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Sleeping beauty

Medulloblastoma (MB) is the most common malignant

pediatric brain tumor [10]. Although continued advances

have been made in our understanding of medulloblas-

toma, questions remain about its etiology and treatment

[3, 4, 7, 9, 13–15, 17, 18]. Medulloblastoma is classified

into four demographically, clinically, and molecularly

distinct subgroups called WNT, SHH, Group 3 and

Group 4 (As reviewed in [19]), and further divided into

additional distinct molecular subtypes [3, 14]. While

patients with (WNT) pathway driven medulloblastoma

have favorable outcomes, recurrence rates are higher in

other subtypes such as SHH, which tend to recur locally,

and Group 3 and 4, which are associated with distal me-

tastases [16]. The biology of metastatic medulloblastoma

is distinct from primary medulloblastoma; representing

potentially a different therapeutic disease [6, 8, 13]. Ap-

proaches are needed to identify pathways of therapy

resistance in both primary and metastatic compartments

of medulloblastoma to guide selection of targeted ther-

apies. As an example, the MET proto-oncogene is up-

regulated in SHH and Group 3 medulloblastoma, and

can be targeted by treatment of cells and mouse models

with the small molecule inhibitor, Foretinib [4]. We uti-

lized a spontaneous metastatic mouse model of medullo-

blastoma driven by the Sleeping Beauty mutagenesis

transposon system [21] to pinpoint functional drivers

and pathways of resistance to Foretinib [4] in both pri-

mary and metastatic medulloblastoma. This serves as a

novel approach to dissecting patterns of therapy resist-

ance at multiple tumor sites simultaneously which can

be readily applied to other cancer systems.

Approach
A medulloblastoma sleeping beauty transposon muta-

genesis mouse model (Ptch+/−, SB100/SB68, T2Onc),

that spontaneously develops primary and metastatic me-

dulloblastoma with 100% penetrance, was used to iden-

tify pathways of Foretinib resistance [13] (Fig. 1a). This

system allows for entrapment of both oncogenes and

tumor suppressor genes, which can be identified by

next-generation sequencing of transposon insertion sites

[21]. We showed previously that Foretinib is an effective

inhibitor of the MET pathway in SHH and Group 3 me-

dulloblastoma mouse models [4] (Fig. 1b). Following

tumor establishment in a time frame of 30–35 days, mice

were treated with vehicle or Foretinib, through continu-

ous osmotic pump infusion into the cerebrospinal fluid

for 28 days at a rate of 0.25 μl per hour (Fig. 1a). Resist-

ant primary and metastatic tumors were harvested and

genomic common insertion sites (gCIS) were identified

by SPLINK PCR combined with paired-end Illumina

high-throughput sequencing (Fig. 1a), to pinpoint gen-

etic drivers of therapy resistance.

Results and discussion
We leveraged the Sleeping Beauty transposon system to

identify pathways of resistance to Foretinib as a proof-

of-concept strategy, which could be applied to other
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cancer models and systems. In primary medulloblas-

toma, the patterns of gCISs in Foretinib-treated mice

were highly distinct from control mice, thus supporting

that the underlying mechanisms of primary medulloblas-

toma are different from tumors receiving Foretinib ther-

apy (Fig. 2a). In primary Foretinib-treated tumors, we

identified specific insertions in known tumor oncogenes

and tumor suppressor genes such as Pten, Cdh2, Egfr,

and Acvr1b [1, 5, 20] (Fig. 2a-c). As two examples, PTEN

insertions were predicted to being inactivating mutations

by their location and antisense orientation within the 5′

end of the gene introducing an early poly A transcrip-

tional termination signal. CDH2 insertions were pre-

dicted to either promote expression of small isoforms of

CDH2 and/or ablate expression of long isoforms of the

gene. The majority of these candidates have been shown

to be mutated in cancer when compared against the

Catalogue of Somatic Mutations in Cancer database and

several have been previously implicated in brain tumori-

genesis [1, 2, 5, 20] (Fig. 2b). Further, the mechanisms

mediating Foretinib-resistance in primary site tumors were

over-represented by pathways involved in protein metabol-

ism, specifically ubiquitin-mediated protein degradation

(Fig. 2d). Our findings demonstrate that mice bearing

medulloblastoma and receiving Foretinib therapy exhibit

distinct pathway alterations from primary lesions. These

pathways, identified through Sleeping Beauty transposon

insertion analysis, represent candidate drivers and potential

targets in Foretinib resistant medulloblastoma.

Historically, metastatic disease has been assumed to be

highly similar to primary tumors, and therefore presum-

ably equally responsive to treatments designed to target

primary lesions. Using the Sleeping Beauty Transposon

system, we show that primary and metastatic medullo-

blastoma exhibit distinct patterns of genetic alterations

(Fig. 3a, Additional file 1: Table S1-S4). gCISs identified

in primary medulloblastoma included transcriptional

regulators such as Crebbp, and Ep300, and in metastatic

medulloblastoma immune response-related genes such

as C6, A2m, and Pkp2 (Additional file 1: Table S5-S8).

These data support that the primary and metastatic

compartments of medulloblastoma are driven by distinct

molecular mechanisms [12]. We next asked whether

metastatic medulloblastoma might evolve different or

convergent pathways of resistance, as compared to the

primary-treated tumors. We found that metastatic

medulloblastoma receiving Foretinib therapy exhibited

distinct patterns of genomic insertions compared to the

metastatic compartment of vehicle treated mice (Fig. 3b).

Furthermore, metastatic gCISs were highly divergent from

the primary compartment in mice, which had also received

Foretinib therapy (Fig. 3c). Foretinib-resistant metastatic

medulloblastoma insertions included Basp1, Flt4, Mllt10,

and Asxl2 (Fig. 3d,e) and pathways involved in cellular
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Fig. 1 A transposon-mutagenesis system to identify genes mediating Foretinib resistance in Medulloblastoma. a A schematic describing the steps

used to treat medulloblastoma-bearing mice with Foretinib and the identification of transposon insertion sites. b A Kaplan-Meier plot demonstrating

significant improvement in overall survival in mice receiving Foretinib treatment
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metabolism (Fig. 3f). These findings demonstrate that

primary and metastatic medulloblastoma are molecularly

distinct; hence their response and resistance to therapy may

be highly divergent. Furthermore we demonstrate the ef-

fectiveness of functional genomic mapping to simultan-

eously identify putative drivers of tumorigenesis in distinct

tumor compartments.

Conclusion

Our study has identified potential pathways that medullo-

blastoma cells may co-opt to overcome Foretinib inhibition,

and provides a strategy for which drug resistance pathways

to other medulloblastoma targeted therapies may be identi-

fied. Prospective identification of these pathways could be

used to determine combinatory treatments that may be ef-

fective for resistant primary and metastatic tumor clones.

We further demonstrate in our model that primary and

metastatic medulloblastoma are genetically distinct, and in

response to Foretinib-therapy, exhibit divergent mecha-

nisms of resistance. A limitation of our method is that while

driver pathways may be identified, they may not represent

the exact genes targeted in resistant human primary

tumors. Therefore, integrative functional mouse modeling

using this Sleeping Beauty Approach paired with genomic

characterization of resistant primary tumors, may prioritize

pathways and specific targets that mediate cancer therapy

resistance. Finally, our data lends support that treatments

armed against genetic targets in the primary site may be

ineffective for metastatic lesions, and that potentially dis-

tinct genetic evolution occurs between primary and meta-

static medulloblastoma under therapy.

Materials and methods

Animal studies

All mouse studies were approved and performed in ac-

cordance to the policies and regulations of the Institutional

A C
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Fig. 2 Transposon insertion patterns are divergent in primary medulloblastoma receiving Foretinib therapy. a A Venn diagram illustrating the number

of statistically significant gCISs exclusive or shared gCISs between vehicle (n = 14) and Foretinib (n = 12) treated primary medulloblastoma. b A table

showing the Top 20 statistically significant Foretinib resistance genes in primary medulloblastoma. Highlighted in red are genes which have been

reported to be mutated in cancer when compared against the COSMIC database. c Examples of transposon insertions in Cdh2 and Pten and their

direction of orientation (red = anti-sense, blue = sense) relative to direction transcription (green). d Pathway analysis of Foretinib-resistance genes in

primary medulloblastoma identified using GeneMania
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Animal Care and Use Committee of the University of To-

ronto and the Hospital for Sick Children. A medulloblas-

toma Sleeping Beauty transposon mutagenesis murine

model (Ptch+/−/SB11/T2Onc) was used, which frequently

and spontaneously develops primary and metastatic MB.

Ptch+/−/SB11/T2Onc mice were generously provided by

Dr. Michael D. Taylor, Hospital for Sick Children, Toronto,

Canada. Mice at post-natal day 30–35 were treated with

vehicle or Foretinib (6mg/kg), via Alzet osmotic pump

(Model 2004) slow-infusion into the cerebrospinal fluid of

the right lateral ventricle, for 28 days at a rate of 0.25ul/

hour. Nucleic acid extractions were carried out as

A D
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Fig. 3 Divergent patterns of transposon insertions in metastatic medulloblastoma following Foretinib therapy. a A Venn diagram illustrating the

number of statistically significant gCISs identified as exclusive or shared between primary (n = 14) and metastatic medulloblastoma (n = 26). b A

Venn diagram illustrating the number of statistically significant gCISs exclusive or shared gCISs between vehicle (n = 26) and Foretinib treated

metastatic medulloblastoma (n = 22). c A Venn diagram comparing the gCISs between primary (n = 12) and metastatic (n = 22) Foretinib treated

medulloblastoma. d A table showing the Top 20 statistically significant Foretinib resistance genes in metastatic medulloblastoma. Highlighted in

red are genes, which have been reported to be mutated in cancer when compared against the COSMIC database. e Examples of transposon

insertions in Basp1 and Fcgr4 and their direction of orientation (red = anti-sense, blue = sense) relative to direction transcription (green). f Pathway

analysis of Foretinib-resistance genes in metastatic medulloblastoma identified using GeneMania
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previously described. Statistical differences in survival

curves of mice was assessed using a Kaplan-Meier estimate

and log-rank test.

Splinkerette PCR and common genomic insertion site

analysis

Transposon common insertion sites were identified by

SPLINK PCR of tumour DNA, followed by 100 bp paired-

end Illumina next-generation sequencing (HiSeq 2500).

Genomic DNA was digested and ligated with linker +/−

primers, amplified through PCR, then further amplified

with barcoded primers through a second PCR. DNA was

then purified and prepared for sequencing; protocol as pre-

viously described [10]. Gene pathways were identified by

querying gene lists with GeneMania [11], and significance

measured using a hypergeometric distribution test. Data

availability: The datasets supporting the conclusions of this

article are included within this article. Raw data will be

made openly available through the GEO repository.

Additional file

Additional file 1: Table S1. Control Insertions - Primary Medulloblastoma.

Table S2. Control Insertions - Primary Medulloblastoma (per sample).

Table S3. Foretinib Specific Insertions - Primary Medulloblastoma.

Table S4. Foretinib Insertions - Primary Medulloblastoma (per sample).

Table S5. Control Insertions - Metastatic Medulloblastoma. Table S6. Control

Insertions - Metastatic Medulloblastoma (per sample). Table S7. Foretinib

Specific Insertions - Metastatic Medulloblastoma. Table S8. Foretinib

Insertions - Metastatic Medulloblastoma (per sample). (XLSX 479 kb)
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