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Abstract Let (Xk, ξk)k∈N be a sequence of independent copies of a pair (X, ξ) where X

is a random process with paths in the Skorokhod space D[0,∞) and ξ is a positive random

variable. The random process with immigration (Y (u))u∈R is defined as the a.s. finite sum

Y (u) =
∑

k≥0 Xk+1(u − ξ1 − · · · − ξk)1{ξ1+···+ξk≤u}. We obtain a functional limit theorem

for the process (Y (ut))u≥0, as t → ∞, when the law of ξ belongs to the domain of attraction

of an α-stable law with α ∈ (0, 1), and the process X oscillates moderately around its mean

E[X(t)]. In this situation the process (Y (ut))u≥0, when scaled appropriately, converges weakly

in the Skorokhod space D(0,∞) to a fractionally integrated inverse stable subordinator.

Keywords Fractionally integrated inverse stable subordinators, random process with

immigration, shot noise process
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1 Introduction and main result

Let (Xk, ξk)k∈N be a sequence of independent copies of a pair (X, ξ) where X is

a random process with paths in D[0,∞) and ξ is a positive random variable. We
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impose no conditions on the dependence structure of (X, ξ). Hereafter N0 denotes

the set of non-negative integers {0, 1, 2, . . .}.

Let (Sn)n∈N0
be a standard zero-delayed random walk:

S0 := 0, Sn := ξ1 + · · · + ξn, n ∈ N, (1)

and let (ν(t))t∈R be the corresponding first-passage time process for (Sn)n∈N0
:

ν(t) := inf{k ∈ N0 : Sk > t}, t ∈ R.

The random process with immigration Y = (Y (u))u∈R is defined as a finite sum

Y(u) :=
∑

k≥0

Xk+1(u − Sk)1{Sk≤u} =

ν(u)−1∑

k=0

Xk+1(u − Sk), u ∈ R.

This family of random processes was introduced in [11] as a generalization of several

known objects in applied probability including branching processes with immigration

(in case of X being a branching process) and renewal shot noise processes (in case of

X(t) = h(t) a.s. for some h ∈ D[0,∞)). The process X is usually called a response

process, or a response function if X(t) = h(t) a.s. for some deterministic function h.

The problem of weak convergence of random processes with immigration was

addressed in [11, 12, 16] where the authors give a more or less complete picture of the

weak convergence of finite-dimensional distributions of (Y (ut))u≥0 or (Y (u+t))u∈R,

as t → ∞. The case of renewal shot noise process has received much attention in

the past years, see [6, 9, 10, 14]. A comprehensive survey of the subject is given in

Chapter 3 of the recent book [7].

A much more delicate question of weak convergence of Y in functional spaces,

to the best of our knowledge, was only investigated either for particular response

processes, or in the simple case when ξ is exponentially distributed. In the latter

situation Y is called a Poisson shot noise process. In the list below η is a random

variable which satisfies certain assumptions specified in the corresponding papers:

• if ξ has exponential distribution and either X(t) = 1{η>t} or X(t) = t ∧ η,

functional limit theorems for Y were derived in [18];

• if X(t) = 1{η>t} and Eξ < ∞, a functional limit theorem for Y was established

in [8];

• if X(t) = 1{η≤t}, functional limit theorems for Y are given in [1];

• if ξ has exponential distribution and X(t) = ηf (t) for some deterministic func-

tion f , limit theorems for Y were obtained in [15];

• in [12, 16] sufficient conditions for weak convergence of (Y (u + t))u∈R to a

stationary process with immigration were found.

In this paper we treat the case where ξ is heavy-tailed, more precisely we assume

that

P{ξ > t} ∼ t−αℓξ (t), t → ∞, (2)
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for some ℓξ slowly varying at infinity, and α ∈ (0, 1). Assuming (2), we obtain a

functional limit theorem for a quite general class of response processes. The class

of such processes can be described by a common property: they do not “oscillate

to much” around the mean E[X(t)], which itself varies regularly with parameter

ρ > −α. Let us briefly outline our approach based on ideas borrowed from [11].

Put h(t) := E[X(t)] and write1

Y(t) =
∑

k≥0

(
Xk+1(t − Sk) − h(t − Sk)

)
1{Sk≤t} +

∑

k≥0

h(t − Sk)1{Sk≤t} . (3)

We investigate the two summands in the right-hand side separately. The second sum-

mand is a standard renewal shot noise process with response function h. Under con-

dition (2) and assuming that

h(t) = E
[
X(t)

]
∼ tρℓh(t), t → ∞, (4)

for some ρ ∈ R and a slowly varying function ℓh, it was proved in [10, Theorem 2.9]

and [14, Theorem 2.1] that

(
P{ξ > t}

h(t)

∑

k≥0

h(ut − Sk)1{Sk≤ut}

)

u>0

f.d.
=⇒

(
Jα,ρ(u)

)
u>0

, t → ∞, (5)

where Jα,ρ = (Jα,ρ(u))u≥0 is a so-called fractionally integrated inverse α-stable

subordinator. The process Jα,ρ is defined as a pathwise Lebesgue–Stieltjes integral

Jα,ρ(u) =

∫

[0, u]

(u − y)ρdW←
α (y), u ≥ 0. (6)

In this formula W←
α (y) := inf{t ≥ 0 : Wα(t) > y}, y ≥ 0, is a generalized inverse of

an α-stable subordinator (Wα(t))t≥0 with the Laplace exponent

− logEe−sWα(1) = Γ (1 − α)sα, s ≥ 0.

It is also known that convergence of finite-dimensional distributions (5) can be

strengthened to convergence in the Skorokhod space D(0,∞) endowed with the J1-

topology if ρ > −α, see Theorem 2.1 in [14]. If ρ ≤ −α the process (Jα,ρ(u))u≥0,

being a.s. finite for every fixed u ≥ 0, has a.s. locally unbounded trajectories, see

Proposition 2.5 in [14].

Turning to the first summand in (3) we note that it is the a.s. limit of a martingale

(R(j, t),Fj )j∈N, where Fj := σ((Xk, ξk) : 1 ≤ k ≤ j) and

R(j, t) :=

j−1∑

k=0

(
Xk+1(t − Sk) − h(t − Sk)

)
1{Sk≤t}, j ∈ N.

1In what follows we always assume that h exists and is a càdlàg function.
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Applying the martingale central limit theory it is possible to show that under appro-

priate assumptions (which are of no importance for this paper)

(√
P{ξ > t}

v(t)

∑

k≥0

(
Xk+1(ut − Sk) − h(ut − Sk)

)
1{Sk≤ut}

)

u>0

f.d.
=⇒

(
Z(u)

)
u>0

,

as t → ∞, for a non-trivial process Z, where v(t) := E[(X(t) − h(t))2] is the

variance of X, see Proposition 2.2 in [11].

We are interested in situations when the second summand in (3) asymptotically

dominates, more precisely we are looking for conditions ensuring

P{ξ > t}

h(t)
sup

u∈[0, T ]

∣∣∣∣
∑

k≥0

(
Xk+1(ut − Sk) − h(ut − Sk)

)
1{Sk≤ut}

∣∣∣∣
P
→ 0, t → ∞, (7)

for every fixed T > 0. From what has been mentioned above it is clear that this can

happen only if

lim
t→∞

P{ξ > t}v(t)

h2(t)
= 0. (8)

Restricting our attention to the case where v is regularly varying with index β ∈ R,

i.e.

v(t) ∼ tβℓv(t), t → ∞, (9)

we see that (8) holds if β < α + 2ρ and fails if β > α + 2ρ. As long as we do

not make any assumptions on distributional or path-wise properties of X such as

e.g., monotonicity, self-similarity or independence of increments, it can be hardly ex-

pected that condition (8) alone is sufficient for (7). Nevertheless, we will show that

(7) holds true under additional assumptions on the asymptotic behavior of higher

centered moments E[(X(t) − h(t))2l], l = 1, 2, . . ., and an additional technical as-

sumption. Our first main result treats the case where the moments of the normalized

process ([X(t)−h(t)]/v(t))t≥0 are bounded uniformly in t ≥ 0. Denote by (X̂(t))t≥0

the centered process (X(t) − h(t))t≥0.

Theorem 1. Assume that for all t ≥ 0 and l ∈ N we have E[|X(t)|l] < ∞. Further,

assume that the following conditions are fulfilled:

(A1) relation (2) holds for some α ∈ (0, 1);

(A2) relation (4) holds for some ρ > −α;

(A3) relation (9) holds for some β ∈ (−α, α + 2ρ);

(A4) there exists δ > 0 such that for every l ∈ N the following two conditions hold:

E
[
X̂(t)2l

]
≤ Clv

l(t), t ≥ 0, (10)

and

E

[
sup

y∈[0,δ)

∣∣X̂(t) − X̂(t − y)1{y≤t}

∣∣l
]

≤ Cl t
l(ρ−ε), t ≥ 0, (11)

for some Cl ∈ (0,∞) and ε > 0.
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Then, as t → ∞,

(
P{ξ > t}

h(t)

∑

k≥0

Xk+1(ut − Sk)1{Sk≤ut}

)

u>0

⇒
(
Jα,ρ(u)

)
u>0

, (12)

weakly on D(0,∞) endowed with the J1-topology.

Our second main result is mainly applicable when the process X is almost surely

bounded by some (deterministic) constant. We have the following theorem.

Theorem 2. Assume that for all t ≥ 0 and l ∈ N we have E|X(t)|l < ∞ and

conditions (A1), (A2) of Theorem 1 are valid. Further, suppose that for every l ∈ N

there exists a constant Cl > 0 such that

E
[
X̂(t)2l

]
= E

[(
X(t) − h(t)

)2l]
≤ Clh(t), t ≥ 0, (13)

and for some δ > 0 the function t �→ E[supy∈[0,δ) |X̂(t)− X̂(t −y)1{y≤t} |l] is either

directly Riemann integrable or locally bounded and

E

[
sup

y∈[0,δ)

∣∣X̂(t) − X̂(t − y)1{y≤t}

∣∣l
]

= O
(
P{ξ > t}

)
, t → ∞. (14)

Then (12) holds.

Obviously, our results are far from being optimal and leave a lot of space for

improvements, yet they are applicable to several models given in the next section.

2 Applications

2.1 The number of busy servers in a G/G/∞ queue

Consider a G/G/∞ queue with customers arriving at 0 = S0 < S1 < S2 < · · · .

Upon arrival each customer is served immediately by one of infinitely many idle

servers and let the service time of the kth customer be ηk , a copy of a positive random

variable η. Put X(t) := 1{η>t}, then the random process with immigration

Y(u) =
∑

k≥0

1{Sk≤u<Sk+ηk+1}, u ≥ 0,

represents the number of busy servers at time u ≥ 0. The process (Y (u))u≥0 may also

be interpreted as the difference between the number of visits to [0, t] of the standard

random walk (Sk)k≥0 and the perturbed random walk (Sk+ηk+1)k≥1, see [2], or as the

number of active sources in a communication network, see [17, 18]. An introduction

to renewal theory for perturbed random walks can be found in [7].

Assume that (2) holds and

P{η > t} ∼ tρℓη(t), t → ∞, (15)

for some ρ ∈ (−α, 0] and ℓη slowly varying at infinity. Note that

h(t) = P{η > t} ∼ tρℓη(t), t → ∞.
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Moreover, for every l ∈ N and every δ > 0,

E
[
X̂(t)2l

]
= P{η > t}P{η ≤ t}

(
P

2l−1{η > t} + P
2l−1{η ≤ t}

)
≤ h(t)

and

E

[
sup

y∈[0,δ)

∣∣X̂(t) − X̂(t − y)1{y≤t}

∣∣l
]

≤ 2l−1
E

[
sup

y∈[0,δ)

∣∣X̂(t) − X̂(t − y)1{y≤t}

∣∣
]

≤ 2l
P{η > t} 1{t≤δ} +2l

(
P{η > t − δ} − P{η > t}

)
1{t>δ} .

The function on the right-hand side is directly Riemann integrable. Indeed, we have

∑

n≥1

sup
δn≤y≤δ(n+1)

(
P{η > y − δ} − P{η > y}

)

≤
∑

n≥1

(
P
{
η > (n − 1)δ

}
− P

{
η > (n + 1)δ

})
= P{η > 0} + P{η > δ} ≤ 2,

and the claim follows from the remark after the definition of direct Riemann integra-

bility given on p. 362 in [5].

From Theorem 2 we obtain the following result, complementing Theorem 1.2 in

[8] that treats the case Eξ < ∞.

Proposition 1. Assume that (ξ, η) is a random vector with positive components such

that (2) and (15) hold for α ∈ (0, 1) and ρ ∈ (−α, 0], respectively. Let (ξk, ηk)k∈N

be a sequence of independent copies of (ξ, η) and (Sk)k∈N0
be a random walk defined

by (1). Then

(
P{ξ > t}

P{η > t}

∑

k≥0

1{Sk≤ut<Sk+ηk+1}

)

u>0

⇒
(
Jα,ρ(u)

)
u>0

, t → ∞,

weakly on D(0,∞) endowed with the J1-topology.

Remark 1. We do not assume independence of ξ and η.

2.2 Shot noise processes with a random amplitude

Assume that X(t) = ηf (t), where η is a non-degenerate random variable and f :

[0,∞) → R is a fixed càdlàg function. The corresponding random process with

immigration

Y(t) =
∑

k≥0

ηk+1f (t − Sk)1{Sk≤t}, t ≥ 0,

where (ηk)k∈N is a sequence of independent copies of η, may be interpreted as a

renewal shot noise process in which the common response function f is scaled at a

shot Sk by a random factor ηk+1. In case where (ξk)k∈N have exponential distribution

and are independent of (ηk)k∈N such processes were used in mathematical finance as

a model of stock prices with long-range dependence in asset returns, see [15].

Note that if E|η|l < ∞ for all l ∈ N, then

h(t) = (Eη)f (t), v(t) = Var(η)f 2(t),
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E
[(

X(t) − h(t)
)2l]

= E
[
(η − Eη)2l

]
f 2l(t) ≤ Clv

l(t), l ∈ N,

for some Cl > 0. Assume now that f varies regularly with index ρ > −α and

additionally satisfies

sup
y∈[0,δ)

∣∣f (t) − f (t − y)
∣∣ = O

(
tρ−ε

)
, t → ∞, (16)

for some δ > 0 and ε > 0. Then

E

[
sup

y∈[0,δ)

∣∣X̂(t) − X̂(t − y)1{y≤t}

∣∣l
]

= E|η − Eη|l sup
y∈[0,δ)

∣∣f (t) − f (t − y)1{y≤t}

∣∣l

= O
(
t l(ρ−ε)

)
, t → ∞.

Hence, all assumptions of Theorem 1 hold (if Eη < 0, Theorem 1 is applicable to the

process −X) and we have the following result.

Proposition 2. Assume that E|η|l < ∞ for all n ∈ N, Eη = 0 and (2) holds. If

f : [0,∞) → R satisfies

f (t) ∼ tρℓf (t), t → ∞,

for some ρ > −α and ℓf slowly varying at infinity, and (16) holds, then

(
P{ξ > t}

f (t)Eη

∑

k≥0

ηk+1f (ut − Sk)1{Sk≤ut}

)

u>0

⇒
(
Jα,ρ(u)

)
u>0

, t → ∞,

weakly on D(0,∞) endowed with the J1-topology.

This result complements the convergence of finite-dimensional distributions pro-

vided by Example 3.3 in [11].

Remark 2. In general, condition (16) might not hold for a function f which is regu-

larly varying with index ρ ∈ R. Take, for example,

f (t) = 1 +
(−1)[t]

log[t]
1{t>1} .

Then, f is regularly varying with index ρ = 0, but for every δ > 0 and large n ∈ N

we have

sup
y∈[0,δ)

∣∣f (2n) − f (2n − y)
∣∣ ≥ sup

y∈[0,δ∧1)

∣∣f (2n) − f (2n − y)
∣∣ ≥

2

log(2n)
.

Hence, (16) does not hold. On the other hand, if f is differentiable with an eventually

monotone derivative f ′, then (16) holds by the mean value theorem for differentiable

functions and Theorem 1.7.2 in [3].
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3 Proof of Theorems 1 and 2

The proofs of Theorems 1 and 2 rely on the same ideas, so we will prove them si-

multaneously. Pick δ > 0 such that all assumptions of Theorem 1 or Theorem 2 hold.

This δ > 0 remains fixed throughout the proof.

In view of assumptions (A1) and (A2) and the fact that h is càdlàg we infer from

Theorem 2.1 in [14] that
(
P{ξ > t}

h(t)

∑

k≥0

h(ut − Sk)1{Sk≤ut}

)

u>0

⇒
(
Jα,ρ(u)

)
u>0

t → ∞, (17)

weakly on D(0,∞) endowed with the J1-topology. Note that in Theorem 2.1 of [14]

h is assumed monotone (or eventually monotone). However, this assumption is re-

dundant. The only places which have to be adjusted in the proofs are two displays on

p. 90, where h(0) should be replaced by supy∈[0,c] h(y).

Hence, from (3) we see that it is enough to check, for every fixed T > 0, that

P{ξ > t}

h(t)
sup

u∈[0,T ]

∣∣Ỹ (ut)
∣∣ P
→ 0, t → ∞, (18)

where Ỹ (t) :=
∑

k≥0(Xk+1(t − Sk) − h(t − Sk))1{Sk≤t} for t ≥ 0. Moreover, it

suffices to show that
P{ξ > t}

h(t)

∣∣Ỹ (t)
∣∣ a.s.
→ 0, t → ∞. (19)

Indeed, for every fixed s > 0,

P{ξ > t}

h(t)
sup

u∈[0,T ]

∣∣Ỹ (ut)
∣∣

≤
P{ξ > t}

h(t)
sup

u∈[0,s]

∣∣Ỹ (u)
∣∣ +

P{ξ > t}

h(t)
sup

u∈[s,T t]

∣∣Ỹ (u)
∣∣

≤
P{ξ > t}

h(t)
sup

u∈[0,s]

∣∣Ỹ (u)
∣∣ +

P{ξ > t}

h(t)
sup

u∈[s,T t]

h(u)

P{ξ > u}
sup

u∈[s,T t]

∣∣∣∣
P{ξ > u}

h(u)
Ỹ (u)

∣∣∣∣.

Since t �→ h(t)/P{ξ > t} is regularly varying with positive index ρ + α,

sup
u∈[s,T t]

h(u)

P{ξ > u}
∼

h(T t)

P{ξ > T t}
∼ T ρ+α h(t)

P{ξ > t}
, t → ∞.

Sending t → ∞ we obtain, for every fixed s > 0,

lim sup
t→∞

P{ξ > t}

h(t)
sup

u∈[0,T ]

∣∣Ỹ (ut)
∣∣ ≤ T ρ+α sup

u∈[s,∞)

∣∣∣∣
P{ξ > u}

h(u)
Ỹ (u)

∣∣∣∣.

Sending now s → ∞ shows that (19) implies (18). Let us first check that (19) holds

along the arithmetic sequence (nδ)n∈N. According to the Borel–Cantelli lemma and

Markov’s inequality it suffices to check that for some l ∈ N

∞∑

n=1

(
P{ξ > nδ}

h(δn)

)2l

E
[
Ỹ (δn)2l

]
< ∞. (20)
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To check (20) we apply the Burkholder–Davis–Gundy inequality in the form given in

Theorem 11.3.2 of [4], to obtain

E
[
Ỹ (t)2l

]
≤ KlE

[(∑

k≥0

E
(
X̂2

k+1(t − Sk)1{Sk≤t} |Fk

))l]

+ KlE

[
sup
k≥0

(
X̂2l

k+1(t − Sk)1{Sk≤t}

)]
, (21)

for some constant Kl > 0, where we recall the notation Fk = σ((Xj , ξj ) :

1 ≤ j ≤ k).

Proof of (20) under assumptions of Theorem 1. Using assumption (A4) we infer

from (21):

E
[
Ỹ (t)2l

]

≤ KlE

[(∑

k≥0

v(t − Sk)1{Sk≤t}

)l]
+ KlE

[∑

k≥0

X̂2l
k+1(t − Sk)1{Sk≤t}

]

≤ KlE

[(∑

k≥0

v(t − Sk)1{Sk≤t}

)l]
+ KlClE

[∑

k≥0

vl(t − Sk)1{Sk≤t}

]
. (22)

If β ≥ 0, then t �→ vl(t) varies regularly with non-negative index lβ. Therefore,

Lemma 1(i) yields

E

(∑

k≥0

vl(t − Sk)1{Sk≤t}

)
= O

(
vl(t)

P{ξ > t}

)
, t → ∞.

If β ∈ (−α, 0), pick l ∈ N such that lβ < −α. Then vl(t) = O(P{ξ > t}), as

t → ∞, and Lemma 1(iii) yields

E

[∑

k≥0

vl(t − Sk)1{Sk≤t}

]
= O(1), t → ∞.

Hence, in any case

E

[∑

k≥0

vl(t − Sk)1{Sk≤t}

]
= O

(
vl(t)

P{ξ > t}

)
+ O(1), t → ∞. (23)

To bound the first summand in (22) apply Lemma 1(i) to obtain

E

[(∑

k≥0

v(t − Sk)1{Sk≤t}

)l]
= O

((
v(t)

P{ξ > t}

)l)
, t → ∞.

Combining this estimate with (23), we see that (20) holds if we pick l > (2ρ + α −

β)−1. This proves (20) under assumptions of Theorem 1.
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Proof of (20) under assumptions of Theorem 2. From (21) and using (13) we have

E
[
Ỹ (t)2l

]
≤ KlC

l
1E

[(∑

k≥0

h(t − Sk)1{Sk≤t}

)l]
+ KlClE

[∑

k≥0

h(t − Sk)1{Sk≤t}

]
.

Lemma 1(i) gives us the estimate

E
[
Ỹ (t)2l

]
= O

((
h(t)

P{ξ > t}

)l)
, t → ∞.

Therefore, (20) holds if we choose l ∈ N such that l(α + ρ) > 1. This proves (20)

under the assumptions of Theorem 2.

It remains to show that

P{ξ > nδ}

h(nδ)
sup

t∈[nδ,(n+1)δ)

∣∣∣∣
∑

k≥0

(
X̂k+1

(
(n + 1)δ − Sk

)
1{Sk≤(n+1)δ}

− X̂k+1(t − Sk)1{Sk≤t}

)∣∣∣∣
a.s.
→ 0,

as n → ∞, which in turn is an obvious consequence of regular variation of t �→

P{ξ > t}/h(t) and

P{ξ > n}

h(n)

∑

k≥0

Vk+1(nδ − Sk)1{Sk≤nδ}
a.s.
→ 0, n → ∞, (24)

where Vk+1(t) := supy∈[0,δ) |X̂k+1(t) − X̂k+1(t − y)1{y≤t} |.

Proof of (24) under assumptions of Theorem 1. Applying Lemma 2(i) with b(t) =

tρ−ε and appropriate ε > 0 we obtain from (A5) that

E

[(∑

k≥0

Vk+1(t − Sk)1{Sk≤t}

)l]
= O

((
tρ−ε

P{ξ > t}

)l)
, t → ∞.

Hence (24) holds in view of the Borel–Cantelli lemma and Markov’s inequality, since

∞∑

n=1

P

{
P{ξ > n}

h(n)

∑

k≥0

Vk+1(nδ − Sk)1{Sk≤nδ} > ε

}
≤ Ĉ

∞∑

n=1

(
nρ−εh(n)

)l
< ∞,

for all l ∈ N such that εl > 1 and some Ĉ = Ĉl > 0.

Proof of (24) under assumptions of Theorem 1. If the function

t �→ E

[(
sup

y∈[0,δ)

∣∣X̂k+1(t) − X̂k+1(t − y)1{y≤t}

∣∣
)l]

is directly Riemann integrable, then

E

[(∑

k≥0

Vk+1(t − Sk)1{Sk≤t}

)l]
= o(1), t → ∞
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by Lemma 2(ii). Hence (24) holds by the same reasoning as above after applying the

Borel–Cantelli lemma. If (14) holds, then the last centered formula also holds with

O(1) in the right-hand side by Lemma 2(iii), whence (24). This finishes the proofs of

Theorems 1 and 2.
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A Appendix

A.1 Moment convergence for renewal shot noise process

Lemma 1. Let f : [0,∞) → R be a locally bounded measurable function and

suppose that relation (2) holds for some α ∈ (0, 1).

(i) Assume that

f (t) ∼ tρℓf (t), t → ∞,

for some ρ > −α and ℓf slowly varying at infinity. Let (Jα,ρ(u))u≥0 be a

fractionally integrated inverse stable subordinator defined in (6) (and below).

Then, for every l ∈ N,

lim
t→∞

E

[(
P{ξ > t}

f (t)

∑

k≥0

f (t − Sk)1{Sk≤t}

)l]

= E
(
Jα,ρ(u)

)l

=
l!

(Γ (1 − α))l

l∏

j=1

Γ (1 + ρ + (j − 1)(α + ρ))

Γ (j (α + ρ) + 1)
. (25)

(ii) If f is directly Riemann integrable, then, for every l ∈ N,

E

[(∑

k≥0

f (t − Sk)1{Sk≤t}

)l]
= o(1), t → ∞.

(iii) If f (t) = O(P{ξ > t}), as t → ∞, then, for every l ∈ N,

E

[(∑

k≥0

f (t − Sk)1{Sk≤t}

)l]
= O(1), t → ∞.

Proof. The formula for the moments of fractionally integrated inverse stable subor-

dinator (the second equality in (25)) is known, see for example (3.65) in [7] or (2.17)

in [10].
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Proof of (I). In case ρ ∈ (−α, 0] this result is just Lemma 5.3 in [10]. A perusal

of the proof of the aforementioned lemma shows that without any modifications the

constraint ρ ∈ (−α, 0] can be replaced by ρ > −α.

Proof of (II). If l = 1 and the distribution of S1 is non-lattice the claim follows from

the classical key renewal theorem. If l = 1 and the distribution of S1 is lattice, the

claim still holds, see the penultimate centered formula on p. 94 in [13]. In particular,

this means

0 ≤ m1(t) := E

[∑

k≥0

∣∣f (t − Sk)
∣∣ 1{Sk≤t}

]
≤ M1, t ≥ 0, (26)

for some constant M1 > 0. Applying formula (5.19) in [10] we obtain

ml(t) := E

[(∑

k≥0

∣∣f (t − Sk)
∣∣ 1{Sk≤t}

)l]
=

∫ t

0

rl(t − y)dU(y), (27)

where U(y) =
∑

k≥0 P{Sk ≤ y}, y ≥ 0 is the renewal function and

rl(t) =

l−1∑

j=0

vj

∣∣f (t)
∣∣l−j

(t)mj (t),

for some real constants vj . We proceed by induction. Assume that we know

mj (t) → 0, t → ∞, j = 1, . . . , l − 1,

in particular,

0 ≤ mj (t) ≤ Mj , t ≥ 0, j = 1, . . . , l − 1.

Then

∣∣rl(t)
∣∣ ≤

l−1∑

j=0

Mj |vj ||f (t)|l−j , t ≥ 0,

and the right-hand side is directly Riemann integrable. By the same reasoning as in

case l = 1 we obtain

ml(t) → 0, t → ∞,

by the key renewal theorem.

Proof of (III). Again, let us consider the case l = 1 first. Put Z(t) := t − Sν(t)−1 and

note that

E

[∑

k≥0

f (t − Sk)1{Sk≤t}

]
= Eg

(
Z(t)

)
,

where g(t) := f (t)/P{ξ > t}. Since g is bounded, we have Eg(Z(t)) = O(1), as

t → ∞. For arbitrary l ∈ N the result follows from (26) and (27) by induction in the

same vein as in the proof of part (ii).



A functional limit theorem for random processes with immigration 105

In the next lemma we give an upper bound on the moments of random process

with immigration under assumption (2). Recall the notation Y(t) =
∑

k≥0 Xk+1(t −

Sk)1{Sk≤t}.

Lemma 2. Assume that (2) holds for some α ∈ (0, 1).

(i) Suppose there exists a locally bounded measurable function b : [0,∞) →

[0,∞) such that

b(t) ∼ tβℓb(t), t → ∞,

for some β > −α and ℓb slowly varying at infinity. If for every l ∈ N

E
[∣∣X(t)

∣∣l] ≤ bl(t), t ≥ 0,

then for every l ∈ N we have

E
[∣∣Y(t)

∣∣l] = O

((
b(t)

P{ξ > t}

)l)
, t → ∞. (28)

(ii) Suppose that for every l ∈ N there exists a directly Riemann integrable function

bl : [0,∞) → [0,∞) such that

E
[∣∣X(t)

∣∣l] ≤ bl(t), t ≥ 0.

Then, for every l ∈ N

E
[∣∣Y(t)

∣∣l] = o(1), t → ∞. (29)

(iii) Suppose that for every fixed l ∈ N we have

E
[∣∣X(t)

∣∣l] = O
(
P{ξ > t}

)
, t → ∞.

Then, for every l ∈ N

E
[∣∣Y(t)

∣∣l] = O(1), t → ∞. (30)

Proof. Put al(t) := E[|X(t)|l] for l ∈ N and

Z(t) :=
∑

k≥0

∣∣Xk+1(t − Sk)
∣∣ 1{Sk≤t}, t ≥ 0.

Clearly, E[|Y(t)|l] ≤ E[[Z(t)]l] for all t ≥ 0 and l ∈ N. We prove (28), (29) and

(30) with E[Z(t)l] replacing E[|Y(t)|l] in the left-hand sides. From the definition of

random process with immigration it follows that

Z(t)
d
=

∣∣X(t)
∣∣ + Ẑ(t − ξ)1{ξ≤t}, t ≥ 0,

where Ẑ(t)
d
= Z(t) for every fixed t ≥ 0 and Ẑ(t) is independent of (X, ξ) in the

right-hand side. Taking expectations we obtain

E
[
Z(t)

]
= a1(t) + E

[
Z(t − ξ1)

]
1{ξ≤t}, t ≥ 0, (31)



106 A. Marynych, G. Verovkin

whilst, for l ≥ 2, we have

E
[
Z(t)l

]

= al(t) +

l−1∑

j=1

(
l

j

)
E

[∣∣X(t)
∣∣l−j (

Ẑ(t − ξ)
)j

1{ξ≤t}

]
+ E

[
Z(t − ξ)l 1{ξ≤t}

]

= al(t) +

l−1∑

j=1

(
l

j

) ∫ ∞

0

∫ t

0

zl−j
E

[
Z(t − y)j

]
P
{∣∣X(t)

∣∣ ∈ dz, ξ ∈ dy
}

+ E
[
Z(t − ξ)l 1{ξ≤t}

]

≤ al(t) +

l−1∑

j=1

(
l

j

)
al−j (t) sup

0≤y≤t

E
[
Z(y)j

]
+ E

[
Z(t − ξ)l 1{ξ≤t}

]
. (32)

Case I. From Lemma 1(i) and formula (31) using the inequality a1(t) ≤ b(t), t ≥ 0,

we obtain

E
[
Z(t)

]
= O

(
b(t)

P{ξ > t}

)
, t → ∞.

Thus, (28) holds for l = 1. We proceed by induction. Assume that for every j =

1, . . . , l − 1 there exists Cj > 0 such that

E
[
Z(t)j

]
≤ Cj

(
b(t)

P{ξ > t}

)j

, t ≥ 0.

This implies

sup
0≤y≤t

E
[
Z(y)j

]
≤ Cj sup

0≤y≤t

(
b(y)

P{ξ > y}

)j

∼ Cj

(
b(t)

P{ξ > t}

)j

,

where the last relation follows from the regular variation of t �→ b(t)/P{ξ > t} with

positive index β + α. Hence, from equation (32) and the inequalities aj (t) ≤ bj (t),

t ≥ 0, j = 1, . . . , l − 1, we deduce

E
[
Z(t)l

]
≤ C′ bl(t)

(P{ξ > t})l−1
+ E

[
Z(t − ξ)l 1{ξ≤t}

]
, t ≥ 0,

for some C′ = C′
l > 0. Since t �→ C′bl(t)/(P{ξ > t})l−1 is regularly varying with

index l(β + α) − α > −α, Lemma 1(i) yields

E
[
Z(t)l

]
= O

((
b(t)

P{ξ > t}

)l)
, t → ∞.

Case II. Arguing by induction as in the proof of case (i) we see from formulae (31)

and (32) that

E
[
Z(t)l

]
≤ b̂′

l(t) + E
[
Z(t − ξ1)

l
1{ξ≤t}

]
, t ≥ 0,

for a directly Riemann integrable function b̂′
l . The claim follows from the key renewal

theorem.



A functional limit theorem for random processes with immigration 107

Case III. For l = 1 the claim follows from Lemma 1(iii) and formula (31). Using

inductive argument once again we obtain from (32) that

E
[
Z(t)l

]
≤ C′′

P{ξ > t} + E
[
Z(t − ξ1)

l
1{ξ≤t}

]
, t ≥ 0,

for some C′′ = C′′
l > 0 and the claim follows from Lemma 1(iii).
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