variance varies across videos (see
Table 3). Second, in the resulting fPC space, robust
Mahalanobis Distance (MD), which is a co-variance
weighted distance measure between each annotation
and the cluster center [12], was calculated as follows:

MD =
(

ρ̂
T

C−1ρ̂
)−1/2

(19)

where C is the co-variance matrix and ρ̂ are the esti-
mated fPC scores. For evaluating MD, only the scores

on the first two fPC (>70% explained variance) were
used (see Table 3) as an initial analysis revealed that
scores on higher fPC (i.e, >2), which comparatively
explain less variance than the first two fPC, skew the
distance measure and thereby lead to false positives.
Third, the ‘outlying’ annotations for each video were
determined by enforcing a standard threshold (i.e., α)
level of 0.95 [13] on the resulting distribution of dis-
tances (see Table 3). Lastly, the characteristic anno-
tations were then evaluated by removing the diverg-
ing annotation functions and recalculating the mean
functional annotation for each video. The results of the
aforementioned steps for am1 are shown in Fig. 6.

Discussion. Table 3 shows the number of ‘outly-
ing’ annotations detected for each video. An interest-
ing result here is for bo1 and sc1, as no ‘outlying’ an-
notations were detected. This can be attributed to the
variance-based nature of this approach. Specifically,
if the annotations for a video have high within-video
variance, then this approach may fail to detect any an-
notation as diverging. Nevertheless, this approach pro-
vided expected results for most videos in the dataset.
The left plot in Fig. 6 shows that by removing the
’outlying’ annotations for am1 there is evident, albeit
small, change in the mean score. This behaviour varies
across videos, where for some, the change was large
and for others, insignificant. Also, for am1 video the
overall expected V–A attributes were mid to high va-
lence and arousal and the center plot in Fig. 6 shows
that this approach was quite successful in detecting an-
notations that diverge from these attributes. However,
this result also varied across videos, such that annota-
tions that appeared to be diverging were not always de-
tected. The resulting characteristic annotation for the

Fig. 6. Calculation of characteristic annotation for am1. (Left) scores in the first 2 fPC: Outliers (red), original-mean (black) and adjusted-mean
(blue star). (Center) the outlying (red) and non-diverging (gray) annotations in the original valence-arousal space. the resulting characteristic
annotation (blue) in the valence-arousal space.
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am1 also conforms with the expected overall V–A at-
tributes for this video. This result was along expected
lines for most videos, except the relaxed videos, ow-
ing to the same reasons as presented in Sections 3.3
and 3.2, namely, that the resulting annotations for these
videos do not partially conform with their expected V–
A attributes.

4. Conclusions

A major goal of AC is to develop systems that can
detect, and react to, human emotions. Yet, as emotions
are personal and intimate, it is hard to define what such

systems are supposed to detect, that is, what a sensi-
ble annotation of emotions can possibly be. The prob-
lem is even harder when these annotations are acquired
continuously. In this work, a FDA approach that ad-
dresses these challenges was presented.

The fundamental challenge of how to best acquire
comprehensive, continuous annotations of the emo-
tional experience is addressed by our Joystick-based

Emotion Reporting Interface (JERI). This approach,
involving continuous and simultaneous annotation by
the subject, can lead to increased cognitive load; but
we have shown in our previous work that the use of
joystick mitigates this issue to a large extent. Sec-
ondly, given that valence and arousal are inherently re-
lated, our approach of simultaneous annotation is ad-
vantageous over existing commonly-used approaches.
The next challenge pertains to the continuous (and in
our case, bivariate) nature of the annotations. The ap-
proach presented in this work focusses on converting
these annotations into functions for further process-
ing. This adds an extra data processing stage (see Sec-
tions 2.3 and 2.4) that is computationally intensive.
However, we believe the benefits here outweigh the
costs. As, firstly, this approach also ‘smoothens’ the
data by removing perturbations, hence it comprises of
the pre-processing stage that needs to be undertaken on
this data. Secondly, this conversion into functions re-
tains the time component of annotations, which is of-
ten ignored by commonly used analytical methods that
ignore auto-correlation conspicuous in this data.

The intended overall emotional (Valence–Arousal)
attributes of different video types and labels are shown
in Table 1. Accordingly, it is desired that the subjective
annotations pertaining to these videos exhibit these at-
tributes. Such that, the annotations for different video
types are distinct, and of same video label are similar
to each other. These desired properties encompass the

next challenge associated with subjective annotation of
emotional experience, which was addressed using MF-
PCA. Accordingly, Section 3.1 presents an exploratory
analysis of annotation patterns which was then for-
malised through concordance analysis presented in
Section 3.2. In fact, this analysis also facilitates a com-
parison of annotations across all videos. The separa-
bility of annotations was then initially investigated us-
ing FDR in Section 3.3 and later formalised through
SVM-based classification analysis in Section 3.4. Most
results of these analyses are along expected lines and
they demonstrate how MFPCA scores can be success-
fully used to address the aforementioned challenge.

The unexpected results, specifically for video re2,
can be attributed to improper selection of this media
as it fails to evoke the desired V–A attributes. Nev-
ertheless, these unexpected results are a testimony to
the benefit of the presented analyses, as they demon-
strate how undesired effects can be detected and re-
moved. They also demonstrate the benefit and efficacy
of MFPCA technique in transforming a complex bi-
variate function into a 10-D score vector, which in turn
facilitates the application of commonly-used statistical
techniques on this data.

The MFPCA approach can indeed be used to deter-
mine the ground truth (or characteristic) for the differ-
ent videos, which is another major challenge in AC.
To this end, diverging (or ‘outlying’) annotations for
a video were determined using robust MD and re-
moved from the data. Subsequently, characteristic an-
notation for that video was determined by evaluating
the mean functional representation for the remaining
annotations. While this approach works as expected
for most videos, for some (like br1 and sc1) the MD
method doesn’t find any outlying annotations. This un-
expected result can be attributed to high within-video
variances and demonstrates a limitation of this ap-
proach. Nonetheless, these results might improve by
choosing a different distance measure or changing the
criterion used to determine outliers.

At the onset of this paper, we introduced several
challenges and current approaches to continuous an-
notation in AC. The use of our annotation interface
(JERI) and the subsequent FDA-based analyses pre-
sented here address most, albeit not all, of these chal-
lenges. For example, the issue of inter-annotator de-
lay is another major issue faced in continuous annota-
tions. Also, as presented above, our approach has some
shortcomings. Nevertheless, given that this is one of
the initial, if not the first, attempts at using FDA meth-
ods for solving common problems in AC, we plan to
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further develop on these methods to improve their per-
formance. Also, other FDA methods, such as landmark
registration, can be extended to this type of subjective
data to address inter-annotator delay in annotations.
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