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A functional spiking neuronal 
network for tactile sensing 
pathway to process edge 
orientation
Adel Parvizi‑Fard1, Mahmood Amiri2*, Deepesh Kumar3, Mark M. Iskarous4 & 
Nitish V. Thakor3,4,5*

To obtain deeper insights into the tactile processing pathway from a population‑level point of view, 
we have modeled three stages of the tactile pathway from the periphery to the cortex in response to 
indentation and scanned edge stimuli at different orientations. Three stages in the tactile pathway 
are, (1) the first‑order neurons which innervate the cutaneous mechanoreceptors, (2) the cuneate 
nucleus in the midbrain and (3) the cortical neurons of the somatosensory area. In the proposed 
network, the first layer mimics the spiking patterns generated by the primary afferents. These 
afferents have complex skin receptive fields. In the second layer, the role of lateral inhibition on 
projection neurons in the cuneate nucleus is investigated. The third layer acts as a biomimetic decoder 
consisting of pyramidal and cortical interneurons that correspond to heterogeneous receptive 
fields with excitatory and inhibitory sub‑regions on the skin. In this way, the activity of pyramidal 
neurons is tuned to the specific edge orientations. By modifying afferent receptive field size, it is 
observed that the larger receptive fields convey more information about edge orientation in the first 
spikes of cortical neurons when edge orientation stimuli move across the patch of skin. In addition, 
the proposed spiking neural model can detect edge orientation at any location on the simulated 
mechanoreceptor grid with high accuracy. The results of this research advance our knowledge about 
tactile information processing and can be employed in prosthetic and bio‑robotic applications.

Our ability to touch and feel is usually considered a simple task in daily life. However, there is a complex process 
behind our sense of touch, from the sensory receptors within the skin to the brain’s neuronal activity. When we 
interact with an object, the activation of di�erent kinds of mechanoreceptors in the skin send various signals 
regarding object characteristics such as texture, shape, and size. Single-unit recordings of tactile a�erents have 
been used to discover how tactile information is  encoded1,2. One of the main �ndings is that stimulus information 
is distributed over a population of �bers in the form of spike trains. However, our understanding of population-
level coding is still basic and only a few models have tried to address this important  representation3–5. Indeed, 
tactile processing involves neural mechanisms that extract high-level features of a stimulus, such as an edge 
orientation, by integrating information from many low-level  inputs6,7. �e low-level inputs originate from the 
cutaneous mechanoreceptors which are located in the skin throughout the body and convert skin deformation 
into spiking responses. �e density of mechanoreceptors varies across the body. For example, the density of 
cutaneous a�erents that innervate the human �ngertip is about 240 units/cm2, whereas in the palm it is only 58 
units/cm28,9. In general, the hands and lips for primates have the highest density of mechanoreceptors while the 
legs and back contain the lowest. One of the main features of these �rst-order neurons is that they have complex 
receptive �elds. Indeed, the a�erent’s distal axons which innervate the skin form many transduction  sites4,10. �is 
innervation pattern is a critical peripheral nerve mechanism that allows individual a�erents to encode geomet-
ric information about tactile stimuli. To the best of our knowledge, the spatial complexity and heterogeneity of 
innervation patterns have not been integrated in models, such as in the excellent work by Saal et al.3.
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�e �rst stage of the tactile processing pathway consists of the cutaneous mechanoreceptors which are broadly 
categorized as two cell types with di�erent response characteristics: (1) slowly adapting (SA) mechanoreceptors 
which produce sustained �ring activity in response to a static indentation of the skin, (2) and rapidly adapting 
(RA) mechanoreceptors which mainly �re at the onset and o�set of indentation. �e SA-I and SA-II a�erents 
innervate Merkel discs and Ru�ni endings, respectively. �e RA-I and RA-II a�erents innervate Meissner and 
Pacinian corpuscles,  respectively11. In this study, we consider SA-I and RA-I a�erents which are essential for edge 
orientation  detection8. �e second stage in the tactile processing pathway is the cuneate nucleus (CN) within 
the medulla in the midbrain. �e CN neurons incorporate lateral inhibition which �lters neuronal �ring. In this 
study, we investigate the role of lateral inhibition for edge detection at the population-level in the CN  model12 by 
modulating the CN inhibitory currents. A mechanical skin stimulus activates several cuneate neurons, however, 
each cuneate neuron responds to a unique combination of  inputs13. �e spiking response of the second stage 
is transmitted (via the thalamus) to the cortical neurons in the somatosensory cortex of the brain (third stage) 
which are sensitive to edge-orientations and hence the stimuli are  perceived14,15. Indentation at di�erent skin 
locations evokes activity in di�erent areas of the somatosensory cortex, with some overlap between neighboring 
skin  regions16. Even though the collective response of the cortical neurons to the contact events looks very similar 
to the population response of a�erents, tactile information is processed during transmission from the peripheral 
nerves to the cortical neurons. Indeed, cortical neurons have complex receptive �elds with excitatory and inhibi-
tory sub�elds and have properties that are largely absent in the tactile  a�erents17. �ese properties include feature 
selectivity to edge  orientation18 and motion  direction19 and nonlinear integration of  inputs6,20–24. �e three stages 
of the tactile processing pathway are summarized in Fig. S1. In this study, a three-layer biophysical model using 
a spiking neural network is proposed to functionally simulate the tactile processing pathway. �is model takes 
into account the recent physiological  evidence4,12,17,18. For the �rst layer, the SA-I and RA-I a�erents are mod-
eled as they branch into the skin and innervate overlapping receptive �elds which provides spatial and temporal 
information about the tactile  stimuli4,9. We propose a dynamic model for the SA-I a�erents which consists of 
a Merkel-cell component (input current) and a neurite component (a derivative of input current). �is novel 
model also shows better adaptability than the static one which only considers the Merkel-cell component. In our 
model, the �rst-order tactile neurons randomly innervate the mechanoreceptors available at the  �ngertip4. �e 
second layer of the proposed spiking neural network models the projection neurons (PN) and interneurons (IN) 
to simulate the CN structure. �e primary sensory a�erents make excitatory synaptic connections with both 
PN and IN, while IN makes only inhibitory connections with the  PN12. �e third layer models a population of 
pyramidal neurons (PY) and cortical interneurons (c-IN). We focus on the somatosensory cortex area 3b which 
has previously been identi�ed by linear spatial receptive �elds with spatially separated excitatory and inhibi-
tory regions on the  skin25. In this case, the PY and c-IN receive excitatory synaptic connections from the PN. 
Additionally, the c-IN also have inhibitory synaptic connections to the PY. For simplicity, in our simulations, the 
cortical receptive �elds consist of two sub�eld regions on the skin (excitatory and inhibitory) that are adjacent 
and tuned for a speci�c orientation. �e receptive �elds for each cortical neuron are distributed across the skin; 
consequently, edge orientation is recognized accurately and rapidly by the �ring responses of the cortical neu-
rons independent of the edge stimulus location. Finally, we explore the e�ect of a�erent receptive �eld size on 
the encoding of the scanned and indented edge stimuli, based on the �rst spikes emitted by the cortical neurons 
(PYs). �e entire spiking neural network model was built using the Brian2 simulator with Python version 3.6526.

Results
�e primary objective of this study is to simulate the tactile pathway from the glabrous skin of the �ngertip to 
the cortical neurons in the somatosensory cortex area 3b in response to edge orientation stimuli. In this way, 
we discover how the receptive �eld size modulates information about edge orientation in the spiking pattern of 
cortical neurons. In the �rst layer, the SA-I and RA-I a�erents are simulated which innervate their mechanore-
ceptors in a random sampling pattern. Edge stimuli activate a population of mechanoreceptors that send tactile 
information to the upper layers. �e next layer, the CN, integrates and categorizes the coming information. We 
examine the role of lateral inhibition in the PN population and demonstrate how insu�cient inhibitory currents 
lead to a failure in suppressing skin hypersensitivity. In the last layer, modeling the excitatory and inhibitory 
receptive �elds of the somatosensory cortical neurons shows the classi�cation of edge orientation independent 
of stimulus location. Two experiments are done; (i) Indented edge experiment: the stimulus vertically indents 
the simulated patch of skin. (ii) Scanned edge experiment: the stimulus indents and moves across the skin in a 
speci�c direction.

First‑order neurons. In the �rst layer, we simulated two a�erent populations, namely, SA-I and RA-I. �ese 
a�erents densely and randomly innervate the skin mechanoreceptors of the human �ngertips and encode tactile 
information through their spike rates and spatiotemporal spiking patterns (Fig. 1A). A set of indentations are 
applied as the inputs to each a�erent model (Fig. 1B) to produce spiking responses (Fig. 1C). �e stimulus is the 
edge at di�erent orientations (from 5°–80°, in 5° increments) indented on the mechanoreceptor grid of the �n-
gertip. �e di�erent weights of mechanoreceptors make it possible for a�erents to have spatially complex recep-
tive �elds (Fig. 1D). Recently, it has been proposed that random innervation of a�erents might be a peripheral 
neural mechanism for extracting geometric features of the touched  objects4.

�e SA-I dynamic model. Myelinated SA-I a�erents innervate the skin through unmyelinated �bers (neurites) 
to form synaptic-like connections with Merkel cells. Indeed, SA-I a�erent’s end organ is considered as a Mer-
kel cell-neurite  complex27. When the skin is stimulated mechanically, Merkel cell-neurite complexes produce 
activation currents in unmyelinated neurites. Recent computational models have attempted to determine how 
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structural mechanisms of Merkel cell-neurite complexes modulate the SA-I �ring  characteristics28, but it is still 
unknown how Merkel cells and neurites individually contribute to producing responses in the SA-I a�erent. 
It is di�cult to experimentally measure currents generated by the Merkel cells and neurites in response to a 
mechanical  stimulation27. Nevertheless, recent biological data illustrate evidence for a two-component model. 
In this way, the Merkel cell-neurite complex includes (1) Merkel cells which are essential for sustained �ring in 
SA-I a�erents, and (2) neurites that produce rapidly adapting �ring to mechanical  stimulation29–31. Here, we pro-
pose a biologically plausible and functional model to mimic the Merkel cell and neurite response to mechanical 
indentation stimuli. Unlike previous studies which suggest that the SA-I model responds only to the hold phase 
of mechanical  stimuli32–34, the new model is composed of a Merkel-cell component (input current) and a neurite 
component (a derivative of input current). �e e�ect of the SA-I dynamic model on the performance of cortical 
neurons using spike count analysis is illustrated in Fig. 2. Considering indentation noise in di�erent trials, it is 
found that the classi�cation performance has a stable characteristic when a biomimetic  decoder35 (see Meth-
ods) is used (Fig. 2A) and consequently it has more robustness. A�erent responses are assessed using Principal 
Component Analysis (PCA). In this way, considering the �rst 3-principal components of the feature space (spike 
count), simulations show that the K-nearest neighbor classi�er (KNN) has higher performance for the SA-I 
dynamic model in comparison with the SA-I static model (Fig. 2B). Furthermore, the RA-I a�erent responses 
against indentation noise are also reported in Fig. 2B. Noteworthy, the number of RA-I a�erents is almost double 
of the SA-I ones (see Methods) and its performance is slightly superior. �is �gure also illustrates that the initial 
spiking responses of the SA-I model make rapid and accurate orientation detection.

Decoding the indented and scanned edge orientation. In the indentation experiment, we investigated how edge 
orientation could be decoded and extracted from the SA-I and RA-I population responses. We consider 2 or 

Figure 1.  �e �rst layer of the tactile processing model consists of a mechanoreceptor grid and two di�erent 
populations of a�erents (Green: SA-I and Blue: RA-I). (A) Touching an edge results in skin deformation, which 
in turn activates several mechanoreceptors distributed across the skin. (B) �e signal processing pipeline for 
each a�erent. (C) Simulated �ring patterns of tactile �bers in response to an edge being indented into the skin 
at a 30° orientation. (D) Examples of receptive �elds for the di�erent mechanoreceptors. Each a�erent randomly 
innervates a set of mechanoreceptors within their speci�c receptive �elds. (E) �e input current to the spiking 
neuron model (Izhikevich). �e dynamic model of SA-I (green trace) produces spiking activity that is more 
similar to the reported physiological  measurements29.
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3 principal components obtained by applying PCA to the spike counts calculated from �ring patterns. In our 
simulations, the Pacinian a�erents have not been considered because they are known to contribute more to tex-
ture and vibrotactile  encoding3,8. In Fig. 3A, as the orientation changes, the edge stimulus lands on the receptive 
�eld of di�erent a�erents, therefore, information is encoded in the spatiotemporal pattern of activation. Results 
show that contact stimuli are encoded in the �rst emitted spikes, and 2-principal components are as informative 
as 3-principal components which are extracted from the feature space (Fig. 3B). At the population level, the per-
formance of RA-I is higher than SA-I given the fact that the number of RA-I a�erents is greater than SA-I which 
improves the spatial encoding. Based on the experimental evidence, each type of a�erent extracts particular 
geometric features, and therefore, the combination of both a�erents improves the recognition performance. We 
also simulated the responses of two a�erent populations to the scanned edge stimulus on the simulated patch 
of skin for 16 di�erent orientations (Fig. 4A). �e goal is to classify the edge orientation based on the responses 
at the population-level considering both spike count (number of spikes) and temporal spiking pattern (spike 
timing). Indeed, a�erents randomly innervate the mechanoreceptors and create highly sensitive areas that are 
non-uniformly distributed within the receptive  �eld4. �is arrangement acts as a peripheral neural mechanism 
that allows individual neurons to extract distinct features of the touched objects. When skin is deformed, each 
a�erent produces unique responses and facilitates edge stimulus discrimination. To calculate the temporal dis-
tance between spike trains, Victor-Purpura distance (VPd) has been  used36.

Figure 4B shows the neural response when an edge stimulus is moving across the receptive �elds of two sam-
pled tactile a�erents. In Fig. 4C, as can be seen, the RA-I responses rapidly show the orientation stimuli with high 
accuracy compared to the SA-I responses. Figure 4C shows the comparative performance analysis for decoding 
the orientation of the scanned edge to variable time windows. Both spike count (spatial activation pattern) and 
spike timing-based features are used for orientation detection. Although the classi�cation accuracy for both 
methods, spike count and spike timing, eventually saturates, the performance curves of the spike timing method 
(dashed lines) have a delay with respect to the performance curve of the spike count method (solid lines). �is 

Figure 2.  Network performance comparison for the static and dynamic models of SA-I a�erent based on 
spike count analysis. (A) �e biomimetic decoder is robust to noise for both static and dynamic models. (B) 
�e KNN classi�cation performance utilizing the �rst 3-principal components from a�erent responses (RA-I, 
SA-I Dynamic, and SA-I Static models) to recognize orientation stimuli 100 ms a�er contact for three levels of 
indentation noise.
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Figure 3.  Decoding the orientation of indented edge based on spike count analysis. 16 orientations were tested 
(5°–80° with 5° steps). (A) �e indented edges at 5° and 40° activate the mechanoreceptor population. �e Le� 
and Right columns indicate the mechanoreceptor grids innervated by SA-I and RA-I a�erents, respectively. (B) 
Classi�cation performance for SA-I (green) and RA-I (blue) a�erents and the whole population (black) when 
the edge stimulus indents skin for di�erent durations right a�er the contact. �e PCA algorithm is used for 
dimensionality reduction and solid curves show the test performance when three principal components are 
considered. �e chance level is shown by the horizontal gray dashed line.

Figure 4.  Decoding the orientation of a scanned edge. (A, Upper) �e 16 edge orientation stimuli (5°–80° in 
5° steps). (A, Lower) Simulated scanning edge experiment: �e �ngertip makes contact with the edge oriented 
at 15° and then the edge is moved upwards. (B, Le�) Sampled mechanoreceptors which are innervated by two 
a�erents (green circle shows the SA-I receptive �eld and blue circle indicated the RA-I one) and scanned edge 
moves across the receptive �elds. In this way, the activated mechanoreceptors generate spiking responses in 
their corresponding �bers. (B, Right) Responses of 2 selected SA-I and RA-I �bers to the scanned edge stimulus 
for 10 repetitions. �e SA-I and RA-I �ring responses are depicted in green and blue, respectively. �e vertical 
dashed line represents the time of edge location shown in (B, Le�). (C) Classi�cation performance for each 
a�erent type (green and blue) and both (black) for di�erent time windows using spike count (solid curves) and 
temporal metric (dash curves). �e horizontal gray dashed line denotes the chance level.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1320  | https://doi.org/10.1038/s41598-020-80132-4

www.nature.com/scientificreports/

interestingly shows the spatial activation pattern (which is speci�ed by counting the number of spikes) of the 
early spikes conveys more information compared to the temporal patterns of the a�erent responses.

To assess the behavior of the a�erents at a single-unit level, one a�erent (SA-I and RA-I) is considered which 
has its receptive �eld (Fig. 5A). During the experiment, the receptive �elds are scanned by 16 edge orientations 
and each stimulus is repeated 6 times (96 trials in total). Since RA-I a�erents have larger receptive �elds in com-
parison to SA-I, the obtained spiking responses are more diverse (Fig. 5B). Figure 5C shows the cross-correlations 
between the input current of a�erents. As can be seen in Fig. 5C, for the SA-I a�erents, in lower angles of orienta-
tion, correlation coe�cients are more similar. �us, angle discrimination using correlation coe�cients in RA-I 
is easier than SA-I. Figure 5D illustrates the spike timing analysis by computing the VPd metric which illustrates 
that the RA-I spike responses are more informative than SA-I. Employing the extracted features from Fig. 5C,D, 
the classi�cation accuracy to classify the edge orientation is reported in Table 1.

Second‑order neurons (cuneate nucleus). �e second layer of the proposed functional neuronal model 
considers the projection neurons (PN) and interneurons (IN) to simulate the cuneate nucleus (CN) structure in 
tactile sensing. �e CN neurons mainly contribute to tactile information processing through lateral inhibition 
which leads to the �ring rate  �ltering12. �e INs make inhibitory synaptic connections with the PNs (Fig. 6A). 
We have hypothesized that the lateral inhibition in the CN model prevents the accumulation of noise and pre-
serves spatial information which in turn facilitates the edge detection process. In this way, the impact of CN 
lateral inhibition on the performance of orientation detection is explored when the edge indents the simulated 
mechanoreceptor grid. Indeed, we tune the network for the best performance of edge orientation detection. 
With maximum lateral inhibition, input currents of some PNs decrease signi�cantly. On the other hand, reduc-
ing the amount of inhibitory current from INs to the PNs (Fig. 6B,C), leads to an increase in the �ring rate of 
the cortical neurons. A biomimetic decoder is considered by employing the winner-take-all algorithm (a cortical 
neuron with a maximum �ring rate is the winner neuron) (see Methods). Figure 6D illustrates that diminish-
ing the amount of lateral inhibition leads to a decrease in the recognition accuracy of the indented orientations. 
Indeed, lateral inhibition preserves spatial information and thus facilitates the edge detection process. Firing 
responses of all tactile processing stages are plotted in Fig. 7A,B, when two edge orientation stimuli indent the 
mechanoreceptor grid at two levels of inhibition in the CN.

Cortical neurons in the somatosensory area. In the last layer, the responses of cortical neurons to 
orientation stimuli are simulated. �e obtained results are in agreement with the experimental results reported 
in the  literature35,37 when an edge indents the skin. For simplicity, in our simulations, cortical receptive �elds 
consist of two sub-regions on the skin (excitatory and inhibitory), and they are located close to each other and 
are tuned for a speci�c orientation. �ese receptive �elds are distributed over the skin, therefore, edge orienta-
tion can be recognized accurately and rapidly by the cortical neurons even when the position of the edge stimu-
lus on the skin is changing. Indeed, cortical neurons in area 3b are sensitive to speci�c orientations. Speci�cally, 
when an edge indents the skin, the input currents of orientation-tuned cortical neurons are raised based on the 
spatial coincidence between the receptive �eld sensitive zones of cortical neurons and the edge orientation on 
the skin. To better understand the function of the cortical neurons, the excitatory and inhibitory currents are 
plotted (Fig. 8A). It is evident that edge orientation can quickly be decoded using the winner-take-all algorithm. 
As shown in Fig. 8A, the current amplitudes of the orientation-tuned cortical neurons are increased a�er 20ms 
to distinguish edge stimuli, which is compatible with the conduction delay to the cortex in neurophysiological 
 observations37. To investigate how the biomimetic decoder recognizes edge orientations indented at di�erent 
skin positions, we considered three locations with 1.2 mm spacing along the y-axis on the simulated patch of 
skin. For each trial, the stimulus was applied randomly to one of these locations. �e orientation is decoded 
based on the “winner-take-all” approach (biomimetic decoder). Furthermore, to compare the performance with 
a common machine learning algorithm, the PCA for feature reduction and the KNN as the classi�er are used. 
�e spike count is used as the input features. To explore the evolution of decoding performance over time, the 
procedure was repeated for 60 progressively expanding time windows, ranging from 0 to 180ms a�er stimulus 
onset (Fig. 8B). As can be seen in Fig. 8B, the biomimetic decoder has better performance and achieves 97% 
accuracy around 180ms . Confusion matrices for both decoders are shown for the 180ms time window (Fig. 8C). 
Another interesting simulation is to explore the e�ect of a�erents’ receptive �eld size on the orientation recog-
nition by the cortical neurons. �e procedure for forming the receptive �elds has been described in the Meth-
ods section. Here, we examine how the scanned and indented edge stimuli are encoded by the population of 
cortical spiking neurons when the standard deviation (SD) of the mechanoreceptor distribution is changed 
(Fig. 8D). Interestingly, it is observed that the larger receptive �elds of a�erents convey more information about 
the scanned edge in the �rst spikes of population-level of cortical neurons for both spike timing and spike count 
protocols (Fig. 8E). Conversely, in the indented edge experiment, the larger receptive �elds make the orientation 
detection worse (Fig. 8F). �e responses of all layers to an edge indentation stimulus are shown and summarized 
in Movie S1. Figure 9A illustrates sample receptive �elds with excitatory and inhibitory sub-regions on the skin. 
An excitatory (inhibitory) sub-region indicates that any indentation at that location gives rise to an increase 
(decrease) in neuronal �ring. �is �gure shows that the intensity of neural �ring indicates the edge orientation. 
In this way, as the degree of spatial coincidence between the neuron sensitive zones and tissue deformations 
caused by edge indentation increases, the neural �ring also increases. For a given neuron, some edge orientations 
show more spatial coincidence than others and therefore yield stronger responses (Fig. 9B and Movie S2). Raster 
plots of cortical neurons are depicted for two edge orientations (10° and 40°); the input stimulus is recognized 
by the highest spiking rate (Fig. 9C).
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Figure 5.  �e �ring responses of sampled SA-I and RA-I a�erents for di�erent edge orientations. (A) A line 
stimulus moves across the receptive �elds of two primary a�erents (Upper, RA-I (#204); Lower, SA-I (#65). (B) 
Raster plots and the generated currents for two neurons shown in A for four di�erent orientations (10°, 30°, 50°, 
70°) and 6 passes across the receptive �eld. (C) Correlation coe�cients of the currents in mechanoreceptors for 
all 16 orientations scanned 6 times with 10% indentation noise per trial. (D) Victor-Purpura distance (q = 1) 
was calculated for each pair of spike trains. �e extracted features from (C) and (D) are later used to classify the 
stimulus orientation.
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Table 1.  Classi�cation performance of the sampled a�erents for the scanned edge experiment across their 
receptive �elds: taking into account the spike distance (VPd) and correlation coe�cients as the input features 
to the KNN classi�er.

Primary a�erent Spike distance (VPd) (%) Correlation coe�cients (%)

RA − I 66 97.5

SA − I 15 88

Figure 6.  Modeling the CN neuronal circuitry and synaptic currents (excitatory and inhibitory) for edge 
indentation stimulus. (A) �e primary a�erents make excitatory synaptic connections with both PN and IN 
sub-populations. �eir synaptic types are indicated by red (excitatory) and blue (inhibitory) triangles. Input 
currents of 100 PNs when full (B) and partial (C) inhibition comes from INs to PNs while edge stimulus indents 
the mechanoreceptor grid. Two peaks in the current traces are generated by the onset and end of the indentation 
pro�le. (D) Performance of the spiking network when the amount of lateral inhibition is increased within the 
CN model.



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1320  | https://doi.org/10.1038/s41598-020-80132-4

www.nature.com/scientificreports/

Conclusion
�e functional modeling of the tactile pathway from the cutaneous mechanoreceptors (�rst layer), to the cuneate 
nucleus (second layer) up to the somatosensory area 3b (third layer), provides a mechanistic tool for understand-
ing the role of di�erent neuronal networks in tactile information processing. �e current research highlights the 
importance of each stage in neuronal population coding in the detection of edge orientation. It also provides a 
deeper understanding of how the response of cortical neurons to edge stimuli changes as the mechanoreceptor 
innervation mechanisms and receptive �elds are changed. �e simulated spiking neural networks are functionally 
compatible with physiological observations across a wide range of conditions sampled from literature. Indeed, 
many recent neurophysiological �ndings have been embedded in the proposed model and its performance—
based on spiking responses of cortical neurons—has been demonstrated for decoding of edge orientations.

One of the key features of the human �ngertip is its ability to recognize edge orientation. In this way, it was 
illustrated that the random innervation of the mechanoreceptors by the primary a�erents allows the encoding of 
orientation information through the spatiotemporal spiking pattern. �is structure organizes a peripheral neural 
mechanism for extraction and then transmission of geometric features of the touched objects. �e proposed hier-
archical spiking neural network successfully discriminated edge orientation stimuli irrespective of edge location. 
It was shown that using the �rst spikes of cortical neurons; the orientation of stimuli (scanned or indented edge) 
was recognizable. �e e�ect of a�erent receptive �eld size was compared in two di�erent experiments (scanned 
and indented edge). Orientation detection of the scanned edge stimuli in the �rst spikes of cortical neurons was 
improved when the a�erents’ receptive �eld size was increased. Nevertheless, for the indented edge experiment, 
the situation was reversed and increasing the size of the a�erents receptive �eld resulted in the reduction of cor-
rect detection. �e �ndings showed that the importance of receptive �eld size depends on the speci�c tasks and 
experiments. Recent studies have shown that the main connections in neuronal pathways are formed during the 
developmental  process38–40. However, the exact cortical dynamics and function have not been studied yet. Here, 

Figure 7.  Spiking responses of di�erent stages of tactile processing pathway when lateral inhibition in CN is 
modulated. (A, B) Raster plot of primary a�erents (SA-I and RA-I), IN and PN subpopulation of CN and PYs 
for 10° (top) and 40° (bottom) indented edge stimuli. �e �ltering e�ect applied by the CN model for the full 
inhibition case is clear which facilities the recognition of the edge orientation. �e amount of partial inhibition 
is 25%.
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Figure 8.  �e performance of the tactile spiking neural network when stimulus location is changed on the 
skin. (A) Input currents of cortical neurons: blue traces show those neurons that are tuned to the presented 
input stimulus, each of them responds to a stimulus which is applied at a di�erent skin region. �e magni�ed 
part indicates the transient phase of indentation. Using the cortical neuron currents, it is found that indented 
edges can be detected a�er 20ms (time delay to convey contact information to the cortex). (B) �e superior 
performance of the biomimetic decoder in recognizing edge stimuli indented at a di�erent position on the 
simulated skin. (C) Confusion matrix for two classi�ers, the biomimetic and the KNN classi�ers. (D) Simulated 
receptive �elds of SA-I and RA-I for 4 di�erent scales (SD (mm)) based on the Gaussian distribution of the 
innervated mechanoreceptors. (E) Exploring the e�ect of a�erent receptive �eld size on the temporal and spatial 
coding of the cortical neurons. Network Performance for spike counting (green) and spike timing (blue) when 
edge stimulus is scanned across the skin for 30ms (le�) and 50ms (right) a�er contact. (F) Network Performance 
for spike counting (green) and spike timing (blue) for 30ms (le�) and 50ms (right) a�er contact.
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we investigated edge orientation detection through the cortical neurons as a biomimetic classi�er. We showed 
that the intensity of a neuron’s response would signal edge orientation because its �ring rate would increase with 
the degree of spatial coincidence between the neuron’s highly sensitive zones (excitatory region of receptive �eld) 
and the local skin deformations formed by edge indentation. �at is, for a given neuron, some edge orientations 
exhibit more spatial coincidence than others and thus stronger responses are produced.

Also, the role of the inhibitory current which forms the lateral inhibition within the cuneate nucleus was 
studied. Indeed, the simulation results suggest that when lateral inhibition has increased the process of spike 
�ltering is ampli�ed. �is leads to the reduction in “noise” within the system and hence the third-order neurons 
are activated by a strong and consistent signal. �is also increases the spatial resolution of the receptive �elds and 
gives them a more distinct border which improves discrimination between two separate points of simultaneous 
stimulation. Although other forms of lateral inhibition are also observed, the “feedforward” type of lateral inhi-
bition is likely the most  signi�cant41. Various aspects of tactile sensitivity have been related to di�erent forms of 
neuronal inhibitory function. Impaired reactions to tactile stimuli in children with autism spectrum disorder 
(ASD) are frequently reported symptoms. Indeed, impairments in �ltering of or adaptation to tactile inputs have 
been described in  ASD42. Under the assumption that the inhibitory mechanism is altered in  ASD43,44, it can be 
suggested that dysfunction in lateral inhibition of the second layer of tactile processing or malfunction in the 
formation of the inhibitory sub-regions of the cortical neurons may also have a role. Understanding the speci�c 
mechanisms underlying sensory symptoms in ASD is still under investigation which may allow for more speci�c 
therapeutic approaches in the future.

�e main limitation of the proposed spiking model is the lack of neural recordings for all network layers. 
Nevertheless, the model is based on the signi�cant literature and published data for model building and valida-
tion. �e proposed spiking network for a tactile system can be employed in the design and implementation of 
sensory neuroprostheses  applications45–48. Additionally, the broad signi�cance of this work is that the biomimetic 
tactile sensing and edge encoding are useful in robotic applications for shape recognition and object grasping 
and  palpation49–51.

Methods
Mechanoreceptor and afferent models. To simulate the mechanoreceptor grid, the physiological infor-
mation from the literature was considered. �e SA-I �bers constitute about 25% of all tactile �bers innervating 
the hand. �ey are divided into multiple branches near the skin surface to reach the Merkel discs, which are dis-
tributed over di�erent �ngerprint ridges. �is branching and innervation create a receptive �eld covering an area 
of about 10 mm

2 on average for each SA-I  a�erent8. A�erent parameters are reported in Table 2. In response to a 

Figure 9.  �e cortical neuron receptive �elds with excitatory and inhibitory sub-regions on the skin. (A, B) 
Receptive �elds of cortical neurons are located at di�erent positions across the skin and neurons selectively 
respond to the orientation stimulus. Activation of excitation areas on the skin increases the cortical �ring, 
on the other hand, activation of inhibitory areas leads to a decrease in the spontaneous �ring. (C). �e �ring 
response of 160 orientation-sensitive neurons in area 3b to 10° and 40° indented edge stimuli. Each group of the 
ten neurons is sensitive to one orientation which location of their receptive �elds on the skin is di�erent. �e 
green areas show the onset and end phases of indentation.
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skin indentation, the activated Merkel discs within the receptive �eld send their partial information via the SA-I 
�bers which produce sustained spiking responses that slowly decrease over time (Fig. 1E). �e RA-I a�erents 
form around 40% of all tactile �bers innervating the hand. �ey are split into branches to relay signals from mul-
tiple Meissner corpuscles. Typically, the RA-I receptive �eld size is a bit larger than the SA-I receptive �eld. �ey 
respond to mechanoreceptor gird  deformation52,53, therefore when the skin does not move, no spike is generated.

For modeling and simulation of the tactile a�erents, we considered a grid of mechanoreceptors (80*80) as a 
patch of skin in which individual mechanoreceptors are located at 0.15 mm  intervals5. A population of 296 �rst-
order neurons were modeled according to biological observations and were consisted of 100 SA-I and 196 RA-I 
with overlapping innervation territories. Each primary a�erent innervates 28 mechanoreceptors on  average11 and 
is randomly weighted between 0.1 and 1. �is branching leads to having complex receptive �elds with multiple 
hotspots. To create the receptive �eld of SA-I a�erents, we mapped a 10*10 network (100 SA-I neurons) on the 
80*80 mechanoreceptor grid to cover all areas. �e center of each section from the 10*10 mapped network is 
considered as a middle point of an individual receptive �eld. �en, 28 mechanoreceptors were chosen randomly 
using a Gaussian distribution in the x-axis and y-axis ( σd in Table 2) and randomly weighted between 0.1 and 
1. For RA-I a�erents, we mapped a 14*14 network (196 RA-I neurons) on the 80*80 mechanoreceptor grid. �e 
RA-I receptive �eld was generated similarly to the SA-I a�erents. In total, 100 and 196 matrices with dimensions 
of 80 by 80 for SA-I and RA-I a�erents were created, respectively.

�e applied force distribution over the skin patch is modeled using a two-dimensional Gaussian function, 
and thus the output of the individual mechanoreceptor at location 

(

x.y
)

 is shown as  follows54:

where F is amplitude,  (x0,  y0) is center of pressure, and f
(

x, y
)

 is the perceived force for each mechanoreceptor 
at the location 

(

x, y
)

 .  σx = σy = 0.05 are standard deviation. �e output of Eq. (1) is shown in Fig. S2A.
�e Izhikevich model was used to reproduce the adaptation dynamics of the  mechanoreceptors55. Indeed, 

this neuron model is easily able to generate di�erent spiking patterns by simple parameter  adjustment56. For 
the Izhikevich model, the membrane potential, v, and the adaptation variable, u, were updated via the following 
di�erential equations which were discretized using Euler’s method with the discretizing step = 0.1ms:

The values of the parameters a, b, c, and d are reported in Table  3. In Eq.  (2), for the SA-I model 
kSA = 1andkRA = 0 and for the RA-I model kSA = 0andkRA = 1.

For the static SA-I model:

For the dynamic SA-I model:

(1)f
(

x, y
)

= F ∗ exp

(

−

(

(x − x0)
2

2 ∗ σ 2
x

+

(

y − y0
)2

2 ∗ σ 2
y

))

(2)
dv

dt
= 0.04v

2
+ 5v + 140 − u + kSAISA + kRAIRA

(3)
du

dt
= a(bv − u)

(4)if v ≥ 30mV . then

{

v ← c
u ← u + d

(5)ISA = k1Iin

Table 2.  A�erent properties used in the  simulations8.

A�erents Receptive �eld size ( mm
2) Density/cm2 Number of a�erents on the skin ( 12mm∗12mm) σ d (mm)

SA-I 10 70 100 0.3

RA 12 140 196 0.39

Table 3.  Parameter values of the spiking model of SA-I and RA-I used in the simulations. Izhikevich neuron 
model parameters (a, b, c, d) of primary a�erents are taken  from34.

Parameter Primary a�erents CN and cortical neurons Parameter Value

a 0.02s
−1

0.1s
−1

τd_SAandτRA 30ms

b 0.2 0.2 τ r_SA 5ms

c −65mV −65mV k1 0.05

d 8mV 6mV k2 3

k3 2
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For the RA-I model:

where τr_SA and τd_SA are the rise and decay time of the proposed SA-I model, respectively. x is an auxiliary vari-
able that is used in the proposed SA-I model.Iin is the input current to the network and, τRA is the time constant 
for the RA-I model.

Considering neurophysiological observation, the proposed spiking neuronal network of CN is comprised of 
two subpopulations of PNs and INs. Individual sub-populations are modeled by a random recurrent connection 
of spiking neurons with a connection probability of 0.2. Primary a�erents (PA) make excitatory connections to 
both PN and IN spiking neuronal networks. Speci�cally, if a primary a�erent excites a PN, neighboring a�erents 
will excite INs to inhibit the activated PN (Fig. 5A). In this way, the concept of lateral inhibition is modeled. �e 
simulated network model has 296 sensory input channels (PAs) that innervate each CN (PN and IN subpopu-
lation). It should be pointed out that this number of a�erents is less than the biological observation, which is 
around 1000s of PAs per  CN57. To make the decoding problem more biologically relevant, in the simulations, we 
added intrinsic noise in the simulated pathways and considered the conduction velocities based on the synaptic 
delay for each layer.

Relying on prior neurophysiological �ndings, the local circuit in the somatosensory cortex area 3b was mod-
eled by a neuronal network of 320 (160 PYs and 160 c-INs) spiking neurons. �e cortical spiking network receives 
input from the PN subpopulation in the CN and is composed of a subpopulation of c-INs and a subpopulation 
of PYs. A di�erent group of neurons in the cortical neuronal network are selective to di�erent orientations. For 
each group, 10 PY and 10 c-IN was considered.

Synaptic inputs. �e CN and cortical neurons were also modeled using the Izhikevich model. �e dynamic 
equation of excitatory (AMPA) and inhibitory (GABA) currents are as follow:

where IAMPA andIGABA are the excitatory and inhibitory synaptic currents received by the post-synaptic neuron, 
respectively. t∗ex and t∗

in
 are the spike time received from pre-synaptic to the post-synaptic neuron. �e latency 

of the post-synaptic currents is τL = 1ms58. Synaptic constant times are τdA = 0.4ms , τrA = 2ms , τdG = 0.25ms , 
τrG = 5ms58. In our simulations, these values are multiplied by 7. Wk is the synaptic weight of the connection 
between a pair of neurons.

Cortical receptive fields. Cortical neurons have speci�c receptive �elds that are feature selective. �e cor-
tical receptive �elds consist of complex spatial excitatory and inhibitory sub-regions on the skin. To create a 
receptive �eld for individual PYs, the synaptic plasticity of the selected neuron is activated to strengthen excita-
tory and inhibitory connections related to the tuned orientation. A�er that, synaptic weights are �xed for all 
experiments. For each neuron in the cortical layer, the cumulative spike counts of all a�erents are weighted based 
on their receptive �elds and then are summed to determine the cortical neuron  response35. We allocated a group 
of 10 neurons per orientation in the cortical neuronal network and their receptive �elds were distributed across 
the skin. Since we simulated 16 di�erent angles, 160 spiking neurons were used for modeling the cortical area. 
When the excitatory (inhibitory) sub-region is activated on the skin, PY connections become stronger (c-IN 
inhibits the PYs).

Biomimetic decoder. �e biomimetic decoder mimics the behavior of neuronal circuits in the soma-
tosensory  cortex17. �e decoded orientation corresponds to the highest �ring neuronal group. �e biomimetic 
decoder gives a scalar value by counting the spikes of each cortical neurons within the neuronal group.
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dISA

dt
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dt
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= k3|

dIin

dt
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Experiment simulation. Simulated edges are indented at the center of the patch of skin for 300ms , includ-
ing a 50ms on-ramp, a 200ms hold phase, and a 50ms o�-ramp. Equation (13) simulates an edge to de�ne speci�c 
orientation which is determined by parameter θ . �e simulated edge vertically indents the simulated patch of 
skin (80*80 mechanoreceptor grid):

xandy are coordination of mesh grid (80*80) and each axis is between − 1 and 1. w = 0.05 is the edge width 
and �nally, θ is the orientation of the simulated edge. �e output of Eq. (13) is shown in Fig. S2B for θ = 45

◦ . 
To simulate the dynamics of a scanned edge, the speed of moving edge across the patch of skin is 24mm/s (12 
mm in 500 ms).

Noise. To improve the biological plausibility of the spiking neural model, a random �uctuation in the mem-
brane potential is added (as intrinsic noise) to the neuron  responses3. In this way, background activity is included 
in the population of neurons for each layer. �e random noise is speci�ed by a stochastic di�erential equation 
using a Gaussian random variable with mean 0 and standard deviation 1. Furthermore, to mimic the small varia-
tions in the presentation of stimulus and movement of skin in di�erent trials, jitter in the depth (1 mm ± 0.5 mm 
SD) has been included. �e numbers are used  from3.

Spike timing analysis at the population level. To address how much spike timing is informative 
to decode edge orientation, we used the spike train distance metric as de�ned by VPd which fully has been 
explained  in59.

PCA and classification. Principal component  analysis60 is used to reduce the dimensionality of a fea-
ture space (using sklearn in Python). �e feature space of simulated neural responses has high dimensionality 
and therefore is impossible to visualize. PCA gives the best possible representation of a p-dimensional dataset 
in z dimensions (z < p) by maximizing variance in z dimensions. In our simulations z = 3. Spiking responses are 
categorized across di�erent time windows, starting from the �rst spike. For classi�cation of the orientations, a 
KNN classi�er with k = 5 was used and decoding performance was evaluated using �vefold cross-validation. In 
this way, the process was repeated �ve times, and each of the �ve sets was used as the validation set once.
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