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Functional MRI (fMRI) is a popular approach to investigate brain connections and

activations when human subjects perform tasks. Because fMRI measures the indirect

and convoluted signals of brain activities at a lower temporal resolution, complex

differential equation modeling methods (e.g., Dynamic Causal Modeling) are usually

employed to infer the neuronal processes and to fit the resulting fMRI signals. However,

this modeling strategy is computationally expensive and remains to be mostly a

confirmatory or hypothesis-driven approach. One major statistical challenge here is to

infer, in a data-driven fashion, the underlying differential equation models from fMRI data.

In this paper, we propose a causal dynamic network (CDN) method to estimate brain

activations and connections simultaneously. Our method links the observed fMRI data

with the latent neuronal states modeled by an ordinary differential equation (ODE) model.

Using the basis function expansion approach in functional data analysis, we develop

an optimization-based criterion that combines data-fitting errors and ODE fitting errors.

We also develop and implement a block coordinate-descent algorithm to compute the

ODE parameters efficiently. We illustrate the numerical advantages of our approach using

data from realistic simulations and two task-related fMRI experiments. Compared with

various effective connectivity methods, our method achieves higher estimation accuracy

while improving the computational speed by from tens to thousands of times. Though our

method is developed for task-related fMRI, we also demonstrate the potential applicability

of our method (with a simple modification) to resting-state fMRI, by analyzing both

simulated and real data from medium-sized networks.

Keywords: brain connectivity, dynamic data analysis, optimization, ordinary differential equations, task-related

fMRI

1. INTRODUCTION

In recent years, functional magnetic resonance imaging (fMRI) has become a major tool to
investigate dynamic brain networks. Earlier analysis methods focus on inferring brain regions
activated by external experimental stimuli, for example using a general linear model approach
(Friston et al., 1994). More recently, it becomes important to model the inter-connections
between brain regions, sometimes called connectivity analysis of fMRI (see for example a
review Smith, 2012).
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Generally speaking, there are two types of connectivity
modeling: functional connectivity and effective connectivity.
Functional connectivity usually models the correlations or
dependencies between multiple BOLD (blood-oxygen-level
dependent) time series from multiple brain regions. It can be
estimated using generic statistical methods, such as correlations,
partial correlations (Marrelec et al., 2006), regularized inverse
covariance (Banerjee et al., 2006). Effective connectivity, on the
other hand, aims to model the neuronal or causal connections
between brain regions. Some effective methods can also model
the effects of external experimental stimuli. Three major effective
modeling approaches are dynamic causal modeling (Friston et al.,
2003), structural equation modeling (Mclntosh and Gonzalez-
Lima, 1994), and Granger causality analysis (GCA) (Goebel et al.,
2003; Roebroeck et al., 2005; Deshpande et al., 2008; Seth, 2010).
In particular, Granger causality utilizes a data-driven, “time-
lagged” prediction criterion to determine the directionality of
connections. Though GCA is usually employed to analyze BOLD
signals, recent extensions (David et al., 2008; Wheelock et al.,
2014; Grant et al., 2015) enable applications of GCA in the latent
neuronal space. A closely related extension of GCA in the latent
space is state-space multivariate dynamical systems (MDS) (Ryali
et al., 2011, 2016a,b). Dynamic causal modeling (DCM), being
the more sophisticated modeling approach, utilizes ordinary
differential equation (ODE) models for the neuronal dynamics
and hemodynamic response, and it is thus an important tool
for understanding the biophysical (or neuronal) connections
in the brain. However, it often requires prior knowledge or
hypotheses of network connections and stimulus projections
to narrow down the model space, and then it resorts to a
computationally expensive approach to select the “best" fit model
after computing all the candidate models. As the number of brain
regions under investigation increases, the number of candidate
models which need to be computed increases dramatically. Thus
the computational burden of fitting many candidate DCM limits
the number of regions (in the order of 10 regions) that can be
considered. Therefore, DCM is considered to be a hypothesis-
validation approach rather than a data-driven approach (Stephan
et al., 2010). Despite this limitation, DCM (Friston et al.,
2003) has become a standard approach to investigate the brain
mechanisms using fMRI, and has been validated in numerous
studies (Penny et al., 2004; Lee et al., 2006; David et al., 2008;
Dima et al., 2010; Reyt et al., 2010; Brodersen et al., 2011;
Frässle et al., 2015).

Most recently, some progress has been made to refine and
extend the standard DCM (Friston et al., 2003) described before.
Several methods are developed to improve the biophysical
interpretation of the DCM neuronal model, including: (1) two-
state DCM (Marreiros et al., 2008) that comprises of excitatory
and inhibitory neuronal populations in each brain region/node;
(2) nonlinear DCM (Stephan et al., 2008) that accounts for
nonlinear interactions of neuronal states between nodes; (3)
stochastic DCM (Friston et al., 2011; Li et al., 2011) that allows
neuronal fluctuations; (4) canonical microcircuit DCM (Friston
et al., 2017) that models four neuronal layers per node. These
DCMs bring the neuronalmassmodeling closer to the underlying
biophysical processes. Extensive validation of these DCMs is less

developed, compared with the standard DCM. These extended
DCMs also introduce more model parameters which can be
a computational burden for model inversion, especially for
medium or large networks. These issues are mitigated for
analyzing resting-state fMRI. Spectral DCM (Friston et al., 2014;
Razi et al., 2015) reduces the computation burden using a resting-
state formulation of a linear DCM (without the bilinear term in
the standard DCM) in the frequency domain, which essentially
avoids computing the time-variant parameters. This approach
allows inverting larger DCM networks with dozens of nodes
(Razi et al., 2017). For task-related fMRI, a linear DCM in the
frequency domain is also inverted efficiently using regression
DCM (Frässle et al., 2017), and thus it becomes feasible to
compute for hundreds of regions (Frässle et al., 2018).

In the statistical literature, inferring ODE parameters from
data has been studied separately for general settings, sometimes
called dynamic data analysis (DDA) or functional data analysis of
ODE models, mostly for the following observation model

y(ti) = x(ti)+ ǫ(ti) (1)

where the observed data y(ti) equals the noise ǫ(ti) plus the
underlying latent signal x(ti) generated from a set of ODEs.
y(ti) is usually sampled at equally spaced time points ti, i =
1, . . . , n. There exist several methods to infer the ODE parameters
of interest, including the nonlinear least-square (NLS) method
(Bard, 1974; Domselaar and Hemker, 1975; Xue et al., 2010),
the two-stage smoothing-based estimation method (Varah, 1982;
Brunel, 2008; Gugushvili et al., 2012; Brunel et al., 2014), the
principal differential analysis and iterated principal differential
analysis (Ramsay, 1996; Poyton et al., 2006; Zhang et al., 2015),
the generalized profiling method (Cao and Ramsay, 2009; Qi and
Zhao, 2010), the Bayesian approaches (Girolami, 2008; Bhaumik
and Ghosal, 2015; Chkrebtii et al., 2016). This observational
model used in these methods, however, can only hold for specific
neuroimaging techniques, such as electrocorticographic (Zhang
et al., 2015). Unfortunately, all these existing DDA methods
under this observational model have limited applications in
fMRI, because the observed BOLD data depend on the current
and past neuronal states, here x(ti). Another complication for
applying these DDA methods is that fMRI data are measured on
a different time scale than the neuronal states with moderate or
small signal-to-noise ratios.

One widely used yet simplemodel for connecting the neuronal
states and BOLD responses is the linear convolution model,

y(t) =
∫

h(s)x(t − s)ds+ ǫ(t) (2)

where y(ti) is a noise contaminated convolution of x(ti) and
a hemodynamic response function (HRF). Similar convolution
formulations were employed before to model the neuronal
states (Ryali et al., 2011; Karahanoğlu et al., 2013). Different
forms of convolution functions have been proposed in the
literature (see for example Friston et al., 1998; Lindquist et al.,
2009). Nonetheless, this general HRF convolution approach,
adopted by many experimental studies, clearly suggests that the
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DDA observation model (1) is not valid for fMRI. Therefore,
these existing statistical methods for ODE modeling cannot be
applied directly.

In this paper, we introduce a new statistical modeling
framework for estimating effective connectivity and activations
simultaneously from fMRI data. We propose a Causal Dynamic
Network (CDN) method using a functional/dynamic data
analysis approach, which jointly models the neuronal states
modeled by a DCM-type ODE model and the observed BOLD
responses. Unlike DCM or its extensions (e.g., Marreiros
et al., 2008; Friston et al., 2014; Razi et al., 2017), our
optimization-based method and algorithm compute the ODE
parameters efficiently in a data-driven fashion, instead of
comparing potentially a huge number of candidate ODE models.
This approach to consider a more general convolution-based
observation model also adds to the vast DDA literature. To the
best of our knowledge, this type of data-driven ODE modeling
for fMRI has not been considered before, and no existing DDA
methods can deal with a convolution observation model. We aim
to address both challenges in this paper.

The remainder of the paper is organized as follows. We start
with a brief review of DCM and discuss its computational issues.
We then introduce our CDN model and estimation method in
section 2.2. Section 3.1 illustrates the numerical performance
of our model using extensive simulations, including simulations
from both CDN and DCM. A real fMRI data analysis is presented
in section 3.2.

2. MATERIALS AND METHODS

2.1. DCM Revisited
Dynamic causal modeling (DCM) was introduced by Friston
et al. (2003). DCM provides a general framework to infer the
causal activations and connections in brain networks under
experimental stimuli. There are two components in DCM. The
first component is a set of ODEs characterizing the variations of
neuronal responses based on stimuli as

x′ = f (u(t), x(t), θ) (3)

where x represents the neuronal states of d regions, u is the
input from J stimuli, and θ is the ODE parameter of interest. It
is usually difficult to estimate f in a general form, and instead,
DCM employs a bilinear approximation for this dynamic system
as follows

dx(t)

dt
= Ax(t)+

J
∑

j=1

uj(t)Bjx(t)+ Cu(t). (4)

In this approximation, the entry Amn in A = (Amn)dd denotes
the strength of intrinsic causal connection from the n-th region
to m-th region. Bj = (Bmnj)dd denotes the influence of the j-th
input stimulus uj(t) on the directional connection between these
two regions. C = (Cmj)dJ denotes the effects of uj on the m-th
region. The parameters A, B, and C have important biophysical
interpretations. A models the intrinsic effective connectivity
between brain regions, B models how these connections are

influenced by external stimuli, and C models how brain regions
are activated (or suppressed) by stimuli. The second part of
DCM involves a set of hemodynamic state equations, motivated
by the Balloon–Windkessel model (Buxton et al., 1998). These
differential equations describe how neuronal activity induces
vasodilatory signals that lead to changes in blood volume and
deoxyhemoglobin content. These biophysical changes result, in
a non-linear form, the fMRI BOLD measures. The parameters in
this set of DCM equations are not usually used or interpreted.

To estimate these parameters, DCM in the first stage employs
the expectation maximization (EM) procedure to fit a candidate
model, usually with specific zero and nonzero patterns in
(A,B,C) provided by users. In the second stage, from a list
of user-specified models, DCM uses the Bayes factor to select
the “best" model for a given dataset or experiment. Because of
the expensive Bayesian computations in the first stage, users
usually need to restrict the number of candidate models and
the complexity of such models (e.g., by restricting the number
of brain regions considered in the model) (Penny et al., 2010).
Clearly, this DCM approach cannot be made data-driven without
incurring a huge computational cost, because the number of all

possible models grows at least with the order O(2d
2
), where d is

the number of brain regions.

2.2. Causal Dynamic Networks
2.2.1. Model
We propose the following CDNmodel

dx(t)

dt
= Ax(t)+

∑

j

uj(t)Bjx(t)+ Cu(t) (5)

y(t) =
∫

h(s)x(t − s)ds+ ǫ(t) (6)

where y(t) is a d × 1 vector of BOLD signals at time t of d
regions, ǫ(t) is the error process, h(s) is a hemodynamic response
function. The integration for vectors above should be understood
as component-wise. Like DCM, each component of y(t) for
a brain region depends only on its corresponding neuronal
component in x(t) for the same region. Here, Equations (5) and
(6) are fitted separately to each scan session of each participant,
and thus the model parameters should also be interpreted as
for one session of one participant. Section 2.2.5 describes the
approaches to combine these parameter estimates across sessions
and participants into group-level (or population-level) estimates.

Equation (5) is the same as the neuronal state model in
the standard DCM (Friston et al., 2003). It uses the same
bilinear approximation, and thus the interpretations of the key
parameters (A,B,C) are comparable to the standard DCM. Our
goal is to infer the entries in A, B, and C and their significance
levels in this paper. It is important to note that our estimation
approach does not need to prespecify the zero/nonzero patterns
in these parameters. In this paper, we will focus on this standard
DCM. Several extensions of this DCM exist to account for more
complex biophysical processes (for example, Marreiros et al.,
2008; Stephan et al., 2008; Friston et al., 2011, 2017; Li et al.,
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2011). Without parameter reduction, these extensions can lead
to increased computational costs. To reduce the computation
burden, Frässle et al. (2017, 2018) employ a linear DCM (by
setting the bilinear coefficient B = 0), and compute only the
frequency spectra in order to avoid the estimation of x(t) in the
time domain.

The neuronal state model (5), originally developed for task-
related fMRI, is sometimes referred to as deterministic DCM.
An extension of this model, called stochastic DCM, includes an
additive term representing endogenous neuronal fluctuations.
Stochastic DCMs have been mostly used for modeling resting-
state fMRI (Friston et al., 2011; Li et al., 2011) , under the
following simplified form

dx(t)

dt
= Ax(t)+ ω(t) (7)

where ω(t) represents neuronal fluctuations (and possibly
external stimulus input). Without any assumptions for ω(t),
there exists a trivial and less meaningful solution in which
ω(t) is simply the temporal derivative of x(t), shown by setting
A = 0. Under the smoothness assumption, as pointed out by
Friston et al. (2011) and Daunizeau et al. (2012), there exists a
mathematical connection between deterministic and stochastic
DCMs. One can replace ω(t) = Fφ(t) by a linear combination
of a reasonable number of (cosine) basis functions φ(t), and thus
the random fluctuations in stochastic DCM are absorbed by the
modeling coefficient F (similar to C) in a deterministic DCM.
In practice, however, this deterministic DCM can yield poor
estimation (Daunizeau et al., 2012), and inverting (7) directly
is computationally more expensive. Because x(t) in resting-
state fMRI does not have immediate interpretation, more recent
methods usually transform this equation to the spectral domain
(Friston et al., 2014; Razi et al., 2017). This transformation
essentially avoids estimating x(t) (and its associated parameters)
to reduce computational costs. Our method introduced later
will estimate x(t) because it can be interpreted along with
the stimulus sequences in task-related fMRI. It is possible to
apply our model to resting-state fMRI by setting B and C to
zero. This simplification does not account resting-state noise
and requires estimating x(t). Despite these concerns, this initial
paper will provide preliminary validations of our method in
resting-state fMRI, without much modification of our algorithm
and incurring excessive computational costs. Comprehensive
modeling of resting-state fMRI is beyond the scope of this paper,
and will be discussed as future work in section 4.

Equation (6) is the relationship between neuronal states
and fMRI BOLD signals where h is a hemodynamic response
function. A similar formulation is used in Karahanoğlu et al.
(2013). This is an approximation for the Balloon ODE model
in DCM (Henson and Friston, 2007), and it is used here to
avoid the heavy computation in fitting ODEs of less importance.
Our method allows any hemodynamic response functions to
be used. For simplicity, we employ the widely used canonical
hemodynamic response function (HRF) (Friston et al., 1998) in
this paper. The canonical HRF is mathematically expressed as
γ (16t; 6, 1/6) − γ (16t; 16, 1/16)/6, where the gamma density

function γ (t; η, υ) = υηtη−1 exp(−υt)/Ŵ(η), time t is in
seconds, and Ŵ(η) is the gamma function.

Together, Equations (5) and (6) can be interpreted as a latent
space model in statistics. Our use of a two-equation model is
similar to MDS (Ryali et al., 2011, 2016a,b). However, there
is an important difference. The first equation in MDS is for
discrete latent signals because it is considered as an extension to
GCA, whereas ours is an ODE model for continuous neuronal
states. Thus, these two models are fundamentally different in
modeling the neuronal states, and thus the model parameters are
not equivalent.

FMRI machines usually sample y(t) at equally spaced time
intervals (usually 1–2 s): t1, t2, ..., ti, ..., tT . When fitting our CDN
model to data, we replace Equation (6) in our CDN model with
the following observation equation, for i = 1, . . . ,T,

y(ti) =
∫

h(s)x(ti − s)ds+ ǫ(ti)

= h ⋆ x(ti)+ ǫ(ti)

(8)

where ⋆ denotes the convolution operation by the integral above.
This observation model is different from the popular model
(1) in the statistical literature. This difference warrants a new
estimation approach. For example, under the classic observation
model (1), a general strategy in many existing methods is to
approximate x(t) from smoothing y(ti) before estimating the
ODE parameters. However, this is clearly not applicable to our
observation model or fMRI data. As a separate note, although
functional data analysis models (see review Wang et al., 2016),
especially functional convolution model (Asencio et al., 2014),
may appear in a similar form as Equation (8), their estimation
goal is fundamentally different from ours. They assume y and
x are observed in a regression-type setting, mostly with no
intention to estimate the ODE parameters associated with x. Here
we aim to estimate latent x(t) and more importantly the ODE
parameters that generate it. Due to these many differences from
existing models, we develop a new estimation approach in the
next section.

2.2.2. Estimation
To estimate x,A,B,C, we propose to minimize the following loss

l(x, θ) =
∑

ti

‖y(ti)− h ⋆ x(ti)‖2

+ λ

∫

∥

∥

∥

∥

∥

∥

dx(t)

dt
− (Ax(t)+

∑

j

uj(t)Bjx(t)+ Cu(t))

∥

∥

∥

∥

∥

∥

2

dt

where θ = [A B C], λ > 0 is a tuning parameter, and
‖ · ‖ is the ℓ2 norm. The first part of the loss function is the
data fitting error and the second part is regarded as the fidelity
to our dynamic system. The ℓ2 norm loss was also employed
before in Karahanoğlu et al. (2013), with the same goal to
deconvolute the HRF.
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Following a functional data analysis technique, we represent
x(t) using truncated basis function expansions. Let x(t) = Ŵ8(t)
where 8(t) is a p × 1 vector with entries denoting the basis
function value at t and p is the number of basis functions. We
choose p to be reasonably large to avoid modeling bias. We
will use the classical cubic spline basis to model the neuronal
state responses to smooth stimuli and the piece-wise linear basis
for box-car stimuli. Certainly many other choices are possible
here. The derivative dx(t)/dt, integrations, solutions for ODE are
approximated by numerical methods (e.g., fourth order Runge-
Kutta), following the standard idea of solving ODEs numerically
as also suggested in the textbook (Ramsay and Silverman, 2006).

With the basis representation, our loss function becomes

l(Ŵ, θ) =
∑

ti

‖y(ti)− Ŵ[h ⋆ 8(ti)]‖2

+λ

∫

∥

∥

∥

∥

∥

∥

Ŵ8′(t)− (AŴ8(t)+
∑

j

uj(t)BjŴ8(t)+ Cu(t))

∥

∥

∥

∥

∥

∥

2

dt.

The number of parameters in this loss function is dp + d2 +
Jd2 + dJ, and the summands are due to estimating x(t), A, B,
and C respectively . Here, we will sacrifice a little mathematical
rigor for simplified analysis of the estimation equation. The
parameters (A,B,C) play similar roles as regression coefficients,
and thus they are less identifiable if the predictors in the design
matrix [x(t), u1x(t), . . . , uJx(t), u(t)] exhibit higher colinearity.
The colinearity can increase as the network size increases,
because the number of predictors included in the model grows
quadratically with the predominant order (J+1)d2, far exceeding
the fMRI data size growing linearly with d. This is especially
problematic for estimating B, which could be understood as an
interaction term in regression. The predictors associated with
B are products of those ones with A and C, and thus they
can be highly correlated with them. Consider a simple box-
car task design as an example, where uj(t) = 1 during the
jth task and zero otherwise. The colinearity is affected by the
task duration. The reason is that the B predictors [uj(t)x(t)]
equal to the corresponding A predictors [x(t)] within the task
window and zero otherwise. Thus, extremely long task duration
will make these predictors highly correlated overall because they
are identical most of the time. Similarly, uj(t)x(t) can also be
highly correlated with uj(t) if the duration is extremely short and
x(t) has small variations within the task window.

Though the loss function l(Ŵ, θ) is not jointly convex for
(Ŵ, θ), it is easy to see that it is convex in Ŵ given θ and vice
versa. We thus propose to minimize the loss function using
iterative block-wise updates forŴ and θ respectively, summarized
in Algorithm 1. Importantly, the iterative updates are given by
the explicit form. This strategy is essentially an application of the
alternate convex search algorithm for biconvex optimization (see
the review Gorski et al., 2007).

Algorithm 1 Estimation for CDN

Input: BOLD signal y, stimulus u, basis function 8, tuning
parameter λ

Initialize Ŵ, θ
repeat

Update Ŵ of l(Ŵ, θ) given θ by gradient descent with
backtracking line search
Solve for the minimizer θ of l(Ŵ, θ) given Ŵ, see Section 2.2.3

until convergence
Return Ŵ, θ

2.2.3. Parameter Updates
We derive the parameter updates in our algorithm.We introduce
the following notations in order to illustrate our updating
procedure. 8 = (φ1, ...,φp) is our selected basis for estimating
neuronal activity. Let

P1[n,m] =
∫ tT

t0

φn(t)φ
′
m(t)dt,

P
j
2[n,m] =

∫ tT

t0

φn(t)uj(t)φ
′
m(t)dt,

P3[j, n] =
∫ tT

t0

uj(t)φ
′
m(t)dt,

P4[n,m] =
∫ tT

t0

φn(t)φm(t)dt,

P
j
5[n,m] =

∫ tT

t0

φn(t)uj(t)φm(t)dt,

P6[j, n] =
∫ tT

t0

uj(t)φn(t)dt,

P
jk
7 [n,m] =

∫ tT

t0

φn(t)uj(t)φm(t)uk(t)dt,

P
j
8[l, n] =

∫ tT

t0

ul(t)φn(t)uj(t)dt,

P9[n,m] =
∫ tT

t0

un(t)um(t)dt.

Combing these into matrix form, we denote

θ = [A,B1,B2, ..,BJ ,C],

9A = [ŴP4Ŵ
′,ŴP15Ŵ

′, ...,ŴPJ5Ŵ
′,ŴP′6]

′,

4j = [ŴP
j
5Ŵ

′,ŴP
1j
7 Ŵ′, ...,ŴP

Jj
7Ŵ′,Ŵ(P

j
8)

′]′,

9C = [P6Ŵ
′, P18Ŵ

′, ..., PJ8Ŵ
′, P9]

′,

Y = [ŴP′1Ŵ
′,ŴP12Ŵ

′, ...,ŴPJ2Ŵ
′,ŴP′3].

Setting the gradient with respect to θ to zero yields

θ([9A,41, ...,4J ,9C]) = Y (9)

and thus the update for θ is given by

θ = Y([9A,41, ...,4J ,9C])
−1 (10)

One can derive the update for Ŵ by taking gradient.
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2.2.4. Tuning Parameter Selection
To select the tuning parameter λ for our model, we use a cross-
validation (CV) procedure as follows. Given two time series
y1 and y2 from the same participant, generated by the same
dynamic system (with potentially different inputs), we compute

our estimator θ̂λ by applying Algorithm 1 to y1, using λ on a

grid. Based on θ̂λ, we generate x̂2 using the ODE with varying
initial conditions that yield the cross validation (CV) loss, defined
as the smallest ‖y2 − h ⋆ x̂2(t)‖2. We then select the λ value that
minimizes the CV loss. One can also consider varying p in this
procedure tominimize the CV loss, but we find that our approach
is not sensitive for a reasonably large p. For example, we use
p ≥ 50 in our numerical studies. In principle, this CV procedure
can be applied to each participant’s data to select a subject-specific
tuning parameter λ. In this paper, for simplicity, we select one λ

that minimizes the average CV loss across all participants.

2.2.5. Group-Level Estimation
Based on the fitted CDN parameters (Akq,Bkq,Ckq) from session
k of participant q, we in this paper average the parameters
across sessions and participant to yield a group-level estimate for
(A,B,C). We use this simple averaging approach here because
our simulated and real datasets contain a small fixed number
(sometimes, one) of sessions from a relatively large number
of participants. Based on our estimates, various alternative
approaches can also be applied to obtain group-level inference.
For example, when the within-participant dependence/cross-
participant variability is a concern or the number of sessions
for each participant varies a lot, one may also apply a mixed
effects model to (Akq,Bkq,Ckq) and obtain the population
estimate. This mixed effects approach was used before for the
group level (or second stage) analysis in task activation studies
(Worsley et al., 2002).

2.2.6. Inference and P-Values
Because our model can be computed very efficiently (usually
in seconds or a few minutes), we propose to use bootstrap
(across subjects) method to assess the significance of each entry
in (A,B,C). The resulting p-values can be used to pick the
final model with only statistically significant entries depending
on users’ choice of significance levels, without resorting to
expensive model selection in DCM. For addressing the multiple
comparison issue, popular p-value correction methods, such
as Bonferroni or false discovery rate (FDR) (Benjamini and
Hochberg, 1995) correction, should be used to select an
appropriate threshold. In this paper, we will use FDR to correct
separately the p-values from each matrix A, B, C, and choose a
conservative threshold of 0.01 to further control the overall false
discovery rates.

3. RESULTS

3.1. Simulations
In this section, we evaluate the numerical performance of our
CDN method using two types of simulation models: DCM
and our statistical model CDN. The former provides a more
realistic fMRI data generating model while it is computationally

more expensive. The latter is computationally inexpensive and
will serve to validate the statistical properties of our algorithm.
Whenever possible, we compare with three other methods: GCA,
MDS, and DCM.

We use the Python Neuroimaging toolbox (Nitime) for the
GCA method, and the generative DCM model from Smith
et al. (2011). We fit the DCM model using SPM12. The MDS
implementation is included in the paper (Ryali et al., 2016b),
and the software code of Patel’s tau is obtained through personal
communications from Professor Stephen Smith, the first author
of Smith et al. (2011). Our CDN method is implemented in
Python package cdn-fmri, publicly available from https://pypi.
org/project/cdn-fmri/. The grid λ = [0.01, 0.1, 1, 10, 100] is used
for our CV tuning parameter selection.

3.1.1. Simulated Data From CDN
We consider three simulation scenarios regarding the ODE
parameters in our CDN model:

S1: B = 0 and C = 0
S2: B = 0
S3: A 6= 0 ,B 6= 0 and C 6= 0

The first one does not consider either the stimulus activations
or the stimulus modified connections, and the second one
only excludes the stimulus modified connections. Because GCA
models neither of these two effects, we include these two
scenarios to provide biased advantages to GCA. The last scenario
includes both the stimulus activations and the stimulus modified
connections, and is a more realistic model for many task-related
fMRI experiments.

For these scenarios, we consider a medium-sized network
with 10 nodes with boxcar stimuli and different signal-to-noise
(SNR) levels (3, 1, 0.5). We use the piece-wise linear basis. The
simulations are repeated 50 times for each setting to represent
fMRI data from 50 subjects, assuming for simplicity that they
have the same underlying structure of brain connectivity, i.e., θ .
We set that repetition time (TR) to be 0.72 s to demonstrate an
ideal setting for GCA, because longer TR usually leads to low
identification accuracy for directionality (Smith et al., 2011). We
also set the A, B, and C based on the simulation code provided by
Smith et al. (2011). To validate the explanation of the colinearity
issue in section 2.2.2, we also reduce the task duration by 50% in
one examplary S3 scenario.

AUC (area under the ROC curve) is used to evaluate the
performance of recovering nonzero entries parameters. The AUC
is calculated based on comparing the estimates against the true
zero/non-zero statuses for all the entries of A. We compare
the performance of CDN with GCA and MDS in Figure 1. We
are unable to compute the results for DCM here because the
computation for this medium-sized network takes more than
several days for each replication. It should be noted that the
GCA connectivity estimates are based on the BOLD signals while
ours are based on the estimated neuronal states. As shown in
Figure 1, one can see that CDN performs much better than
GCA in identifying the true connections for all SNRs and both
stimulus types, partly because CDN models the neuronal states
and stimulus activations instead of modeling the BOLD signals
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FIGURE 1 | Comparison of AUCs by GCA and CDN for recovering nonzero intrinsic network connections under three simulation scenarios (S1–S3 described in

section 3.1.1) and varying signal-to-noise ratios (SNRs). For better visualization, we subtract random uniform jitters (between 0 and 0.05) for those cases when all

points equal to 1.

only as in GCA. Furthermore, CDN shows robust estimation
results across different simulation scenarios. The AUCs of MDS
increase as the SNRs increase. It has similar performance as CDN
under high SNRs, but has suboptimal performance similar to
GCA under low SNRs. Under low SNRs, it also tends to have high
variability in AUCs.

To assess the statistical estimation accuracy of CDN, we use
AUC and a scaled Frobenius norm for the connectivity-related
parameters A and B across different scenarios. Because B is a

tensor, we define ||B||F =
√

∑

m,n,j B
2
mnj. The scaled Frobenious

norm is defined as

Fro(Ã,A) = ||(A− Ã)||F
||A||F

where Ã is an estimator for the true A. This metric can be
interpreted as the relative deviations from the truth.

For the sake of space, we only report the average performance
metrics for box-car stimuli with varying SNR (3,1) in Table 1.
The results are similar for other settings. This table shows that
our CDN algorithm estimates all the model parameters well,
and the accuracy improves with increasing SNRs. As explained
in section 2.2.2, the accuracy for estimation B decreases for a
shortened task duration.

3.1.2. Simulated Data From DCM
To test the robustness of our proposed model, we also compared
the estimation performance using simulated data fromDCM.We
used the code and a simulation setting from Smith et al. (2011).
Due to the heavy computation cost of DCM, we considered a
five node brain network with a shared stimulus input. To make

this network complex enough to penalize the performance of
our method, as shown by the previous simulation study, we let
the stimulus input to all nodes, see Figure 2. Due to the high
computation cost of DCM, we do not allow the connections
to vary with the stimulus, and set B = 0. We fixed TR=3 s
to penalize our method because our CDN model is based on
convolutions. To assess the robustness of using a canonical HRF
in our model, our simulation setup also includes hemodynamic
variability by introducing random perturbations to the ODE
model parameters. The same approach is also used by Smith et al.
(2011). We simulated 200 subjects with box-car shape stimuli
which include five non-overlapped stimuli. We included one
session for each stimulus which lasted 70 s.

Figure 3 assesses the performance of estimating x from
one representative subject’s simulated BOLD data. Our CDN
estimates capture the main temporal variations in the neuronal
states, even though the data are simulated using a relatively
large TR. This shows that CDN is robust in recovering the
neuronal states, even if the simulation model is different from
our CDNmodel.

Applying DCM usually requires specifying a candidate model
of stimulus activation and latent/induced connections. Based on
themodel, only selected entries in (A,B,C) are estimated while all
the others are set to zero. To compare the accuracy of estimating
latent connectionsA, we specify B andC to have the same pattern
as the truth, and let DCM estimate all the entries in (A using
a fully connected network model. As before, we use AUC as
before to evaluate the estimation accuracy. Table 2 compares the
average AUC values for estimating A by CDN and DCM. CDN
yields higher AUC values for both A using only a fraction of the
computation time of DCM.
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TABLE 1 | Estimation accuracy of CDN under the simulation scenarios described in section 3.1.1.

Scenario J SNR AUC of A AUC of B AUC of C Fro(A) Fro(B) Fro(C)

S1 10 0.5 1.00 – – 0.52 – –

S1 10 1 1.00 – – 0.11 – –

S2 10 0.5 1.00 – 0.98 0.38 – 0.56

S2 10 1 1.00 – 0.98 0.26 – 0.44

S3 1 0.5 0.95 0.71 – 0.55 0.92 0.56

S3 1 1 1.00 0.74 – 0.36 0.88 0.54

S3 1 1 (50% duration) 1.00 0.70 – 0.25 1.07 0.55

Box-car stimuli are used as a representative example. The accuracy metrics are averaged over 50 replications.

FIGURE 2 | The network structure used to simulate DCM data in

section 3.1.2. All nodes are influenced by the same stimulus.

3.1.3. Simulated Data for Resting-State fMRI
As a simple extension, we use the modification described
in section 2.2.1 to fit our model to a simulated resting-
state fMRI dataset (simulation scenario 4) from Smith
et al. (2011). This dataset contains 50 brain nodes from
50 subjects, and the true network contains 10 subnetworks
of size 5. More details on the simulation procedure and
parameters are described in (Smith et al., 2011). In the
same paper, Patel’s τ (Ramsey et al., 2014), an effective
connectivity method, was the top performer for recovering
the directionality of connections, and thus we also compare
with it here.

Figure 4 compares the simulated and estimated BOLD time
series from 4 representative nodes. Our model fits the simulated
resting-state fMRI data well overall, though the fitted time
series have a slightly smaller variation probably because our
method ignores the neuronal fluctuation term. Based on the
ROC evaluation metric described before, our method achieves

an AUC value of 0.95 for recovering the intrinsic connectivity
matrix on this simulated dataset. We are unable to fit the
large-scale stochastic DCM method in Razi et al. (2017) to this
dataset because of its long algorithmic convergence time. Patel’s
τ achieves an AUC value of 0.55 on this simulated dataset.

3.2. Application
3.2.1. Application to Task FMRI With Block Design
In this section, we apply our method to analyze a block-design
fMRI dataset from the Human Connectome Project (HCP). The
task is a language processing task developed by Binder et al.
(2011). The scan session interleaves 4 blocks of a story task
and 4 blocks of a math task. The length of each block varies
with an average of approximately 30 s, and the lengths of the
story task and math task are roughly matched. The story task
asks the participants to classify the topic of the story as revenge
or reciprocity for example, after they hear a brief (around 5–
9 sentences) story adapted from Aesop’s fables, The math task
requires the participants to do serial addition and subtraction
calculations, and then choose the correct answer. These questions
were generated from the same text-to-speech method used in
the story task. The participants were then asked to press a
button under the right index finger to select the first choice,
or a button under the right middle finger to select the second
choice. Details about the task design were described in Binder
et al. (2011). The HCP task fMRI study, including the imaging
protocol, was described in Barch et al. (2013). We analyze the
data from 100 examplary subjects, and we follow the suggested
HCP preprocessing pipeline (Glasser et al., 2013) to preprocess
the data.

We are interested in modeling a language network of
regions that were implicated in a previous study (Turken and
Dronkers, 2011) using both functional connectivity and diffusion
tensor imaging. This network consists of four main regions,
including MTG (posterior middle temporal gyrus, MNI: −50,
−38, 2), STG (superior temporal gyrus, MNI: −49, 7, −12),
STS (posterior superior temporal sulcus, MNI: −45, −62, 21),
and IFG (inferior frontal gyrus, pars orbitalis, MNI: −44, 28,
−7). After preprocessing the data, we extract the average BOLD
time series using 8 mm radius balls centered around these four
coordinates. We compute the p-values using 10,000 bootstraps.
Statistical significance was assessed using a p-value threshold of
0.01 after the FDR correction.
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FIGURE 3 | A representative example of the neuronal state time series of five nodes (A–E), simulated by DCM and their estimates by CDN. The DCM network model

is plotted in Figure 2. Because neuronal states have arbitrary units, all curves are scaled to have the same minimum and maximum values to illustrate

the differences.

TABLE 2 | Comparison of the AUCs, Frobenius losses, computation times of

CDN, DCM and MDS. All computations are conducted in a computer with 8 Intel

CPU cores (at 2.6 GHz) and sufficient memory for both algorithms.

Method AUC (A) Fro loss Computation cost

CDN 0.77 1.29 18.95 s

DCM 0.56 1.42 24 h and 15 min

MDS 0.77 1.57 580 s

The best performance under each comparison criterion is highlighted in bold.

Figures 5, 6 show the statistically significant activations and
connections estimated by CDN. Our results show that these four
ROIs are activated by the story task, but not the math task. This
finding is consistent with the previous fMRI activation study
(Binder et al., 2011). The non-activation result of the math task
fits prior evidence that math calculations do not engage the
temporal lobe (Cappelletti et al., 2001; Crutch and Warrington,
2002). Without considering directionality, the recovered
intrinsic connections match the functional connectivity
findings in Turken and Dronkers (2011). This result showing
a well-connected network is consistent with the notion that
language comprehension engages a complex network of multiple
regions interacting via multiple pathways (Mesulam, 1998;
Dronkers et al., 2000).

The directionality recovered by CDN help better elucidate the
roles of these ROIs. One key region highlighted by our results is
MTG, because it is the converging point of various directional
pathways in this network. MTG is regarded as a high-level region
contributing to language comprehension. The key role of MTG
is supported by various types of prior evidence. For example,
MTG was a shared node of six different networks analyzed by a
conjunction analysis (Koyama et al., 2010), and it was also found
to be also among themost connected node in a resting-state fMRI
network analysis of the cerebral cortex (Buckner et al., 2009).
A lesion analysis also showed that patients with MTG-lesions
perform worse in various language tasks (Dronkers et al., 2004),
highlighting its critical role in the language comprehension
process. In our CDN results, STG has directional connections
pointing to all other three ROIs, suggesting that it may serve
as one entry point of this network. Thus, it is likely to be
involved in the upstream of the language comprehension process.
This implication fits the role of STG in basic morphosyntactic
processing (Turken and Dronkers, 2011). Another prior
functional imaging evidence supporting this finding is that
both speech and complex nonspeech sound activated STG
(Wise et al., 1991; Binder et al., 1997).

Comparison of the task-dependent connections (Figure 6)
shows that the story task modifies more network connections
than the math task. In fact, almost all of the connections
are impacted by the story task. This is again consistent
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FIGURE 4 | Simulated (y) and fitted (ŷ, by CDN) BOLD time series from four representative regions (A–D) using a simulated resting-state fMRI dataset from Smith

et al. (2011).

FIGURE 5 | Estimated intrinsic connections in the math-story task experiment.

Blue solid lines denote the positive causal connections, and red dashed lines

denote negative connections. All connections and positive stimulus projections

drawn are statistically significant at level 0.01, FDR corrected.

with prior evidence that language comprehension engages
multiple routes of the language comprehension network
(Mesulam, 1998; Dronkers et al., 2000).

3.2.2. Application to Task FMRI With Event-Related

Design
We apply our CDN approach to a publicly available event-
related fMRI dataset, downloaded from OpenfMRI.org under
the access number ds000030. In the experiment, healthy subjects
perform the stop-go response inhibition task inside the fMRI
scanner. This task consists of two types of trials: go and stop.
Specifically, on a go trial, subjects were instructed to press a
button quickly when a go stimulus was presented on a computer
screen; on a stop trial, subjects were to withhold from pressing
when a go stimulus is followed shortly by a stop signal. We
preprocess data using a suggested preprocessing pipeline based
on FSL, a standard fMRI analysis software. See Poldrack et al.
(2016) for a detailed description of the experiment, dataset, and
preprocessing steps.

We are interested in studying the regions and their
interconnections under either the go or stop stimuli. We select
six brain regions implicated in prior publications, which are also
validated by the meta-analysis tool from neurosynth.org. These
six regions include M1 (primary motor cortex, MNI coordinate:
−41, −20, 62), pos-preSMA (posterior presupplementary motor
area, MNI:−4,−8, 60), ant-preSMA (anterior presupplementary
motor area, MNI: −4, 36, 56), SMA (supplementary motor area,
MNI: −3, 6, 50), Thalamus (MNI: −12, −13, 7), and STN
(subthalamic nucleus, MNI: 6, −18, −2). The exact brain
MNI coordinates for these regions are taken from Aron and
Poldrack (2006), Yeo et al. (2011), and Luo et al. (2013). From
the data of 100 healthy subjects, we extracted the average BOLD
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FIGURE 6 | Connections induced by the (A) Math and (B) Story stimuli

estimated by CDN in the math-story task experiment. Blue solid lines denote

positive connections and red dashed arrows denote negative connections. All

connections drawn are statistically significant at level 0.01, FDR corrected.

time series using 8 mm radius balls centered around these 6
coordinates. Each time series was standardized to mean zero
and unit variance. We selected the tuning parameters using
the approach described in section 2.2.4, and computed the p-
values using 10,000 bootstraps as described in section 2.2.6.
Statistical significance was assessed using a threshold
level of 0.01.

Figure 7 shows the statistically significant intrinsic
connections and stimulus inputs estimated by CDN. These
results identify different connectivity patterns between the
anterior and posterior preSMAs. The posterior preSMA is
closely connected to Thalamus, STN, and two motor regions
(M1 and SMA), while the anterior preSMA is only connected

to Thalamus and STN, but not the two motor regions. This
finding corroborates the functional connectivity result based
on resting-state fMRI in Zhang et al. (2011). Such finding
supports the notion that the anterior preSMA is responsible
for response inhibition (Haggard, 2008) while the posterior
preSMA, along with the SMA, are involved in error detection (Li
et al., 2006). Unlike those results from functional connectivity
analysis, CDN also infers connectivity directions and stimulus
effects, and this leads to a more detailed understanding of these
connections and task inputs. For example, M1 receives input
from the go stimulus only, while Thalamus and STN receive
input from the stop stimulus only. This is well expected from
the roles of these regions. M1 is responsible for button pressing
under the go stimulus. Thalamus and STN are important
regions implicated for response inhibition in several previous
fMRI studies, see a review (Aron, 2007). Based the directional
connections, CDN recovers a pathway STN→Thalamus→M1.
This pathway is consonant with the existing theory and previous
fMRI results (Aron, 2007).

Figure 8 shows the connections induced by the go and stop
stimuli, respectively. Overall, the stop stimulus induces more
connectivity strength changes across all the six regions, while go
modifies a smaller number of connections. The results on task-
induced connections also help better understand the network
connection changes under different tasks. For example, CDN
identifies a positive connection from the posterior preSMA
to the anterior preSMA under stop, while the corresponding
intrinsic and go-task dependent connections are not statistically
significant. The latter negative finding on effective connectivity
replicates the functional connectivity finding in a resting-
state fMRI analysis (Zhang et al., 2011). Importantly, the
recovered connection from the posterior to anterior preSMA
under stop provides an fMRI evidence for the theory that the
posterior preSMA detects response conflicts and then projects
to the anterior preSMA engaged in response inhibition, see a
meta analysis of human neuroimaging studies on the preSMA
(Ridderinkhof et al., 2004).

To check the model fit of CDN, we plot the representative
BOLD signal and neuronal state time series from all the six
regions in Figure 9. The BOLD time series constructed from
CDN closely track the variation in the measured BOLD time
series. This demonstrates that our CDN model fits the actual
data well.

3.2.3. Application to Resting-State fMRI
In this section, we test the applicability of our method
for recovering a medium-sized network using resting-state
fMRI. The dataset is collected by the Human Connectome
Project (Smith et al., 2013), and is preprocessed using a
minimal pipeline Glasser et al. (2013). For the sake of
manageable computation time, we analyze one scan session
from each of 50 selected healthy subjects in this cohort.
Each session contains 1,200 scans with a temporal resolution
of 0.72 s. We adopt the same 36 ROI coordinates used
in a recent large-scale resting-state DCM study Razi et al.
(2017). For each ROI, the average BOLD time series from
an 8 mm sphere are extracted for analysis. The MNI
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FIGURE 7 | Estimated intrinsic connections in the stop-go task experiment. Blue solid lines denote the positive causal connections, and red dashed lines denote

negative connections. All connections and positive stimulus projections drawn are statistically significant at level 0.01, FDR corrected.

coordinates and network annotations of these ROIs are listed
in Table 3.

To assess the validity of our method, Figure 10 compares our
CDN estimate with the functional connectivity estimate based on
correlations and a large-scale resting-state DCM (lrDCM) (Razi
et al., 2017). By visual comparison, our CDN estimate is close to
rDCM, especially those connections with large magnitude. Both
CDN and lrDCM estimates contain both positive and negative
connections, while the correlation estimate showsmostly positive
connections. Those strongest connections (in magnitude) are
identified by all methods, for example between left and right
V1. Our CDN and lrDCM also identify the asymmetry of brain
connections while correlations cannot do so.

Because the values of correlation, CDN, lrDCM estimates are
not directly comparable, as they are fitted from different models,
we use the following binarization step to convert all the numerical

estimates to network connections before the comparison. The
rationale is that larger estimated values (in magnitude) in all
the models are typically interpreted as stronger connections, and

neuroscientists usually resort to these connectivity methods to

investigate if connections between certain brain nodes exist or

not. Our binarization step converts the largest 100 × q% (in
magnitude) of off-diagonal entries to 1, and sets the rest to 0,

where q is a parameter. After converting to binary matrices, we
then compute the percentages of network connections found

by both methods or one method only. When q = 20%,

the resulting binary matrices of CDN and lrDCM overlap by
80.09%, while 9.95% of the CDN matrix entries are nonzero
while the corresponding lrDCM entries are zero. This shows
that CDN and lrDCM yield very similar estimates. It is worth
mentioning that our CDN algorithm takes about 10 min in
total while lrDCM takes about 19 h with more memory use.
The percentages for comparing CDN and correlations are 83.87
and 8.10%, respectively. Figure 11 shows the similar comparison
results when q varies. Overall, there are large overlaps between
the connections recovered by CDN and those by other methods.

4. DISCUSSION

We develop a novel causal dynamic method to study brain
activations and causal connections simultaneously from fMRI.
Driven by the data nature of fMRI, CDN uses a functional data
analysis approach to fit ODEs of neuronal states from BOLD time
series. Unlike DCM, our model is estimated by an optimization
algorithm, and this allows data-driven estimation of the ODE
parameters, without DCM’s requirement for hypothesizing the
connections and stimulus inputs. The high computational
efficiency of our algorithm also reduces the computation time.

Based on the task fMRI simulation studies, we show that our
CDN approach is robust and accurate for recovering the ODE
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FIGURE 8 | Connections induced by the (A) Go and (B) Stop stimuli

estimated by CDN in the stop-go task experiment. Blue solid lines denote

positive connections and red dashed arrows denote negative connections. All

connections drawn are statistically significant at level 0.01, FDR corrected.

parameters for modeling dynamic brain networks. Compared
with other effective connectivity methods, including GCA, DCM,
and MDS, CDN performs the best in terms of parameter
estimation and network identification across a wide range of
scenarios. In the low SNR settings, CDN has the least variability
followed by MDS, suggesting the robustness of our method.
In the high SNR settings, both CDN and MDS achieve close
to perfect network identification, while CDN yields a smaller
parameter estimation loss in a realistic DCM simulation. GCA
is relatively sensitive to SNRs, and its performance usually has

substantial variability. Regarding the computational speed, CDN
requires only a small fraction of the computation times of
DCM and MDS. This makes it a very competitive approach for
inferring effective connectivity. Patel’s tau was a top method
for recovering directional connectivity in a previous large-scale
simulation study (Smith et al., 2011). However, it only yields
a mediocre recovery accuracy on our simulated resting-state
dataset. A previous experimental validation (Wang et al., 2017)
also found that its accuracy for estimating directionality was not
better than chance. Thus, further research is needed to investigate
the settings that impact the accuracy of Patel’s tau. On the same
simulated dataset, CDN achieves much higher network recovery
accuracy than Patel’s tau. All these comparisons suggest that
CDN is an accurate and computationally tractable method for
modeling effective connectivity and task activation.

For the analysis of the story/math task fMRI data, our
activation and connectivity results are consistent with prior
evidence on the language comprehension process and network.
Our effective connectivity finding complements the structural
and functional connectivity findings (Turken and Dronkers,
2011). Notably, the directional connections in our results help
identify the critical regions involved in the process. As we select
only a few regions well supported by prior evidence in our
analysis, the resulting network is relatively small and may omit
other regions and pathways involved. In order to obtain a more
comprehensive view of the process, future analysis will need to
target a larger number of candidate areas. For the analysis of the
stop/go task fMRI, our effective connectivity results corroborate
the functional connectivity findings using resting-state fMRI
(Zhang et al., 2011), and these findings provide additional
support for the existing theory and fMRI results on response
inhibition (Ridderinkhof et al., 2004; Aron, 2007). Our CDN
results for both activation and connectivity also enhance the
understanding of the distinct roles of the anterior and posterior
preSMAs, and delineate the pathways involved in response
inhibition under different tasks. The network size studied here
may also be a limitation because we omit several other regions,
including insula, caudate, and the inferior frontal cortex. These
regions may mediate or contribute to the response inhibition
process (Aron, 2007; Zhang et al., 2011).

CDN in this paper is presented as a purely data-driven
method. Other data-driven methods for effective connectivity
were proposed in the literature, including latent-space GCA
(David et al., 2008; Wheelock et al., 2014; Grant et al., 2015)
and state-spacemultivariate dynamical systems (Ryali et al., 2011,
2016a,b). In order to extend these data-driven methods, it is
possible to constrain the network structures and input nodes
based on prior knowledge or integrating with other sources
of data. For example, one can restrict CDN to fit only those
CDN connection parameters between nodes that correspond
to significant resting-state functional connectivities (Razi et al.,
2017) or anatomical connections (Sotero et al., 2010).

The number of parameters in CDN grows with the numbers of
stimuli and nodes. This can be a potential issue to scale ourmodel
to large-scale networks with multiple stimuli, especially when the
number of parameters exceeds the sample size. This relatively
small sample size setting yields a so-called under-determined
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FIGURE 9 | Real BOLD signals (y), estimated BOLD signals (ŷ), and neuronal activations (x̂) from the STOP/GO experiment, for regions (A) M1, (B) posterior preSMA,

(C) anterior preSMA, (D) SMA, (E) Thalamus, and (F) STN. Green/red vertical lines represent the GO and STOP stimuli respectively.

system, because there might exist multiple sets of parameters
that yield the same fit of data. This is further complicated by
the colinearity issue introduced by the fMRI task designs. One
possible direction is to introduce informative Bayesian priors to
help invert such large systems with colinearity. We leave to future
research on extending our model for large-scale networks.

The bilinear approximation used in this initial paper is a
simplified model for the biophysical mechanisms. It neglects
several micro and macro neurophysicological processes (see
a review Daunizeau et al., 2011). Therefore, the effective

connectivity estimates may be distinct from anatomical
connections or synaptic connections, because they fail to model
several critical processes, such as gated connections (Stephan
et al., 2008), extrinsic and intrinsic connections (Marreiros et al.,
2008; Friston et al., 2017), and neuronal fluctuations (Friston
et al., 2011; Li et al., 2011). For example, the physiological noise
could represent neuronal input from other regions not included
in the model or resting-state fluctuations. Without modeling
the neuronal noise, the resulting estimated connections between
two regions may be indirect ones due to the shared input from
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TABLE 3 | Brain region names and MNI coordinates of the 36 ROIs used in

section 3.2.3.

Name Coordinates (in mm)

DEFAULT MODE NETWORK

1 Posterior cingulate/Precuneus 0 −52 7

2 Medial Prefrontal −1 54 27

3 Left lateral parietal −46 −66 30

4 Right lateral parietal 49 −63 33

5 Left inferior temporal −61 −24 −9

6 Right inferior temporal 58 −24 −9

7 Medial dorsal thalamus 0 −12 9

8 Left posterior cerebellum −25 −81 −33

9 Right posterior cerebellum 25 −81 −33

DORSAL ATTENTION NETWORK

10 Left frontal eye field −29 −9 54

11 Right frontal eye field 29 −9 54

12 Left posterior IPS −26 −66 48

13 Right posterior IPS 26 −66 48

14 Left anterior IPS −44 −39 45

15 Right anterior IPS 41 −39 45

16 Left MT −50 −66 −6

17 Right MT 53 −63 −6

CONTROL EXECUTIVE NETWORK

18 Dorsal medial PFC 0 24 46

19 Left anterior PFC −44 45 0

20 Right anterior PFC 44 45 0

21 Left superior parietal −50 −51 45

22 Right superior parietal 50 −51 45

SALIENCE NETWORK

23 Dorsal anterior cingulate 0 21 36

24 Left anterior PFC −35 45 30

25 Right anterior PFC 32 45 30

26 Left insula −41 3 6

27 Right insula 41 3 6

28 Left lateral parietal −62 −45 30

29 Right lateral parietal 62 −45 30

SENSORIMOTOR NETWORK

30 Left motor cortex −39 −26 51

31 Right motor cortex 38 −26 48

32 Supplementary motor area 0 −21 48

VISUAL NETWORK

33 Left V1 −7 −83 2

34 Right V1 7 −83 2

AUDITORY NETWORK

35 Left A1 −62 −30 12

36 Right A1 59 −27 15

other regions. It may also lead to higher estimation errors and
over confidence (Daunizeau et al., 2012). Without accounting
for these biophysical processes, this bilinear approximation also
limits the possibility of combining data from multiple modalities
or understanding the nature of the BOLD response (Friston et al.,
2017). Though this approximation has been validated before

for identifying the existence of effective connections, it may
introduce estimation bias on the magnitude of these connections
(Friston et al., 2011).

To extend our method to biophysically more realistic models,
there remain several challenges for future research. More model
parameters associated with these more sophisticated models will
increase the computation burden. One should also be aware
of the overfitting issue, especially for task-related fMRI where
the recording sessions tend to be relatively short with limited
repetitions of certain stimuli of interest. There is clearly a trade-
off between model complexity and data evidence, in addition to
the concern of computation time. Bayesian priors, for example
based on anatomical evidence, could be helpful for constraining
the model complexity and computation time. However, these
priors should be chosen carefully to ensure reliability and
robustness (Frässle et al., 2015). We should also note that another
direction is to trade biophysical plausibility with large network
sizes. For example, Frässle et al. (2017, 2018) replace the bilinear
approximation by a linear one in order to estimate large networks
from task-related fMRI.

Another limitation of this first paper is its canonical model for
HRF. Though our model with the canonical HRF yields relatively
robust results for one dataset simulated with HRF variations
(Smith et al., 2011), this approach in general may lead to
modeling bias. For example, the directionality of connections is
determined from the temporal ordering of the neuronal states, as
in the ODEmodel. Such temporal ordering may be reconstructed
incorrectly from the observed BOLD signals, if the model does
not account for the HRF variations across regions and subjects.
Modeling HRF variations remains a challenging topic for various
connectivity models as well, including DCM (Handwerker et al.,
2012) and functional connectivity (Rangaprakash et al., 2018).
In order to mitigate this issue, there are two possible extensions
of our approach. One approach is to replace the canonical HRF
used in our model by empirically estimated HRF for each region
and each subject. A similar approach has been successful in
resting-state functional connectivity estimation (Wu et al., 2013).
This step serves as data-driven deconvolution of the HRF, in the
spirit of those latent-space GCA methods (David et al., 2008;
Wheelock et al., 2014; Grant et al., 2015). Because we treat the
estimated HRF as given, one can easily adapt our algorithm to
fit this extended model. However, to avoid double dipping of
the same data, one may need to include a separate scan session
to estimate HRF (Aguirre et al., 1998). A natural alternative
without extra scanning sessions is to split out one part of the
existing time series of each individual, and use that part to
estimate the HRF. Either way can be challenging for task fMRI
experiment designs, especially when the scanning time may be
limited for task fMRI. Further research is also needed to study
the optimal allocation of the splits in order to optimally balance
the sample sizes available for two estimation steps. Another
direction is to treat the HRF as unknown in our model. One
will then need to add additional steps in our algorithm to
estimate the HRF, for example using flexible functional bases.
One may build on the joint estimation framework for detecting
brain activation and estimating HRF simultaneously (see Vincent
et al., 2010, 2014; Chaari et al., 2013). Future research is needed
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FIGURE 10 | Averaged effective (A by CDN, C by Razi et al., 2017), functional (B, by correlations) connectivity estimates over 50 subjects. The diagonal elements are

plotted as zeros in the figure to better illustrate the inter-regional connections.

FIGURE 11 | Comparison of identified connections recovered by different methods: (A) CDN vs. correlations; (B) CDN vs. lrDCM (Razi et al., 2017). Varying

thresholds in magnitude are shown on the x axis, blue lines show the percentages of connections shared by both methods compared, and red lines show the

percentages of nonzero connections in CDN but not in the other method.

to extend this framework to incorporate the ODE connectivity
model. It is also important to note the possible challenges
along this direction. First, though DCM also takes this direction
and estimates the HRF empirically, one cannot assume the
estimated HRF is accurate (Handwerker et al., 2012). Moreover,
these additional parameters may introduce potential estimation
issues related to collinearity and identifiability (Vincent et al.,
2010). More development, such as introducing regularization
(Karahanoğlu et al., 2013) or Bayesian priors (Ryali et al.,
2011), may be needed to ensure robust and stable estimation.
With these two possible directions and potential issues, we will
leave to future research to develop and compare these two
possible extensions.

Our method here is mainly developed for task-related fMRI.
It shows some promising results on analyzing resting-state

fMRI with medium sized networks. However, our method,
like others based on the deterministic DCM principal, can be
computationally challenging for inverting large-scale networks,
partly because our method needs to estimate the hidden neuronal
states. For resting-state fMRI, the neuronal states recovered by
CDN may serve as input data to other connectivity methods,
in order to minimize the confounding effect of HRF variability
(Handwerker et al., 2004; Rangaprakash et al., 2018). In the
mean time, many large-scale resting-state DCM methods use
the spectral domain characterization to avoid the estimation
of the neuronal states and associated time-variant parameters
(Friston et al., 2014; Razi et al., 2015, 2017; Frässle et al.,
2017). One future direction is to develop the spectral domain
extension of our method, for analyzing large-scale resting-state
fMRI data.
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