
A functional limit theorem for η-weakly dependent processes and its applications

A. Jean-Marc Bardet (bardet@univ-paris1.fr)
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VENEZUELA

Abstract. We prove a general functional central limit theorem for weak dependent time series. A very large variety
of models, for instance, causal or non causal linear, ARCH(∞), bilinear, Volterra processes, satisfies this theorem.
Moreover, it provides numerous application as well for bounding the distance between the empirical mean and the
Gaussian measure than for obtaining central limit theorem for sample moments and cumulants.

Keywords: Central limit theorem, Weakly dependent processes, Sample moments and cumulants

1. Introduction

In this paper, we consider the following empirical mean,

Sn =
1√
n

n∑

k=1

h(xk) =
1√
n

n∑

k=1

Yk (1)

where h : IRd → IR is a function and (xn)n∈ZZ with values in IRd is a stationary zero mean sequence
that satisfying certain conditions. We study the case (see the conditions below) where Sn converges
in law to a Gaussian distribution. More precisely, the aim of this paper will be to specify conditions
to obtain a decay rate to 0 of

∣∣∆n(φ)
∣∣ with

∆n(φ) = IE (φ(Sn) − φ(N)) , (2)

for φ a C3(IR) function with bounded derivatives up to order 3, where N is a Gaussian random

variable satisfying N ∼ N (0, σ2) with σ2 =
∑

k∈ZZ

Cov (h(x0), h(xk)).

Let us precise now the different assumptions for the times series and functions considered in
(1). First, we have chosen to work in the frame of η-weakly dependent processes. This very general
class of dependent processes was introduced in the seminal paper of Doukhan and Louhichi (1999)
to generalize and avoid certain difficulties linked of strong mixing property. Indeed, this frame
of dependence includes a lot of models like causal or non causal linear, bilinear, strong mixing
processes or also dynamical systems. Secondly, this property of dependence is independent of the
marginal distribution of the time series, that can be as well a discrete one, Lebesgue measurable
one or else. Thirdly, non causal processes can be as well studied as causal ones with this property
of dependence, in contrary of strong mixing processes or martingales. Finally, these definitions of
dependence can be more easily proved and used in a lot of statistic contexts, in particular in the
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case of functions of the time series, than the strong mixing one.

The definition of such η-weak dependent property is the following. A process X = (Xn)n∈ZZ

with values in IRd is a so-called η−weakly dependent process when it exists a sequence (ηr)r∈IN

converging to 0 satisfying:
∣∣∣Cov

(
g1(Xi1 , . . . , Xiu), g2(Xj1 , . . . , Xjv)

)∣∣∣ ≤
(
u · (Lip g1) · ‖g2‖∞ + v · (Lip g2) · ‖g1‖∞

)
· ηr (3)

for all






• (u, v) ∈ IN∗ × IN∗;
• (i1, . . . , iu) ∈ ZZu and (j1, . . . , jv) ∈ ZZv with i1 ≤ · · · ≤ iu < iu + r ≤ j1 ≤ · · · ≤ jv;
• functions g1 : IRud → IR and g2 : IRvd → IR satisfying

‖g1‖∞ ≤ ∞, ‖g2‖∞ ≤ ∞, Lip g1 < ∞ and Lip g2 < ∞.

A lot of usual time series are η-weakly dependent. Different examples of such time series will
be studied in the following section: strong mixing processes (see Doukhan and Louhichi, 1999),
GARCH(p, q) or ARCH(∞) processes (see Doukhan et al., 2004), causal or non causal linear
processes (see Doukhan and Lang, 2002), causal or non causal bilinear processes (see Doukhan et
al., 2005) and causal or non causal Volterra processes (see Doukhan, 2003). Now, we can specify
the different assumptions used in the general functional central limit theorem:

Assumptions A on the sequence (xn)n:
(in the sequel, the norm is |(u1, . . . , ud)| = max{|u1|, . . . , |ud|} for (u1, . . . , ud) ∈ IRd)

1. there exists m−th order moments for (xn)n with m > 2;

2. (xn)n∈ZZ is a η−weakly dependent process (defined from the inequality (3)) with values in IRd,
and the sequence η = (ηr)r∈IN satisfies:

0 < ηr = O (
r−α)

for all r ∈ IN with α > 0. (4)

Assumptions H on the function h:

1. IE(h(x0)) = 0;

2. There exists a ≥ 1 and A = A(d) ≥ 1 such that for all u, v ∈ IRd,

{ |h(u)| ≤ A(|u|a ∨ 1);
|h(u) − h(v)| ≤ A

((|u|a−1 + |v|a−1
) ∨ 1

) |u − v|.

Using a Bernstein’s blocks technique, we prove here the following theorem:

THEOREM 1. Let h and (xn)n∈ZZ satisfy respectively assumptions H and A, with m > 2a. If

α > max
(
3 ;

2m − 1

m − 2a

)
, then σ2 =

∞∑

k=−∞
Cov (h(x0), h(xk)) < ∞, and for any Z ∼ N (0, 1) random

variable, for any φ ∈ C3(IR) with bounded derivatives, there exists c > 0 such that:

∣∣∣IE(φ(Sn) − φ(σ · Z))
∣∣∣ ≤ c · n−λ with λ =

α(m − 2a) − 2m + 1

2(m + a − 1 + α · m)
. (5)
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Even if this result may be not optimal in term of the conditions linking the moment assumption
with the decay rate of weak dependence of the time series, this however concerns a lot of models
and open new perspectives of treatments for non causal processes. Moreover, if α → ∞ and m → ∞
are large enough, then λ → 1

2 . In such an asymptotic case, the rate of convergence n−λ is close to
the rate of sequence of i.i.d. random variables (that is 1/

√
n).

The remainder of this paper is organized as follows. The following Section 2 is devoted to statistical
applications for different examples of η-weakly time series. Section 3 contains the main proof of
the general functional central limit theorem.

2. Applications of the functional central limit theorem

2.1. Time series satisfying the Assumptions A

Causal GARCH and ARCH(∞) processes

The famous and from now on classical GARCH(q′, q) model was introduced by Engle (1982) and
Bollerslev (1986) and is given by relations

Xk = ρk · ξk with ρ2
k = a0 +

q∑

j=1

ajX
2
k−j +

q′∑

j=1

cjρ
2
k−j , (6)

where (q′, q) ∈ IN2, a0 > 0, aj ≥ 0 and cj ≥ 0 for j ∈ IN and (ξk)k∈ZZ are i.i.d. random variables
with zero mean (for an excellent survey about ARCH modelling, see Giraitis et al., 2005). Under
some additional conditions, the GARCH model can be written as a particular case of ARCH(∞)
model (introduced in Robinson, 1991) that satisfied:

Xk = ρk · ξk with ρ2
k = b0 +

∞∑

j=1

bjX
2
k−j , (7)

with a sequence (bj)j depending on the family (aj) and (cj) in the case of GARCH(q′, q) process.
Then,

PROPOSITION 1. [See Doukhan et al, 2005] Let h satisfies assumption H. Let X be a stationary
ARCH(∞) time series following equation (7), such that it exists m > 2a satisfying IE(|ξ0|m) < ∞,

with the condition of stationarity, ‖ξ0‖2
m ·

∞∑

j=1

|bj | < 1. Then, if:

− it exists C > 0 and µ ∈]0, 1[ such that ∀j ∈ IN , 0 ≤ bj ≤ C · µ−j, then X is a η-weakly

dependent process with ηr = O(e−c
√

r) and c > 0 (this is the case of GARCH(q′, q) processes)
and (5) is satisfied.

− it exists C > 0 and ν > max
(
4 ;

3m − 2a − 1

m − 2a

)
such that ∀j ∈ IN , 0 ≤ bj ≤ C · j−ν , then

X is a η-weakly dependent process with θr = O(
r−ν+1) and (5) is satisfied.
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Causal Bilinear processes

Assume that X = (Xk)k∈ZZ is a bilinear process (see the seminal paper of Giraitis and Surgailis,
2002) satisfying the equation:

Xk = ξk

(
a0 +

∞∑

j=1

ajXk−j

)
+ c0 +

∞∑

j=1

cjXk−j for k ∈ ZZ, (8)

where (ξk)k∈ZZ are i.i.d. random variables with zero mean and such that ‖ξ0‖p < +∞ with p ≥ 1,
and aj , cj , j ∈ IN are real coefficients.

PROPOSITION 2. [See Doukhan et al., 2004] Let h satisfies assumption H. Let X be a stationary

bilinear time series satisfying equation (8) with c0 = 0, IE(|ξ0|m) < ∞ and ‖ξ0‖m ·
( ∑∞

j=1 |aj | +
∑∞

j=1 |cj |
)

< 1 with m > 2a. If:

−
{ ∃J ∈ IN such that ∀j > J , aj = cj = 0, or,
∃µ ∈]0, 1[ such that

∑
j |cj |µ−j ≤ 1 and ∀j ∈ IN , 0 ≤ aj ≤ µj , then X is a η-weakly de-

pendent process with ηr = O(e−c
√

r), constant c > 0 and (5) is satisfied.

− ∀j ∈ IN , cj ≥ 0, and ∃ν1 > 2 and ∃ν2 > 0 such that aj = O(j−ν1),
∑

j cj < 1 and
∑

j cjj
1+ν2 < ∞, then X is a η-weakly dependent process with θr = O

(( r

log r

)−d
)
, where

d = min
(
ν1 − 1 ;

ν2 · δ
δ − ν2 · log 2

)
and δ = log

(
1 +

1 − ∑
j cj∑

j cjj1+ν2

)
. Moreover, if d > max

(
3 ;

2m − 1

m − 2a

)
,

then (5) is satisfied.

Non-causal (two-sided) linear processes

PROPOSITION 3. [See Doukhan and Lang, 2002, p. 3] Let h satisfies assumption H. Let X be a
stationary bilinear time series satisfying equation

Xk =
∞∑

j=−∞
ajξk−j for k ∈ ZZ, (9)

with (ak)k∈ZZ ∈ IRZZ and (ξk)k∈ZZ a sequence of zero mean i.i.d. random variables such that

IE(|ξ0|m) < ∞ for m > 2a. Assume that ak = O(|k|−µ) with µ > max
(7

2
;

5m − 2a − 2

2(m − 2a)

)
. Then

X is a η-weakly dependent process with ηr = O( 1

rµ−1/2

)
and (5) is satisfied.

REMARK 1. Despite the quite simplicity of this model, it exists very few results concerning the
dependence of the two-sided linear processes. The main reason of this is difficulty to use martingale
or mixing properties for a non-causal process. However, in Rosenblatt (2000, p. 52) a non-efficient
strong mixing property for two-sided linear processes was given, but under restrictive conditions
and with . The case of strongly dependent two-sided linear processes was also treated by Giraitis and
Surgailis (1990) or Horvath and Shao (1999) but only with ak = O(|k|−a) for a fixed −1 < a < 0.
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Non-causal Volterra processes

Let X = (Xt)t∈ZZ be the zero mean non causal (two-sided) and nonlinear time series, so called a
non-causal Volterra process, such that for t ∈ ZZ:

Xk =
∞∑

p=1

Y
(p)
k , with Y

(p)
k =

∑

j1 < j2 < · · · < jp

j1, . . . , jp ∈ ZZ

aj1,...,jpξk−j1 · · · ξk−jp , (10)

where (aj1,...,jp) ∈ IR for p ∈ IN∗ and (j1, . . . , jp) ∈ ZZp, and (ξk)k∈ZZ a sequence of zero mean i.i.d.
random variables such that IE(ξ2

0) = σ2 < ∞ and IE(|ξ0|m) < ∞ with m > 0. Such a Volterra
process is a natural extension of the previous case of non-causal linear process.

PROPOSITION 4. [See Doukhan, 2003] Let h satisfies assumption H. Let X be a stationary
non-causal Volterra process, satisfying equation (10) with IE(|ξ0|m) < ∞ and

∞∑

p=0

∑

j1 < j2 < · · · < jp

j1, . . . , jp ∈ ZZ

∣∣aj1,...,jp

∣∣m ‖ξ0‖p
m < ∞.

Assume that the process is in some finite order chaos (there exists p0 ∈ IN such that aj1,...,jp = 0 for

p > p0) and aj1,...,jp = O
(

max
1≤i≤p

{|ji|−µ}
)

with µ > max
(
2 ;

m + 2a − 1

m − 2a

)
. Then X is a η-weakly

dependent process with ηr = O( 1

rµ+1

)
and (5) is satisfied.

Non-causal (two-sided) bilinear processes

As a natural generalization of causal bilinear process, Doukhan et al. (2005), Lemma 2.1, define
X = (Xt)t∈ZZ a zero mean nonlinear time series, so called a non-causal (two-sided) bilinear process.
They proved the stationarity in ILk (for any k ∈]0,∞]) of such a bilinear process X = (Xk)k∈ZZ

satisfying the equation:

Xk = ξk ·
(
a0 +

∑

j∈ZZ∗

ajXk−j

)
, for k ∈ ZZ, (11)

where (ξk)k∈ZZ are i.i.d. random bounded variables and (ak)k∈ZZ is a sequence of real numbers such
that λ = ‖ξ0‖∞ · ∑j 6=0 |aj | < 1.

PROPOSITION 5. [See Doukhan et al., 2005] Let h satisfies assumption H. If X is a stationary
non causal bilinear process, i.e. a solution of (11), such that ‖ξ0‖∞ · ∑

j 6=0 |aj | < 1. Moreover,

assume that the sequence (ak)k∈ZZ is such that: ak = O(|k|−µ) with µ > max
(
4 ;

3m − 2a − 1

m − 2a

)
.

Then X is a η-weakly dependent process with ηr = O( 1

rµ−1

)
and (5) is satisfied.

Non-causal linear processes with dependent innovations

Let X = (Xn)n∈IN be a zero mean stationary non causal (two-sided) linear time series satisfying
equation (9) with a dependent innovation process. Following the results of Doukhan and Win-
tenberger (2005), if (ξn)n∈ZZ is a η-weakly dependent process, then X is an η-weakly dependent
process:
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PROPOSITION 6. Let h satisfies assumption H. Let X be a linear time series satisfying (9) with
(ak)k∈ZZ ∈ IRZZ and (ξk)k∈ZZ a η(ξ)-weakly dependent process with zero mean, such that IE(|ξ0|m) <

∞ and m > 2a. Moreover, assume that ak = O(|k|−µ) and η
(ξ)
r = O(r−ν). Then X is a η-weakly de-

pendent process with ηr = O
(
r
−ν· (µ−2)(m−2)

(µ−1)(m−1)

)
and (5) is satisfied if

(µ − 2)(m − 2)

(µ − 1)(m − 1)
· ν ≥ max

(
3 ;

2m − 1

m − 2a

)
.

2.2. Applications of the functional central limit theorem

1. The general functional theorem (1), which concerns the estimate of Dudley
∣∣∣IE(φ(Sn) − φ(σ ·

N))
∣∣∣, allows an interesting application: the majoration of a measure of the distance between

SN and its Gaussian approximation. Indeed:

COROLLARY 1. Under the assumptions of Theorem 1, there exists some c′ > 0 such that:

sup
t∈R

|IP (Sn ≤ t) − P (σ · N ≤ t)| ≤ c′ · n−λ/4, for n ∈ IN.

Proof of Corollary 1. Arguing as in Doukhan (1994) we consider, in expression (2), a smooth
approximation φε,x of the indicator function φx(t) = I1{t≤x}; this is possible to assume that

φx ≤ φε,x ≤ φx+ε and ‖φ(j)
ε,x‖∞ ≤ Cε−j for some constant C and for j = 1, 2 or 3. Then

the result may be specified and the bound may also be written with a constant c = C ·(‖φ′‖∞ + ‖φ′′‖∞ + ‖φ′′′‖∞
)

for some C which does not depend on φ. With the notation (2),

we obtain the bound: ∆n(φε,x) ≤ Cε−3n−λ for some constant (still denoted) C > 0 and each
x ∈ IR, ε ∈]0, 1], and n > 0. Using the relation supu∈IR IP

(
σ ·N ∈ [u, u + ε)

) ≤ ε
σ
√

2π
, the above

mentioned expression is then bounded above for a suitable constant c by c
(
ε−3n−λ + ε

)
; the

choice ε = n−λ/4 thus yields the result.

REMARK 2. Unfortunately, this rate is far from being optimal as stressed by Rio (2000) which
obtains rate n−ρ for some ρ < 1/3 in the case of strongly mixing sequences. Here, in the best
cases (λ → 1/2 when α → ∞, that is for instance the case of GARCH(p, q)), we obtain the
rate n−τ for some τ < 1/8.

2. The general functional theorem (1) could be applied for providing central limit theorems for
sample moments or cumulants. Here, we consider a real valued time series (Xn)n∈ZZ satisfying
assumption A (with parameters a and m that will be specified above). Indeed, for k ∈ IN∗,

denote p = (p1, . . . , pk) ∈ INk, |p| = p1 + · · · + pk and assuming that IE(X
|p|
1 ) < ∞, define:

m(p) = IE(Xp1
1 Xp2

2 · · ·Xpk
k ), the moment of order p

m̂(p)
n =

1

n

n∑

i=1

Xp1
i Xp2

i+1 · · ·Xpk
i+k−1, the sample moment of order p

Then, the following results generalize the usual central limit theorems for strong mixing
processes (for instance, see a survey in Rosenblatt, 1985):
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COROLLARY 2. 1. Set k ∈ IN∗ and p = (p1, . . . , pk) ∈ INk, |p| = p1 + · · ·+ pk. Let (Xn)n∈ZZ

be a real valued time series satisfying assumption A with m > 2|p| and α > max
(
3 ;

2m − 1

m − 2|p|
)
.

Then: √
n
(
m̂(p)

n − m(p)
) D−→

n→∞
N (0, σ2(p)),

with σ2(p) =
∑

ℓ∈ZZ

(
IE

(
Xp1

1 Xp2
2 · · ·Xpk

k Xp1

ℓ+1 · · ·X
pk
ℓ+k

) − (m(p))2
)
.

2. More generally, let I ∈ IN∗, (k1, . . . , kI) ∈ (IN∗)I , and for i = 1, . . . , I, p(i) = (p
(i)
1 , · · · , p

(i)
ki

).
Let (Xn)n∈ZZ be a real valued time series satisfying assumption A with m > 2 max(|p1|, . . . , |pI |)
and α > max

(
3 ;

2m − 1

m − 2 max(|p1|, . . . , |pI |)
)
. Then:

√
n
(
m̂(pi)

n − m(pi)
)

1≤i≤I

D−→
n→∞

NI(0, Σ(p1, . . . , pI)), (12)

with Σ(p1, . . . , pI) =




∑

ℓ∈ZZ

(
IE

(
X

p
(i)
1

1 X
p
(i)
2

2 · · ·Xp
(i)
k

k X
p
(j)
1

ℓ+1 · · ·X
p
(j)
k

ℓ+k

) − m(pi)m(pj)
)




1≤i,j≤I

.

Proof. 1. Let xi = (Xi, . . . , Xi+k−1) and h(p) : (z1, . . . , zk) ∈ IRk 7→ zp1
1 zp2

2 · · · zpk
k − m(p) that

satisfies Assumption H with a = |p|. Indeed, it is possible to prove that |h(u)| ≤ 2(m(p)∨|u||p|)
and |h(u) − h(v)| ≤ 2|p|

(|u||p|−1 + |v||p|−1) ∨ 1
)|u − v|. Then, theorem 1 can be applied.

2. Let k = max(k1, . . . , kI) and xi = (Xi, . . . , Xi+k−1). Let (λ1, . . . , λI) ∈ IRI and h =
∑I

i=1 λi ·
h(pi). It is clear that h satisfies Assumption H with a = max(|p1|, . . . , |pI |) (indeed, if each h(pi)

satisfies Assumption H with coefficient ai = |pi|, then a linear combination of h(pi) satisfies
Assumption H with coefficient a = max(|a1|, . . . , aI)). Then Theorem 1 implies that

∑I
i=1 λi ·

m̂
(pi)
n satisfies a central limit theorem. It implies the multidimensional central limit theorem.

A natural and interesting example that generalizes usual central limit theorem under strong
mixing conditions is the following:

EXAMPLE 1. Let (Xn)n∈ZZ be a real valued time series satisfying assumption A. For all

m ∈ IN∗, ℓ1 < · · · < ℓm ∈ INm, define R(ℓi) = IE(X0Xℓi) and R̂n(ℓi) =
1

n

n∑

j=1

XjXj+ℓi. Then

√
n
(
R̂n(ℓi) − R(ℓi)

)

1≤i≤m

D−→
n→∞

Nk(0, Σ(ℓ1, . . . , ℓm)), if α > max
(
3 ;

2m − 1

m − 4

)

with Σ(ℓ1, . . . , ℓm) =




∑

k∈ZZ

(
IE(X0XℓiXkXk+ℓj ) − R(ℓi)R(ℓj)

)




1≤i,j≤m

.

Moreover, the sample skewness and sample Kurtosis satisfy also central limit theorems from
the Delta-method applied to multidimensional theorem (12).
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More generally, another consequence of such a result is the central limit theorems satisfied
by the estimation of the k-th cumulant of X (obtained from the Taylor development of the
characteristic function logarithm), defined by:

κ(µ) = Cumulant(X1, Xi2 , . . . , Xik), for µ = {1, i2, . . . , i|µ|} ⊂ {1, . . . , k}.

From Leonov and Shiryaev (1959), there is a relation between cumulants and moments, that
is:

κ(µ) =
k∑

u=1

(−1)u−1(u − 1)
∑

(µ1,...,µu)

u∏

j=1

m(µj),

where (µ1, . . . , µu) (in the sum) describe all possible partitions in u subsets of the subset µ.
Then:

COROLLARY 3. Set k ∈ IN∗, µ = {1, i2, . . . , i|µ|} ⊂ {1, . . . , k}. Let (Xn)n∈ZZ be a real valued

time series satisfying assumption A with m > 2|µ| and α > max
(
3 ;

2m − 1

m − 2|µ|
)
. Then it exists

γ2(µ) > 0 such that:
√

n
(
κ̂(µ)

n − κ(µ)
) D−→

n→∞
N (0, γ2(µ)),

from the sample cumulant κ̂(µ)
n =

k∑

u=1

(−1)u−1(u − 1)
∑

(µ1,...,µu)

u∏

j=1

m
(µj)
n .

3. Proof of Theorem 1

From now on, c > 0 denotes a constant which may vary from one line to the other.

First, define a truncation in order to be able to use the previous dependence condition and make
Lindeberg technique work. For T > 0, define fT (x) = (x ∧ T ) ∨ (−T ) for x ∈ IR. Then Lip fT = 1,
‖fT ‖∞ = T . For (u1, . . . , ud) ∈ IRd, we denote

FT (u1, . . . , ud) = (fT (u1), . . . , fT (ud))

and

Yi = h(xi), Y
(T )
i = h(FT (xi)) − IE

[
h(FT (xi))

]
, E

(T )
i = Yi − Y

(T )
i (13)

LEMMA 1. Let h and (xn)n∈ZZ satisfy respectively assumptions H and A, with m > 2a. Then,

a) IE
[|E(T )

0 |] ≤ c · A · T a−m and IE
[
(E

(T )
0 )2

] ≤ c · A2 · T 2a−m ;

b) for all i ∈ ZZ, |Cov (Y
(T )
0 , E

(T )
i )| ≤ IE (|Y (T )

0 |, |E(T )
i |) ≤ c · A2 · T 2a−m;

c) for all i ∈ ZZ, |Cov (Y
(T )
0 , Y

(T )
i )| ≤ c · A2 · T 2a−1 · ηi.
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Proof of Lemma 1. First note that for γ ≥ 1 such that aγ ≤ m, from assumptions on h,

IE

[∣∣∣h(x0) − h(FT (x0))
∣∣∣
γ
]

≤ Aγ · IE
[∣∣∣(|x0|a−1 + |FT (x0)|a−1) · |x0 − FT (x0)|

∣∣∣
γ
]

≤ (2A)γ · IE
[
|x0|aγ · I1{|x0|≥T}

]

≤ (2A)γ · µ · T γa−m (Markov inequality). (14)

a) The assumptions on h lead to

IE
[|E(T )

0 |] ≤ IE
[|h(FT (x0)) − h(x0)|

]
+ IE

[|h(FT (x0))|
]

≤ 2IE
[|h(FT (x0)) − h(x0)|

]
.

Now the relation (14) with γ = 1 leads to IE
[|h(FT (x0)) − h(x0)|

] ≤ 2A · µ · T a−m. Then,

IE
[|YT,0|

] ≤ 4A · µ · T a−m.

By the same arguments,

IE
[
(E

(T )
0 )2

] ≤ 4IE
[
(h(FT (x0)) − h(x0))

2]

≤ 16A2 · µ · T 2a−m (relation (14) with γ = 2).

b) Analogously, relation (14) with Hölder inequality yields

|Cov (Y
(T )
0 , E

(T )
i )| ≤

∥∥Y
(T )
0

∥∥
m/a

·
(
IE

[∣∣E(T )
0

∣∣ m
m−a

])m−a
m

(Hölder inequality)

≤ 2
∥∥h(FT (x0))

∥∥
m/a

· 2
(
IE

(|h(x0) − h(FT (x0))|
m

m−a
))m−a

m

≤ 2A ·
∥∥|x0|a ∨ 1

∥∥
m/a

· 2A · µm−a
m · (T−m(1− a

m−a
))m−a

m (assumptions on h)

≤ c · A2 · T 2a−m.

c) Let h(T )(u) = h(FT (u))− IE
[
h(FT (x0))

]
for u ∈ IRd. From assumptions on h, it can be shown

that ‖h(T )‖∞ ≤ 2A · T a and Liph(T ) ≤ 2A · T a−1. Then the weak dependence inequality (3)
implies:

|Cov (Y
(T )
0 , Y

(T )
i )| ≤ |Cov (h(T )(x0), h

(T )(xi))|
≤ 8A2 · T 2a−1 · ηi.

LEMMA 2. Let h and (xn)n∈ZZ satisfy respectively assumptions H and A, with m > 2a and

α >
m − 1

m − 2a
which implies

∞∑

i=1

η
m−2a
m−1

i < ∞. (15)

Then:

a) The series σ2 =
∞∑

i=−∞
Cov (h(x0)), h(xi)) =

∞∑

i=−∞
Cov (Y0, Yi) converges;
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b) With σ2
p = Var

( p∑

i=1

Yi

)

, there is a constant c > 0 such that

∣∣∣∣∣σ
2 − σ2

p

p

∣∣∣∣∣ ≤ c ·
(

log p

p
+ p

(
1−α(m−2a)

m−1

))
. (16)

Proof of Lemma 2. a) With Ti > 0 for i ∈ ZZ, we write

Cov (Y0, Yi) = Cov (E
(Ti)
0 , E

(Ti)
i ) + Cov (Y

(Ti)
0 , E

(Ti)
i ) + Cov (Y

(Ti)
i , E

(Ti)
0 ) + Cov (Y

(Ti)
0 , Y

(Ti)
i ).

From the previous lemma, |Cov (Y0, Yi)| ≤ c·A2 ·(T 2a−m
i +T 2a−1

i ·η|i|). Now, set T 2a−m
i = T 2a−1

i ·η|i|,
then Ti = η

− 1
m−1

|i| > 0 and

|Cov (Y0, Yi)| ≤ c · η
m−2a
m−1

i . (17)

As a consequence,
∞∑

i=−∞
|Cov (Y0, Yi)| ≤ c ·

∞∑

i=−∞
η

m−2a
m−1

i and σ2 exists thanks to the assumption (15).

b) Decompose σ2 − σ2
p

p
= D1 + D2 with D1 =

∑
|i|≥p Cov (Y0, Yi) and D2 = 1

p

∑
|i|<p |i|·Cov (Y0, Yi).

From assumption (15), we conclude as above with inequality (17), because:

−
∣∣D1

∣∣ ≤ c ·
∑

i≥p

η
m−2a
m−1

i ≤ c · p
(
1−α(m−2a)

m−1

)
, and

− |D2| ≤
c

p
·

∑

|i|<p

|i| · η
m−2a
m−1

|i| . Now,






if α ≥ 2 · m − 1

m − 2a
, then |D2| ≤ c · log p

p

if
m − 1

m − 2a
< α < 2 · m − 1

m − 2a
, then |D2| ≤ c · p

(
1−α(m−2a)

m−1

) .

LEMMA 3. Let h and (xn)n∈ZZ satisfy respectively assumptions H and A, with m > 2a. For

p ∈ IN∗, define: Wp =
p∑

i=1

Yi. Then, if α > 3, for all 0 < δ <
m − 2a

a
, there exists a constant c > 0

such that:

IE|Wp|2+δ ≤ c · pr with
2 + δ

2
≤ r = 2 + δ − m − 2a − a · δ

m − 1
< 2 + δ.

Proof of Lemma 3. Let ∆ = 2 + δ and m = a(2 + ζ). With inequality (14) and W
(T )
p =

∑p
i=1 Y

(T )
i ,

we obtain:
‖Wp‖∆ ≤ ‖W (T )

p ‖∆ + p‖Y0 − Y
(T )
0 ‖∆ ≤ ‖W (T )

p ‖∆ + c · p · T a−m
∆ .

The Hölder inequality provides:

IE|W (T )
p |∆ ≤

(
IE|W (T )

p |2
)1−δ/2 (

IE|W (T )
p |4

)δ/2

Now from c) of Lemma 1, we obtain IE|W (T )
p |2 ≤ c · p · T 2a−1

∞∑

i=0

ηi. Setting

Cr,T = max
u=1,2,3

sup
su+1−su=r

∣∣∣∣∣∣
Cov




u∏

i=1

Y (T )
si

,
4∏

i=u+1

Y (T )
si





∣∣∣∣∣∣
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where this supremum is set over s1 ≤ s2 ≤ s3 ≤ s4, we obtain as in (??),

IE|W (T )
p |4 ≤ c



p
p−1∑

k=0

(k + 1)2Ck,T +

(

p · T 2a−1
∞∑

i=0

ηi

)2


 .

We quote that Ck,T ≤ T 4a−1ηk to derive

IE|W (T )
p |4 ≤ c

(
p · T 4a−1 +

(
p · T 2a−1

)2
)

.

Thus, from previous inequalities and with m = (2 + ζ)a,

IE|Wp|∆ ≤ c

(
p∆ · T a∆−m +

(
p · T 2a−1

)1−δ/2
×

(
p · T 4a−1 + p2 · T 4a−2

)δ/2
)

≤ c

(
p∆T a(δ−ζ) +

(
p · T 2a−1

)∆/2
+ p · T a∆−1

)
.

We now minimize this last inequality in p by setting T = pb with b > 0. With the condition δ < aζ,
we first show that it is necessary to have b < 1 and the optimal b is obtained by balancing of
p∆T a(δ−ζ) and p · T a∆−1. This value of b is:

b =
1 + δ

m − 1
,

that satisfies b < 1. We thus obtain IE|Wp|∆ ≤ c · p2+δ−a(ζ−δ)
m−1 , that implies the result of the lemma.

3.0.0.1. Remark Notice that r = 2 + δ − m − 2a − a · δ
m − 1

>
1

2
, contrarily to the classical Marcinkiewicz-

Zygmund inequalities.

Proof of Theorem 1. We use a Bernstein blocks method for this proof. Consider three sequences of
positive integers p = (p(n))n∈IN , q = (q(n))n∈IN and k = (k(n))n∈IN such that:

• lim
n→∞

p(n)

n
= lim

n→∞
q(n)

p(n)
= 0;

• k(n) =

[
n

p(n) + q(n)

]
(thus lim

n→∞
k(n) = ∞).

These sequences are chosen as

p(n) = [nβ], q(n) = [nγ ], with 0 < γ < β < 1,

the exponents β and γ will be chosen below. We form the blocks I1, . . . , Ik and define the random
variables U1, . . . , Uk such that:

Ij =
{
(j − 1)(p(n) + q(n)) + 1, . . . , (j − 1)(p(n) + q(n)) + p(n)

}
for j = 1, . . . , k(n);

Uj =
∑

i∈Ij

Yi, for j = 1, . . . , k(n).
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Then expression (2) is decomposed as:

∆n =
3∑

ℓ=1

∆ℓ,n,

where we set, for a standard Gaussian N ∼ N (0, 1),

∆1,n = IE



φ(Sn) − φ



 1√
n

k∑

j=1

Uj







 ,

∆2,n = IE



φ



 1√
n

k∑

j=1

Uj



 − φ



Nσp

√
k

n







 ,

∆3,n = IE



φ
(
Nσp

√
k

n

)
− φ(σN)



 .

Term ∆1,n. Using assumption (15) and a Taylor expansion up to order 2:

|∆1,n| ≤ c ·
(

k(n) · q(n) + p(n)

n

) ‖φ′′‖∞
2

∞∑

i=0

η
(m−2a)/(m−1)
i

≤ c ·
(
nβ−1 + nγ−β

)
. (18)

Term ∆3,n. Now, Taylor formula implies:






φ



Nσp

√
k

n



 = φ(0) + Nσp

√
k

n
φ′(0) +

1

2
N2σ2

p

k

n
φ′′(V1);

φ (Nσ) = φ(0) + Nσφ′(0) +
1

2
N2σ2φ′′(V2),

with V1 and V2 two random variables. Then, with Lemma 2,

∣∣∆3,n

∣∣ ≤ ‖φ′′‖∞ ·
∣∣∣∣
k(n)

n
σ2

p − σ2

∣∣∣∣

≤ ‖φ′′‖∞ ·
(

p(n) · k(n)

n

∣∣∣σ2 − 1

p(n)
σ2

p

∣∣∣ +
n − p(n) · k(n)

n
σ2

)

≤ c ·
(

log(p(n)) · p−1(n) + p(n)1−
α(m−2a)

m−1 +
q(n)

p(n)

)

and therefore
∣∣∆3,n

∣∣ ≤ c ·
(

n−β · log n + nβ−α·β·(m−2a)
m−1 + nγ−β

)
. (19)

Term ∆2,n. Let (Ni)1≤i≤k(n) be independent N
(
0, σ2

p

)
−Gaussian random variables, independent

of the process (xi)i∈ZZ (such variables classically exist if the underlying probability space is rich

enough). We define φj(t) = IE



φ
( 1√

n
t +

1√
n

k(n)∑

i=j+1

Ni

)


 for j = 1, . . . , k(n). In the sequel,
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for simplicity, empty sums are set equal to 0. Then:

∆2,n = IE



φ
( 1√

n

k(n)∑

j=1

Uj

)
− φ

(
Nσp

√
k(n)

n

)




=

k(n)∑

j=1

IE



φ
( 1√

n

j∑

i=1

Ui +
1√
n

k(n)∑

i=j+1

Ni

)
− φ

( 1√
n

j−1∑

i=1

Ui +
1√
n

k(n)∑

i=j

Ni

)




=

k(n)∑

j=1

IEνj,n,

with νj,n = φj (Zj + Uj) − φj (Zj + Nj) and Zj =
∑j−1

i=1 Ui.

Moreover, ‖φ(ℓ)
j ‖∞ ≤ n−ℓ/2‖φ(ℓ)‖∞ for ℓ = 0, 1, 2, 3. Making two distinct Taylor expansions

(up to order 2 and 3 respectively) we obtain the two following expressions with some random
variables Lj for j = 1, 2, 3, 4:

νj,n −
[
φ′

j(Zj)(Uj − Nj) +
1

2
φ′′

j (Zj)(U
2
j − N2

j )
)]

=
1

6

(
φ

(3)
j (L1)U

3
j − φ

(3)
j (L2)N

3
j

)

=
1

2

[
(φ′′

j (L3) − φ′′
j (Zj))U

2
j

−(φ′′
j (L4) − φ′′

j (Zj))N
2
j

]

∣∣∣∣νj,n −
[
φ′

j(Zj)(Uj − Nj) +
1

2
φ′′

j (Zj)(U
2
j − N2

j )
)]∣∣∣∣ ≤ c

(
|Uj |2

n
∧ |Uj |3

n3/2
+

|Nj |2
n

∧ |Nj |3
n3/2

)

≤ c

n1+δ/2
(|Uj |2+δ + |Nj |2+δ)

because the sequence (Nj)j is independent of the sequence (xj)j , and thus independent of the
sequence (Uj)j , and with the two relations IEU2

j = σ2
p = IEN2

j and s2∧s3 ≤ s2+δ with δ ∈ [0, 1]

(that is valid for all s ≥ 0). Now with the inequality IE|Nj |2+δ =
(
IEU2

j

)1+δ/2
IE|N (0, 1)|2+δ ≤ c · IE|Uj |2+δ

we derive

|IEνj,n| ≤ |Cov (φ′
j(Zj), Uj)| +

1

2
· |Cov (φ′′

j (Zj), U
2
j )| + c

n1+δ/2
· IE|Uj |2+δ.

Thus, using Lemma 3, with Cj =
∣∣∣Cov (φ′

j(Zj), Uj)
∣∣∣ and C ′

j =
1

2

∣∣∣Cov (φ′′
j (Zj), U

2
j )

∣∣∣ .,

∣∣∆2,n

∣∣ ≤
k(n)∑

j=1

(
Cj + C ′

j + c · n−1−δ/2pr
)

≤ c · n−δ/2pr−1 +

k(n)∑

j=1

(Cj + C ′
j), (20)

Now, we can write the random variables Uj , U2
j , φ′

j(Zj), φ′′
j (Zj) as functions G : (IRd)u → IR

of xi1 , . . . , xiu . The important characteristics of such G are driven by the following respective
orders:
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Random variable Order w ‖G‖∞ LipG

U
(T )
j p(n) O (A · p(n)T a) O (

A · p(n)T a−1
)

(U
(T )
j )2 p(n) O (

A2 · p(n)2T 2a
) O (

A2 · p(n)2T 2a−1
)

φ′
j(Zj) ≤ n ≤ n−1/2‖φ′‖∞ O (

A · T a−1n−1
)

φ′′
j (Zj) ≤ n ≤ n−1‖φ′′‖∞ O

(
A · T a−1n−3/2

)

In order to use the weak dependence device for these two random variables Cj and C ′
j , we

have to use truncation U
(T )
j obtained by replacing Yi’s by Y

(T )
i and then,






Cj ≤ C
(T )
j + c · ‖φ′‖∞ · p(n)√

n
· IE|E(T )

0 | with C
(T )
j =

∣∣∣Cov (φ′
j(Zj), U

(T )
j )

∣∣∣ ;

C ′
j ≤ C

′(T )
j + c · ‖φ′′‖∞ · p2(n)

n
· IE |Y 2

0 − (Y
(T )
0 )2| with C

′(T )
j =

1

2

∣∣∣Cov (φ′′
j (Zj), (U

(T )
j )2)

∣∣∣ .

From the previous bounds, we obtain:

C
(T )
j ≤ c · A2 ·

(
p(n) · T 2a−1 + ‖φ′‖∞ · p(n)2 · T a−1 · n−1/2

)
· ηq(n),

C
′(T )
j ≤ c · A3 ·

(
p(n)2 · T 3a−1 · n−1/2 + ‖φ′′‖∞ · p(n)3 · T 2a−1 · n−1

)
· ηq(n),

For this, one should mention that if s ∈ IN∗, the function G
(s)
T defined on IRds as G

(s)
T (u1, . . . , us) =

∏s
j=1

(
h(FT (uj)) − IE

[
h(FT (x0))

])
satisfies ‖G(s)

T ‖∞ ≤ T sa and LipG
(s)
T ≤ c · As · T sa−1.

Thus,





Cj ≤ c · A3 ·
(

p(n)·√
n

T a−m +

(

p(n) · T 2a−1 +
p2(n)√

n
T a−1

)

ηq(n)

)

;

C ′
j ≤ c · ·A3

(
p2(n)

n
· T 2a−m +

(
p2(n)√

n
· T 3a−1 +

p3(n)

n
· T 2a−1

)

· ηq(n)

)

,

(21)

from relation (17), and because with inequalities (13),

IE |Y 2
0 − (Y

(T )
0 )2| ≤ IE |E(T )

0 |2 + 2IE (|Y (T )
0 | · |E(T )

0 |) ≤ c · T 2a−m.

Now, those bounds have to be minimized in n by choosing T as a function of n. We assume

β < 1/2 and hence Cj and C ′
j are minimized by selecting T = n

αγ−1/2
a+m−1 , that implies:






Cj ≤ c · A3 · nβ−1/2−(αγ−1/2)

(
m−a

m+a−1

)

;

C ′
j ≤ c · A3 · n2β−1−(αγ−1/2)

(
m−2a

m+a−1

)

,

under the conditions
1

2α
< γ < β <

1

2
. Finally, from (20), we obtain the following bound:

∣∣∆2,n

∣∣ ≤ c · A3 ·
(
nβ(r−1)−δ/2 + n

1/2−(αγ−1/2)

(
m−a

m+a−1

)

+ n
β−(αγ−1/2)

(
m−2a

m+a−1

)
)
. (22)
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Therefore, inequalities (18), (19), (22) and condition
1

2α
< γ < β <

1

2
provide:

∣∣∆n

∣∣ ≤ c · A3 · nmax(p1,p2,p3,p4,p5) with






p1 = β
(
1 − α · m−2a

m−1

)

p2 = γ − β

p3 = β
(
1 + δ −

(
m−2a−aδ

m−1

))
− δ/2

p4 = 1/2 − (αγ − 1/2)
(

m−a
m+a−1

)

p5 = β − (αγ − 1/2)
(

m−2a
m+a−1

)

. (23)

We have the possibility to make varying δ, β, γ (with certain conditions) for:

1. obtaining conditions on α and m, such that it exists δ, β, γ satisfying max(p1, p2, p3, p4, p5) < 0;

2. minimizing max(p1, p2, p3, p4, p5) with an optimal choice of δ, β, γ under the previous condi-
tions.

To solve 1., the condition p3 < 0 implies β <
m − 2a

2(m − a)
with the optimal choice δ = m/a − 2.

Moreover, condition p4 < 0, implies γ >
1

2α

(
2m − 1

m − a

)
. As a consequence, max(p1, p2, p3, p4, p5) <

0 is satisfied when:

1

2α

(
2m − 1

m − a

)
< γ < β <

m − 2a

2(m − a)
=⇒ α >

2m − 1

m − 2a
. (24)

To solve 2., fist we show that only coefficients p2, p3 and p4 have to be considered for the mini-
mization (under conditions (24), coefficients p1 and p5 are smaller than p2, p3 and p4). Then, the
optimal choice for γ and δ is provided by the resolution of the system: p2 = p3 and p2 = p4, that
implies to:

β0 =
m + 2a − 1 + α(m − 2a)

2(m + a − 1 + α · m)
and γ0 =

3m + 2a − 2

2(m + a − 1 + α · m)
,

and therefore, we obtain the optimal rate:

∣∣∆n

∣∣ ≤ c · A3 · n−λ with λ =
α(m − 2a) − 2m + 1

2(m + a − 1 + α · m)
.
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