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In this paper, we prove a new version of the Birkhoff ergodic theorem
(BET) for random variables depending on a parameter (alias integrands).
This involves variational convergences, namely epigraphical, hypographical
and uniform convergence and requires a suitable definition of the conditional
expectation of integrands. We also have to establish the measurability of the
epigraphical lower and upper limits with respect to the σ -field of invariant
subsets. From the main result, applications to uniform versions of the BET
to sequences of random sets and to the strong consistency of estimators are
briefly derived.

1. Introduction. In ergodic theory, the Birkhoff ergodic theorem is certainly
one of the central results and starting point for further generalizations. It has
for a long time proved to be a useful tool in several areas, such as mechanics,
statistics and mathematical physics. In many fields, it seems interesting to have a
corresponding result holding for random variables depending on parameters, that
is, for random functions. For such objects, several types of convergence can be
looked for. In the literature some results have been shown to hold for uniform
convergence [see, e.g., Burke (1965) in connection with the Glivenko–Cantelli
problem].

In the present paper, we shall focus our attention on epigraphical convergence
for sequences of stochastic functions defined on a metric space. Epigraphical
convergence (epiconvergence, for short) is weaker than uniform convergence,
but it is well suited to approximate minimization problems. Indeed, under
suitable compactness assumptions, it entails the convergence of infima and
minimizers [see, e.g., Attouch (1984b) or Dal Maso (1993)]. A symmetric
notion, called hypographical convergence, enjoys similar properties with respect
to maximization problems. Further, as it is known, this type of convergence is
closely related to the Painlevé–Kuratowski convergence for sequences of subsets,
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so that it has an interesting geometric interpretation allowing for connections with
the theory of random sets.

Our main result (Theorem 2.3) consists of a version of the Birkhoff ergodic
theorem (BET) for random variables depending on a parameter. More precisely,
given a probability space (�,A,P), a separable metric space (E,d) and an
A ⊗ B(E)-measurable function f from � × E into the extended reals, we prove
that for almost all ω ∈ �, one has

lime
n→∞

1

n

n−1∑
i=0

f (T iω, ·) = (EIf )(ω, ·)(1.1)

on E, where T denotes a given measure-preserving transformation and I is the
σ -field of invariant sets (see Section 2.2). On the right-hand side, E

If denotes
the conditional expectation of the integrand f whose precise definition and main
properties will be given in Section 2.1. Moreover, the subscript “e” indicates that
the limit is an epigraphical one. This kind of result can be useful in many applied
or theoretical situations that are briefly described in the following.

In stochastic programming, one has often to solve an optimization problem of
the form (1.2) [see Birge and Louveaux (1997), page 332]

inf
x∈E

Eg(Y, x),(1.2)

where E ⊂ R
p and Y is a R

q -valued random variable. Most of the time
the integral functional (also called the mean functional) Eg(Y, x) cannot be
explicitly calculated, but can be approximated through sampling methods [see
Birge and Louveaux (1997), Chapter 10]. Note that much more general stochastic
programming problems can be dealt with in this way, such as multistage stochastic
programs with recourse and stochastic programs with chance constraints. Suppose
that a sample of realizations of the random variable Y , say (Yi)i=1,...,n, is available,
we would like to find conditions under which the solution of the approximated
problem

inf
x∈E

1

n

n∑
i=1

g(Yi, x)

converges almost surely to the solution of the original problem (1.2). It is common
to assume that (Yi)i=1,...,n is a sample of independent and identically distributed
realizations of the random variable Y and that the approximated objective function
converges uniformly on E almost surely to the original one,

1

n

n∑
i=1

g(Yi, x) → Eg(Y, x) a.s.;

this can be cast in the framework of the Glivenko–Cantelli problem and implies
the convergence of the minimizers. Under a suitable compactness assumption,
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our main theorem allows us to extend the previous results to the case in which
(Yi)i=1,...,n is a realization of a stationary ergodic time series and the convergence
is only epigraphical.

The previous framework can be extended to encompass also the so-called
M-estimation used in statistics and econometrics, that is, estimation obtained
by optimizing a function with respect to some parameters (Section 2.5). We
remark that in this case great advantage can be gained from considering
a more general metric space E, in order to allow for nonparametric and
semiparametric estimation, and that epigraphical convergence allows for dealing
with discontinuous objective functions, which can be of interest in robust statistics
and in constrained estimation.

As explained more deeply in Section 2.4, duality theory allows us to derive some
useful results for random sets, such as a Painlevé–Kuratowski ergodic theorem for
the sum of integrable closed convex random sets and for the essential intersection
of integrable random sets; moreover, it is shown how these results could be easily
extended to generalize some results appearing in the literature.

Finally, our main theorem can be used to derive useful results in the theory of
homogenization of composite materials. In these materials, the physical properties
such as conductivity, elasticity and so on, vary randomly with the location: the
objective is to find a homogeneous material whose macroscopic characteristics are
similar to the properties of the inhomogeneous one. In these cases epigraphical
convergence has proved to be very useful since the equilibrium relation can often
be written as a minimization problem [see Attouch (1984a) and Dal Maso and
Modica (1986a, b)].

However, the epigraphical version of the BET in the nonergodic case is more
difficult than standard results, because one has to define, and to handle with care,
the conditional expectation for random functions such as function f in (1.1).
Indeed, the proof of our main theorem relies heavily on the definition and on
appropriate results dealing with the conditional expectation of a random variable
depending on a parameter, that is, of a map f from � × E into the extended reals.
In the sequel, it will be convenient to use the name integrand for this kind of object,
in the same spirit as in Castaing and Valadier (1977), Rockafellar (1976) and
Rockafellar and Wets (1984). We shall also make precise the notions of equality
and inequality between two integrands. These matters are closely examined in
Section 3.2, especially when f is lower semicontinuous with respect to the second
variable and satisfies a local minorization condition. The Lipschitz continuity is
also considered in connection with an useful approximation scheme which is
involved in our main result.

The next section contains our main result and a few applications; the proofs
are deferred to Section 4. Section 3 contains auxiliary results. First, we recall
some properties of epiconvergence and, in particular, its connection with uniform
convergence. Section 3.2 is devoted to the comparison between two integrands,
from which the uniqueness of the conditional expectation is derived. In Section 3.3,
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we prove a result asserting that the epigraphical lower and upper limits are
measurable with respect to the invariant σ -field I. In Section 3.4 we state a version
of the BET for extended real-valued positive random variables and we deduce
Lemma 3.9, which plays a crucial part in the proof of our main result. In Section 5,
we compare our results with already existing ones. At last, in the Appendix, we
provide a proof of the existence and uniqueness of the conditional expectation of
an integrand for the convenience of the reader.

2. The main results. Let (�,A,P) be a probability space and (E,d) be a
Suslin metric space whose Borel σ -field is B(E). (A Suslin topological space is
the continuous image of a Polish space.)

We denote by L0(�,A) [resp. L0(�,A;E)] the set of all A-measurable
functions with values in R (resp. in E). The quotient space with respect to the
P-almost sure equality is denoted by L0(�,A,P) [resp. L0(�,A,P;E)].

We say that an extended function f :� × E → R is an integrand if it is
A ⊗ B(E)-measurable. [For real-valued functions, this corresponds exactly to
the Neveu (1964), Definition III-4-4, page 86 and Gikhman and Skorokhod
(1969), Definition 1, page 157 definitions of a measurable random real function.]
Furthermore, f is called a normal integrand if f (ω, ·) is a lower semicontinuous
(lsc) function for almost all ω ∈ �. f is said to be k-Lipschitz on E if for almost
all ω ∈ � and for all x, y ∈ E,

|f (ω,x) − f (ω,y)| ≤ kd(x, y).

An integrand is said to be positive if, for almost every ω ∈ �, f (ω, ·) takes on its
values in [0,+∞].

We say that the integrands f1 and f2 are equal, and we write f1 = f2, if
f1(ω, x) = f2(ω, x) for all (ω, x) ∈ (� \N)× E, where N is a suitable negligible
subset of (�,A,P). To use the terminology of stochastic processes, f1 and f2 are
indistinguishable. The inequality f1 ≤ f2 is defined in the same way.

Given a sequence (Bi)i≥1 in B(E) and a sequence (mi)i≥1 of real-valued
integrable functions, we say that an integrand f satisfies the condition denoted
by C[(Bi), (mi), i ≥ 1], or simply (C), if the following properties hold:

(a) E is covered by (Bi)i≥1; namely E = ⋃
i≥1 Bi;

(b) for all i ≥ 1,one has f (ω,x) ≥ mi(ω) for all (ω, x) ∈ � × Bi.
(C)

Further, we say that f satisfies condition (C0) if the Borel subsets Bi are
assumed to be open.

Observe that condition (C) implies that, for every i ≥ 1 and every
v ∈ L0(�,A,P;Bi), the following inequality holds:∫

�
f (ω,v(ω))P(dω) ≥

∫
�

mi(ω)P(dω)

so that the left-hand side is well defined and does not take the value −∞.



A FUNCTIONAL ERGODIC THEOREM 67

2.1. Conditional expectation of an integrand. The Birkhoff ergodic theorem
involves the conditional expectation of a random variable. Generalizing this result
to integrands (i.e., to random variables depending on parameters) requires a
suitable extension of the concept of conditional expectation.

THEOREM 2.1. Let f be an A ⊗ B(E)-measurable integrand satisfying
condition C[(Bi), (mi), i ≥ 1] and B be a sub-σ -field of A. Then, there exists a
B ⊗B(E)-measurable integrand g satisfying condition C[(Bi), (E

B(mi)), i ≥ 1]
and ∫

B
f (ω, v(ω))P(dω) =

∫
B

g(ω, v(ω))P(dω)

for all B ∈ B , for all i ≥ 1 and for all v ∈ L0(�,B,P;Bi). Moreover, the
integrand g is unique up to indistinguishability. It is also denoted by E

Bf .

REMARK 2.1. (i) The presence of the function v in the above equality is
justified by Proposition 3.5. Equivalently, for every i ≥ 1 and v ∈ L0(�,B,P;Bi),
one has (EBf )(·, v(·)) = E

B[f (·, v(·))] a.s., where f (·, v(·)) stands for the
measurable function ω �→ f (ω, v(ω)). In this almost sure equality, the negligible
set may depend on v. We could say that (EBf )(·, v(·)) is a modification
of E

B[f (·, v(·))]. It is known that this concept is weaker than indistinguishability.
(ii) As explained in Remark 3.2(i) when B is different from {�,∅}, it is not

possible to replace the class of B-measurable functions by that of singletons {x}
where x ranges over E.

(iii) Consider the special case where a regular conditional probability Q with
respect to B exists [see, e.g., Breiman (1992)]. Then, for every B-measurable
function v :� → E, there exists a negligible subset N such that

g(ω, v(ω)) =
∫
�

f
(
ω′, v(ω′)

)
Q(dω′,ω)

for every ω ∈ �\N . Conversely this property characterizes the integrand g.

COROLLARY 2.2. Under the same hypotheses as in Theorem 2.1, the
following two statements hold.

(i) If f is k-Lipschitz on each Bi , for i ≥ 1, so is g = E
B(f ).

(ii) Assume in addition that f satisfies condition (C0), that is, that the Bi ’s
of condition (C) are open. If f is a normal integrand, then g = E

B(f ) is a
B ⊗ B(E)-measurable normal integrand.

REMARK 2.2. (i) In particular, condition (C) is satisfied when f is positive.
On the other hand, condition (C) can be replaced by a similar one involving
majorization, instead of minorization.
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(ii) In Theorem 2.1, what is really needed to prove the existence of E
Bf is

an abstract measurable space (E,E). The metric structure of E (and the Suslin
property) is only used for proving uniqueness and Corollary 2.2.

(iii) When the integrand f is k-Lipschitz on E, condition (C) can be weakened:
it is enough to assume the existence of some x0 ∈ E, such that the function
ω �→ f (ω,x0) is integrable.

(iv) Theorem 2.1 extends results of Bismut (1973) and of Castaing and Valadier
(1977), where the space E was supposed to be a Banach space and the integrand
to be convex with respect to the second variable. Later, Thibault (1981) considered
the case of a normal integrand (i.e., lower semicontinuous with respect to the
second variable) in connection with another integrability condition which is
stronger than ours. In view of the local character of condition (C), our results
are noncomparable variants of those of Evstigneev (1986), Truffert (1991) and
Castaing and Ezzaki (1993).

2.2. An epigraphical Birkhoff ergodic theorem. Since epiconvergence is
present in our main result, we provide a short presentation. More details are given
in Section 3.1. Let h :E → R be a function from E into the extended reals. Its
epigraph is defined by:

Epi(h) = {(x, λ) ∈ E × R :h(x) ≤ λ}.
The hypograph of h, denoted by Hypo(h), is defined by reversing the inequality.
Let (hn)n≥1 [or (hn) for short] be a sequence of functions from E into R. For any
x ∈ E, we introduce the quantities

lie hn(x) � sup
k≥1

lim inf
n→∞ inf

y∈B(x,1/k)
hn(y),

(2.1)
lse hn(x) � sup

k≥1
lim sup
n→∞

inf
y∈B(x,1/k)

hn(y),

where B(x,1/k) denotes the open ball of radius 1/k centered at x. The function
x �→ lie hn(x) [resp. x �→ lse hn(x)] is called the lower (resp. upper) epilimit of
the sequence (hn). These functions are lsc. If lie hn(x) = lse hn(x), then (hn) is
said to be epiconvergent at x. If this is true for all x ∈ E, then the sequence (hn)

epiconverges. Its epilimit is denoted by lime hn.
Equalities (2.1) have a geometric counterpart involving the Painlevé–Kura-

towski convergence of epigraphs on the space of closed sets of E × R [see, e.g.,
Attouch (1984b) or Dal Maso (1993)]. The Painlevé–Kuratowski convergence is
defined as follows. Given a sequence (Cn)n≥1 of sets in E, we define

LiCn � {x ∈ E :x = lim xn, xn ∈ Cn, ∀n ≥ 1},
LsCn � {x ∈ E :x = lim xi, xi ∈ Cn(i), ∀ i ≥ 1},
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where (Cn(i))i≥1 is a subsequence of (Cn)n≥1. The subsets LiCn and LsCn are
the lower limit and the upper limit of (Cn)n≥1. It is not difficult to check that they
are both closed and that they satisfy LiCn ⊂ LsCn. A sequence (Cn)n≥1 is said to
converge to C, in the sense of Painlevé–Kuratowski, if C = LiCn = LsCn. This
is denoted by C = PK-limn→∞ Cn. As mentioned above, this notion is strongly
connected with epiconvergence: a sequence of functions hn :E → R epiconverges
to h if and only if the sequence (Epi(hn))n≥1 PK-converges to Epi(h), in E × R.

Let T :� → � be an A-measurable transformation. We assume that T is
measure-preserving; that is, P(T −1A) = P(A) for all A ∈ A.

The sets A ∈ A that satisfy T −1A = A are called invariant sets and constitute a
sub-σ -field I of A. We shall use repeatedly the following basic result: a random
variable X is I-measurable iff X(ω) = X(T ω) for all ω ∈ �. X is said to be an
invariant random variable.

Here is the main result of the present paper. It is an epigraphical version of the
Birkhoff ergodic theorem for random variables depending on a parameter.

THEOREM 2.3. Let (�,A,P) be a probability space, T :� → � be a
measure-preserving transformation and (E,d) be a Suslin metric space. Further,
let f :� × E → R be an A ⊗ B(E)-measurable normal integrand satisfying
condition C0[(Bi), (mi), i ≥ 1]. Under these conditions, E

If is a I ⊗ B(E)-
measurable normal integrand and one has for almost all ω ∈ �,

(EIf )(ω, ·) = lime
n→∞

1

n

n−1∑
i=0

f (T iω, ·).(2.2)

REMARK 2.3. (i) A similar minorization condition has been considered by
Hess (1991, 1996) and Artstein and Wets (1996) in their results on the epigraphical
SLLN. This assumption is weaker than the one in Korf and Wets (2001): indeed,
the latter assume that for every x ∈ E there exists a closed neighborhood such
that the infimum on the neighborhood is integrable. Clearly the second hypothesis
constrains the infimum of the integrand f (ω,x) to be integrable, while the first one
does not. For example, if E reduces to a singleton {x}, Korf and Wets’ condition
requires that ω �→ f (ω,x) is integrable, whereas our condition only requires that
ω �→ max{−f (ω,x),0} is integrable.

(ii) A straightforward extension of Theorem 2.3 is worth being mentioned.
Following Gray and Kieffer (1980), let us recall that a probability measure µ on
(�,A) is said to be asymptotically mean stationary (ams) with respect to T if the
limit

lim
n→∞

1

n

n−1∑
i=0

µ(T −iA)

exists for every A ∈ A. Further, Gray and Kieffer’s Theorem 1 shows that
a probability measure µ on (�,A) is ams if and only if for every bounded
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measurable function f :� → R, 1
n

∑n−1
i=0 f T i converges µ-a.s., as n → ∞. A

quick inspection of the proof of Theorem 2.3 shows that its conclusion remains
valid assuming only that P is ams with respect to T .

Our results also allow for recovering epigraphical convergence in the ergodic
case. The measurable and measure-preserving transformation T is said to be
ergodic if P(A) = 0 or 1 for all invariant sets A. In this case, the invariant σ -field
reduces to {�,∅} and the conditional expectation of the integrand f , denoted here
by Ef , is the deterministic function defined on the space E by

(Ef )(x) =
∫
�

f (ω,x)P(dω), x ∈ E.

COROLLARY 2.4. Let (�,A,P), T and (E,d) be as in Theorem 2.3,
and f :� × E → R be an A ⊗ B(E)-measurable normal integrand satisfying
condition (C0). If in addition we assume that T is ergodic then the following
equality holds for almost every ω ∈ �:

(Ef )(·) = lime
n→∞

1

n

n−1∑
i=0

f (T iω, ·).

REMARK 2.4. In the statement of the BET, we have used a measurable
and measure-preserving transformation T :� → �. An almost surely equivalent
formulation can be given in terms of stationary sequences. Recall that a sequence
X1,X2, . . . is said to be stationary if

P(X1 ≤ x1, . . . ,Xn ≤ xn) = P(Xk+1 ≤ x1, . . . ,Xk+n ≤ xn)

for all integers n, k ≥ 1 and for all (x1, . . . , xn) ∈ R
n. Indeed, any stationary

sequence X1,X2, . . . can almost surely be rewritten using a measurable and
measure-preserving transformation T [see, e.g., Proposition 6.11 in Breiman
(1992)]. In particular, rewriting Corollary 2.4 in terms of stationary sequences
yields a version of the SLLN for iid sequences, in the sense of epigraphical
convergence.

2.3. A uniform ergodic theorem. Theorem 2.3 allows for proving a uniform
version of the Birkhoff ergodic theorem. We need the following condition (C ′

0),
which can be viewed as a bilateral version of condition (C0):

There exist a sequence (Bi)i≥1 of open subsets of E and a sequence (mi)i≥1
of real-valued integrable functions satisfying the conditions:

(C ′
0) (a) E is covered by the above sequence of open subsets;

(b) for all i ≥ 1, one has |f (ω,x)| ≤ mi(ω) for all (ω, x) ∈ � × Bi ;
(c) for almost every ω ∈ �, f (ω, ·) is continuous.
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THEOREM 2.5. Let (�,A,P), T and (E,d) be as in Theorem 2.3, and
f :�×E → R∪{+∞} be an A⊗B(E)-measurable normal integrand satisfying
condition (C ′

0).
Under these hypotheses, for every compact subset K of E, one has for almost

all ω ∈ �,

lim
n→∞ sup

x∈K

∣∣∣∣∣1

n

n−1∑
i=0

f (T iω, x) − (EIf )(ω,x)

∣∣∣∣∣ = 0.

2.4. Application to the convergence of random sets. In the following, we
assume that E is a finite-dimensional Banach space and we denote by C (resp. Cc)
the set of all nonempty closed (resp. closed convex) subsets of E. On 2E we
consider the Minkowski addition, denoted by “+”, and the scalar multiplication
respectively defined by

C + C′ � {x + x′ :x ∈ C, x′ ∈ C′},
αC � {αx :x ∈ C},

where C,C′ ∈ 2E and α ∈ R. Consider a set-valued map (alias multifunction,
correspondence) F from � to C. A function f from � into E is called a selection
of F if, for almost all ω ∈ �, one has f (ω) ∈ F(ω). By L1(E) � L1(�,A,P;E),
we denote the Banach space of (equivalence classes of) measurable functions
f :� → E such that the integral

∫
� ‖f (ω)‖P(dω) is finite. A map F from �

into C is said to be A-measurable if for every open subset U of E, the set
{ω ∈ � :F(ω) ∩ U �= ∅} is a member of A. A measurable set-valued map is also
called a random set. For any measurable set-valued F we define

S1(F,A) �
{
f ∈ L1(�,A,P;E) :f (ω) ∈ F(ω) a.s.

}
.

In this definition, A can be replaced by any sub-σ -field B of A. S1(F,A) is a
L1(E)-closed set. It is nonempty if and only if the function d(0,F (·)) ∈ L1. If
S1(F,A) �= ∅, F is said to be integrable. Given two A-measurable closed valued
random sets F and G, the following equivalence holds [see Hiaï and Umegaki
(1977)]:

S1(F,A) = S1(G,A) ⇐⇒ F(ω) = G(ω) a.s.

The set-valued integral of an integrable multifunction F is defined by

I (F ) �
{∫

�
f dP :f ∈ S1(F,A)

}
,

where
∫
� f dP is the integral (or expectation) of f , also denoted by E(f ). This set-

valued integral, originally introduced by Aumann (1965), was defined with respect
to the interval [0,1] endowed with the Lebesgue measure.
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Given a sub-σ -field B of A and an integrable A-measurable random set F , Hiaï
and Umegaki (1977) showed the existence of a B-measurable integrable random
set G such that

S1(G,B) � cl
{
E

Bf :f ∈ S1(F,A)
}
,

the closure being taken in L1(E). G is unique up to a null set. It is called the
(set-valued) conditional expectation of F given B and is denoted by E

BF .
The following result is a version of the BET for closed convex-valued

random sets. Another approach for proving it can be found in Krupa [(1998),
Theorem 8.2.4].

THEOREM 2.6. Let T :� → � be a measure-preserving transformation and
I be the σ -field of invariant sets. If F is a closed convex-valued integrable random
set, then for almost every ω ∈ �, one has

E
I(F )(ω) = PK- lim

n→∞
1

n

n−1∑
i=0

F(T iω).

Another application can be given to the essential intersection [see, e.g., Hiriart-
Urruty (1977)]. Here, we assume that I = {�,∅}. The essential intersection (also
called continuous intersection) of F :� → C is denoted by Int(F ) and defined by

Int(F ) = ⋃
N∈N

⋂
ω∈�\N

F(ω),

where N denotes the set of all null sets of (�,A,P). Given a member C of C,
the support function and the indicator function of C are, respectively, denoted by
s(·,C) and χ(·,C). (Here, it is the convex analysis indicator function.) They are
defined by

s(y,C) � sup{〈y, x〉 :x ∈ C}, y ∈ E,

where 〈·, ·〉 denotes the Euclidean scalar product, and for x ∈ E,

χ(x,C) �
{

0, if x ∈ C,

+∞, if x /∈ C.

Moreover, when C ∈ Cc these functions are conjugate to each other [see, e.g.,
Aubin (1998), page 48]. Indeed, the following equalities hold:

s(y,C) = sup{〈y, x〉 − χ(x,C) :x ∈ E},
χ(x,C) = sup{〈y, x〉 − s(y,C) :y ∈ E}.

By a result of Hiriart-Urruty [(1977), Proposition 21, page IV.34], the indicator
function of Int(F ) is given by the integral

χ(x, Int(F )) =
∫
�

χ(x,F (ω))P(dω), x ∈ E.
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On the other hand, the indicator function of a finite intersection of subsets is the
sum of the indicator functions. Using this fact and Theorem 2.3, we can prove the
following results, which shows that the essential intersection is almost surely the
PK-limit of a finite intersection.

THEOREM 2.7. Let T : � → � be a measure preserving transformation. If T

is ergodic and if F is an integrable random set then for almost every ω ∈ �, one
has

Int(F ) = PK- lim
n→∞

n−1⋂
i=0

F(T iω).

REMARK 2.5. (i) Following a remark in the monograph by Krengel [(1985),
page 10], continuous versions of Theorem 2.3 could be easily proved. Thus,
Theorem 2.6 can be viewed as an extension to the case of random sets with
unbounded values of Theorems 3.14 and 3.15 of Wang and Wang (1997). There,
the random sets are assumed to be integrably bounded, whence almost surely
bounded valued (see Section 4). However, as mentioned in Krengel (1985), the
case of local continuous ergodic theorems would require more care.

(ii) Several versions of the BET have already been proved for random sets.
Let us mention the works of Hess (1979, 1984), of Schürger (1983) and of Krupa
(1998). On the other hand, for a related result dealing with set-valued versions of
the Lebesgue derivation theorem, see Hess (1992).

(iii) In view of Remark 2.4, it can be observed that Theorem 2.6 implies the set-
valued version of the SLLN proved by Artstein and Hart (1981) for closed convex
random sets.

(iv) Since, on the space of nonempty compact subsets of R
d , the PK-con-

vergence coincides with the convergence induced by the Hausdorff distance,
Theorem 2.6 also implies the set-valued version of the SLLN proved by Artstein
and Vitale (1975).

2.5. Application to statistical estimation. As explained in the Introduction,
our Theorem 2.3 can be most helpful in establishing consistency and measurability
results for M-estimators and for solutions of stochastic programming problems. In
the following, we provide an application to a problem of statistical estimation.
Further extensions will be deferred to a forthcoming paper.

Consider a stochastic process (Yt )t∈N defined on (�,A,P) such that any Yt

takes on its values in a measurable space (V,V): for convenience, we consider
the coordinate-variable process, obtained defining � � V N, ω � (yt )t∈N and
identifying any random variable Yt with the projection operator Yt (ω) � yt .
Moreover, under stationarity of (Yt )t∈N, the process can be represented through
the measure-preserving shift operator T as Yt(ω) = Y0(T

tω): then ergodicity
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properties of the stochastic process (Yt )t∈N can be expressed in terms of ergodicity
of the shift transformation T .

Then we consider a statistical estimation problem in which the estimator is
the maximizer of an objective function defined as the product of the marginal
probability density functions Ln(ω,x) � ∏n

t=1 g(Yt , x), where x belongs to the
parameter space E; clearly, Ln is not a likelihood function. It is, however,
a pseudolikelihood according to econometrics jargon, and it is very useful when
the complete density function of the observed data (yt )t=1,...,n is too complicated.
Through the maximization of the pseudolikelihood, it is possible to obtain
estimators of the parameters appearing in the marginal density function: other
parameters can be estimated using ad hoc procedures [see Gouriéroux, Monfort
and Trognon (1985)]. The M-estimator (tn)n≥1 defined through the maximization
of Ln(ω,x) with respect to the parameter x is often called pseudomaximum-
likelihood estimator, or PMLE. In particular, Theorem 2.8 allows us to deal with
the following statistical estimation problems:

1. In cross-sectional estimation, that is, when observations are drawn at a fixed
time from a population, we obtain consistency when random variables are not
independent.

2. In time series estimation, we obtain a consistent estimator even when the
temporal dependence structure of the process (Yt)t∈N is unknown and is
neglected: remark, however, that the allowed range of dependence is restricted
by the ergodicity assumption.

Similar pseudolikelihoods have been studied by Levine (1983) and Gouriéroux,
Monfort and Trognon (1985) in the time series case, but our assumptions on
the density functions are much weaker than theirs. In the cross-section case, we
give a version of Theorem 2.1 of Hess (1996) in the case of stationary ergodic
observations.

We state Theorem 2.8 without proof: It can be established mimicking Theo-
rem 2.1 of Hess (1996) and substituting our Theorem 2.3 to his Theorem 5.1. See
Hess (1996) for a discussion of the hypotheses.

THEOREM 2.8. Let (�,A,P) be a probability space, (V,V) a measurable
space and µ a positive σ -finite measure defined on (V,V). Further, let E be a
Suslin metrizable space and g a function from V × E into R+ which satisfies the
following hypotheses:

(i) g is V ⊗ B(E)-measurable;
(ii) for every x ∈ E, g(·, x) is a probability density function relative to µ;

(iii) for µ-almost every y ∈ V , g(y, ·) is sup-compact in the following sense:
for each strictly positive real r , the subset {x ∈ E :g(y, x) ≥ r} is compact, but the
subset {x ∈ E :g(y, x) = 0} is not assumed to be compact;

(iv) x1 �= x2 implies g(·, x1) �= g(·, x2), that is, µ{ω ∈ � :g(y, x1) �=
g(y, x2)} > 0;
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(v) for some x0 ∈ E, g(·, x0) is a version of the true marginal density of Y0;
(vi) let (Yn)n≥1 be a sequence of V -valued random variables defined on �,

forming a stationary ergodic process; for any integer n ≥ 1, let (y1, . . . , yn) be an
n-tuple of possible values of the sample (Y1, . . . , Yn);

(vii) the integrability condition E[ln supx∈E g(Y, x)− lng(Y, x0)] < +∞ holds,
where E represents integration with respect to P.

Then for every decreasing sequence (αn)n≥1 of nonnegative numbers verifying
limn αn = 0, the following two statements hold true:

(A) There exists a sequence (tn,αn)n≥1 [also denoted by (tn)n≥1] of αn-approxi-
mate PMLEs, namely, a sequence of maps from V n into E satisfying the two
following properties:

(i) for every n ≥ 1, tn is V⊗n-measurable;
(ii) for every (y1, . . . , yn) ∈ V n,

Ln

(
y1, . . . , yn, tn(y1, . . . , yn)

) ≥ sup{Ln(y1, . . . , yn, x) | x ∈ E} − αn.

(B) For every sequence (tn) as above, one has for almost all ω ∈ �,

lim
n

tn
(
Y1(ω), . . . , Yn(ω)

) = x0.

3. Auxiliary results.

3.1. Epiconvergence and uniform convergence. Given a lsc function h :
E → R and an integer k ≥ 1, the Lipschitz approximation of order k of h is defined
by:

hk(x) � inf
y∈E

{h(y) + kd(x, y)}, k ≥ 1.

Its main properties are listed in the following proposition.

PROPOSITION 3.1. Let h :E → R be a lsc function nonidentically equal
to +∞. Suppose that there exists a > 0, b ∈ R and x0 ∈ E such that, for all x ∈ E,
h(x) + ad(x, x0) + b ≥ 0. Then:

(i) ∀ k > a and ∀x ∈ E, hk(x) + ad(x, x0) + b ≥ 0;
(ii) ∀ k ≥ 1, hk < +∞ and hk is Lipschitz of constant k;

(iii) ∀x ∈ E, the sequence (hk(x))k≥1 is increasing and h(x) = supk≥1 hk(x).

Moreover, the Lipschitz approximations provide a useful characterization of the
lower and upper epilimits defined in (2.1) [see Hess (1996), Proposition 3.4].
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PROPOSITION 3.2. Let (hn) be a sequence of functions from E to R

satisfying: there exist a > 0, b ∈ R and x0 ∈ E such that, for every n ≥ 1 and
x ∈ E, hn(x) + ad(x, x0) + b ≥ 0. Then for all x ∈ E,

lie hn(x) = sup
k≥1

lim inf
n→∞ hk

n(x),

lse hn(x) = sup
k≥1

lim sup
n→∞

hk
n(x).

The lower (resp. upper) hypolimits, as well as the hypoconvergence of a
sequence (hn), can be obtained in a symmetric way. Indeed, the sequence (hn)

hypoconverges to h iff (−hn) epiconverges to −h. In order to present the
relation between epiconvergence, hypoconvergence and uniform convergence the
following characterizations of epi- and hypoconvergences are needed [see Attouch
(1984b) or Dal Maso (1993)].

PROPOSITION 3.3. A sequence (hn) of functions from E to R epiconverges
to h at x ∈ E iff:

(i) for each sequence (xn) converging to x, h(x) ≤ lim infn→∞ hn(xn);
(ii) there exists a sequence (xn) converging to x such that h(x) ≥

lim supn→∞ hn(xn).

REMARK 3.1. Properties (i) and (ii) are equivalent to (i) and (ii′) where:

(ii′) There exists a sequence (xn) converging to x such that h(x) =
limn→∞ hn(xn).

Replacing (hn) with (−hn) and h with −h, we get similar characterizations of
hypoconvergence. Consequently, a sequence (hn) is both epi- and hypoconvergent
to h if and only if the following property holds:

∀x ∈ E, ∀ (xn) → x, h(x) = lim
n→∞hn(xn).(3.1)

The following simple result shows the connection with uniform convergence.

PROPOSITION 3.4. If h and (hn) are real-valued and satisfy (3.1), then h is
continuous and (hn) converges uniformly to h on all compact sets.

PROOF. First observe that Remark 3.1 shows that (hn) is both epi- and
hypoconvergent to h. Thus h is both lower and upper semicontinuous, hence
continuous on E. Further, consider a compact subset K of E and suppose that
(hn) does not converge uniformly to h on K . It is therefore possible to find α > 0
and a subsequence (hm) of (hn) satisfying

‖hm − h‖u,K = sup
y∈K

|hm(y) − h(y)| ≥ α > 0 for all m ≥ 1.
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But for all m ≥ 1, there exists ym ∈ K such that

|hm(ym) − h(ym)| ≥ ‖hm − h‖u,K − 1

m
.(3.2)

Moreover, by extracting a subsequence (denoted similarly) converging to some
y ∈ K , we have

|hm(ym) − h(y)| ≥ |hm(ym) − h(ym)| − |h(ym) − h(y)|.(3.3)

From (3.2) and (3.3), we get

|hm(ym) − h(y)| ≥ ‖hm − h‖u,K − 1

m
− |h(ym) − h(y)|.

Thus lim infm→∞ |hm(ym) − h(y)| ≥ α > 0, which contradicts property (3.1). �

3.2. Comparison between two integrands. The following result gives a char-
acterization of the inequality between two integrands, which was defined at the
beginning of Section 2.

PROPOSITION 3.5. (i) If f1 and f2 are two integrands satisfying condition
C[(Bi), (mi), i ≥ 1] [As can be easily checked, assuming that the (Bi) and (mi)

are the same for f1 and f2 does not restrict the generality], then the following
three statements are equivalent:

(a) f1 ≤ f2 as defined above;
(b) for every i ≥ 1 and every v ∈ L0(�,A,P;Bi), one has

f1(ω, v(ω)) ≤ f2(ω, v(ω)) for almost all ω ∈ �;
(c) for every i ≥ 1, every v ∈ L0(�,A,P;Bi) and every A ∈ A, the

following inequality holds∫
A

f1(ω, v(ω))P(dω) ≤
∫
A

f2(ω, v(ω))P(dω).

(ii) A similar property holds for the equality.

PROOF. As to part (i), observe that implication (a) ⇒ (b) is clear since for
all i ≥ 1 and ω ∈ � \ N we can take x = v(ω), where v satisfies the required
properties. Implication (b) ⇒ (c) follows from the very definition of P-almost
sure inequality. To prove implication (c) ⇒ (a), let us prove not (a) ⇒ not (c).
For every i ≥ 1 define the set Ai = {ω ∈ � :f1(ω, x) > f2(ω, x) for some x ∈ Bi}.
It is Â-measurable, because it is the projection on � of the A⊗B(E)-measurable
set Gi = {(ω, x) ∈ � × E :f1(ω, x) > f2(ω, x)}. Â is the σ -field of universally
measurable sets [see Definition III.21 in Castaing and Valadier (1977) or Hess
(1996)]. Moreover, since (a) does not hold, condition (C) implies the existence of
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an integer k ≥ 1 such that P(Ak) > 0. Let k be fixed and consider the multifunction
� defined by

�(ω) = {x ∈ Bk :f1(ω, x) > f2(ω, x)}.
We have Ak = {ω ∈ � :�(ω) �= ∅}. Further, the graph of the multifunction �,
namely Gr(�) = {(ω, x) ∈ � × Bk :x ∈ �(ω)}, is equal to Gk , which is A ⊗
B(E)-measurable. Consequently [see Theorem III.22 in Castaing and Valadier
(1977)], there exists an Â-measurable selection v0 of �, that is, v0(ω) ∈ �(ω)

for all ω ∈ Ak . By construction, v0 satisfies f1(ω, v0(ω)) > f2(ω, v0(ω)) for
almost all ω ∈ Ak . At this stage, observe that the integrals of f1(·, v0(·)) and
f2(·, v0(·)) over Ak may both take on the value +∞. However, it is not difficult
to find two rationals r and s, and an A-measurable set C of positive measure,
contained in Ak and satisfying f1(ω, v0(ω)) > r > s > f2(ω, v0(ω)) for all ω ∈ C.
This implies∫

C
f1(ω, v0(ω))P(dω) ≥ rP(C) > sP(C) ≥

∫
C

f2(ω, v0(ω))P(dω)

which yields not (c). Statement (ii) is an immediate consequence of (i). �

REMARK 3.2. (i) When A does not reduce to the trivial σ -field {�,∅},
it is not possible to replace the class of A-measurable functions v involved in
statement (b) and (c) by that of the constant functions v(·) = x from � to E. In
other words, the following condition

f1(ω, x) ≤ f2(ω, x) a.s. ∀x ∈ E,(3.4)

which is implied by statement (b) of Proposition 3.5, does not imply it. Indeed,
consider the special case where � = E = [0,1], A = B(�), P is the Lebesgue
measure and f2(ω, x) = 0 for every (ω, x) ∈ � × E. Further, define the integrand
f1 by f1(ω, x) = 1 if ω = x and f1(ω, x) = 0 if ω �= x. Clearly, condition (C) and
condition (3.4) are satisfied, but if we define the A-measurable function v :� → E

by v(ω) = ω, we have 1 = f1(ω, v(ω)) > f2(ω, v(ω)) = 0 for all ω.
(ii) In particular, Proposition 3.5 holds when f1 and f2 are positive.

3.3. Invariance of the epigraphical limit. It is easy to prove that the lim inf
and lim sup of the Cesaro means involved in the BET are invariant if the random
variables are finite-valued [see, e.g., the proof of Theorem 13.10 in Davidson
(1994)]. However, we need this result for extended real-valued random variables.
Since it has not been possible to find this result in the literature for random
variables which may take on the value +∞ on a set of strictly positive measure,
we provide a short proof based on Poincaré’s recurrence theorem.

Let v :� → [0,+∞] be an A-measurable function. For all ω ∈ �, we set

un(ω) = 1

n

n−1∑
i=0

v(T iω).
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PROPOSITION 3.6. If v :� → [0,+∞] is A-measurable, then lim infn→∞ un

and lim supn→∞ un are I-measurable.

PROOF. Consider first the A-measurable function u = lim supn→∞ un. To
prove that u is also I-measurable, let us prove that it is invariant, that is, that
u(T ω)

a.s.= u(ω). For all n ≥ 1 and for all ω ∈ �, we can write

un+1(ω) = v(ω)

n + 1
+ n

n + 1
un(T ω).(3.5)

Now consider the A-measurable subset A = {ω ∈ � :v(ω) = +∞}. If ω ∈ Ac then
we get the result taking the lim sup in both sides of (3.5),

u(ω) = lim sup
n→∞

un+1(ω) = lim sup
n→∞

un(T ω) = u(T ω).

If P(A) = 0, the proof is complete. If P(A) > 0, we apply Poincaré’s recurrence
theorem [see, e.g., Petersen (1989), Theorem 3.2, page 34] to A: almost every point
of A is recurrent with respect to A; that is, for such a point ω, there exists k ≥ 1
such that T kω ∈ A; that is, v(T kω) = +∞. Therefore, as soon as n > k, we have
un+1(ω) = un(ω) = +∞, which implies u(ω) = u(T ω) = +∞.

A similar proof holds for the inferior limit. �

The following result that deals with the measurability of the epigraphical limits
is necessary to derive the main result of our paper (see Remark 4.1).

PROPOSITION 3.7. Let f be an integrand on � × E with E metrizable and
separable space. Then the epigraphical limits

lie
n→∞

1

n

n−1∑
i=0

f (T iω, ·) and lse
n→∞

1

n

n−1∑
i=0

f (T iω, ·)

are I ⊗ B(E)-measurable.

PROOF. We consider first an integrand of the form f (ω,x) = 1A(ω) · 1F (x)

for (ω, x) ∈ � × E, A ∈ A and F ∈ B(E). For every n ≥ 1, let

gn(ω,x) =
(

1

n

n−1∑
i=0

1A(T iω)

)
· 1F (x).

Applying the BET to 1A and using the definition of lie gn(ω, x), it is readily
checked that

lie
n→∞gn(ω,x) = 1

F̊
(x)EI(1A)(ω),

where F̊ denotes the interior of F . This shows the I ⊗ B(E)-measurability
of lie gn.
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Now, consider the case where f is a linear combination of indicators of
pairwise disjoint rectangles Aj × Fj , (Aj ∈ A,Fj ∈ B(E)) with real weights αj ,
j = 1, . . . ,m. One has

lie
n→∞

1

n

n−1∑
i=0

f (T iω, x) = lie
n→∞

1

n

n−1∑
i=0

[
m∑

j=1

αj · 1Aj
(T iω) · 1Fj

(x)

]

=
m∑

j=1

αj · 1
F̊j

(x)EI(1Aj
)(ω),

which proves the I ⊗ B(E)-me asurability of lie n→∞ gn. When f is positive, the
proof is completed by approximating f by a nondecreasing sequence of integrands
of the previous type. In the general case, it suffices to apply the result of the
previous step on each � × Bi to the integrand (ω, x) �→ f (ω,x) − mi(ω). The
same holds true for the integrand lse n→∞ gn; we only have to replace the lim inf
over n by the lim sup. �

3.4. Ergodic theorem in L0. We state a version of the BET for positive random
variables in L0(�,A,P). The proof is available from the authors upon request
since it was not possible to find it in the literature.

PROPOSITION 3.8. For every extended real-valued positive function v ∈
L0(�,A,P), one has

lim
n→∞

1

n

n−1∑
i=0

v(T iω)
a.s.= E

I(v)(ω)

(where both sides can be equal to +∞).

Clearly, this result also holds for quasi-integrable random variables in the
sense of Neveu [(1964), page 40], that is, satisfying the hypothesis that either
E max{v,0} or E min{v,0} is finite.

The following simple consequence of Proposition 3.8 will be needed twice in
the proof of the main result.

LEMMA 3.9. If f is an A ⊗ B(E)-measurable normal integrand and if
v ∈ L0(�,I,P) is such that f (·, v(·)) is quasi-integrable, then, for almost all
ω ∈ �, the following equality holds:

(EIf )(ω, v(ω)) = lim
n→∞

1

n

n−1∑
i=0

f
(
T iω, v(ω)

)
.
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PROOF. Since v is I-measurable, it is invariant and we can write

1

n

n−1∑
i=0

f
(
T iω, v(ω)

) = 1

n

n−1∑
i=0

f
(
T iω, v(T iω)

) = 1

n

n−1∑
i=0

h(T iω),

where h is defined by h(ω) = f (ω, v(ω)). Appealing to Proposition 3.8 we can
take the limit and from the definition of the conditional expectation of an integrand,
we have

(EIh)(ω) = E
I[

f (·, v(·))](ω) = (EIf )(ω, v(ω)). �

4. Proofs of the main results.

PROOF OF THEOREM 2.3. The statement concerning the I⊗B(E)-measura-
bility of E

If immediately follows from Proposition 3.7. To simplify our notations,
we introduce

gn(ω, ·) = 1

n

n−1∑
i=0

f (T iω, ·).

To prove that the Cesaro sum epiconverges to the conditional expectation, we have
to prove that, for almost all ω ∈ �, the following inequalities hold:

lie
n→∞gn(ω, ·) ≥ (EIf )(ω, ·),

lse
n→∞gn(ω, ·) ≤ (EIf )(ω, ·).

Proposition 3.7 entails that lien→∞ gn and lsen→∞ gn are I ⊗ B(E)-measurable.
Moreover, according to Proposition 3.5, it is enough to show that for all v ∈
L0(�,I,P;E) the following inequalities hold, for almost all ω ∈ �:

lie
n→∞

gn(ω, v(ω)) ≥ (EIf )(ω, v(ω)),(4.1)

lse
n→∞gn(ω, v(ω)) ≤ (EIf )(ω, v(ω)).(4.2)

To prove inequalities (4.1) and (4.2), we shall proceed in three steps.
Step 1. The integrand f is assumed to be positive. Let us prove inequality (4.1).

Let v ∈ L0(�,I,P;E) be fixed. For every k ≥ 1 and every ω ∈ �, we have

gk
n(ω, v(ω)) = inf

y∈E

{
gn(ω,y) + kd(y, v(ω))

}
≥ 1

n

n−1∑
i=0

{
inf
y∈E

[
f (T iω, y) + kd(y, v(ω))

]}
,

whence

gk
n(ω, v(ω)) ≥ 1

n

n−1∑
i=0

f k
(
T iω, v(ω)

)
.(4.3)
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Further, applying Lemma 3.9 to the positive normal integrand f k , we get

lim
n→∞

1

n

n−1∑
i=0

f k
(
T iω, v(ω)

) = (EIf k)(ω, v(ω)) a.s.

More precisely, the above equalities hold for any ω ∈ �\N0(k) where N0(k) is a
suitable negligible set (depending also on v). If we take the lim inf over n in both
sides of (4.3), we get

lim inf
n→∞ gk

n(ω, v(ω)) ≥ (EIf k)(ω, v(ω))

for every k ≥ 1 and every ω outside some negligible subset N0 containing⋃
k≥1 N0(k). Now, taking the supremum over k and appealing to the monotone

convergence theorem for the conditional expectation yield the existence of a
negligible set N1 containing N0 such that, for every ω ∈ � \ N1,

lie
n→∞gn(ω, v(ω)) ≥ sup

k≥1
E

I(
f k(·, v(·)))(ω) = (EIf )(ω, v(ω)).

So inequality (4.1) has been proved. To prove inequality (4.2), consider as before
a fixed member v of L0(�,A,P;E) and the I-measurable random variable φ

defined by

φ(ω) = (EIf )(ω, v(ω)).

Clearly, it suffices to consider only the case where φ(ω) is finite. For every k ≥ 1,
we also define φk by

φk(ω) = inf
y∈E

{
(EIf )(ω,y) + kd(y, v(ω))

}
.

For any k,p ≥ 1, consider the multifunction �k,p such that

�k,p(ω) =
{
y ∈ E : (EIf )(ω,y) + kd(y, v(ω)) ≤ φk(ω) + 1

p

}
.

It is readily seen that �k,p is nonempty valued and that its graph is I ⊗ B(E)-
measurable. Therefore, there exists an Î-measurable selection vk,p of �k,p, that
can be modified on a negligible set N2(k,p) so as to be I-measurable. Hence, for
any k ≥ 1, φk is also given by

φk(ω) = inf
p≥1

{
(EIf )

(
ω,vk,p(ω)

) + kd
(
vk,p(ω), v(ω)

)}
(4.4)

for each ω in the negligible set N2(k) = ⋃
p≥1 N2(k,p). On the other hand, if we

denote by gk
n(ω, ·) the Lipschitz approximation of order k of gn(ω, ·), we can write

gk
n(ω, v(ω)) = inf

y∈E
{kd(y, v(ω)) + gn(ω,y)},
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whence, by taking the lim sup,

lim sup
n→∞

gk
n(ω, v(ω)) = lim sup

n→∞
inf
y∈E

{kd(y, v(ω)) + gn(ω,y)}
≤ inf

y∈E
lim sup
n→∞

{kd(y, v(ω)) + gn(ω,y)}

≤ inf
p≥1

lim sup
n→∞

{
kd

(
vk,p(ω), v(ω)

) + gn

(
ω,vk,p(ω)

)}
= inf

p≥1

{
kd(vk,p(ω), v(ω)) + lim sup

n→∞
gn(ω, vk,p(ω))

}
.

By Lemma 3.9, for every k,p ≥ 1, we can write

lim
n→∞gn

(
ω,vk,p(ω)

) = (EIf )
(
ω,vk,p(ω)

)
for all ω ∈ � \ N3(k,p), where N3(k,p) is a suitable negligible set. Now, for
every k ≥ 1, define the negligible subset N3(k) by

⋃
p≥1 N3(k,p). Without loss

of generality we can assume that N3(k) contains N2(k). By (4.4) we have

lim sup
n→∞

gk
n(ω, v(ω)) ≤ inf

p≥1

{
kd(vk,p(ω), v(ω)) + (EIf )(ω, vk,p(ω))

} = φk(ω).

Consequently, taking the supremum over k on both sides of the above inequality
gives

lse
n→∞gn(ω, v(ω)) = sup

k≥1
lim sup
n→∞

gk
n(ω, v(ω))

≤ sup
k≥1

φk(ω) = φ(ω) = (EIf )(ω, v(ω)).

The inequality holds for every ω ∈ N3, where the negligible subset N3 is defined
by N3 = ⋃

k≥1 N3(k). The proof is over by noting that equality (2.2) holds for
every ω ∈ � \ (N1 ∪ N3).

Step 2. We assume the existence of a real-valued integrable function m such
that f (ω,x) ≥ m(ω) for all (ω, x) ∈ � × E. In this case, we consider the positive
integrand g defined on � × E by

g(ω,x) = f (ω,x) − m(ω).

We can apply the result of the first step to g and Proposition 3.8 to m. Further, it
is readily checked that the sum of an epiconvergent sequence of functions and of
a convergent sequence of real numbers is epiconvergent to the sum of the limits.
This entails equality (2.2).

Step 3. Now we pass to the general case. The desired result is a consequence
of the local character of epiconvergence [see Remark 4.3 in Dal Maso (1993)].
Indeed, given a sequence of functions fn :E → R, consider its lower epilimit at
x ∈ E, which is defined by

lie
n→∞fn(x) = sup

k≥1
lim inf
n→∞ inf

y∈B(x,1/k)
fn(y).
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Due to the monotonicity of the infimum over k, one also has

lie
n→∞fn(x) = sup

k≥1/r

lim inf
n→∞ inf

y∈B(x,1/k)
fn(y).

A similar equality holds true for the upper epilimit. Due to condition (C0), E can
be covered by a countable collection of open subsets Bi . Thus, applying the
result of the second step for each i ≥ 1 with E replaced with Bi and extracting
appropriate negligible subsets yield the desired conclusion. �

REMARK 4.1. (i) According to Proposition 3.5 and to Remark 3.2, the
I ⊗ B(E)-measurability of lien→∞ gn and lsen→∞ gn is needed in the proof of
Theorem 2.3. Indeed, if these two functions were only known to be A ⊗ B(E)-
measurable, one could only deduce the inequalities

E
I
(

lie
n→∞gn

)
(ω, ·) ≥ (EIf )(ω, ·) ≥ E

I
(

lse
n→∞gn

)
(ω, ·) a.s.

(ii) Apart from the use of the conditional expectation for integrands, the above
proof follows the same lines as in Hess (1991, 1996), where a strong law of large
numbers was proved for sequences of pairwise independent identically distributed
normal integrands.

PROOF OF THEOREM 2.5. Condition (C ′
0) allows for applying Corol-

lary 2.2(ii) to f and to −f , which yields the continuity of (EIf )(ω, ·), for almost
all ω ∈ �. Further, from Theorem 2.3 applied to f and −f , it follows that for
almost every ω ∈ � the sequence(

1

n

n−1∑
i=0

f (T iω, ·)
)

n≥1

is both epiconvergent and hypoconvergent to (EIf )(ω, ·). The proof is complete
by appealing to Proposition 3.4. �

PROOF OF THEOREM 2.6. Given an integrable set-valued map F , we
consider the integrand f :� × E → R defined by

f (ω,y) = s(y,F (ω)), (ω, y) ∈ � × E.(4.5)

If we denote by g the conditional expectation of f with respect to B (as defined
in Section 2.1), we have for any B-measurable function v :� → E and for almost
any ω ∈ �,

g(ω, v(ω)) = E
B[

s
(
v(·),F (·))](ω) = s

(
v(ω),E

B(F )(ω)
)
.(4.6)

The last equality is a consequence of the definition of the set-valued conditional
expectation [see Hiaï (1985)].
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Let w be an integrable selection of F . For every ω ∈ � and y in the closed unit
ball of E, one has

−‖w(ω)‖ ≤ 〈y,w(ω)〉 ≤ s(y,F (ω))

so that the minorization condition in Theorem 2.3 is satisfied. Further, consider the
integrand defined by (4.5). From Theorem 2.3 and equalities (4.6), we can deduce
that

(EIf )(ω, ·) = lime
n→∞

1

n

n−1∑
i=0

f (T iω, ·) a.s.

which yields

s
(·,E

I(F )(ω)
) = lime

n→∞
1

n

n−1∑
i=0

s
(·,F (T iω)

)
a.s.

Taking the conjugate (also called the Young–Fenchel transform) of both sides and
using the continuity of this operation with respect to epiconvergence [see Attouch
(1984b) or Dal Maso (1993)], we obtain

χ
(·,E

I(F )(ω)
) = lime

n→∞
1

n

n−1∑
i=0

χ
(·,F (T iω)

)
a.s.

It is not difficult to check that this yields the Painlevé–Kuratowski convergence as
claimed. �

5. Comparison with the literature. The above stated theorems are related
to other results in statistics, econometrics and convex analysis. In particular, the
ergodic theorem (Theorem 2.3) that we state appears as a new result in an active
field of research.

Indeed, results such as those expressed in (1.1) first appeared in a paper by
King and Wets (1991) who proved a version of the SLLN for an i.i.d. sequence of
normal convex integrands; that is, the function f appearing in (1.1) was assumed
to be lower semicontinuous and convex with respect to the second variable. In
this work, E was assumed to be a reflexive Banach space, and the proof was
based on a set-valued version of the SLLN for closed convex random sets and on
the use of the continuity of the Young–Fenchel transform. Later, a new approach
was initiated independently by Attouch and Wets [(1991), Theorem 3.3] and by
Hess [(1991), Theorem 4.3] with different proofs. The important difference with
King and Wets’s results is that the consideration of the Young–Fenchel transform
was no longer necessary. In Attouch and Wets (1991), a version of the SLLN
was proved assuming that E is a separable Banach space and that f is bounded
from below by a square integrable random variable. In Hess (1991), the SLLN
was shown to hold when E is a Suslin metric space without linear structure and
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assuming only the minorization of f by an integrable random variable. Moreover,
the integrands were only assumed to be pairwise independent. The latter result
was presented in several conferences (e.g., at the XXIV Journées de Statistique,
Bruxelles 18–22 May, 1992) and appeared eventually in 1996 [see Hess (1996)].
A partial extension of this kind of SLLN in the framework of ordered vector spaces
was also proved by Jalby (1993). Afterwards, several authors became interested in
extensions or variants of this version of the SLLN. For example, the BET was
examined by Castaing and Ezzaki (1993), who obtained partial results, and by
Licht and Michaille (1994) who proved a version of the BET in the ergodic case,
but in the more general case of subadditive processes. More recently, Artstein and
Wets (1996) gave a proof of the SLLN very similar to that of Hess (1991) and
provided applications to stochastic optimization.

Following the same lines, Korf and Wets [(2000a), Theorem 7.2 and (2001),
Theorem 6.2] state an epigraphical ergodic theorem under quite restrictive
conditions using the method of scalarization of Korf and Wets (2000b); indeed,
they take E to be a Polish space and they suppose that the random set ω �→
Epi[(EIf )(ω, ·)] has a dense countable subset. Valadier (1999, 2000a, b) has
taken further the work of Castaing and Ezzaki (1993), and has given a result
similar to Theorem 2.3 for a positive integrand. However, Valadier’s proof seems
to work only in the ergodic case. This is due to repeated appeals to the monotone
convergence theorem for the conditional expectation, which yields a noncountable
family of negligible subsets [this argument was contained in Castaing and Ezzaki
(1993)]. This has been corrected in Valadier (2002).

Moreover, as shown in Section 2.5, under the hypothesis that the transforma-
tion T is ergodic, the ergodic theorem can be turned into an epigraphical SLLN
that can be used, in statistical and econometric applications, to derive consistency
of estimators or of stochastic programming problems. The approach based on epi-
convergence has been pursued by Dupačová and Wets (1988), Geyer (1994) and
Hess (1991, 1996). In this sense, epigraphical SLLN should be perceived as a sub-
stitute of the uniform laws of large numbers (ULLN) that, starting from the sem-
inal papers of Huber [(1967), pages 224–226] and Jennrich [(1969), Theorem 2,
page 636], are considered as a cornerstone of the modern theory of statistical infer-
ence. In the standard case considered in the statistical and econometric literature,
(�,A) is a complete measurable space, and x is a parameter varying in E, a com-
pact subset of a Euclidean space. However, our result holds for much more general
spaces and can be easily extended to take into account nonparametric and semi-
parametric estimation.

The real constraint is given by the A ⊗ B(E)-measurability of the integrand;
we remark that if, for any x ∈ E, f (·, x) is A-measurable and, for any ω ∈ �,
f (ω, ·) is continuous in x, then by Lemma III.14 of Castaing and Valadier (1977),
f is A⊗B(E)-measurable. This joint measurability assumption is not uncommon
in asymptotic theory [see, e.g., Gouriéroux and Monfort (1995), Chapter 24, or
Hess (1996)], but it is often replaced by the following weaker condition: For any
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x ∈ E, f (·, x) is A-measurable and for any x ∈ E, the set N(x) of continuous
trajectories at x has P-measure 1. Indeed, our more restrictive hypothesis implies
measurability of the supremum [see Brown and Purves (1973)], while the latter
guarantees only outer measurability.

The Jennrich [(1969), Theorem 2, page 636] ULLN follows as a corollary of
our Theorem 2.5 under the hypothesis that the random variables are independent
and identically distributed. [See also Amemiya (1985), Theorem 4.2.1, page 116
and Theorem 4.2.3, page 118.] Gallant and Holly’s [(1980), Theorem 2, page 702]
ULLN use the concept of Cesaro summable sequence: under the requirement of
stationarity, it corresponds to an ergodic sequence. Tauchen’s [(1985), Lemma 1,
page 423] ULLN is a special case of ours, too.

Clearly, our Theorem 2.5 is derived under the restrictive hypothesis of
ergodicity. In this sense our law of large numbers complements Andrews (1987)
and Pötscher and Prucha (1989, 1996), since they relax the conditions of ergodicity
but assume stronger hypotheses on the behavior of the functions. In a forthcoming
paper we shall investigate further epigraphical SLLN for more general stochastic
processes.

APPENDIX

Conditional expectation of an integrand.

PROOF OF THEOREM 2.1. Uniqueness is an immediate consequence of
Proposition 3.5. As to the proof of existence, we shall proceed in five steps.

Step 1. Consider G = A×F , where A ∈ A and F ∈ B(E), and assume that the
integrand f is defined as f (ω,x) = 1G(ω,x). The conditional expectation g =
E

B(f ) is well defined. Indeed, for all B ∈ B and for all (B,B(E))-measurable
function v :� → E, we have∫

B
1A(ω) · 1F (v(ω))P(dω) =

∫
B

1A(ω) · 1v−1(F )(ω)P(dω)

=
∫
B

E
B(1A · 1v−1(F ))(ω)P(dω)

=
∫
B

1v−1(F )(ω)EB(1A)(ω)P(dω).

The last equality follows from the B-measurability of v. This shows that g is
defined by g(ω,x) = 1F (x)EB(1A)(ω).

Step 2. To prove that g = E
B(f ) can be defined for every f = 1G, where

G is an arbitrary member of A ⊗ B(E), it suffices to use a monotone class
argument and the monotone convergence theorem for the conditional expectation
[this method is similar to the construction of a product measure; see, e.g., Neveu
(1964), Proposition III-2-1].
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Step 3. When f is a positive integrand, it can be written as the supremum
of a sequence of positive simple integrands, that is, integrands of the form∑n

i=1 αi · 1Gi
, where αi ∈ R+, Gi ∈ G, n ∈ N

∗. The additivity of the integral and
an appeal to the monotone convergence theorem for the conditional expectation
yields the existence of g = E

Bf , which is positive from Proposition 3.5.
Step 4. When f is minorized on E by an integrable function m :� → R, it is

sufficient to apply the result of the third step to (ω, x) �→ f (ω,x) − m(ω).
Step 5. We prove the result in the general case, that is, when f satisfies

condition C[(Bi), (mi), i ≥ 1]. According to the result of the fourth step, for each
i ≥ 1, it is possible to define a unique B ⊗ B(E)-measurable integrand gi on
� × Bi satisfying as E

Bf (·, v(·)) = gi(·, v(·)) for every v ∈ L0(�,A,P;Bi).
Now, let us define the integrand g on � × E by g(ω,x) = gi(ω, x) for all
(ω, x) ∈ �×Bi . It remains to show that this makes sense. More precisely, consider
two distinct integers i, j ≥ 1 such that Bi ∩ Bj �= ∅ and a B-measurable function
v :� → Bi ∩ Bj . In view of condition (C) one has

f (ω, v(ω)) ≥ max
(
mi(ω),mj (ω)

)
,

whence, for every B ∈ B ,∫
B

f (ω, v(ω))P(dω) =
∫
B

gi(ω, v(ω))P(dω) =
∫
B

gj (ω, v(ω))P(dω).

Proposition 3.5 implies gi = gj on �× (Bi ∩Bj ); namely, there exists a negligible
subset N such that

gi(ω, x) = gj (ω, x) ∀ (ω, x) ∈ (� \ N) × (Bi ∩ Bj ). �

PROOF OF COROLLARY 2.2. As to part (i), consider an integrand satisfying
condition (C) and which is k-Lipschitz on each Bi . We have already proved that
the conditional expectation of f exists and is characterized by

g(ω, v(ω)) = E
B[

f (·, v(·))](ω) a.s.

for every i ≥ 1 and every v ∈ L0(�,B,P;Bi). Let i ≥ 1 be fixed in the rest of
the proof of the present statement. Since E is separable, there exists a set D that
is countable and dense in Bi . For all x ∈ Bi , there exists a negligible set Nx such
that: g(ω,x) = E

B(f (·, x))(ω) for all ω /∈ Nx . Now, define N = ⋃
x∈D Nx . For all

x, y ∈ D and for all ω /∈ N , we have

|g(ω,x) − g(ω,y)| ≤ E
B(|f (·, x) − f (·, y)|)(ω)

≤ E
B(kd(x, y)) = kd(x, y).

From the Lipschitz version of the extension theorem [see, e.g., Aliprantis and
Border (1999), Lemma 3.8], there is a unique function g̃ : (� \ N) × Bi → R
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satisfying

|g̃(ω, x) − g̃(ω, y)| ≤ kd(x, y) ∀ (x, y) ∈ B2
i ,

g̃(ω, ·)|D = g(ω, ·),
g̃(ω, x) ≥ E

Bmi ∀ (ω, x) ∈ (� \ N) × Bi.

It remains to show that, for every x ∈ Bi , g̃(·, x) satisfies

g̃(ω, x) = E
B(f (·, x))(ω) a.s.

For every x ∈ Bi\D, there exists a sequence (xn)n in D converging to x. Further,
for every B ∈ B and every n ≥ 1, we have∫

B
f (ω,xn)P(dω) =

∫
B

g(ω,xn)P(dω) =
∫
B

g̃(ω, xn)P(dω).

The following two inequalities are readily obtained:∣∣∣∣∫
B

f (ω,xn)P(dω) −
∫
B

f (ω,x)P(dω)

∣∣∣∣ ≤ kP(B)d(x, xn),∣∣∣∣∫
B

g̃(ω, xn)P(dω) −
∫
B

g̃(ω, x)P(dω)

∣∣∣∣ ≤ kP(B)d(x, xn).

Letting n tend to infinity, we immediately deduce∫
B

f (ω,x)P(dω) =
∫
B

g̃(ω, x)P(dω),

which yields the desired conclusion.
As to part (ii), suppose now that f is a normal integrand on each Bi (it is lsc with

respect to x). Assume that the integer i is fixed. From Proposition 3.1, we know
that on each Bi f can be written as the supremum of the Lipschitz approximations
f k(ω, ·) defined as

∀ k ≥ 1, ∀x ∈ Bi, ∀ω ∈ �, f k(ω, x) � inf
y∈Bi

{f (ω,y) + kd(x, y)};

moreover, f k is A⊗B(E)-measurable [see Hess (1996)], and E
Bf k(ω, ·) is also

Lipschitz of constant k on each Bi . For each i ≥ 1, we can apply the monotone
convergence theorem for conditional expectation in L0 [see, e.g., Theorem 10.5
in Davidson (1994)] on each Bi . Thus, for almost all ω ∈ �, the restriction of
E

Bf (ω, ·) to each Bi is lsc. Since the Bi are assumed to be open, E
Bf (ω, ·) is lsc

on each Bi , which yields the desired result. �
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