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Abstract

Background: The diversity of metazoan cell shapes is influenced by the dynamic cytoskeletal

network. With the advent of RNA-interference (RNAi) technology, it is now possible to

screen systematically for genes controlling specific cell-biological processes, including those

required to generate distinct morphologies.

Results: We adapted existing RNAi technology in Drosophila cell culture for use in high-

throughput screens to enable a comprehensive genetic dissection of cell morphogenesis. To

identify genes responsible for the characteristic shape of two morphologically distinct cell

lines, we performed RNAi screens in each line with a set of double-stranded RNAs (dsRNAs)

targeting 994 predicted cell shape regulators. Using automated fluorescence microscopy to

visualize actin filaments, microtubules and DNA, we detected morphological phenotypes for

160 genes, one-third of which have not been previously characterized in vivo. Genes with

similar phenotypes corresponded to known components of pathways controlling cytoskeletal

organization and cell shape, leading us to propose similar functions for previously

uncharacterized genes. Furthermore, we were able to uncover genes acting within a specific

pathway using a co-RNAi screen to identify dsRNA suppressors of a cell shape change

induced by Pten dsRNA.

Conclusions: Using RNAi, we identified genes that influence cytoskeletal organization and

morphology in two distinct cell types. Some genes exhibited similar RNAi phenotypes in both

cell types, while others appeared to have cell-type-specific functions, in part reflecting the

different mechanisms used to generate a round or a flat cell morphology. 
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Background
The morphological diversity of animal cells results largely

from differences in the lineage-specific expression and

control of cytoskeletal regulators. Cells in culture have been

widely used to characterize morphogenetic events, for

example the dynamics and organization of filamentous

actin and microtubules in adherent and motile cells. Few

metazoan cell systems, however, permit the use of genetic

analysis to identify the complement of genes contributing

to the generation of cell shape. 

RNA interference (RNAi) has revolutionized the functional

analysis of genes identified by genomic sequencing [1-3].

Several factors make RNAi in Drosophila cell cultures an

excellent approach for such functional genomic analysis of

animal cell form. The availability of well-annotated

Drosophila genomic sequence simplifies the design of gene-

specific double-stranded RNAs (dsRNAs) [4]. Furthermore,

the Drosophila genome encodes homologs of over 60% of

human disease genes [5] and lacks some of the genetic

redundancy observed in vertebrates. RNAi in Drosophila cells

is efficient, reducing or eliminating target-gene expression

to elicit partial to complete loss-of-function phenotypes

upon the simple addition of dsRNA to the culture medium

[6]. Finally, the well-established genetic techniques for

Drosophila allow comparisons to be made between loss-of-

function cell-culture phenotypes and those observed in

tissues of corresponding mutant flies.

In order to develop a cell-based approach for the study of

gene functions involved in morphogenesis, we developed a

high-throughput RNAi screening methodology in Drosophila

cell cultures that is applicable to the study of a wide range of

cellular behaviors (Figure 1a). This approach involves the

following steps: first, the design and synthesis of a gene-spe-

cific dsRNA library; second, incubation of Drosophila cells

with the dsRNAs in 384-well assay plates (in serum-free

medium or with transfection reagents, depending on the

cell line); and third, optional induction of a cell behavior,

followed by detection of luminescent or fluorescent signals

using a plate reader or an automated microscope.

Here, we describe the establishment of an RNAi functional

approach applied to the study of cell morphology. Using

images acquired by automated microscopy, we visualized

phenotypic changes resulting from reverse-functional analysis
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Figure 1

High-throughput RNAi screens by cell imaging. (a) Cellular phenotypes were visualized 3 days after the addition of dsRNA. In the example shown
Kc167 cells changed shape from round to polarized, with F-actin puncta (arrowhead) and extended microtubules (arrow), in response to Cdc42

dsRNA. (b) Kc167 and (c) S2R+ cells at low (left) and high (far right) magnifications, fluorescently labeled for F-actin (red), �-tubulin (green) and
DNA (blue). Cell-shape changes could be induced using drugs that affect the cytoskeleton or using extracellular signals, as seen upon treatment of
Kc167 cells with (d) latrunculin A or (e) 20-hydroxyecdysone (20-H-ecdysone). Scale bar, 30 µm.
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by the treatment of Drosophila cells in culture with gene-

specific dsRNAs. We were able to observe and characterize a

wide range of phenotypes affecting cytoskeletal organiza-

tion and cell shape, and from these, to identify sets of genes

required for distinct round versus flat cell morphologies.

Results and discussion
Drosophila cell morphology in cultures

We began by surveying existing Drosophila cell lines to iden-

tify those with distinct but uniform cell shape, size and

adhesion properties. For a comparative study, we chose to

further characterize two well-established lines, Kc167 and

S2R+ cells [7-9], because of their differences in cell shape.

Although both lines apparently derived from embryonic

hemocytes (blood cells), Kc167 cells are small and round

(10 �m; Figure 1b), whereas S2R+ cells are large, flat and

strongly adherent to glass, plastic and extracellular matrix

(averaging 50 �m; Figure 1c). The stereotypical morphology

of each cell line could be modified in specific ways using

drugs that perturb cytoskeletal function (for example

cytochalasin, latrunculin, nocodazole or colchicine; see

Figure 1d), ecdysone hormone treatment (Figure 1e), sub-

strate-induced cell polarization (phagocytosis of bacteria or

polystyrene beads; data not shown) or gene-specific RNAi

(Figure 1a). For example, treatment with a drug that pre-

vents the polymerization of filamentous (F-) actin caused

Kc167 cells to develop long microtubule-rich processes, a

morphological change similar to that observed upon treat-

ment with dsRNA corresponding to the gene encoding

Cdc42 GTPase. Thus, both cell types could be used with

RNAi to assay single-gene functions that contribute to

cytoskeletal organization and cell shape. 

RNAi assay for cell morphology phenotypes

We set out to conduct parallel RNAi screens with a

microscopy-based visual assay to identify genes required

for the characteristic round versus flat morphology of Kc167

and S2R+ cells, respectively (Figure 1a-c). By labeling actin

filaments, microtubules and DNA, it was possible to assay

a wide range of cellular behaviors in these cell types,

including cytoskeletal organization, cell shape, cell growth,

cell-cycle progression, cytokinesis, substrate adhesion and

cell viability.

We used dsRNA to Rho1, a gene required for cytokinesis

[10], to optimize conditions for RNAi in a 384-well plate

format. The addition of 0.3 �g Rho1 dsRNA to cells for a

minimum of 3 days in culture generated a penetrant multi-

nucleated cell phenotype (62-100% per imaged field over

five wells). Under these conditions, RNAi was effective in

both cell types, as judged by the appearance of phenotypes

and/or depletion of the targeted gene products. When

screening many genes under a single assay condition,

several factors could influence the efficiency of RNAi. Given

that dsRNA targets the destruction of endogenous mRNA,

the efficacy of RNAi and thus the phenotypic strength could

reflect gene- and cell-type-specific differences in mRNA

levels, the levels and stability of the preexisting protein pool

and/or the potency of the chosen dsRNA targeting sequence.

In one example, a longer RNAi incubation time of 5 days

was necessary to completely deplete the Capulet/Cyclase

associated protein, as detected by western blot (although

phenotypes affecting F-actin organization were observed by

3 days; data not shown). Thus, it is assumed that the

strength or penetrance of RNAi-induced phenotypes

observed under one screening condition could vary margin-

ally for any specific gene target or cell type. We reasoned

that screening under ‘hypomorphic’ conditions has the

advantage of enabling the effects of gene product depletion

to be analyzed rather than its terminal consequences (that

is, potential cell lethality). Finally, differences in the pheno-

typic effects of targeting the same gene with RNAi in two

different cell types could reflect true cell-type differences in

the function of the targeted genes.

Selection and generation of gene-specific dsRNAs

Screens of RNAi morphological phenotypes required the

generation of a dsRNA library. In order to allow an assess-

ment of the overall success of such an RNAi screening

approach in Drosophila cells, we generated a selected set of

1,042 dsRNAs targeting 994 different genes. The set of genes

represented in the library was chosen on the basis of

primary sequence to include the vast majority of those pre-

dicted to encode signaling components and cytoskeletal reg-

ulators that could affect diverse cellular processes (a

complete list of the selected categories of predicted gene

functions are listed in Table 1; all targeted genes and primer

sequences are listed in Additional data file 1, available with

the online version of this article). Gene-specific dsRNAs

averaging 800 base pairs (bp) in length were generated by in

vitro transcription, using selectively amplified products from

Drosophila genomic DNA as templates, then aliquoted into

384-well optical bottom plates for image-based screens (see

the Materials and methods section).

The dsRNA collection was selected to enrich for genes

encoding classes of central cell regulators, including puta-

tive GTPases, GTPase regulators, kinases and phosphatases

that can act together as part of signaling pathways to

control diverse cellular processes. We also selected

cytoskeletal proteins and cell-cycle regulators predicted to

be expressed and required in most cells. We favored target

selection on the basis of identifiable domains within the

primary sequence in order to enrich for both functionally

known and uncharacterized genes affecting a wide range
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of processes. Choosing genes from one chromosomal

region would be likely to yield fewer visible phenotypes,

whereas choosing genes on the basis of their expression in

existing cell lines would assume a correlation between

expression levels and function.

RNAi screens of cell morphology by image analyses 

A phenotypic analysis of Kc167 or S2R+ cells treated with

each dsRNA and labeled for detection of actin filaments,

microtubules and DNA was performed by visual inspection

of microscopic images. Defects were considered significant

and reproducible when observed in multiple fields of repli-

cate screens by independent observers. All changes observed

were annotated using a limited set of phenotypic categories

(described in more detail below). Of the genes screened,

16% (160/994) yielded a visible phenotype in Kc167 or S2R+

cells (see Table 1 and Additional data file 2, available with

this article online). Gene-specific phenotypes were identi-

fied in each of the different predicted protein classes

screened (Table 1). In addition, genes within any one class

exhibited distinct phenotypes, suggesting a high degree of

RNAi specificity (for example, genes encoding the GTPases

Rho1, Cdc42, R/Rap1 and Ras85D; see below).

Assessment of RNAi screen efficacy

To make screen-wide comparisons of the phenotypes identi-

fied, we generated concise phenotypic annotations. As a test

of screening efficacy, we evaluated our results by focusing

on genes with known or predicted functions in cell-cycle

progression in other systems and likely to share conserved

functions in Drosophila cultured cells; 20 such genes were

identified in the screen, 16 of which exhibited an RNAi

phenotype consistent with a defect in cell-cycle progression

[11] (Figure 2). One group (Profile I) was characterized by

an increase in cell size and an altered DNA morphology,

indicative of growth in the absence of division. A second

group (Profile II) was defined by an increase in the fre-

quency of cells with a microtubule spindle, indicative of a

defect in progression through mitosis. Both phenotypic

groups could be further subdivided on the basis of addi-

tional attributes to generate four distinct sets of functionally

related genes that regulate the passage from G1 to S phase

(Cyclin-dependent kinase 4 (Cdk4), Cyclin E, and the Dp), G2

to M phase (cdc2 and string), the onset of anaphase (fizzy,

cdc16 and Cdc27) and cyclin-dependent transcription

(Cyclin-dependent kinase 9 (Cdk9) and Cyclin T). Several

additional genes were identified with related phenotypes
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Table 1

RNAi screen results classified by predicted gene function

Genes identified*

Gene class† N Total Total S2R+ Total Kc167 Both‡

Kinase 229 54 18.8% 3 18.8% 2 12.5% 2 12.5%

Miscellaneous 139 16 11.5% 15 10.8% 11 7.9% 10 7.2%

Cytoskeletal 116 17 14.7% 17 14.7% 11 9.5% 11 9.5%

Motor 77 7 9.1% 6 7.8% 3 3.9% 2 2.6%

Phosphatase 72 12 16.7% 10 13.9% 7 9.7% 5 6.9%

GTPase 54 15 27.8% 15 27.8% 6 11.1% 6 11.1%

Transport 48 2 4.2% 1 2.1% 2 4.2% 1 2.1%

Proteolysis 42 7 16.7% 7 16.7% 6 14.3% 6 14.3%

Lipid-associated 38 3 7.9% 3 7.9% 0 0% 0 0%

GEF 32 8 25.0% 7 21.9% 3 9.4% 2 6.3%

PDZ 32 3 9.4% 3 9.4% 1 3.1% 1 3.1%

GAP 31 6 19.4% 5 16.1% 2 6.5% 1 3.2%

SH2/SH3 25 3 12.0% 2 8.0% 1 4.0% 0 0%

Adhesion 23 3 13.0% 3 13.0% 0 0% 0 0%

Cyclase 20 1 5.0% 0 0% 1 9.5% 0 0%

G protein 16 3 18.8% 3 18.8% 2 12.5% 2 12.5%

Total genes 994 160 16.1% 146 14.7% 79 7.9% 65 6.5%

In total, we screened 1,061 wells, 1,042 dsRNAs, 994 genes and found 160 genes with phenotypes. *The number and percentage of genes identified with
any RNAi phenotype in duplicate screens. †The total number of genes (N) represented in the dsRNA set as defined by amino-acid sequence and Gene
Ontology [33] or FlyBase [12] annotation. Each gene was counted in only one category. ‡Genes identified by phenotypes in both Kc167 and S2R+ cells.
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Figure 2

A test of RNAi screen efficacy: identifying genes involved in cell-cycle progression. (a) Gene identity and phenotypic annotation for RNAi
phenotypes identifying predicted cell-cycle regulators. The ‘Profile’ column provides a summary of the phenotypic profiles distinguishing sets of genes
involved in specific stages of the cell cycle. The ‘Classification’ column gives a single predicted functional category assigned to each targeted gene on
the basis of primary sequence and/or known functional data. The ‘FlyBase ID’ and ‘Gene name’ columns are information as annotated at FlyBase [12].
The ‘Predicted function’ column provides detail on the putative molecular function of each specific gene. ‘Cell type’ refers to whether the phenotype
was observed in Kc167 (Kc) and/or S2R+ (S2R) cells. Profile I: RNAi phenotypes resulting in an increase in cell size, uniform or disorganized
microtubules, irregular cell shapes and decreased cell numbers identified genes involved in cell-cycle progression through G1 to S and G2 to M
stages. Phenotypes were further distinguished on the basis of levels of F-actin accumulation and DNA morphology. Profile II: RNAi phenotypes
resulting in aberrant morphology or increased frequency of microtubule-based mitotic spindles identified genes involved in mitosis. Profile III: RNAi
phenotypes observed in S2R+ cells identified additional genes with putative roles in cell cycle/mitosis progression. (b-g) Kc167 cells stained for F-actin
(red), �-tubulin (green), DNA (blue), imaged using automated microscopy and scored visually. (b) Control. (c,d) Profile I: Dp and string RNAi
resulting in big cells. (e,f) Profile II: fizzy and polo RNAi resulting in increased frequency of cells with mitotic spindles. (g) Cdk5 RNAi resulting in
smaller cells and disorganized microtubules (and increased spindles in S2R+ cells; not shown). Scale bar, 30 �m.

Profile Classification   FlyBase ID Gene name Predicted function Cell type A M D S Z N V A M D S Z N V

Kc167 cells S2R+ cells
I. Big cells with altered actin levels or DNA morphology

G1/S, G2/M Misc. FBgn0010382   Cyclin E Cyclin-dependent protein kinase regulator Kc, S2R • O + A O O -

Misc. FBgn0011763   DP transcription factor DNA binding Kc, S2R + O - + A S -

A Variable, undefined

Kinase FBgn0016131   Cyclin-dependent kinase 4 Protein serine/threonine kinase, cyclin-dependent protein kinase S2R + + S + -

- Reduced, non-cortical

Kinase FBgn0015618   Cyclin-dependent kinase 8 Protein serine/threonine kinase, cyclin-dependent protein kinase S2R - + +

/ Fibers

Kinase FBgn0004106   cdc2 Protein serine/threonine kinase, cyclin-dependent protein kinase Kc, S2R + + O + -

• Puncta, dots

Phosphatase FBgn0003525   string Protein tyrosine phosphatase Kc, S2R - O + S + O - S + -

+ Accumulated

< Polarized

II. Microtubule-based mitotic spindles with aberrant morphology or frequency

X Processes, ruffles

M Kinase FBgn0013762   Cyclin-dependent kinase 5 Protein serine/threonine kinase, cyclin-dependent protein kinase Kc, S2R - O - <> S -

Kinase FBgn0019949   Cyclin-dependent kinase 9 Protein serine/threonine kinase, cyclin-dependent protein kinase Kc, S2R S + <> O -

M Variable, undefined

Kinase FBgn0016696   Pitslre Protein serine/threonine kinase, cyclin-dependent protein kinase S2R <> O

- Reduced

Kinase FBgn0003124   polo Protein serine/threonine kinase Kc, S2R • <> - A <> - ~ -

• Dots

Misc. FBgn0025455   Cyclin T Transcription elongation factor Kc, S2R • X X <>

<> Aberrant, frequent spindles

Motor FBgn0004378   Kinesin-like protein at 61F Kinesin Kc, S2R <> <> -

+ Accumulated

Motor FBgn0034273   subito Kinesin S2R <>

| Bipolar extensions or spikes

Proteolysis FBgn0025781   cdc16 Ubiquitin-protein ligase Kc, S2R <> <>

X Processes

Proteolysis FBgn0012058   Cdc27 Ubiquitin-protein ligase Kc, S2R <> - -

O Disorganized, uniform

Proteolysis FBgn0001086   fizzy Cyclin catabolism Kc, S2R - <> - S - A - -

D Variable, undefined

III. Subtle defect in S2R+ cell morphology

- Small, condensed

Kinase FBgn0011737   wee Protein tyrosine kinase, mitotic checkpoint kinase S2R O

+ Big, diffuse

Misc. FBgn0035640   CG17498 Homology to mad2 spindle checkpoint gene Kc, S2R - X ~ -

•• Multinucleated

Misc. FBgn0004643   mitotic 15 Kinetochore component S2R < X -

Cell shape

Motor FBgn0040232   CENP-meta Kinesin, kinetochore motor S2R ~ -

S Variable, undefined

- Flat

~ Retracted

X Processes, spikey, stretchy

| Bipolar

O Round, non-adherant

Z Variable, undefined

- Small

+ Big

N Variable, undefined

- Sparse

V Variable, undefined

† Death

Cell size

Cell number

Cell viability

Key:

F-actin Microtubule DNA

F-actin α-tubulin DNA

(a)

Kc167 cells

(b) Control (c) Dp (d) string (e) fizzy (f) polo (g) Cdk5



(see Additional data file 2). For example, dsRNAs targeting a

predicted Cyclin-dependent kinase 8 (Cdk8) and a novel gene

CG3618 both resulted in large cells with aberrant DNA

morphology (data not shown), similar to cells with targeted

cdc2 or string. It is therefore possible to use visual RNAi

screens to functionally characterize a large set of genes and,

by grouping genes according to morphological criteria, to

identify functional modules.

For other cellular processes, limited Drosophila genetic data

are available with which to measure the success of the

screens. We discovered, however, many examples of RNAi-

induced phenotypes that are consistent with the previously

predicted or described gene function in another assay system

(examples discussed below). Importantly, in one-third of all

cases, an RNAi-induced phenotype identified a previously

uncharacterized gene that lacked a corresponding mutant

allele in Drosophila (at least 51/160 genes; see Additional

data file 2) [12]. This shows that RNAi screens represent a

valuable addition to classical Drosophila genetic screens.

Classification of RNAi cell morphology phenotypes

We detected a broad spectrum of distinct defects in

cytoskeletal organization and cellular morphology,

including subtle effects in the localization and level of

actin filaments and microtubules (see Table 2, Figure 3

and Additional data file 2 with the online version of this

article). To classify the results, phenotypes were scored

using defined descriptions assembled under one of seven

major categories, denoting visible defects in actin fila-

ments, microtubules, DNA, cell shape, cell size, cell

number and cell viability (Table 2). We were able to

further define subcategories that describe specific morpho-

logical attributes (see Materials and methods section for

more details). Some descriptions were interdependent

and therefore redundant; for example, cell shape was

determined by a combined assessment of the actin and

microtubule organization.

Using this system, a total of 417 phenotypic annotations

were assigned to 160 genes, ranging from zero up to six

annotations per gene in one cell type (Table 2, Figure 4). A

comparison between the two RNAi screens revealed that

41% (65/160) of the genes were identified with phenotypes

in both Kc167 and S2R+ cell types. This overlapping set iden-

tified many genes that are known to control important cell-

biological functions common to all cell types, such as

cell-cycle progression and cytokinesis, and genes that may

reflect a hemocyte origin (Figure 2 and see below). In com-

paring the two cell types, nearly twice as many of the genes

were found to have a detectable RNAi phenotype in S2R+

cells (146/160 genes, or 91% of the total) as in Kc167 cells

(79/160; 49% of the total). Genes identified in S2R+ cells

also had a greater mean number of phenotypic annotations

assigned to them (2.0) than in Kc167 cells (1.2; see

Figure 4). This was due in part to the ease of detecting overt

phenotypes in the larger S2R+ cells but may also indicate a

difference in the number of genes required to maintain a

flat versus a round cellular morphology (see below). Inter-

estingly, the relative importance of a gene in the two cell

types, as determined by RNAi, did not strictly correlate with

the relative levels of expression. Furthermore, RNAi was

shown to deplete the protein in cases in which there was no

measurable phenotype in our assay (see below; and data

not shown).

We also noted cases in which morphological defects were

accompanied by a decrease in cell number. An RNAi-

induced phenotype was accompanied by a notable

decrease in cell number (estimated as fewer than half the

normal number of cells per image) in 43% of cases

(68/160 genes; see Additional data file 2 with the online

version of this article). Less than 1% of the genes screened

caused a catastrophic reduction in cell number (an esti-

mated fewer than 100 cells per image) three days after the

addition of dsRNA (6/994 genes, listed as having a cell

viability defect in Additional data file 2). One example of

this class of genes was a known inhibitor of apoptosis,

D-IAP1 [13]. These data demonstrate that under these

conditions, severe cytotoxicity is not a major obstacle for

cell-based RNAi screens, even if many of the genes are

essential for Drosophila development.
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Table 2 

RNAi screen results classified by annotated phenotype

Genes identified*

Phenotypic class† Total Total S2R+ Total Kc167 Both‡

Cell shape 105 93 32 20

F-actin organization 94 74 50 30

Microtubule organization 71 48 37 14

Decreased cell density 66 62 8 4

Cell size 48 25 33 10

DNA morphology 27 17 22 12

Cell viability 6 3 4 1

Total phenotypes 417 322 (77%) 186 (44%) 91 (22%)

Total genes 160 146 (91%) 79 (49%) 65 (41%)

*The number of genes categorized with a specific RNAi phenotype in
duplicate screens. †The major classes of RNAi phenotypes. Individual
genes with multiple phenotypes were counted within each of the
phenotypic classes scored. ‡Genes identified by a defect assigned to the
same phenotypic class in both cell types.



RNAi phenotypes with common cytoskeletal defects

Changes in actin organization and cell shape were the most

commonly observed phenotypes (94 and 105 out of 401

phenotypes, respectively). In some instances, specific dsRNAs

led to defects in F-actin with related morphological conse-

quences in both Kc167 and S2R+ cells (22 genes). For example,

both cell types displayed RNAi phenotypes characterized by

an elevated accumulation or a polarized (asymmetric or

uneven) distribution of F-actin (13 genes). These phenotypes

identified genes encoding proteins thought to limit the rate of

actin-filament formation [14], such as twinstar (encoding

cofilin) and capping protein beta, as well as previously unchar-

acterized Drosophila genes, such as Pak3 and CG13503

(Figure 3b,g). Conversely, dsRNAs targeting several known

regulators of actin-filament formation compromised cortical

F-actin in both cell types (9 genes). In addition, actin-rich

protrusions were observed in both cell types following dsRNA

targeting of CG5169 (Figures 3c,h), a Drosophila gene encod-

ing a homolog of a Dictyostelium kinase thought to regulate

severing of actin filaments [15]. Thus, one class of cytoskele-

tal regulators has similar functions in two morphologically

distinct cell lines, irrespective of their characteristic shape. In

addition, a significant proportion of the genes implicated in

cell-cycle progression (65%) or cytokinesis (50%) exhibited

similar RNAi phenotypes in both cell types.

RNAi phenotypes affecting distinct cell shapes

To identify genes that specify different cell shapes, we

focused on morphological phenotypes that were restricted to

either Kc167 or S2R+ cells. Indeed, 78% of the morphological

phenotypes observed were detected in only one of the two

cell types. Kc167 cells frequently adopted a unique, bipolar

spindle shape in response to specific dsRNAs (21 genes),

reminiscent of the cell-shape change induced by actin-

destabilizing agents or ecdysone (Figure 1). This shape

change was usually associated with the formation of discrete

F-actin puncta and opposing microtubule-rich processes

and was seen in cells treated with dsRNAs targeting genes

known to promote actin-filament formation (such as those

encoding Cdc42 and SCAR) [14] and others known to affect

microtubules (for example, par-1) [16]. These observations

suggest that actin filaments and microtubules play antago-

nistic roles in Kc167 cells, with the contractile actin cortex

opposing the formation of microtubule-based processes.

Although Kc167 cells exhibited a marked tendency to take on

a bipolar morphology, various gene-specific manifestations

of this phenotype were distinguishable. For example, a

single, microtubule-rich extension formed directly opposite

from a single, large, actin-rich protrusion in Kc167 cells treated

with dsRNA targeting the gene for the Hsp83 chaperone

(Figure 3d). In addition, a large and flat bipolar morphology

http://jbiol.com/content/2/4/27 Journal of Biology 2003, Volume 2, Issue 4, Article 27 Kiger et al.  27.7

Journal of Biology 2003, 2:27

Figure 3

RNAi screens identified a wide range of gene functions based on diverse morphological phenotypes. Cells were stained for F-actin (red), �-tubulin (green)
and DNA (blue), imaged using automated microscopy and scored visually. (a) Control Kc167 cells. (b-e) Kc167 cells with RNAi phenotypes. (f) Control
S2R+ cells. (g-j) S2R+ cells with RNAi phenotypes. (b) F-actin accumulation; CG13503 RNAi (encoding a predicted WH2-containing actin-binding protein).
(c,h) Flatter, polarized cells with actin-rich lamellipodia (arrows); CG5169 RNAi (a predicted kinase). (d) Opposing protrusions rich in F-actin (arrow) or
microtubules (arrowhead), Hsp83 RNAi (chaperone). (e) Flat cells; puckered RNAi (JNK phosphatase). (g) Widely-distributed F-actin puncta; capping

protein beta RNAi (component of CapZ). (i) Radial protrusions (arrows) and reduced cortical actin (asterisk); CG31536 RNAi (predicted Rho-GEF with
FERM domain). (j) Rounder cells, decreased in size; CG4629 RNAi (predicted kinase). Scale bar, 30 µm.
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was induced in Kc167 cells treated with dsRNAs targeting the

puckered gene encoding JNK phosphatase (Figure 3e),

CG7497, encoding a predicted G-protein-coupled receptor

kinase, and the Pten gene encoding phosphatidylinositol

(3,4,5)-trisphosphate (PIP3) 3-phosphatase (see below).

One major behavioral difference between the two cell

types used in this study is the ability of S2R+ cells to

adhere to and spread over the substratum. As a result,

subtle changes in cytoskeletal organization could be visu-

alized in S2R+ cells, such as polarized (uneven) F-actin

accumulation (in response to dsRNA targeting Abl-encoded

kinase), actin stress-fiber formation (the RhoL-encoded

GTPase) and the loss of cortical actin filaments (dsRNA

targeting CG31536, encoding a predicted Rho guanine-

nucleotide exchange factor (GEF) with a FERM domain;

Figure 3i). Of particular interest were genes required for

the spreading process characteristic of S2R+ cells. S2R+

cells rounded up and detached from the plate in response

to dsRNAs targeting 37 different genes, 20 (54%) of which

had no visible effect on Kc167 cells. Four genes identified

in this way had known functions in cell-matrix adhesion

[17] (see Figure 5c), including an enigmatic adhesion mol-

ecule that contains an integrin-ligand RGD sequence

(Tenascin-major) [18], both � and � integrin subunits

(inflated and myospheroid) and a focal-adhesion cytoskele-

tal anchor (talin) [19], as well as focal adhesion kinase

(FAK56D, with a slightly different defect in cell spreading).

This set also included novel genes (CG4629, encoding a

predicted kinase; Figure 3j). The remaining 17 genes that,

by RNAi, affected both S2R+ cell spreading and Kc167 cell

morphology may identify those that indirectly affect the

cell-adhesion process (for example, S2R+ cells rounded up

as a consequence of RNAi-induced arrest in mitosis;

Figures 2 and 6).

The set of genes identified by RNAi defects in cell spreading

suggested that S2R+ cells utilize focal adhesion complexes to

flatten on the substrate. An implication of this finding is

that Kc167 cells may be unable to spread on the substrate

because they fail to express adhesion-complex components.

Surprisingly, quantitative PCR (qPCR) of reverse-transcribed

mRNA revealed a 2.4-fold enrichment of �PS integrin (mys)

expression in Kc167 cells versus S2R+ cells (adjusted cross-

point difference of 1.2 cycles; see Materials and methods

section; data not shown). Furthermore, �PS integrin/Mys

protein was detected in both cell types, with slightly ele-

vated levels in untreated Kc167 cells versus S2R+ cells, and

similarly depleted in both upon treatment with mys dsRNA

(Figure 7). We extended the analysis to other adhesion-

complex components identified in the screen and discov-

ered by qPCR that both �-integrin (if) and Rap1 (R) were

also expressed in Kc167 cells, although at slightly lower levels

than in S2R+ cells (adjusted cross-point differences of 1.0

and 0.3 cycles, respectively). In contrast, S2R+ cells exhibited

a nearly 4.6-fold enrichment of talin expression relative to

that in Kc167 cells (adjusted cross-point difference of 2.3

cycles). Moreover, Mys levels were sensitive to the loss of

Rap1 by RNAi in S2R+ cells (Figure 7). This analysis demon-

strated that although many of the same adhesion complex

components are expressed in both the round Kc167 and

spread S2R+ cells, the genes function differently in the two

cell types, so that integrin-mediated adhesion has little

impact on the morphology of Kc167 cells.
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Figure 4 

The distribution of phenotypic annotations. (a) Frequency of genes
associated with a number of different RNAi phenotypes (0-6) per cell
type. Phenotypes refer to those identified by seven major annotation
categories. From 0 up to 6 phenotypes per gene were observed; ‘0’
indicates those genes without detectable phenotypes in the one cell
type (but were detected in the other). The set included all 160 genes
identified by an RNAi phenotype in each of either S2R+ (gray) or Kc167

(black) cell types. (b) The percentage of genes associated with a certain
combined phenotypic annotation in both cell types screened. The
percentage is the number of genes identified with 0 to 6 phenotypic
annotations in Kc167 cells (normalized to 100%) that were also
associated with 0 to 6 phenotypic annotations in S2R+ cells (colored
fractions of columns; see the key).
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Furthermore, Kc167 cells adhered but remained round even

when plated on an adhesive concanavalin A substrate that

induced round S2 cells to flatten [20] (data not shown),

although Kc167 cells do flatten when actin-filament formation

is compromised (Figure 1). Thus, spreading of Drosophila

cells probably requires both integrin-mediated adhesion

and reorganization of cortical F-actin. This is supported by

the fact that S2R+ cells rounded up when treated with cofilin

dsRNA because of an accumulated excess of cortical actin

filaments. Integrins may, therefore, function to mediate

substrate adhesion in both cell types, while the levels of

additional gene products (such as talin, cofilin and phos-

phoinositide (PI) 3-kinase activity) determine whether or

not the cell will spread.

Genes with common phenotypes share

morphogenetic functions 

The results from RNAi screens in both cell types were com-

bined to generate a phenotypic profile for each gene. Genes

with similar phenotypic profiles were involved in common

morphogenetic functions, as indicated by several distinct

sets of genes known to interact in pathways or complexes.

In both cell types, dsRNAs specific for the pebble gene

encoding a Rho-GEF, the Rho1 gene encoding a GTPase,

and the CG10522 gene encoding citron kinase led to

enlarged cells with multiple nuclei, indicative of a failure to

form and constrict the actin contractile ring necessary for

cytokinesis (Figure 5a). While Rho1 and pebble (and five

other identified genes; see Figure 6) have already been

shown to function in Drosophila cytokinesis [3,10], we iden-

tified CG10522 in the RNAi screen as a potential novel

Rho1-effector required for cytokinesis [21]. RNAi targeting

of members of a different group of genes resulted in a pro-

found loss of actin filaments in both cell types, identifying

known regulators of F-actin formation. In Kc167 cells,

dsRNAs targeting the Cdc42-encoded GTPase, enabled-

encoded actin-binding protein, and SCAR-encoded regula-

tor of Arp2/3 complex [14], each led to a reduction in

F-actin, the appearance of microtubule-rich protrusions and

cell flattening (Figure 5b). In S2R+ cells, RNAi of Cdc42,

enabled or SCAR similarly reduced the levels of F-actin,

compromising the ability to form lamellipodia (as in

Figure 3i, and data not shown). Ena protein was effectively

depleted upon ena RNAi in both cell types (Figure 7). 

The screen profiles also identified clusters of genes with

phenotypes unique to a single cell type, such as the set of

matrix-adhesion genes required for S2R+ cell spreading, as

noted above (Figure 5c). Three dsRNAs caused S2R+ cells to

assume a unique, amorphous shape. This striking pheno-

type identified Ras85D, Downstream of Raf1 (encoding

mitogen-activated protein (MAP) kinase kinase, or MEK)

and kinase suppressor of Ras, all interacting components of

the well-characterized MAP kinase signaling pathway [22]

(Figure 5d). Thus, on the basis of phenotype alone, groups

of genes were identified that function in the same cellular

process, complex or pathway. In classic Drosophila genetic
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Figure 5

Similar phenotypic profiles identified genes in pathways and protein
complexes. Cells were stained for F-actin (red), �-tubulin (green) and
DNA (blue). Distinct phenotypes were observed with dsRNAs
targeting different members of the same functional family (for example,
GTPases, in the left panels). (a,b) Phenotypes observed in both cell
types. (a) RNAi-induced binucleate cell phenotypes identified genes
required for cytokinesis, including Rho1 (encoding a GTPase), pebble

(a Rho-GEF) and CG10522 (a predicted citron kinase). Kc167 cells are
shown. (b) RNAi resulting in loss of actin filaments from the cell cortex
identified regulators of actin-filament formation, including Cdc42

(GTPase), enabled (actin-binding protein) and SCAR (actin-binding,
Arp2/3 regulator). Kc167 cells (shown) also formed microtubule
extensions and a polarized cell shape. (c,d) Some phenotypes were
unique to one cell type. (c) RNAi resulting in round, non-adherent S2R+

cells identified genes required for cell-matrix adhesion, including
Roughened (a Rap1 GTPase), Tenascin-major (an adhesion protein with a
laminin domain) and myospheroid (� integrin). (d) An RNAi-induced
amorphous S2R+ cell phenotype identified genes in the mitogen-
activated protein (MAP) kinase pathway, including Ras85D (a GTPase),
Downstream of raf1 (a MAP kinase kinase, or MEK) and kinase suppressor

of Ras (a MAP kinase scaffold protein).
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Figure 6 (see legend on the next page)

Profile Classification   FlyBase ID Gene name Predicted function Cell type A M D S Z N V A M D S Z N V

Kc
167

 cells S2R
+

 cells
Key:I. Binucleate cells

Both cell types FBgn0011202    diaphanous Actin binding Kc, S2R + •• + / •• F-Actin

Cytoskeletal

Cytoskeletal

FBgn0004243    scraps Actin binding, microtubule binding Kc, S2R + <> •• + - •• + A Variable, undefined

GEF FBgn0003041    pebble Rho guanyl-nucleotide exchange factor Kc, S2R •• ••  O + - Reduced, non-cortical

GTPase FBgn0014020    Rho1 Rho small monomeric GTPase Kc, S2R + ••  S Z • •• / Fibers

Kinase FBgn0036295    CG10522 Protein serine/threonine kinase, citron homology domain Kc, S2R + <> •• + •• + • Puncta, dots

Kinase FBgn0031730    CG7236 Protein serine/threonine kinase, cyclin-dependent protein kinase Kc, S2R + •• + •• + + Accumulated

Kinase FBgn0024227     IplI-aurora-like kinase Protein serine/threonine kinase Kc, S2R •• + •• + < Polarized

Motor FBgn0011692    pavarotti Kinesin Kc, S2R •• + •• + X Processes, ruffles

One cell type FBgn0031090    CG9575 RAB small monomeric GTPase S2R •• + Microtubule

Cytoskeletal FBgn0004167    karst Actin binding Kc, S2R + •• S - M Variable, undefined

Cytoskeletal FBgn0011726    twinstar Cofilin, actin severing Kc, S2R + •• + - Reduced

Misc. FBgn0003717    Toll Transmembrane receptor Kc, S2R •• - • Dots

Misc. FBgn0032095    Toll-4 Transmembrane receptor Kc, S2R •• - <> Aberrant, frequent spindles

PDZ FBgn0000163    bazooka Protein kinase C binding Kc, S2R •• X ~ - + Accumulated

Phosphatase FBgn0015399    kekkon-1 Protein tyrosine phosphatase Kc •• + | Bipolar extensions or spikes

Transport AssoFBgn0003392    shibire Dynamin family Kc, S2R •• † - X Processes

O Disorganized, uniform

II. F-actin accumulation, polarization and distribution in both cell types DNA

Accumulation FBgn0038477    CG5169 Receptor signaling protein serine/threonine kinase Kc, S2R X X X X - D Variable, undefined

Cytoskeletal FBgn0011570    capping protein beta F-actin capping Kc, S2R + - < X - Small, condensed

Cytoskeletal FBgn0034577    CG10540 Homology to F-actin capping alpha Kc, S2R + S Z • + Big, diffuse

GTPase FBgn0014020    Rho1 Rho small monomeric GTPase Kc, S2R + ••   S Z • •• •• Multinucleated

Cytoskeletal FBgn0011202    diaphanous Actin binding Kc, S2R + •• + / •• Cell shape

Cytoskeletal FBgn0011726    twinstar Cofilin, actin severing Kc, S2R + •• + S Variable, undefined

GAP FBgn0030986    RhoGAP18B GTPase activation domain Kc, S2R + + - Flat

Kinase FBgn0015806    RPS6-p70-protein kinase Protein serine/threonine kinase Kc, S2R + + ~ Retracted

G Protein FBgn0001105    G protein beta-subunit 13F Heterotrimeric G-protein Kc, S2R + < X Processes, spikey, stretchy

G Protein FBgn0004921    G protein gamma 1 Heterotrimeric G-protein Kc, S2R < < O | Bipolar

Kinase FBgn0038430    Pak3 Receptor signaling protein serine/threonine kinase Kc, S2R < < O Round, non-adherant

Misc. FBgn0001139    groucho Transcription co-repressor Kc, S2R < + Cell size

Kinase FBgn0003217    retinal degeneration A Diacylglycerol kinase Kc, S2R A + - Z Variable, undefined

Reduction, with
cell shape change

FBgn0037247    CG32944 Protein kinase-like Kc, S2R • S - + S - Small

FBgn0034695    CG13503 Actin-binding WH2 domain Kc, S2R • S < + ~ - + Big

Cytoskeletal

Cytoskeletal

FBgn0000578    enabled Actin binding Kc, S2R • X X X X X Cell number

Cytoskeletal FBgn0041781    SCAR Actin binding Kc, S2R • X | - X X - N Variable, undefined

GTPase FBgn0010341    Cdc42 Rho small monomeric GTPase Kc, S2R • | | • X - Sparse

Kinase FBgn0026193    par-1 Protein serine/threonine kinase Kc, S2R • | | - <> O Cell viability

Kinase FBgn0039924    CG17471 1-phosphatidylinositol-4-phosphate 5-kinase Kc, S2R • | | - O V Variable, undefined

GEF FBgn0040068    vav Rho guanyl-nucleotide exchange factor Kc, S2R • | - + - - O † Death

Phosphatase FBgn0026379    Pten Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase Kc, S2R • | - + - O + -

III. Polarized cell shape in Kc167 cells

And S2R
+ 

cells GEF FBgn0040068    vav Rho guanyl-nucleotide exchange factor Kc, S2R • | - + - - O

GTPase FBgn0016700    Rab-protein 1 RAS small GTPases, Rab subfamily Kc, S2R - | - + O

Misc. FBgn0037028    CG3618 Kc, S2R - | - - + † O O -

Phosphatase FBgn0004210    puckered Protein tyrosine phosphatase Kc, S2R - | - + ~ -

Phosphatase FBgn0026379    Pten Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase Kc, S2R • | - + - O + -

Phosphatase FBgn0004177    microtubule star Protein phosphatase type 2A Kc, S2R - | | + • O +

Kinase FBgn0032006    PDGF- and VEGF-receptor Transmembrane receptor protein tyrosine kinase Kc, S2R - | | - - ~

Misc. FBgn0000986    Female sterile (2) Ketel Importin beta, protein carrier Kc, S2R - | | X ~

GTPase FBgn0020255    ran RAN small monomeric GTPase Kc, S2R | | O

Kinase FBgn0039924    CG17471 1-phosphatidylinositol-4-phosphate 5-kinase Kc, S2R • | | - O

Kinase FBgn0026193    par-1 Protein serine/threonine kinase Kc, S2R • | | - <> O

Cytoskeletal FBgn0000578    enabled Actin binding Kc, S2R • X | X X X

Cytoskeletal FBgn0041781    SCAR Actin binding Kc, S2R • X | - X X -

GTPase FBgn0010341    Cdc42 Rho small monomeric GTPase Kc, S2R • | | • X

Kinase FBgn0033441    CG1776 Protein serine/threonine kinase Kc, S2R X X X

Misc. FBgn0025455    Cyclin T Transcription elongation factor Kc, S2R • X X <>

Kc
167

 cells only FBgn0036742    CG7497 Protein serine/threonine kinase Kc • | - +

Kinase

Kinase

Kinase

FBgn0004367    meiotic 41 Phosphatidylinositol 3-kinase Kc • | - +

GEF FBgn0001965    Son of sevenless RAS guanyl-nucleotide exchange factor Kc - | |

Misc. FBgn0001233    Heat shock protein 83 Chaperone Kc < | | -

SH2/SH3 FBgn0004638   downstream of receptor kinase Kc • | |

IV.  Round, detached cell shape in S2R+ cells

And Kc
167

 cells G Protein FBgn0004921   G protein gamma 1 Heterotrimeric G-protein Kc, S2R < < O

Kinase FBgn0030308   CG32666 Protein serine/threonine kinase Kc, S2R • O -

GTPase FBgn0020255   ran RAN small monomeric GTPase Kc, S2R | | O

Kinase FBgn0039924   CG17471 1-phosphatidylinositol-4-phosphate 5-kinase Kc, S2R • | | - O

Kinase FBgn0026193   par-1 Protein serine/threonine kinase Kc, S2R • | | - <> O

Cytoskeletal FBgn0000117   armadillo Beta-catenin, cytoskeletal anchor protein Kc, S2R S - X O

Kinase FBgn0019949   Cyclin-dependent kinase 9 Protein serine/threonine kinase, cyclin-dependent protein kinase Kc, S2R S + <> O -

GEF FBgn0003041   pebble Rho guanyl-nucleotide exchange factor Kc, S2R •• ••   O +

GTPase FBgn0004636   Roughened RAS small monomeric GTPase Kc, S2R M - + - O -

Misc. FBgn0010382   Cyclin E Cyclin-dependent protein kinase regulator Kc, S2R • O + A O O -

Phosphatase FBgn0004177   microtubule star Protein phosphatase type 2A Kc, S2R - | + • O +

GTPase FBgn0016700   Rab-protein 1 RAS small GTPases, Rab subfamily Kc, S2R - | - O

GEF FBgn0040068   vav Rho guanyl-nucleotide exchange factor Kc, S2R • | - + - - O

Phosphatase FBgn0026379   Pten Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase Kc, S2R • | - + - O + -

Misc. FBgn0037028   CG3618 Novel Kc, S2R - | - - + † O O -

Misc. FBgn0014857   Histone H3.3A DNA binding Kc, S2R - + S Z - † - - O + -

Kinase FBgn0028489   BcDNA:GH07910 Protein kinase Kc, S2R - - - X - O - †

S2R
+

 cells only FBgn0000464   Leukocyte-antigen-related-like Transmembrane receptor protein tyrosine phosphatase signaling S2R O - - †

Kinase FBgn0031299   CG4629 Protein serine/threonine kinase S2R - O -

Kinase FBgn0013987   MAPK activated protein-kinase-2    Protein kinase S2R - O - -

GTPase FBgn0014380   rho-like Rho small monomeric GTPase S2R / O

Adhesion FBgn0004657   myospheroid Beta-integrin, cell adhesion receptor S2R + O -

Cytoskeletal FBgn0035910   Talin Cytoskeletal anchor protein S2R O -

Adhesion FBgn0004449   Tenascin major Adhesion molecule, laminin domain S2R O O

Adhesion FBgn0001250   inflated Alpha-integrin, cell adhesion receptor S2R <> O

GTPase FBgn0010348   ADP ribosylation factor 79F ARF small monomeric GTPase S2R <> O

Kinase FBgn0027587   BcDNA:GH04978 Protein kinase S2R <> O

Kinase FBgn0016696   Pitslre Protein serine/threonine kinase, cyclin-dependent protein kinase S2R <> O

PDZ FBgn0026192   par-6 PDZ-domain S2R <> O -

Cytoskeletal FBgn0002789   Muscle protein 20 Actin binding S2R O

GEF FBgn0036943   CG7323 DBL-domain, Rho GEF family S2R O

GTPase FBgn0015794   Rab-related protein 4 RAS small GTPases, Rab subfamily S2R O -

Kinase FBgn0013759   Caki Calcium/calmodulin-dependent protein kinase S2R O -

Lipid Assoc. FBgn0030749   Annexin B11 Calcium-dependent phospholipid binding S2R O

Lipid Assoc. FBgn0035697   CG10163 phospholipase A1 S2R O

Lipid Assoc. FBgn0037293   CG12007 RAB-protein geranylgeranyltransferase S2R O

Phosphatase FBgn0027515   BcDNA:LD21794 Protein serine/threonine phosphatase S2R O -

S2R
+

 cells only,
retracted cells with
F-actin defect

FBgn0020440   Focal adhesion kinase-like Protein tyrosine kinase S2R • + ~ -

Cytoskeletal FBgn0032859   Arc-p34 Arp2/3 protein complex S2R - ~

SH2/SH3 FBgn0025865   Cortactin SH3 domain S2R - ~ -

Kinase FBgn0014001   PAK-kinase Receptor signaling protein serine/threonine kinase S2R < O ~ -

Kinase FBgn0000017   Abl tyrosine kinase Protein tyrosine kinase S2R < X ~ -

GEF FBgn0035761   RhoGEF4 Rho guanyl-nucleotide exchange factor S2R < ~

Kinase FBgn0032677   CG5790 Receptor signaling protein serine/threonine kinase S2R < ~

GEF FBgn0037188   CG7369 RAS guanyl-nucleotide exchange factor S2R A ~

GTPase FBgn0030391   CG1900 RAB small monomeric GTPase S2R + ~

Kinase FBgn0010379   Akt1 Protein serine/threonine kinase S2R / ~

Kinase FBgn0014006   Protein kinase at 92B Receptor signaling protein serine/threonine kinase S2R X ~

Kinase

Kinase

GTPase

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Phosphatase

 SH3/SH2 adaptor protein



screens a similar logic was used to group genes on the basis

of common mutant cuticle phenotypes, identifying genes

that act together to control different aspects of embryonic

development [23].

A co-RNAi screen identifies modifiers of the Pten-

dsRNA-induced cell shape phenotype

Part of the success of using Drosophila as a model genetic

system has relied upon modifier screens to identify novel

components acting in related processes or molecular path-

ways of interest [24]. Using an analogous approach in cell

culture, we designed an RNAi screen to identify genes that

modify a specific RNAi-induced cell-shape change. Pten, a

human tumor suppressor gene, is a lipid phosphatase that

dephosphorylates PIP3, acting in opposition to PI 3-kinase

[25] to control many cellular processes including growth,

adhesion, migration and apoptosis [26]. In the initial

screen, Pten RNAi was found to polarize Kc167 cells, inducing

microtubule extensions and a flattened, bipolar shape

(Figure 8b). A lower concentration of Pten dsRNA caused a

visible but less severe asymmetric microtubule phenotype

(Figure 8c) that was used for a co-RNAi screen to identify

Pten modifiers.

By screening for dsRNAs that modified the asymmetric

microtubule distribution seen in response to Pten RNAi, 20

of the 229 dsRNAs targeting predicted kinases were identi-

fied as visible suppressors of this phenotype. These

included dsRNAs corresponding to seven genes that were

not identified in screens in untreated Kc167 cells: Akt1,

CG31187, LIM-kinase 1, MAP kinase activated protein-kinase

2, Pi3K92E, slipper and wee. Importantly, two of these

encode known positive regulators of the pathway: Pi3K92E

and Akt1 [6] (Figure 8d,e). One suppressor, CG31187,

encodes a predicted diacylglycerol kinase that may act

directly in the phosphoinositide cycle [27]. It is possible that

other genes identified as RNAi suppressors may rescue the

Pten-morphology phenotype indirectly by modifying actin-

filament organization (LIMK1 [28]). These results demon-

strate that modifier screens, like those used to identify new

components of specific pathways in classical genetic

systems, can now be carried out in cell culture using RNAi-

screening technology.

Conclusions
Despite a limited knowledge of the molecular mechanisms

used to maintain the morphology of Drosophila cells in

culture, we have identified over 100 genes with visible loss-

of-function phenotypes that affected specific aspects of meta-

zoan cytoskeletal organization, cell-cycle progression,

cytokinesis and cell shape. While both Kc167 and S2R+ cells

appear to use a similar set of genes to regulate actin filaments

at the cell cortex and for cytokinesis, S2R+ cells spread on the

substrate using integrin-mediated adhesion, and Kc167 cells

require proper control of the PI 3-kinase pathway to main-

tain their round shape. Furthermore, the functional conse-

quences of a reduction in the expression of an individual

gene did not correlate with its level of expression in the two

cell types. It is more likely that gene function is determined

by the network of functional interactions of a large number

of proteins. Thus, our analysis has generated a genetic

description of two cell types that reveals potential mecha-

nisms through which their contrasting cell shapes might be

generated. The same technology can be easily adapted using

modified cell lines or conditions to a wide variety of cell-

based studies and on a greater genomic scale. Comparisons

between diverse RNAi screens will be invaluable in illumi-

nating the complexities in the ways in which sets of genes

can functionally interact to generate different cell behaviors.

Significantly, RNAi screens bring systematic reverse genetics

to cell culture, facilitating comprehensive functional analyses

of cell-biological processes.

Materials and methods
Selection of gene targets and primer pairs

The set of genes represented in the RNAi library was chosen

to include the vast majority of those encoding predicted sig-

naling components and cytoskeletal regulators. Genes were
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Figure 6 (see figure on the previous page)

RNAi profiles identify known and novel genes with related morphogenetic functions. Table headings are as defined as in Figure 2. (a,b) Profile I:
binucleate cells that identified genes required for cytokinesis, as detected either in (a) both cell types or (b) a single cell type. (c,d) Profile II: F-actin
phenotypes observed in both cell types identified genes with potentially conserved roles in F-actin dynamics. (c) Increased or polarized (uneven)
accumulation of F-actin identified genes with potential roles in F-actin capping, severing or depolymerization. (d) Reduced F-actin and altered cell shape
identified genes with potential roles in F-actin polymerization. (e,f) Profile III: a common RNAi phenotype observed in Kc167 cells was a change from
round to spindle-shaped, with the formation of F-actin puncta and microtubule extensions. (e) Cases with phenotypes also observed in S2R+ cells
identified genes involved in F-actin and microtubule regulation. (f) Cases with phenotypes observed only in Kc167 cells identified components of
receptor signaling pathways. (g-i) Profile IV: RNAi phenotypes resulting in round, detached S2R+ cells. (g) Phenotypes detected in both S2R+ and Kc167

cells identified genes with probable indirect effects on cell adhesion and spreading, including roles in the cell cycle and cell viability; (h) RNAi
phenotypes specific for S2R+ cells identified genes that may distinguish the flat S2R+ cell morphology, including genes encoding cell-matrix adhesion
components. (i) Genes identified by a related RNAi phenotype, resulting in retracted (unspread but flat) S2R+ cells .



selected on the basis of a combination of predictions using

annotations in the FlyBase [12] and Berkeley Drosophila

Genome Project (BDGP) databases [29] and by BLAST

searches for orthologs of known genes with functional

domains via NCBI/GenBank [30]. The selected genes were

categorized according to one of the following predicted

protein functions or domains: adhesion molecules, adeny-

late and guanylate cyclases, cytoskeletal proteins and

binding proteins (such as proteins with WH and FERM

domains), G proteins, GTPase-activating proteins (GAPs),

GEFs, GTPases, kinases, lipid-associated proteins (such as

phospholipases or proteins containing PH and PX

domains), miscellaneous proteins (such as transcription

factors, PI phosphotyrosine-binding domains and cell-cycle

regulators), motors (such as dynein, kinesins and

myosins), PDZ-domain-containing proteins, phos-

phatases, proteins involved in proteolysis (such as ubiqui-

tin-conjugating enzymes and ligases), proteins containing

SH2 or SH3 domains and vesicle-transport-associated proteins

(such as SNAREs, SNAPs and dynamins). A complete list is

presented in Additional data file 1 with the online version

of this article. 

Primer sequences were predicted using genomic and

annotation data from the BDGP Release 1 [4] with the

Primer3 software [31]. Primers were preferentially selected

to span predicted exonic sequences if confirmed by the

existence of expressed sequence tag (EST) or protein

homology data. Electronic PCR [32] was used to select

amplification products from genomic sequence between

200 and 1,800 bp in length and possessing < 21 bp of exact

match with any other predicted or confirmed transcript

sequence. A smaller PCR product size was selected if the

genomic sequence corresponded to > 500 bp coding

sequence. PCR primers could only be predicted within the

most proximal half of the intergenic sequence of each gene.

Generation of dsRNA

OregonR genomic DNA was PCR-amplified using Taq

(PerkinElmer, Foster City, USA) with 5 �M each primer in

96-well plates (Tetrad from MJ Research Inc., Waltham,

USA; 92ºC for 1 min, 34 cycles of 92ºC for 20 sec, 54ºC for

40 sec, 72ºC for 4 min, then 72ºC for 3 min and held at

4ºC), ethanol precipitated, washed, vacuum dried and

resuspended in 7 �l DEPC-treated 100 mM Tris-HCl, 0.1 mM

EDTA. Separate T3 and T7 in vitro transcription reactions

were conducted (T3 and T7 MEGAscript; Ambion, Austin,

USA) using 1.5 �l PCR product per well, incubated at 37ºC

for 4.5 h, and diluted with 47 �l of RNase-free water. T3

(50 �l) and T7 (50 �l) reaction mixes were combined, puri-

fied using RNeasy 96 Kits and a QIAvac 96 vacuum mani-

fold (QIAGEN, Valencia, USA), soaked twice for 2 min and

eluted in 80 �l RNase-free water. To anneal T3 and T7

single-strand RNAs, 50 �l purified RNA was mixed with 10 �l

6× buffer (40 mM KPO4 pH 7.5, 6 mM K-citrate pH 7.5,
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Figure 7

Levels of gene expression do not necessarily correlate with gene
function. Immunoblot detection of anti-�PS-integrin (Mys, top panels)
and anti-Enabled (Ena, middle panels) after 3 days RNAi. Columns
represent Kc167 cells (left) and S2R+ cells (right) treated with different
dsRNAs (gfp, ena, mys, R, talin). Both cell types expressed Mys and Ena
in cells treated with a nonspecific dsRNA. The respective proteins were
completely and specifically depleted by treatment with mys or ena

dsRNAs. Anti-�-tubulin (bottom panels; Tub) shows a loading
comparison.
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Figure 8

A co-RNAi screen for modifiers of Pten-dsRNA phenotype.
Microtubules are visualized by �-tubulin immunostaining. (a) Control
Kc167 cells exhibited normal, round morphology. (b) In response to
Pten dsRNA at the same concentration as the original screening
conditions, Kc167 cells were bipolar and spindle-shaped with
microtubule extensions (arrows). (c) In response to a relatively low
concentration of Pten dsRNA, the conditions used for the modifier
screen, Kc167 cells exhibited a less pronounced phenotype with
asymmetric microtubule accumulation (arrowheads). Specific dsRNA
suppressors of the Pten-RNAi-induced cell shape restored the normal,
round cell morphology and microtubule organization, identifying 
(d) Pi3K92E, (e) Akt1 and (f) LIMK1.
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4% PEG 6000) and heated in a PCR block at 68ºC for 10 min

and 37ºC for 30 min. Purified dsRNA and remaining non-

annealed mixes were stored in 96-well plates at -70ºC. For

screens, an average of 0.3 �g dsRNA in 3 �l was transferred

from stock plates to 384-well black-sided, tissue-culture-

treated optical bottom-assay plates (Corning, Acton, USA)

using a multichannel pipette or a CyBio robot (CyBio US

Inc., Woburn, USA).

Cell cultures

Kc167 cells and S2R+ cells were grown in Schneider’s

medium (Invitrogen, Carlsbad, USA) with 10% heat-inacti-

vated fetal bovine serum (JRH Biosciences, Fenexa, USA)

and penicillin-streptomycin (Sigma, St Louis, USA) at 24ºC

in treated culture flasks (Falcon from BD Biosciences,

Bedford, USA). S2R+ cells were removed from culture flasks

using Trypsin-EDTA (Invitrogen).

RNAi and cell staining

RNAi was performed as described [6]. Briefly, 1.2 × 104 cells

in 10 �l serum-free Schneider’s medium were added to

dsRNAs in 384-well assay plates using a Multidrop384

liquid dispenser (Thermo Labsystems, Franklin, USA), cen-

trifuged at 1,200 rpm for 1 min, then incubated at room

temperature for 30 min before adding 30 �l more medium

with serum by MultiDrop. Cells were grown for 3 days at

24ºC. In the RNAi-modifier screen, 0.1 �g Pten dsRNA in

3 �l was added to each assay-well before plating cells. Cells

were processed using the MultiDrop dispenser and a multi-

channel manifold (Drummond Scientific, Broomall, USA).

Cells were fixed for 10 min in 4% formaldehyde (Poly-

science, Niles, USA) in phosphate-buffered saline (PBS),

washed twice in PBS with 0.1% Triton-X-100 (PBST),

stained overnight at 4ºC with FITC-conjugated anti-tubulin

(DM1A; Sigma) and TRITC-phalloidin (Sigma) in PBST

with 3% bovine serum albumin, stained for 10 min in

PBS with 4�,6-diamidino-2-phenylindole, dihydrochloride

(DAPI; Sigma) and washed in PBS.

Autoscope image acquisition

Fluorescent images of cells in 384-well plates were

acquired using an automated Nikon TE300 microscope

with a 20× objective and HTS MetaMorph software (Uni-

versal Imaging, Downington, USA) running an automated

Mac5000-driven stage, filter wheel and shutter (Ludl Elec-

tronic Products, Hawthorne, USA), an automated Pifoc

focusing motor (Piezo Systems Inc., Cambridge, USA) and

an Orca-ER cooled-coupled device camera (Hamamatsu

Corporation USA, Bridgewater, USA). Images were also

acquired using a similar automated microscope with a

Prior stage and controller (instrument kindly shared by

the Institute for Chemistry and Cell Biology, Harvard

Medical School). Automated focusing was performed on

DAPI-stained DNA. Images from UV, TRITC, and FITC

channels were then collected within the same plane using

preset exposures and a binning of 2 (640 w × 512 h

pixels). Images from two different sites within each well

were collected, representing around 12% of the total area.

Multichannel images were combined as an RGB overlay

within a stack of images for each plate. 

Image annotation

Images from each channel and combined RGB images were

visually scored independently by two researchers (B.B. and

A.K.). Annotations assigned to each of the different sites

imaged within every well were exported from MetaMorph

into Excel spreadsheets. Phenotypes observed in multiple

fields of replicate screens by independent observers were

considered for further analysis. All visible phenotypes

observed for an estimated majority of imaged cells per

dsRNA treatment were recorded. Phenotypes were classified

into one of seven major categories denoting visible defects in

actin filaments, microtubules, DNA, cell shape, cell size, cell

number and cell viability. Some descriptions were inter-

dependent and therefore occasionally redundant: for example,

cell shape was determined by an overall assessment of the

actin and microtubule organization. Further subcategories

were used to describe specific morphological attributes,

although potentially subtle differences were still distinguish-

able between specific dsRNA phenotypes grouped within the

same category. Specific categories included the following. 

F-actin

(a) Variable or undefined; (b) reduced levels or non-cortical

(F-actin not apparent at the cell cortex, with diffuse or low

levels of staining); (c) fibers (the appearance of spikes of F-

actin away from the cortex, within the cell body); (d) puncta

or dots (smaller and bigger accumulations within the cyto-

plasm, respectively); (e) accumulated (elevated levels

and/or expanded at the cortex); (f) polarized (asymmetric

distribution of actin at the cortex, usually fewer but larger

accumulations than puncta or dots); (g) processes or ruffles

(spiky or broad actin-rich protrusions, reminiscent of filopo-

dia and lamellipodia). 

Microtubules

(a) Variable or undefined; (b) reduced levels; (c) dots (as

described for F-actin); (d) aberrant or frequent mitotic spin-

dles (unusually formed or sized spindles and/or an increased

frequency of spindles); (e) accumulated; (f) bipolar exten-

sions or spikes (elongated microtubule bundles emanating

as one to two opposing radial cell protrusions); (g)

processes (multiple radial protrusions of microtubule

bundles); (h) disorganized, uniform (a microtubule

network throughout the cytoplasm, no longer with stronger

staining of the perinuclear array). 
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DNA

(a) Variable or undefined; (b) small or condensed; (c) big

or diffuse (abnormal size was estimated); (d) multi-

nucleated cells. 

Cell shape

(a) Variable or undefined; (b) flat; (c) retracted (pertains to

S2R+ cells that remained flat but less well or less evenly

spread, based on the shape and length of the cell edge and

an estimate of the spreading area); (d) processes, spiky or

stretchy (a description of the cell edge, in combination with

F-actin and microtubule organization); (e) bipolar (pertains

to Kc167 cells with a polarized axis, with varying degrees of

lengthening ranging from lemon shapes to elongated

spindle shapes); (f) round or nonadherent (pertains to S2R+

cells that were no longer flat). 

Cell size 

(a) Variable; (b) small; (c) big (based on estimated size).

Cell number

(a) Variable; (b) sparse (having an estimated less than half

of the normal cell confluence of approximately 1,000 cells

per field).

Cell viability

(a) Death (fewer than an estimated 100 cells per field).

Molecular assays

Cells were plated at 106 cells per ml in 6-well plates with or

without 15 �g dsRNA (results shown are either with gfp,

mys, if, Rap1 or talin), as described above. After 3 days, cells

in duplicate wells were processed for either protein or

mRNA analyses. For protein detection on western blots,

cells were washed, collected, resuspended in 75 �l lysis

buffer (50 mM Tris, pH 7.5; 150 mM NaCl; 1 mM EDTA;

1% NP40; 0.5% DOC; 10% SDS; 10 mM NaF; 1 mM NaOV;

protease inhibitors), incubated on ice for 15 min and spun

at 4ºC for 10 min before loading 10-12 �l supernatant with

2-mercaptoethanol to run on a 10% Tris-HCl polyacryl-

amide electrophoretic gel (BioRad, Hercules, USA). Semi-

dry transfer to nitrocellulose membrane was probed with

rabbit anti-Myospheroid (185E; gift of R. Hynes), mouse

anti-Enabled (gift of D. Van Vactor) and mouse anti-�-

tubulin (DM1A; Sigma) and detected with HRP anti-rabbit

or anti-mouse (Jackson Labs, Bar Harbor, USA) with ECL

Western Blotting Analysis System (Amersham Bioscience

Corp., Piscataway, USA). 

Alternatively, cells were lysed in 1 ml TRIzol (Invitrogen)

and processed for total RNA resuspensions. Quantitated

RNA samples (Bioanalyzer; Agilent Technologies, Palo Alto,

USA) were normalized for reverse transcription reactions

with SuperScript III (Invitrogen), then diluted cDNA was

used for quantitative PCR (LightCycler FastStart DNA

Master SYBR Green I, Roche Applied Science, Indianapolis,

USA). Analyzed products were assayed in triplicates in mul-

tiple experiments. Individual samples were averaged, then

normalized according to an adjustment factor, determined

by the difference between cell types in the cross-point or

cycle measurement for the rp49-positive control product.

Relative levels of expression in the two cell types were pre-

sented as the difference between the averaged and adjusted

cross-points (with one cycle difference approximately equiv-

alent to a two-fold difference in expression level).

Additional data files
The following are provided as additional materials with this

article online: the gene identity and primer sequences for

dsRNAs used in the RNAi screens (Additional data file 1); the

genes identified with phenotypes in the RNAi screens, orga-

nized by predicted functional class (Additional data file 2). 
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