
A Functional Package for Monitoring Branching Methods 

in Combinatorial Optimization 

J.P.A. Barthgs 

Department of Applied Mathematics and 
Computer Science 
University of Technology of Compi~gne 
60200 COMPIEGNE, France 

This note announces the development of a set of 

computer functions for studying a wide class of 

combinatorial optimization problems by solving 

them interaetively. A first implementation has 

been done at UTC and presently runs on a DEC PDP 11 

minicomputer. 



770 

Combinatorial optimization methods such as Branch and Bound,Branch Search, etc., are 

used extensively because of their efficiency. Furthermore they yield good results in 

complex cases when sub-optimal techniques are used coupled with heuristics. It has 

been shown that it is possible to specify a given problem as well as the strategy to 

be implemented, by using a small number of parameters. Consequently, this paper pres- 

ents a package Of functions for implementing various branching strategies and for 

monitoring the search during the optimization process. The package contains a general 

branching mechanism which can be specialized by specifying parameters. It also pro- 

vides a number of possibilities for outputting significant intermediate data or 

statistics. 

The package may be considered a fundamental tool for the study of the interaction 

between the data structure and the type of strategy and in particular for the choice 

of heuristics for a given class of problems. This step is necessary if one wants to 

write efficient code for solving some classes of combinatorial optimization problems. 

]. General Branching Algorithm 

This paragraph is a short summary of previous work [I]. Combinatorial problems con- 

sidered here consist of 

(i) a set ~ of objects called solutions 

(ii) a finite set P = {P.} of p properties, such that each property Pk 
i 

partitions E into a finite number qk (qk > I) of equivalence classes 

noted ~/Pk" 

(iii) a set of feasibility conditions C = {Cp} 
J 

(iv) a procedure which allows to extract from E/PI...P p an optimal feasible 

solution if there is one. 

A well kno~ representation of the search process is the search tree whose nodes 

represent successive examined solution classes. 

Algorithm Basically the algorithm examines a solution class obtained by using some 

property P.. It tries to locate an optimal solution in the class, or to determine 
l 

whether or not there is any feasible solution. Possibly it computes additional infor- 

mation such as upper bound, lower bound, evaluation function,... After a termination 

test the algorithm then goes into the process of selecting another solution class by 

choosing one of the previously examined classes and a new property. This property is 

used to obtain subclasses and one of them is selected to be examined at the next 

iteration. 

In many places choices are made that depend on the user, who by doing so defines the 

strategy. They are indicated below by the qualifier rule, meaning a user defined pro- 

cedure. For instance the partitioning rule corresponds to the choice of next property 

to be used, while the prio~ty rule corresponds to the choice of the next solution 

class to be examined among the generated subclasses. It is worth noticing that such 

rules may be dynamically produced in the context of Branching Algorithms, i.e. they 



771 

may be context dependent. 

The indicator and branching function mentioned in step ;.4 of the following algorithm 

play a crucial rule. They are used to evaluate the desirability from exploring further 

a given solution class and play a fundamental part in step 3. I. Actually they dictate 

the strategy. 

The algorithm is stated in the case of a maximization problem. 

Step 0 

The original problem is examined first. The whole set of solutions Z is assigned 

to the root of the search tree. At each iteration a solution class is examined as 

follows starting with Z. 

Step I Node Analysis 

I.|. Check feasibility. If it is determined that the solution class does not 

contain any feasible solution, close the node and go to step 2. 

1.2. Compute an upper bound for the solution class. 

1.3. Update the state of the node. If closed (for example if terminal) then 

go to step 2 ; otherwise go to 1.4. 

1.4. Compute a node indicator by evaluating the branching function. Go to 

step 2. 

Step 2 Termination Test 

Determine whether or not the search has terminated by examining the pending 

nodes of the search tree and by using the termination rule. If yes, then stop ; 

otherwise go to step 3. 

Step 3 Node Generation 

3. I. Use the pending node indicators to determine the branching node. Go to 

3.2. 

3.2. 

3.3. 

Use the partitioning and priority rules to determine the new node. Go to 

Update the state of the branching node and set the state of the new node 3.3. 

to 0. 

This is the end of an iteration, go to step I for the next iteration. 

It is worth noticing that once the branching function has been defined all strategic 

decisions are taken in step 3 of the algorithm, while all information related to the 

problem data is acquired at step I. This situation allows to write easily adequate 

code for implementing this type of general branching algorithm. 

2. Implementation - SICOBA 

General Approach SICOBA (Simulation of Combinatorial Optimization Branching 

Algorithms) is a set of about 30 functions written as FORTRAN subroutines which 

allow the user to solve any problem that can be set up as defined in (i) through (iv) 

of paragraph I. Any strategy that can be implemented by a branching function can then 



772 

specified and information about how the problem is being solved is obtained through 

SICOBA. 

The user is left free to organize its data as he likes and must therefore provide 

routines for interfacing with the external world (input/output routines) as well as 

with SICOBA. The complexity and sophistication of those routines depend solely on 

the particular problem to be studied and on the user's programming skills. Generally 

it can be fairly simple. To illustrate this approach it suffices to give the names 

of the required routines which are called at various moments by SICOBA. 

Input/Output routines 

RDDAT reads data in 

PRTPB prints data for checking it 

MODDAT modifies data (optional) 

MOVSOL moves a feasible solution into a user's defined solution area 

WRTSOL prints part of the solution area (user controlled) 

. Search Parameters 

INIPRM transmits search parameters to SICOBA as arguments. 

• Data information (needed in Node Analysis Step) 

PSULB computes upper, lower bound, optimality over solution subclass 

BRFCN implements a branching function 

• Structural Information (needed both in Node Analysis and Node Generation 

Steps) 

NXPIMI implements partitioning and priority rules 

MAXPI returns the maximum member of generated subsets for a given property 

o Dynamic management of property area (optional) 

PINCNT increment and decrement a property reference counter 

PDCCNT in user's area. 

Any number of additional routines may be included by the user within the limit of 

the machine capacity. 

Once the problem has been formulated the rest is taken care of by SICOBA. 

Working Modes and Available Com~ds. SICOBA works in two possible modes Batch or 

Interactive, although it was really intended to be used interactively. In batch mode 

SICOBA simply solves the particular problem and prints additional information such 

as: 

• Total number of explored nodes 

• Total elapsed time 

. Maximum number of nodes at any given time (core requirement) 

• Number of explored nodes before reaching the optimal solution 

. Maximum depth of search (interesting for complex dynamic property definition 

cases) 

• Display of tree width versus time (are requirement) 

• Display of tree depth versus time. 



773 

In interactive mode SICOBA works on a question/command answer basis and its 

possibilities can be best illustrated by giving a list of commands. 

Exit 

show list of commands 

show data 

perform single step (i.e. only node analysis for example) 

perform n iterations 

show current node content (examined subclass, upper-bound, lower bound, 

feasible solution, etc.) 

give number of pending nodes (Instantaneous core requirement) 

show best solution so far 

show elapsed time 

give number of free cells left 

change data (user routine MODDAT) 

start again 

change search parameters (user routine INIPRM) 

change tree width sampling frequency 

change tree depth sampling frequency 

display tree width versus time so far 

display tree depth versus time so far 

switch node trace flag 

go into advanced command mode. 

There is a set of about 25 advanced commands which allow the user to change pieces 

of information at very low level, that is to experiment on the structure. It is 

possible to change data but also structures (pointers) and proceed from there with 

standard commands. This is a dangerous but useful possibility. 

In Conclusion It was found that SICOBA could be used mainly for the three 

following purposes 

• for testing various strategies on various combinatorial optimization problems 

• for helping to find better heuristics 

• for solving directly complex problems without using mathematical models. 

Reference 

I. Barth~s Jean Paul A., "Branching Methods in Combinatorial Optimization", 
PhD Thesis, Stanford (1973). 


